1
|
Heer C, Sheffield M. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. eLife 2024; 13:RP95213. [PMID: 39504262 PMCID: PMC11540301 DOI: 10.7554/elife.95213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad Heer
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Mark Sheffield
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| |
Collapse
|
2
|
Bowler JC, Zakka G, Yong HC, Li W, Rao B, Liao Z, Priestley JB, Losonczy A. behaviorMate: An Intranet of Things Approach for Adaptable Control of Behavioral and Navigation-Based Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569989. [PMID: 38116032 PMCID: PMC10729741 DOI: 10.1101/2023.12.04.569989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect the precise times of the subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an "Intranet of Things" approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate's utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.
Collapse
Affiliation(s)
- John C. Bowler
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
- Department of Neurobiology University of Utah, Salt Lake City, UT 84112, USA
| | - George Zakka
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Hyun Choong Yong
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Wenke Li
- Aquabyte, San Francisco, CA 94111
| | - Bovey Rao
- Department of Neuroscience
- Doctoral Program in Neurobiology and Behavior
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Zhenrui Liao
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | | | - Attila Losonczy
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| |
Collapse
|
3
|
Futia GL, Zohrabi M, McCullough C, Teel A, Simoes de Souza F, Oroke R, Miscles EJ, Ozbay BN, Kilborn K, Bright VM, Restrepo D, Gopinath JT, Gibson EA. Opto2P-FCM: A MEMS based miniature two-photon microscope with two-photon patterned optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619528. [PMID: 39484501 PMCID: PMC11526896 DOI: 10.1101/2024.10.21.619528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiphoton microscopy combined with optogenetic photostimulation is a powerful technique in neuroscience enabling precise control of cellular activity to determine the neural basis of behavior in a live animal. Two-photon patterned photostimulation has taken this further by allowing interrogation at the individual neuron level. However, it remains a challenge to implement imaging of neural activity with spatially patterned two-photon photostimulation in a freely moving animal. We developed a miniature microscope for high resolution two-photon fluorescence imaging with patterned two-photon optogenetic stimulation. The design incorporates a MEMS scanner for two-photon imaging and a second beam path for patterned two-photon excitation in a compact and lightweight design that can be head-attached to a freely moving animal. We demonstrate cell-specific optogenetics and high resolution MEMS based two-photon imaging in a freely moving mouse. The new capabilities of this miniature microscope design can enable cell-specific studies of behavior that can only be done in freely moving animals.
Collapse
Affiliation(s)
- Gregory L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor McCullough
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alec Teel
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Oroke
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Eduardo J. Miscles
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Baris N. Ozbay
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Islam T, Torigoe M, Tanimoto Y, Okamoto H. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. CELL REPORTS METHODS 2024; 4:100863. [PMID: 39317191 DOI: 10.1016/j.crmeth.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Virtual reality (VR) has emerged as a powerful tool for investigating neural mechanisms of decision-making, spatial cognition, and navigation. In many head-fixed VRs for rodents, animals locomote on spherical treadmills that provide rotation information in two axes to calculate two-dimensional (2D) movement. On the other hand, zebrafish in a submerged head-fixed VR can move their tail to enable movement in 2D VR environment. This motivated us to create a VR system for adult zebrafish to enable 2D movement consisting of forward translation and rotations calculated from tail movement. Besides presenting the VR system, we show that zebrafish can learn a virtual Morris water maze-like (VMWM) task in which finding an invisible safe zone was necessary for the zebrafish to avoid an aversive periodic mild electric shock. Results show high potential for our VR system to be combined with optical imaging for future studies to investigate spatial learning and navigation.
Collapse
Affiliation(s)
- Tanvir Islam
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Makio Torigoe
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yuki Tanimoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatu-cho, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hitoshi Okamoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatu-cho, Shinjuku-ku, Tokyo 169-8555, Japan; Institute of Neuropsychiatry, 91 Benten-cho, Shinjuku-ku, Tokyo 162-0851, Japan.
| |
Collapse
|
5
|
Juhász G, Madarász M, Szmola B, Fedor FZ, Balogh-Lantos Z, Szabó Á, Rózsa B, Fekete Z. Hippocampal recording with a soft microelectrode array in a cranial window imaging scheme: a validation study. Sci Rep 2024; 14:24585. [PMID: 39427030 PMCID: PMC11490575 DOI: 10.1038/s41598-024-75170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The hippocampus has a crucial role in the formation, consolidation and recall of memories as well as in navigation related processes. These functions are in the focus of neuroscience and different disciplines have contributed to this research field for decades. Two-photon imaging in awake animals is a valuable new aspect for these observations, especially when it is supported by electrophysiology. In this study, we applied high speed two-photon hippocampal imaging through a chronically implanted, soft, transparent microelectrode (STM) device incorporated into a cranial window chamber in awake mice. We monitored the impedance of the recording sites over the course of the experiments to observe long-term changes in recording quality. The large-scale ipsilateral local field potential (LFP) recordings from the dorsal hippocampus provided reliable sharp wave-ripples (SPW-Rs), multi-unit activity (MUA) and single-unit activity (SUA) for up to two months. Calcium imaging of GCaMP6f. labeled cells from the CA1 pyramidal layer under the transparent device was possible even after six months in thy1-GCaMP6f. transgenic mice. We investigated the immune response with GFAP staining after the end of the long-term experiments. Based on our results, this dedicated transparent electrode device proved to be suitable for simultaneous two-photon imaging and large-scale electrophysiological measurements in chronic experiments in mice.
