1
|
Phan BN, Ray MH, Xue X, Fu C, Fenster RJ, Kohut SJ, Bergman J, Haber SN, McCullough KM, Fish MK, Glausier JR, Su Q, Tipton AE, Lewis DA, Freyberg Z, Tseng GC, Russek SJ, Alekseyev Y, Ressler KJ, Seney ML, Pfenning AR, Logan RW. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat Commun 2024; 15:878. [PMID: 38296993 PMCID: PMC10831093 DOI: 10.1038/s41467-024-45165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Collapse
Affiliation(s)
- BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Madelyn H Ray
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Robert J Fenster
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, 14642, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Madeline K Fish
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Allison E Tipton
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shelley J Russek
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
3
|
Knittel LM, Swanson TL, Lee HJ, Copenhaver PF. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta. Dev Biol 2023; 499:31-46. [PMID: 37121309 PMCID: PMC10247491 DOI: 10.1016/j.ydbio.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Hun Joo Lee
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Karkali K, Saunders TE, Panayotou G, Martín-Blanco E. JNK signaling in pioneer neurons organizes ventral nerve cord architecture in Drosophila embryos. Nat Commun 2023; 14:675. [PMID: 36750572 PMCID: PMC9905486 DOI: 10.1038/s41467-023-36388-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Morphogenesis of the Central Nervous System (CNS) is a complex process that obeys precise architectural rules. Yet, the mechanisms dictating these rules remain unknown. Analyzing morphogenesis of the Drosophila embryo Ventral Nerve Cord (VNC), we observe that a tight control of JNK signaling is essential for attaining the final VNC architecture. JNK signaling in a specific subset of pioneer neurons autonomously regulates the expression of Fasciclin 2 (Fas 2) and Neurexin IV (Nrx IV) adhesion molecules, probably via the transcription factor zfh1. Interfering at any step in this cascade affects fasciculation along pioneer axons, leading to secondary cumulative scaffolding defects during the structural organization of the axonal network. The global disorder of architectural landmarks ultimately influences nervous system condensation. In summary, our data point to JNK signaling in a subset of pioneer neurons as a key element underpinning VNC architecture, revealing critical milestones on the mechanism of control of its structural organization.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- BSRC Alexander Fleming, 34 Fleming Street, 16672, Vari, Greece
| | - Timothy E Saunders
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
- Mechanobiology Institute and Department of Biological Sciences, 5 Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
5
|
Chen Y, Liu TT, Niu M, Li X, Wang X, Liu T, Li Y. Epilepsy gene prickle ensures neuropil glial ensheathment through regulating cell adhesion molecules. iScience 2022; 26:105731. [PMID: 36582832 PMCID: PMC9792895 DOI: 10.1016/j.isci.2022.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Human PRICKLE1 gene has been associated with epilepsy. However, the underlying pathogenetic mechanisms remain elusive. Here we report a Drosophila prickle mutant pk IG1-1 exhibiting strong epileptic seizures and, intriguingly, abnormal glial wrapping. We found that pk is required in both neurons and glia, particularly neuropil ensheathing glia (EGN), the fly analog of oligodendrocyte, for protecting the animal from seizures. We further revealed that Pk directly binds to the membrane skeleton binding protein Ankyrin 2 (Ank2), thereby regulating the cell adhesion molecule Neuroglian (Nrg). Such protein interactions also apply to their human homologues. Moreover, nrg and ank2 mutant flies also display seizure phenotypes, and expression of either Nrg or Ank2 rescues the seizures of pk IG1-1 flies. Therefore, our findings indicate that Prickle ensures neuron-glial interaction within neuropils through regulating cell adhesion between neurons and ensheathing glia. Dysregulation of this process may represent a conserved pathogenic mechanism underlying PRICKLE1-associated epilepsy.
Collapse
Affiliation(s)
- Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,Corresponding author
| | - Tong-Tong Liu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxia Niu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoting Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwei Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
6
|
Manivannan SN, Roovers J, Smal N, Myers CT, Turkdogan D, Roelens F, Kanca O, Chung HL, Scholz T, Hermann K, Bierhals T, Caglayan HS, Stamberger H, Mefford H, de Jonghe P, Yamamoto S, Weckhuysen S, Bellen HJ. De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies. Brain 2022; 145:1684-1697. [PMID: 34788397 PMCID: PMC9166542 DOI: 10.1093/brain/awab409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.