Collapse
Affiliation(s)
- G Juhász
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - M Madarász
- BrainVisionCenter, Budapest, Hungary
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
| | - B Szmola
- BrainVisionCenter, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - F Z Fedor
- BrainVisionCenter, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Z Balogh-Lantos
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
- Roska Tamas Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Á Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - B Rózsa
- BrainVisionCenter, Budapest, Hungary.
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary.
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary.
- Sleep Oscillation Research Group, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
7
|
Schottdorf M, Rich PD, Diamanti EM, Lin A, Tafazoli S, Nieh EH, Thiberge SY. TWINKLE: An open-source two-photon microscope for teaching and research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.612766. [PMID: 39386506 PMCID: PMC11463478 DOI: 10.1101/2024.09.23.612766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many laboratories use two-photon microscopy through commercial suppliers, or homemade designs of considerable complexity. The integrated nature of these systems complicates customization, troubleshooting as well as grasping the principles of two-photon microscopy. Here, we present "Twinkle": a microscope for Two-photon Imaging in Neuroscience, and Kit for Learning and Education. It is a fully open, high-performance and cost-effective research and teaching microscope without any custom parts beyond what can be fabricated in a university machine shop. The instrument features a large field of view, using a modern objective with a long working distance and large back aperture to maximize the fluorescence signal. We document our experiences using this system as a teaching tool in several two week long workshops, exemplify scientific use cases, and conclude with a broader note on the place of our work in the growing space of open-source scientific instrumentation.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - P. Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - E. Mika Diamanti
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Brown E, Zi Y, Vu MA, Bouabid S, Lindsey J, Godfrey-Nwachukwu C, Attarwala A, Litwin-Kumar A, DePasquale B, Howe M. Spatially organized striatal neuromodulator release encodes trajectory errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607797. [PMID: 39185163 PMCID: PMC11343099 DOI: 10.1101/2024.08.13.607797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Goal-directed navigation requires animals to continuously evaluate their current direction and speed of travel relative to landmarks to discern whether they are approaching or deviating from their goal. Striatal dopamine and acetylcholine are powerful modulators of goal-directed behavior, but it is unclear whether and how neuromodulator dynamics at landmarks incorporate relative motion for effective behavioral guidance. Using optical measurements in mice, we demonstrate that cue-evoked striatal dopamine release encodes bi-directional 'trajectory errors' reflecting relationships between ongoing speed and direction of locomotion and visual flow relative to optimal goal trajectories. Striatum-wide micro-fiber array recordings resolved an anatomical gradient of trajectory error signaling across the anterior-posterior axis, distinct from trajectory error independent cue signals. Dynamic regression modeling revealed that positive and negative trajectory error encoding emerges early and late respectively during learning and over different time courses in the medial and lateral striatum, enabling region specific contributions to learning. Striatal acetylcholine release also encodes trajectory errors, but encoding is more spatially restricted, opposite polarity, and delayed relative to dopamine, supporting distinct roles in modulating striatal output and behavior. Dopamine trajectory error signaling and task performance were reproduced in a reinforcement learning model incorporating a conjunctive state space representation, suggesting a potential neural substrate for trajectory error generation. Our results establish region specific neuromodulator signals positioned to guide the speed and direction of locomotion to reach goals based on environmental landmarks during navigation.
Collapse
Affiliation(s)
- Eleanor Brown
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yihan Zi
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mai-Anh Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Jack Lindsey
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | - Aaquib Attarwala
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | - Brian DePasquale
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Huang YC, Chen HC, Lin YT, Lin ST, Zheng Q, Abdelfattah AS, Lavis LD, Schreiter ER, Lin BJ, Chen TW. Dynamic assemblies of parvalbumin interneurons in brain oscillations. Neuron 2024; 112:2600-2613.e5. [PMID: 38955183 DOI: 10.1016/j.neuron.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024]
Abstract
Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.
Collapse
Affiliation(s)
- Yi-Chieh Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hui-Ching Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Szu-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ahmed S Abdelfattah
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Department of Neuroscience, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Bei-Jung Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Tsai-Wen Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
11
|
Wolcott NS, Redman WT, Karpinska M, Jacobs EG, Goard MJ. The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606418. [PMID: 39131375 PMCID: PMC11312567 DOI: 10.1101/2024.08.02.606418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Histological evidence suggests that the estrous cycle exerts a powerful effect on CA1 neurons in mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice over multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with heightened density during periods of greater estradiol (proestrus). These morphological changes were accompanied by greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed enhanced place field stability during proestrus, evident at the single-cell and population level. These results establish the estrous cycle as a driver of large-scale structural and functional plasticity in hippocampal circuits essential for learning and memory.