Collapse
Affiliation(s)
- Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Jolien Roovers
- Neurogenetics Group, VIB Centre for Molecular Neurology, Antwerp 2610, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Noor Smal
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
| | - Candace T Myers
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology St. Jude Children's Research Hospital, Memphis, TN 30105, USA
| | - Dilsad Turkdogan
- Division of Child Neurology, Department of Paediatrics, Marmara University, Faculty of Medicine, Turkey
| | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Tasja Scholz
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katharina Hermann
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hande S Caglayan
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Hannah Stamberger
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
| | - Heather Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology St. Jude Children's Research Hospital, Memphis, TN 30105, USA
| | - Peter de Jonghe
- Neurogenetics Group, VIB Centre for Molecular Neurology, Antwerp 2610, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2650, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
8
|
Isasti-Sanchez J, Münz-Zeise F, Lancino M, Luschnig S. Transient opening of tricellular vertices controls paracellular transport through the follicle epithelium during Drosophila oogenesis. Dev Cell 2021; 56:1083-1099.e5. [PMID: 33831351 DOI: 10.1016/j.devcel.2021.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Paracellular permeability is regulated to allow solute transport or cell migration across epithelial or endothelial barriers. However, how cell-cell junction dynamics controls paracellular permeability is poorly understood. Here, we describe patency, a developmentally regulated process in Drosophila oogenesis, during which cell vertices in the follicular epithelium open transiently to allow paracellular transport of yolk proteins for uptake by the oocyte. We show that the sequential removal of E-cadherin, N-cadherin, NCAM/Fasciclin 2, and Sidekick from vertices precedes their basal-to-apical opening, while the subsequent assembly of tricellular occluding junctions marks the termination of patency and seals the paracellular barrier. E-cadherin-based adhesion is required to limit paracellular channel size, whereas stabilized adherens junctions, prolonged NCAM/Fasciclin 2 expression, blocked endocytosis, or increased actomyosin contractility prevent patency. Our findings reveal a key role of cell vertices as gateways controlling paracellular transport and demonstrate that dynamic regulation of adhesion and actomyosin contractility at vertices governs epithelial barrier properties.
Collapse
Affiliation(s)
- Jone Isasti-Sanchez
- Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Cells in Motion (CiM) Interfaculty Center, 48149 Münster, Germany
| | - Fenja Münz-Zeise
- Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Cells in Motion (CiM) Interfaculty Center, 48149 Münster, Germany
| | - Mylène Lancino
- Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Cells in Motion (CiM) Interfaculty Center, 48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; Cells in Motion (CiM) Interfaculty Center, 48149 Münster, Germany.
| |
Collapse
|
9
|
Laiouar S, Berns N, Brech A, Riechmann V. RabX1 Organizes a Late Endosomal Compartment that Forms Tubular Connections to Lysosomes Consistent with a “Kiss and Run” Mechanism. Curr Biol 2020; 30:1177-1188.e5. [DOI: 10.1016/j.cub.2020.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 01/26/2023]
|
10
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
11
|
Ly PT, Wang H. Fzr/Cdh1 Promotes the Differentiation of Neural Stem Cell Lineages in Drosophila. Front Cell Dev Biol 2020; 8:60. [PMID: 32117986 PMCID: PMC7026481 DOI: 10.3389/fcell.2020.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
How stem cells and progenitors balance between self-renewal and differentiation is a central issue of stem cell biology. Here, we describe a novel and essential function of Drosophila Fzr/Cdh1, an evolutionary conserved protein, during the differentiation of neural stem cell (NSC) lineages in the central nervous system. We show that Fzr, a known co-activator of Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, promotes the production of neurons from neural progenitors called ganglion mother cells (GMCs). However, knockdown of APC/C subunit Ida or another APC/C co-activator CDC20 does not similarly impair GMC-neuron transition. We also observe a concomitant loss of differentiation factor Prospero expression and ectopic accumulation of mitotic kinase Polo in fzr mutant clones, strongly supporting the impairment of GMC to neuron differentiation. Besides functioning in GMCs, Fzr is also present in NSCs to facilitate the production of intermediate neural progenitors from NSCs. Taken together, Fzr plays a novel function in promoting differentiation programs during Drosophila NSC lineage development. Given that human Fzr is inactivated in multiple types of human cancers including brain tumors and that Fzr regulates neurotoxicity in various models of neurodegenerative diseases, our study on the role of Fzr in turning off proliferation in neuronal cells may provide insights into how Fzr deficits may contribute to human neurodegenerative diseases and tumors.