Collapse
Affiliation(s)
- Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Intelligent Systems Center, Johns Hopkins University Applied Physics Lab, Laurel, MD 20723, USA
| | - Marie Karpinska
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Ann S. Bowers Women's Brain Health Initiative, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
Iwase M, Diba K, Pastalkova E, Mizuseki K. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex. Hippocampus 2024; 34:393-421. [PMID: 38874439 DOI: 10.1002/hipo.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kamran Diba
- Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eva Pastalkova
- The William Alanson White Institute of Psychiatry, Psychoanalysis & Psychology, New York, New York, USA
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
13
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex mediates learning of context-dependent interval timing behavior. Nat Neurosci 2024; 27:1587-1598. [PMID: 38877306 DOI: 10.1038/s41593-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether they display learning dynamics required for encoding different temporal contexts. To explore this, we developed a new behavioral paradigm requiring mice to distinguish temporal contexts. Combined with methods for cellular resolution calcium imaging, we found that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we found that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we found evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
Affiliation(s)
- Erin R Bigus
- Interdepartmental PhD Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Hyun-Woo Lee
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - John C Bowler
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jiani Shi
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - James G Heys
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Heer CM, Sheffield MEJ. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569214. [PMID: 38076843 PMCID: PMC10705417 DOI: 10.1101/2023.11.29.569214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized 2-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad M Heer
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Mark E J Sheffield
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Masala N, Mittag M, Giovannetti EA, O'Neil DA, Distler FJ, Rupprecht P, Helmchen F, Yuste R, Fuhrmann M, Beck H, Wenzel M, Kelly T. Aberrant hippocampal Ca 2+ microwaves following synapsin-dependent adeno-associated viral expression of Ca 2+ indicators. eLife 2024; 13:RP93804. [PMID: 39042440 PMCID: PMC11265795 DOI: 10.7554/elife.93804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.
Collapse
Affiliation(s)
- Nicola Masala
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Darik A O'Neil
- NeuroTechnology Center, Columbia UniversityNew YorkUnited States
| | - Fabian J Distler
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
| | - Peter Rupprecht
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center Zurich, University of ZurichZurichSwitzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center Zurich, University of ZurichZurichSwitzerland
| | - Rafael Yuste
- NeuroTechnology Center, Columbia UniversityNew YorkUnited States
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Heinz Beck
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Michael Wenzel
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Tony Kelly
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR)BonnGermany
- University Hospital BonnBonnGermany
| |
Collapse
|
16
|
Gandit B, Posani L, Zhang CL, Saha S, Ortiz C, Allegra M, Schmidt-Hieber C. Transformation of spatial representations along hippocampal circuits. iScience 2024; 27:110361. [PMID: 39071886 PMCID: PMC11277690 DOI: 10.1016/j.isci.2024.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
The hippocampus is thought to provide the brain with a cognitive map of the external world by processing various types of spatial information. To understand how essential spatial variables such as direction, position, and distance are transformed along its circuits to construct this global map, we perform single-photon widefield microendoscope calcium imaging in the dentate gyrus and CA3 of mice freely navigating along a narrow corridor. We find that spatial activity maps in the dentate gyrus, but not in CA3, are correlated after aligning them to the running directions, suggesting that they represent the distance traveled along the track in egocentric coordinates. Together with population activity decoding, our data suggest that while spatial representations in the dentate gyrus and CA3 are anchored in both egocentric and allocentric coordinates, egocentric distance coding is more prevalent in the dentate gyrus than in CA3, providing insights into the assembly of the cognitive map.
Collapse
Affiliation(s)
- Bérénice Gandit
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Cantin Ortiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Manuela Allegra
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Institute for Physiology I, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
17
|
Bouabid S, Zhang L, Vu MAT, Tang K, Graham BM, Noggle CA, Howe MW. Spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian cues and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602947. [PMID: 39071401 PMCID: PMC11275942 DOI: 10.1101/2024.07.10.602947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Striatal acetylcholine (ACh) has been linked to behavioral flexibility. A key component of flexibility is down-regulating responding as valued cues and actions become decoupled from positive outcomes. We used array fiber photometry in mice to investigate how ACh release across the striatum evolves during learning and extinction of Pavlovian associations. Changes in multi-phasic release to cues and consummatory actions were bi-directional and region-specific. Following extinction, increases in cue-evoked ACh release emerged in the anterior dorsal striatum (aDS) which preceded a down-regulation of anticipatory behavior. Silencing ACh release from cholinergic interneurons in the aDS blocked behavioral extinction. Dopamine release dipped below baseline for down-shifted cues, but glutamate input onto cholinergic interneurons did not change, suggesting an intrastriatal mechanism for the emergence of ACh increases. Our large-scale mapping of striatal ACh dynamics during learning pinpoints region-specific elevations in ACh release positioned to down-regulate behavior during extinction, a central feature of flexible behavior.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Liangzhu Zhang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Kylie Tang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
19
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
20
|
McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits 2024; 18:1414452. [PMID: 38978957 PMCID: PMC11228174 DOI: 10.3389/fncir.2024.1414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.
Collapse
Affiliation(s)
- Olivia McKissick
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nell Klimpert
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jason T Ritt
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Stuart SA, Palacios-Filardo J, Domanski A, Udakis M, Duguid I, Jones MW, Mellor JR. Hippocampal-dependent navigation in head-fixed mice using a floating real-world environment. Sci Rep 2024; 14:14315. [PMID: 38906952 PMCID: PMC11192748 DOI: 10.1038/s41598-024-64807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.
Collapse
Affiliation(s)
- Sarah A Stuart
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Aleks Domanski
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Matt Udakis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Matt W Jones
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
22
|
McNulty P, Wu R, Yamaguchi A, Heckscher ES, Haas A, Nwankpa A, Skanata MM, Gershow M. CRASH2p: Closed-loop Two Photon Imaging in Freely Moving Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595209. [PMID: 38826435 PMCID: PMC11142166 DOI: 10.1101/2024.05.22.595209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Direct measurement of neural activity in freely moving animals is essential for understanding how the brain controls and represents behaviors. Genetically encoded calcium indicators report neural activity as changes in fluorescence intensity, but brain motion confounds quantitative measurement of fluorescence. Translation, rotation, and deformation of the brain and the movements of intervening scattering or auto-fluorescent tissue all alter the amount of fluorescent light captured by a microscope. Compared to single-photon approaches, two photon microscopy is less sensitive to scattering and off-target fluorescence, but more sensitive to motion, and two photon imaging has always required anchoring the microscope to the brain. We developed a closed-loop resonant axial-scanning high-speed two photon (CRASH2p) microscope for real-time 3D motion correction in unrestrained animals, without implantation of reference markers. We complemented CRASH2p with a novel scanning strategy and a multistage registration pipeline. We performed volumetric ratiometrically corrected functional imaging in the CNS of freely moving Drosophila larvae and discovered previously unknown neural correlates of behavior.
Collapse
Affiliation(s)
- Paul McNulty
- Department of Physics,New York University, New York, USA
| | - Rui Wu
- Department of Physics,New York University, New York, USA
| | | | - Ellie S. Heckscher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Andrew Haas
- Department of Physics,New York University, New York, USA
| | | | | | - Marc Gershow
- Department of Physics,New York University, New York, USA
- Center for Neural Science,New York University, New York, USA
- Neuroscience Institute, New York University, New York, USA
| |
Collapse
|
23
|
Sheng M, Lu D, Sheng K, Ding JB. Activity-Dependent Remodeling of Corticostriatal Axonal Boutons During Motor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598366. [PMID: 38915677 PMCID: PMC11195117 DOI: 10.1101/2024.06.10.598366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Motor skill learning induces long-lasting synaptic plasticity at not only the inputs, such as dendritic spines1-4, but also at the outputs to the striatum of motor cortical neurons5,6. However, very little is known about the activity and structural plasticity of corticostriatal axons during learning in the adult brain. Here, we used longitudinal in vivo two-photon imaging to monitor the activity and structure of thousands of corticostriatal axonal boutons in the dorsolateral striatum in awake mice. We found that learning a new motor skill induces dynamic regulation of axonal boutons. The activities of motor corticostriatal axonal boutons exhibited selectivity for rewarded movements (RM) and un-rewarded movements (UM). Strikingly, boutons on the same axonal branches showed diverse responses during behavior. Motor learning significantly increased the fraction of RM boutons and reduced the heterogeneity of bouton activities. Moreover, motor learning-induced profound structural dynamism in boutons. By combining structural and functional imaging, we identified that newly formed axonal boutons are more likely to exhibit selectivity for RM and are stabilized during motor learning, while UM boutons are selectively eliminated. Our results highlight a novel form of plasticity at corticostriatal axons induced by motor learning, indicating that motor corticostriatal axonal boutons undergo dynamic reorganization that facilitates the acquisition and execution of motor skills.
Collapse
Affiliation(s)
- Mengjun Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Di Lu
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Kaiwen Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Stanford Bioengineering PhD program, Stanford University
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
24
|
Rich PD, Thiberge SY, Scott BB, Guo C, Tervo DGR, Brody CD, Karpova AY, Daw ND, Tank DW. Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons. Nat Commun 2024; 15:4154. [PMID: 38755205 PMCID: PMC11099169 DOI: 10.1038/s41467-024-48505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory are not fully understood. Two-photon calcium imaging allows the activity of individual cells to be followed across long periods, but conventional approaches require head-fixation, which limits the type of behavior that can be studied. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior. Compared to previous systems that used mechanical restraint, there are no moving parts and animals can engage and disengage entirely at will. This system is failsafe, easy for animals to use and reliable enough to allow long-term experiments to be routinely performed. Animals completed hundreds of trials per session of an odor discrimination task that required 2-4 s fixations. Together with a reflectance fluorescence collection scheme that increases two-photon signal and a transgenic Thy1-GCaMP6f rat line, we are able to reliably image the cellular activity in the hippocampus during behavior over long periods (median 6 months), allowing us track the same neurons over a large fraction of animals' lives (up to 19 months).
Collapse
Affiliation(s)
- P Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | | | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Caiying Guo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Gowanlock R Tervo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Alla Y Karpova
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
Gonzalez-Ramos A, Puigsasllosas-Pastor C, Arcas-Marquez A, Tornero D. Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy. Bioengineering (Basel) 2024; 11:487. [PMID: 38790353 PMCID: PMC11118929 DOI: 10.3390/bioengineering11050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Claudia Puigsasllosas-Pastor
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ainhoa Arcas-Marquez
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
26
|
Rupprecht P, Duss SN, Becker D, Lewis CM, Bohacek J, Helmchen F. Centripetal integration of past events in hippocampal astrocytes regulated by locus coeruleus. Nat Neurosci 2024; 27:927-939. [PMID: 38570661 PMCID: PMC11089000 DOI: 10.1038/s41593-024-01612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.
Collapse
Affiliation(s)
- Peter Rupprecht
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
| | - Sian N Duss
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Denise Becker
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
27
|
Bimbard C, Takács F, Catarino JA, Fabre JMJ, Gupta S, Lenzi SC, Melin MD, O’Neill N, Orsolic I, Robacha M, Street JS, Teixeira J, Townsend S, van Beest EH, Zhang AM, Churchland AK, Duan CA, Harris KD, Kullmann DM, Lignani G, Mainen ZF, Margrie TW, Rochefort N, Wikenheiser AM, Carandini M, Coen P. An adaptable, reusable, and light implant for chronic Neuropixels probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551752. [PMID: 37577563 PMCID: PMC10418246 DOI: 10.1101/2023.08.03.551752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the "Apollo Implant", an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a "payload" module which is attached to the probe and is recoverable, and a "docking" module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.