Collapse
Affiliation(s)
- Phuong Thao Ly
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
13
|
Lovegrove HE, Bergstralh DT, St Johnston D. The role of integrins in Drosophila egg chamber morphogenesis. Development 2019; 146:dev.182774. [PMID: 31784458 PMCID: PMC6918751 DOI: 10.1242/dev.182774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
The Drosophila egg chamber comprises a germline cyst surrounded by a tightly organised epithelial monolayer, the follicular epithelium (FE). Loss of integrin function from the FE disrupts epithelial organisation at egg chamber termini, but the cause of this phenotype remains unclear. Here, we show that the β-integrin Myospheroid (Mys) is only required during early oogenesis when the pre-follicle cells form the FE. Mutation of mys disrupts both the formation of a monolayered epithelium at egg chamber termini and the morphogenesis of the stalk between adjacent egg chambers, which develops through the intercalation of two rows of cells into a single-cell-wide stalk. Secondary epithelia, like the FE, have been proposed to require adhesion to the basement membrane to polarise. However, Mys is not required for pre-follicle cell polarisation, as both follicle and stalk cells localise polarity factors correctly, despite being mispositioned. Instead, loss of integrins causes pre-follicle cells to constrict basally, detach from the basement membrane and become internalised. Thus, integrin function is dispensable for pre-follicle cell polarity but is required to maintain cellular organisation and cell shape during morphogenesis.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
14
|
Kimata Y. APC/C Ubiquitin Ligase: Coupling Cellular Differentiation to G1/G0 Phase in Multicellular Systems. Trends Cell Biol 2019; 29:591-603. [DOI: 10.1016/j.tcb.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022]
|
15
|
Neuert H, Deing P, Krukkert K, Naffin E, Steffes G, Risse B, Silies M, Klämbt C. The Drosophila NCAM homolog Fas2 signals independent of adhesion. Development 2019; 147:dev.181479. [DOI: 10.1242/dev.181479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
The development of tissues and organs requires close interaction of cells. To do so, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila orthologue Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as different isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms we have conducted a comprehensive genetic analysis of fas2. We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI-anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated fas2 mutants expressing only single isoforms. In contrast to the null mutation which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type specific rescue experiments showed that glial secreted Fas2 can rescue the fas2 mutant phenotype to viability. This demonstrates cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data propose novel mechanistic aspects of a long studied adhesion protein.
Collapse
Affiliation(s)
- Helen Neuert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Petra Deing
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Karin Krukkert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Georg Steffes
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Benjamin Risse
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Marion Silies
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
16
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
17
|
Drechsler M, Meyer H, Wilmes AC, Paululat A. APC/CFzr regulates cardiac and myoblast cell numbers and plays a crucial role during myoblast fusion. J Cell Sci 2018; 131:jcs.209155. [DOI: 10.1242/jcs.209155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Somatic muscles are formed by the iterative fusion of myoblasts into muscle fibres. This process is driven by the recurrent recruitment of proteins to the cell membrane to induce F-actin nucleation at the fusion site. Although various proteins involved in myoblast fusion have been identified, knowledge about their sub-cellular regulation is rather elusive. We identified the anaphase-promoting complex (APC/C) adaptor Fizzy related (Fzr) as an essential regulator of heart and muscle development. We show that APC/CFzr regulates the fusion of myoblasts as well as mitotic exit of pericardial cells, cardioblasts and myoblasts. Surprisingly, over-proliferation is not causative for the observed fusion defects. Instead, fzr mutants exhibit smaller F-actin foci at the fusion site, and display reduced membrane breakdown between adjacent myoblasts. We show that lack of APC/CFzr causes the accumulation and mislocalisation of Rols and Duf, two proteins involved in the fusion process. Duf seems to serve as direct substrate of the APC/CFzr, and its destruction depends on the presence of distinct degron sequences. These novel findings indicate that protein destruction and turnover constitute major events during myoblast fusion.