Collapse
Affiliation(s)
- C. Bimbard
- UCL Institute of Ophthalmology, University College London, London, UK
| | - F. Takács
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - J. A. Catarino
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - J. M. J. Fabre
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - S. Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - S. C. Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - M. D. Melin
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - N. O’Neill
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - I. Orsolic
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - M. Robacha
- UCL Institute of Ophthalmology, University College London, London, UK
| | - J. S. Street
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - J. Teixeira
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - S. Townsend
- The FabLab, Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - E. H. van Beest
- UCL Institute of Ophthalmology, University College London, London, UK
| | - A. M. Zhang
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, UK
| | - A. K. Churchland
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - C. A. Duan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - K. D. Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - D. M. Kullmann
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - G. Lignani
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Z. F. Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Lisbon, Portugal
| | - T. W. Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - N.L. Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - A. M. Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - M. Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - P. Coen
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, UK
| |
Collapse
|
28
|
Barnstedt O, Mocellin P, Remy S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat Commun 2024; 15:3196. [PMID: 38609363 PMCID: PMC11015045 DOI: 10.1038/s41467-024-47361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.
Collapse
Affiliation(s)
- Oliver Barnstedt
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany.
| | - Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- International Max Planck Research, School for Brain & Behavior (IMPRS), 53175, Bonn, Germany
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720-3370, USA
| | - Stefan Remy
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
- German Center for Mental Health (DZGP), partner site Halle-Jena-Magdeburg, 39118, Magdeburg, Germany.
| |
Collapse
|
29
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
30
|
Nikbakht N, Pofahl M, Miguel-López A, Kamali F, Tchumatchenko T, Beck H. Efficient encoding of aversive location by CA3 long-range projections. Cell Rep 2024; 43:113957. [PMID: 38489262 DOI: 10.1016/j.celrep.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus.
Collapse
Affiliation(s)
- Negar Nikbakht
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Pofahl
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Albert Miguel-López
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fateme Kamali
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tatjana Tchumatchenko
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heinz Beck
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany.
| |
Collapse
|
31
|
Vu MAT, Brown EH, Wen MJ, Noggle CA, Zhang Z, Monk KJ, Bouabid S, Mroz L, Graham BM, Zhuo Y, Li Y, Otchy TM, Tian L, Davison IG, Boas DA, Howe MW. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron 2024; 112:909-923.e9. [PMID: 38242115 PMCID: PMC10957316 DOI: 10.1016/j.neuron.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.
Collapse
Affiliation(s)
- Mai-Anh T Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eleanor H Brown
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Michelle J Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Christian A Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zicheng Zhang
- Department of Biology, Boston University, Boston, MA, USA
| | - Kevin J Monk
- Department of Biology, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lydia Mroz
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Northeastern University, Boston, MA, USA
| | - Benjamin M Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yulong Li
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | | | - Lin Tian
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Max Planck Florida Institute of Neuroscience, Jupiter, FL, USA
| | - Ian G Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
32
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
33
|
Douthwaite C, Tietje C, Ye X, Liebscher S. Probing cerebellar circuit dysfunction in rodent models of spinocerebellar ataxia by means of in vivo two-photon calcium imaging. STAR Protoc 2024; 5:102911. [PMID: 38412102 PMCID: PMC10907221 DOI: 10.1016/j.xpro.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Purkinje neuron degeneration characterizes spinocerebellar ataxia type 1, yet the comprehension of the impact on the broader cerebellar circuit remains incomplete. We here detail simultaneous in vivo two-photon calcium imaging of diverse neuronal populations in the cerebellar cortex of Sca1 mice while they are navigating a virtual environment. We outline surgical procedures and protocols to chronically record from identical neurons, and we detail data post-processing and analysis to delineate disease-related alterations in neuronal activity and sensorimotor-driven response properties. For complete details on the use and execution of this protocol, please refer to Pilotto et al.1.
Collapse
Affiliation(s)
- Christopher Douthwaite
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany; Graduate School of Systemic Neurosciences, Munich, Germany
| | - Christoph Tietje
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University of Cologne & Department of Neurology, University hospital Cologne, Cologne, Germany.
| |
Collapse
|
34
|
Issa JB, Radvansky BA, Xuan F, Dombeck DA. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. Nat Neurosci 2024; 27:536-546. [PMID: 38272968 PMCID: PMC11097142 DOI: 10.1038/s41593-023-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
During goal-directed navigation, 'what' information, describing the experiences occurring in periods surrounding a reward, can be combined with spatial 'where' information to guide behavior and form episodic memories. This integrative process likely occurs in the hippocampus, which receives spatial information from the medial entorhinal cortex; however, the source of the 'what' information is largely unknown. Here, we show that mouse lateral entorhinal cortex (LEC) represents key experiential epochs during reward-based navigation tasks. We discover separate populations of neurons that signal goal approach and goal departure and a third population signaling reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning the new reward location. Therefore, the LEC contains a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the medial entorhinal cortex.
Collapse
Affiliation(s)
- John B Issa
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Brad A Radvansky
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Feng Xuan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
35
|
Dudok B, Fan LZ, Farrell JS, Malhotra S, Homidan J, Kim DK, Wenardy C, Ramakrishnan C, Li Y, Deisseroth K, Soltesz I. Retrograde endocannabinoid signaling at inhibitory synapses in vivo. Science 2024; 383:967-970. [PMID: 38422134 PMCID: PMC10921710 DOI: 10.1126/science.adk3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials. Furthermore, interneuron-specific cannabinoid receptor deletion altered place cell tuning. Therefore, rapid, postsynaptic, activity-dependent eCB signaling modulates inhibitory synapses on a timescale of seconds during behavior.
Collapse
Affiliation(s)
- Barna Dudok
- Departments of Neurology and Neuroscience, Baylor College of Medicine; Houston, TX, 77030, USA
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Linlin Z. Fan
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Jordan S. Farrell
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
- F.M. Kirby Neurobiology Center and Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital; Boston, MA, 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Shreya Malhotra
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Celestine Wenardy
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Charu Ramakrishnan
- Cracking the Neural Code (CNC) Program, Stanford University; Stanford, CA, 94305, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University; Beijing, 100871, China
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University; Stanford, CA, 94305, USA
- Howard Hughes Medical Institute; Stanford, CA, 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| |
Collapse
|
36
|
Sosa M, Plitt MH, Giocomo LM. Hippocampal sequences span experience relative to rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573490. [PMID: 38234842 PMCID: PMC10793396 DOI: 10.1101/2023.12.27.573490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.
Collapse
Affiliation(s)
- Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
37
|
Masala N, Mittag M, Giovannetti EA, O'Neil DA, Distler F, Rupprecht P, Helmchen F, Yuste R, Fuhrmann M, Beck H, Wenzel M, Kelly T. Aberrant hippocampal Ca 2+ micro-waves following synapsin-dependent adeno-associated viral expression of Ca 2+ indicators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566169. [PMID: 37986838 PMCID: PMC10659308 DOI: 10.1101/2023.11.08.566169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ micro-waves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7 or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer, in a titre-dependent fashion. Ca2+ micro-waves developed in hippocampal CA1 and CA3, but not dentate gyrus (DG) nor neocortex, were typically first observed at 4 weeks after viral transduction, and persisted up to at least 8 weeks. The phenomenon was robust, observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ micro-waves depend on the promoter and viral titre of the GECI, density of expression as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artifact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ micro-waves and we provide a potential solution.
Collapse
Affiliation(s)
- Nicola Masala
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Darik A O'Neil
- NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Fabian Distler
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
| | - Peter Rupprecht
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Heinz Beck
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wenzel
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tony Kelly
- University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology and Cognition Research (IEECR), Bonn, Germany
- University Hospital Bonn
| |
Collapse
|
38
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
39
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex plays a specialized role in learning of flexible, context-dependent interval timing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.18.524598. [PMID: 38260332 PMCID: PMC10802491 DOI: 10.1101/2023.01.18.524598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether MEC time cells display learning dynamics required for encoding different temporal contexts. To explore this, we developed a novel behavioral paradigm that requires distinguishing temporal contexts. Combined with methods for cellular resolution calcium imaging, we find that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we find that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we find evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
|
40
|
Riva G, Wiederhold BK, Mantovani F. Searching for the Metaverse: Neuroscience of Physical and Digital Communities. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:9-18. [PMID: 37057986 PMCID: PMC10794843 DOI: 10.1089/cyber.2023.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
What distinguishes real-world communities from their online counterparts? Social and cognitive neuroscience research on social networks and collective intentionality will be used in the article to answer this question. Physical communities are born in places. And places engage "we-mode" neurobiological and cognitive processes as behavioral synchrony, shared attention, deliberate attunement, interbrain synchronization, and so on, which create coherent social networks of very different individuals who are supported by a "wisdom of crowd." Digital technologies remove physical boundaries, giving people more freedom to choose their activities and groups. At the same time, however, the lack of physical co-presence of community members significantly reduces their possibility of activating "we-mode" cognitive processes and social motivation. Because of this, unlike physical communities that allow interaction between people from varied origins and stories, digital communities are always made up of people who have the same interests and knowledge (communities of practice). This new situation disrupts the "wisdom of crowd," making the community more radical and less accurate (polarization effect), allowing influential users to wield disproportionate influence over the group's beliefs, and producing inequalities in the distribution of social capital. However, a new emergent technology-the Metaverse-has the potential to reverse this trend. Several studies have revealed that virtual and augmented reality-the major technologies underlying the Metaverse-can engage the same neurobiological and cognitive "we-mode" processes as real-world environments. If the many flaws in this technology are fixed, it might encourage people to engage in more meaningful and constructive interactions in online communities.
Collapse
Affiliation(s)
- Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Brenda K. Wiederhold
- Virtual Reality Medical Center, La Jolla, California, USA
- Virtual Reality Medical Institute, Brussels, Belgium
| | - Fabrizia Mantovani
- Centre for Studies in Communication Sciences “Luigi Anolli” (CESCOM), Department of Human Sciences for Education “Riccardo Massa,” University of Milano Bicocca, Milan, Italy
| |
Collapse
|
41
|
Krishnan S, Sheffield ME. Reward Expectation Reduces Representational Drift in the Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572809. [PMID: 38187677 PMCID: PMC10769341 DOI: 10.1101/2023.12.21.572809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Spatial memory in the hippocampus involves dynamic neural patterns that change over days, termed representational drift. While drift may aid memory updating, excessive drift could impede retrieval. Memory retrieval is influenced by reward expectation during encoding, so we hypothesized that diminished reward expectation would exacerbate representational drift. We found that high reward expectation limited drift, with CA1 representations on one day gradually re-emerging over successive trials the following day. Conversely, the absence of reward expectation resulted in increased drift, as the gradual re-emergence of the previous day's representation did not occur. At the single cell level, lowering reward expectation caused an immediate increase in the proportion of place-fields with low trial-to-trial reliability. These place fields were less likely to be reinstated the following day, underlying increased drift in this condition. In conclusion, heightened reward expectation improves memory encoding and retrieval by maintaining reliable place fields that are gradually reinstated across days, thereby minimizing representational drift.