Collapse
Affiliation(s)
- Maik Drechsler
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
- Current address: University of Cambridge, Department of Zoology, CB2 3EJ, Cambridge, UK
| | - Heiko Meyer
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Ariane C. Wilmes
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
18
|
Abstract
Human development requires intricate cell specification and communication pathways that allow an embryo to generate and appropriately connect more than 200 different cell types. Key to the successful completion of this differentiation programme is the quantitative and reversible regulation of core signalling networks, and post-translational modification with ubiquitin provides embryos with an essential tool to accomplish this task. Instigated by E3 ligases and reversed by deubiquitylases, ubiquitylation controls many processes that are fundamental for development, such as cell division, fate specification and migration. As aberrant function or regulation of ubiquitylation enzymes is at the roots of developmental disorders, cancer, and neurodegeneration, modulating the activity of ubiquitylation enzymes is likely to provide strategies for therapeutic intervention.
Collapse
|
19
|
Sasse S, Klämbt C. Repulsive Epithelial Cues Direct Glial Migration along the Nerve. Dev Cell 2017; 39:696-707. [PMID: 27997826 DOI: 10.1016/j.devcel.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022]
Abstract
Most glial cells show pronounced migratory abilities and generally follow axonal trajectories to reach their final destination. However, the molecular cues controlling their directional migration are largely unknown. To address this, we established glial migration onto the developing Drosophila leg imaginal disc as a model. Here, CNS-derived glial cells move along nerves containing motoaxons and sensory axons. Along their path, glial cells encounter at least three choice points where directional decisions are needed. Subsequent genetic analyses allowed uncovering mechanisms that escaped previous studies. Most strikingly, we found that glial cells require the expression of the repulsive guidance receptors PlexinA/B and Robo2 to prevent breaking away from the nerve. Interestingly, the repulsive ligands are presented by the underlying leg imaginal disc epithelium, which appears to push glial cells toward the axon fascicle. In conclusion, nerve formation not only requires neuron-glia interaction but also depends on glial-epithelial communication.
Collapse
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany.
| |
Collapse
|
20
|
Cancer-Related Triplets of mRNA-lncRNA-miRNA Revealed by Integrative Network in Uterine Corpus Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3859582. [PMID: 28280730 PMCID: PMC5320387 DOI: 10.1155/2017/3859582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
The regulation of transcriptome expression level is a complex process involving multiple-level interactions among molecules such as protein coding RNA (mRNA), long noncoding RNA (lncRNA), and microRNA (miRNA), which are essential for the transcriptome stability and maintenance and regulation of body homeostasis. The availability of multilevel expression data enables a comprehensive view of the regulatory network. In this study, we analyzed the coding and noncoding gene expression profiles of 301 patients with uterine corpus endometrial carcinoma (UCEC). A new method was proposed to construct a genome-wide integrative network based on variance inflation factor (VIF) regression method. The cross-regulation relations of mRNA, lncRNA, and miRNA were then selected based on clique-searching algorithm from the network, when any two molecules of the three were shown as interacting according to the integrative network. Such relation, which we call the mRNA-lncRNA-miRNA triplet, demonstrated the complexity in transcriptome regulation process. Finally, six UCEC-related triplets were selected in which the mRNA participates in endometrial carcinoma pathway, such as CDH1 and TP53. The multi-type RNAs are proved to be cross-regulated as to each of the six triplets according to literature. All the triplets demonstrated the association with the initiation and progression of UCEC. Our method provides a comprehensive strategy for the investigation of transcriptome regulation mechanism.