Collapse
|
42
|
Pinke D, Issa JB, Dara GA, Dobos G, Dombeck DA. Full field-of-view virtual reality goggles for mice. Neuron 2023; 111:3941-3952.e6. [PMID: 38070501 PMCID: PMC10841834 DOI: 10.1016/j.neuron.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Visual virtual reality (VR) systems for head-fixed mice offer advantages over real-world studies for investigating the neural circuitry underlying behavior. However, current VR approaches do not fully cover the visual field of view of mice, do not stereoscopically illuminate the binocular zone, and leave the lab frame visible. To overcome these limitations, we developed iMRSIV (Miniature Rodent Stereo Illumination VR)-VR goggles for mice. Our system is compact, separately illuminates each eye for stereo vision, and provides each eye with an ∼180° field of view, thus excluding the lab frame while accommodating saccades. Mice using iMRSIV while navigating engaged in virtual behaviors more quickly than in a current monitor-based system and displayed freezing and fleeing reactions to overhead looming stimulation. Using iMRSIV with two-photon functional imaging, we found large populations of hippocampal place cells during virtual navigation, global remapping during environment changes, and unique responses of place cell ensembles to overhead looming stimulation.
Collapse
Affiliation(s)
- Domonkos Pinke
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - John B Issa
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gabriel A Dara
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gergely Dobos
- 360world Ltd, Sümegvár köz 9, 1118 Budapest, Hungary
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
43
|
Ratsifandrihamanana MR, Dard RF, Denis J, Cossart R, Picardo MA. Protocol to image and analyze hippocampal network dynamics in non-anesthetized mouse pups. STAR Protoc 2023; 4:102760. [PMID: 38041819 PMCID: PMC10701450 DOI: 10.1016/j.xpro.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Two-photon calcium imaging is a powerful technique that has revolutionized our understanding of how neural circuit dynamics supports different behaviors and cognitive processes. However, performing imaging during development remains challenging. Here, we provide a protocol to image CA1 neurons in mouse pups as well as a pipeline of analysis to analyze and share the data. We describe steps for intracerebroventricular injection, cranial window surgery, two-photon calcium imaging, and analysis of imaging data. For complete details on the use and execution of this protocol, please refer to Dard et al.1 and Denis et al.2.
Collapse
Affiliation(s)
| | - Robin F Dard
- Turing Centre for Living Systems, Aix-Marseille University, INSERM, INMED U1249, France
| | - Julien Denis
- Turing Centre for Living Systems, Aix-Marseille University, INSERM, INMED U1249, France
| | - Rosa Cossart
- Turing Centre for Living Systems, Aix-Marseille University, INSERM, INMED U1249, France.
| | - Michel A Picardo
- Turing Centre for Living Systems, Aix-Marseille University, INSERM, INMED U1249, France.
| |
Collapse
|
44
|
Chiu Y, Dong C, Krishnan S, Sheffield MEJ. The Precision of Place Fields Governs Their Fate across Epochs of Experience. eNeuro 2023; 10:ENEURO.0261-23.2023. [PMID: 37973379 PMCID: PMC10706252 DOI: 10.1523/eneuro.0261-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spatial memories are represented by hippocampal place cells during navigation. This spatial code is dynamic, undergoing changes across time, known as representational drift, and across changes in internal state, even while navigating the same spatial environment with consistent behavior. A dynamic code may provide the hippocampus a means to track distinct epochs of experience that occur at different times or during different internal states and update spatial memories. Changes to the spatial code include place fields (PFs) that remap to new locations and place fields that vanish, while others are stable. However, what determines place field fate across epochs remains unclear. We measured the lap-by-lap properties of place cells in mice during navigation for a block of trials in a rewarded virtual environment. We then determined the position of the place fields in another block of trials in the same spatial environment either separated by a day (a distinct temporal epoch) or during the same session but with reward removed to change reward expectation (a distinct internal state epoch). We found that place cells with remapped place fields across epochs tended to have lower spatial precision during navigation in the initial epoch. Place cells with stable or vanished place fields tended to have higher spatial precision. We conclude that place cells with less precise place fields have greater spatial flexibility, allowing them to respond to, and track, distinct epochs of experience in the same spatial environment, while place cells with precise place fields generally preserve spatial information when their fields reappear.
Collapse
Affiliation(s)
- YuHung Chiu
- Department of Physics, University of Chicago, Chicago, 60637, IL
- Institute for Neuroscience, University of Chicago, Chicago, 60637, IL
| | - Can Dong
- Department of Neurobiology, University of Chicago, Chicago, 60637, IL
- Institute for Neuroscience, University of Chicago, Chicago, 60637, IL
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, 60637, IL
- Institute for Neuroscience, University of Chicago, Chicago, 60637, IL
| | - Mark E J Sheffield
- Department of Neurobiology, University of Chicago, Chicago, 60637, IL
- Institute for Neuroscience, University of Chicago, Chicago, 60637, IL
| |
Collapse
|
45
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
46
|
Vu MAT, Brown EH, Wen MJ, Noggle CA, Zhang Z, Monk KJ, Bouabid S, Mroz L, Graham BM, Zhuo Y, Li Y, Otchy TM, Tian L, Davison IG, Boas DA, Howe MW. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567425. [PMID: 38014018 PMCID: PMC10680831 DOI: 10.1101/2023.11.17.567425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neural population dynamics relevant for behavior vary over multiple spatial and temporal scales across 3-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array and imaging approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice. We developed a semi-automated micro-CT based strategy to precisely localize positions of each optical fiber. This highly-customizable approach enables investigation of multi-scale spatial and temporal patterns of cell-type and neurotransmitter specific signals over arbitrary 3-D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum volume which revealed distinct, modality specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics through our fiber arrays enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and spatial localization of behavioral function across large circuits.
Collapse
Affiliation(s)
- Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eleanor H. Brown
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Michelle J. Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zicheng Zhang
- Department of Biology, Boston University, Boston, MA, USA
| | - Kevin J. Monk
- Department of Biology, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Lydia Mroz
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Northeastern University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | | | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA
| | - Ian G. Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
47
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat Commun 2023; 14:6758. [PMID: 37875465 PMCID: PMC10598272 DOI: 10.1038/s41467-023-42429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.
Collapse
Affiliation(s)
- Heather C Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA
| | - Mark E J Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA.
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
48
|
Aydın MŞ, Bay S, Yiğit EN, Özgül C, Oğuz EK, Konuk EY, Ayşit N, Cengiz N, Erdoğan E, Him A, Koçak M, Eroglu E, Öztürk G. Active shrinkage protects neurons following axonal transection. iScience 2023; 26:107715. [PMID: 37701578 PMCID: PMC10493506 DOI: 10.1016/j.isci.2023.107715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Trauma, vascular events, or neurodegenerative processes can lead to axonal injury and eventual transection (axotomy). Neurons can survive axotomy, yet the underlying mechanisms are not fully understood. Excessive water entry into injured neurons poses a particular risk due to swelling and subsequent death. Using in vitro and in vivo neurotrauma model systems based on laser transection and surgical nerve cut, we demonstrated that axotomy triggers actomyosin contraction coupled with calpain activity. As a consequence, neurons shrink acutely to force water out through aquaporin channels preventing swelling and bursting. Inhibiting shrinkage increased the probability of neuronal cell death by about 3-fold. These studies reveal a previously unrecognized cytoprotective response mechanism to neurotrauma and offer a fresh perspective on pathophysiological processes in the nervous system.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Cemil Özgül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Elif Kaval Oğuz
- Department of Science Education, Faculty of Education, Yüzüncü Yıl University, Van 65080, Türkiye
| | - Elçin Yenidünya Konuk
- Department of Medical Biology, School of Medicine, Bakırçay University, İzmir 35665, Türkiye
| | - Neşe Ayşit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Medical Biology and Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Nureddin Cengiz
- Department of Histology and Embryology, School of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir 10200, Türkiye
| | - Ender Erdoğan
- Department of Histology and Embryology, School of Medicine, Selçuk University, Konya 42130, Türkiye
| | - Aydın Him
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Mehmet Koçak
- Biostatistics and Bioinformatics Analysis Unit, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
49
|
Madar A, Dong C, Sheffield M. BTSP, not STDP, Drives Shifts in Hippocampal Representations During Familiarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562791. [PMID: 37904999 PMCID: PMC10614909 DOI: 10.1101/2023.10.17.562791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Synaptic plasticity is widely thought to support memory storage in the brain, but the rules determining impactful synaptic changes in-vivo are not known. We considered the trial-by-trial shifting dynamics of hippocampal place fields (PFs) as an indicator of ongoing plasticity during memory formation. By implementing different plasticity rules in computational models of spiking place cells and comparing to experimentally measured PFs from mice navigating familiar and novel environments, we found that Behavioral-Timescale-Synaptic-Plasticity (BTSP), rather than Hebbian Spike-Timing-Dependent-Plasticity, is the principal mechanism governing PF shifting dynamics. BTSP-triggering events are rare, but more frequent during novel experiences. During exploration, their probability is dynamic: it decays after PF onset, but continually drives a population-level representational drift. Finally, our results show that BTSP occurs in CA3 but is less frequent and phenomenologically different than in CA1. Overall, our study provides a new framework to understand how synaptic plasticity shapes neuronal representations during learning.
Collapse
Affiliation(s)
- A.D. Madar
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| | - C. Dong
- Department of Neurobiology, Neuroscience Institute, University of Chicago
- current affiliation: Department of Neurobiology, Stanford University School of Medicine
| | - M.E.J. Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| |
Collapse
|
50
|
Lynn CW, Yu Q, Pang R, Bialek W, Palmer SE. Exactly solvable statistical physics models for large neuronal populations. ARXIV 2023:arXiv:2310.10860v1. [PMID: 37904743 PMCID: PMC10614989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Maximum entropy methods provide a principled path connecting measurements of neural activity directly to statistical physics models, and this approach has been successful for populations of N ~ 100 neurons. As N increases in new experiments, we enter an undersampled regime where we have to choose which observables should be constrained in the maximum entropy construction. The best choice is the one that provides the greatest reduction in entropy, defining a "minimax entropy" principle. This principle becomes tractable if we restrict attention to correlations among pairs of neurons that link together into a tree; we can find the best tree efficiently, and the underlying statistical physics models are exactly solved. We use this approach to analyze experiments on N ~ 1500 neurons in the mouse hippocampus, and show that the resulting model captures the distribution of synchronous activity in the network.
Collapse
Affiliation(s)
- Christopher W. Lynn
- Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, NY 10016, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Department of Physics, Quantitative Biology Institute, and Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| | - Qiwei Yu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - William Bialek
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065 USA
| | - Stephanie E. Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|