Collapse
|
21
|
Neuert H, Yuva-Aydemir Y, Silies M, Klämbt C. Different modes of APC/C activation control growth and neuron-glia interaction in the developing Drosophila eye. Development 2017; 144:4673-4683. [DOI: 10.1242/dev.152694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/23/2017] [Indexed: 12/30/2022]
Abstract
The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins Fizzy/Cdc20 and Fizzy-Related/Cdh1 confer APC/C substrate specificity. Here we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 dependent neuron-glia interaction, including the dynein light chain Dlc90F. Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development.
Collapse
Affiliation(s)
- Helen Neuert
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- Present address: Department of Cellular and Physiological Sciences, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Yeliz Yuva-Aydemir
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- Present address: Department of Neurology, UMASS Medical School, Worcester, MA 01605, USA
| | - Marion Silies
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
- European Neuroscience Institute, University Medical Center Goettingen, Grisebachstr. 5, 37077 Göttingen, Germany
| | - Christian Klämbt
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
22
|
Weber U, Mlodzik M. APC/C Fzr/Cdh1-Dependent Regulation of Planar Cell Polarity Establishment via Nek2 Kinase Acting on Dishevelled. Dev Cell 2016; 40:53-66. [PMID: 28041906 DOI: 10.1016/j.devcel.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 02/04/2023]
Abstract
The Anaphase-Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase, well known for its role in cell-cycle progression. However, it has been linked to additional functions, mainly in neuronal contexts, when using the co-activator Cdh1/Fzr. Here, our data indicate a post-mitotic requirement for the APC/CFzr/Cdh1 in epithelial cell patterning and planar cell polarity (PCP) in Drosophila. PCP signaling is critical for development by establishing cellular asymmetries and orientation within the plane of an epithelium, via differential localization of distinct complexes of core PCP factors. Loss of APC/C function leads to reduced levels of Dishevelled (Dsh), a core PCP factor. The effect of APC/C on Dsh is mediated by Nek2 kinase, which can phosphorylate Dsh and is a direct APC/CFzr/Cdh1 substrate. We have thus uncovered a pathway of regulation whereby APC/CFzr/Cdh1 negatively regulates Nek2, which negatively regulates Dsh, to ensure its proper stoichiometric requirement and localization during PCP establishment.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
23
|
Mehrabian M, Hildebrandt H, Schmitt-Ulms G. NCAM1 Polysialylation: The Prion Protein's Elusive Reason for Being? ASN Neuro 2016; 8:8/6/1759091416679074. [PMID: 27879349 PMCID: PMC5122176 DOI: 10.1177/1759091416679074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/06/2023] Open
Abstract
Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that uncovered the evolutionary descent of the prion founder gene from an ancestral ZIP zinc transporter, we recently investigated a possible role of PrPC in a morphogenetic program referred to as epithelial-to-mesenchymal transition (EMT). By capitalizing on PrPC knockout cell clones in a mammalian cell model of EMT and using a comparative proteomics discovery strategy, neural cell adhesion molecule-1 emerged as a protein whose upregulation during EMT was perturbed in PrPC knockout cells. Follow-up work led us to observe that PrPC regulates the polysialylation of the neural cell adhesion molecule NCAM1 in cells undergoing morphogenetic reprogramming. In addition to governing cellular migration, polysialylation modulates several other cellular plasticity programs PrPC has been phenotypically linked to. These include neurogenesis in the subventricular zone, controlled mossy fiber sprouting and trimming in the hippocampal formation, hematopoietic stem cell renewal, myelin repair and maintenance, integrity of the circadian rhythm, and glutamatergic signaling. This review revisits this body of literature and attempts to present it in light of this novel contextual framework. When approached in this manner, a coherent model of PrPC acting as a regulator of polysialylation during specific cell and tissue morphogenesis events comes into focus.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
25
|
Halberg KA, Rainey SM, Veland IR, Neuert H, Dornan AJ, Klämbt C, Davies SA, Dow JAT. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules. Nat Commun 2016; 7:11266. [PMID: 27072072 PMCID: PMC4833865 DOI: 10.1038/ncomms11266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. In Drosophila, Fasciclin 2 (Fas2) has been mainly studied in the nervous system, yet this adhesion protein is more abundant in the adult renal tubule. Here the authors show that Fas2 is essential for brush border maintenance in renal tubules through regulation of microvilli length and organization.
Collapse
Affiliation(s)
- Kenneth A Halberg
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,Section for Cell &Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Stephanie M Rainey
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Iben R Veland
- Cancer Research UK
- Beatson Institute, Garscube Estate, Switchback road, Glasgow G61 1BD, UK.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen DK-2100, Denmark
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| |
Collapse
|
26
|
Bornstein B, Zahavi EE, Gelley S, Zoosman M, Yaniv SP, Fuchs O, Porat Z, Perlson E, Schuldiner O. Developmental Axon Pruning Requires Destabilization of Cell Adhesion by JNK Signaling. Neuron 2015; 88:926-940. [PMID: 26586184 DOI: 10.1016/j.neuron.2015.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
Developmental axon pruning is essential for normal brain wiring in vertebrates and invertebrates. How axon pruning occurs in vivo is not well understood. In a mosaic loss-of-function screen, we found that Bsk, the Drosophila JNK, is required for axon pruning of mushroom body γ neurons, but not their dendrites. By combining in vivo genetics, biochemistry, and high-resolution microscopy, we demonstrate that the mechanism by which Bsk is required for pruning is through reducing the membrane levels of the adhesion molecule Fasciclin II (FasII), the NCAM ortholog. Conversely, overexpression of FasII is sufficient to inhibit axon pruning. Finally, we show that overexpressing other cell adhesion molecules, together with weak attenuation of JNK signaling, strongly inhibits pruning. Taken together, we have uncovered a novel and unexpected interaction between the JNK pathway and cell adhesion and found that destabilization of cell adhesion is necessary for efficient pruning.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Gelley
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Maayan Zoosman
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Shiri Penina Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Ora Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Biological Services Department, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
27
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
28
|
Sasse S, Neuert H, Klämbt C. Differentiation ofDrosophilaglial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:623-36. [DOI: 10.1002/wdev.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/25/2015] [Accepted: 05/24/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | | |
Collapse
|
29
|
Matzat T, Sieglitz F, Kottmeier R, Babatz F, Engelen D, Klämbt C. Axonal wrapping in the Drosophila PNS is controlled by glia-derived neuregulin homolog Vein. Development 2015; 142:1336-45. [PMID: 25758464 DOI: 10.1242/dev.116616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient neuronal conductance requires that axons are insulated by glial cells. For this, glial membranes need to wrap around axons. Invertebrates show a relatively simple extension of glial membranes around the axons, resembling Remak fibers formed by Schwann cells in the mammalian peripheral nervous system. To unravel the molecular pathways underlying differentiation of glial cells that provide axonal wrapping, we are using the genetically amenable Drosophila model. At the end of larval life, the wrapping glia differentiates into very large cells, spanning more than 1 mm of axonal length. The extension around axonal membranes is not influenced by the caliber of the axon or its modality. Using cell type-specific gene knockdown we show that the extension of glial membranes around the axons is regulated by an autocrine activation of the EGF receptor through the neuregulin homolog Vein. This resembles the molecular mechanism employed during cell-autonomous reactivation of glial differentiation after injury in mammals. We further demonstrate that Vein, produced by the wrapping glia, also regulates the formation of septate junctions in the abutting subperineurial glia. Moreover, the wrapping glia indirectly controls the proliferation of the perineurial glia. Thus, the wrapping glia appears center stage to orchestrate the development of the different glial cell layers in a peripheral nerve.
Collapse
Affiliation(s)
- Till Matzat
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Florian Sieglitz
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Rita Kottmeier
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Felix Babatz
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Daniel Engelen
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| | - Christian Klämbt
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster D-48149, Germany
| |
Collapse
|
30
|
Kumar A, Gupta T, Berzsenyi S, Giangrande A. N-cadherin negatively regulates collective Drosophila glial migration via actin cytoskeleton remodeling. J Cell Sci 2015; 128:900-12. [DOI: 10.1242/jcs.157974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration is an essential and highly regulated process. During development, glia and neurons migrate over long distances, in most cases collectively, to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence the real challenge is to analyze it in the whole organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage dependent manner by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.
Collapse
|
31
|
Djabrayan NV, Cruz J, de Miguel C, Franch-Marro X, Casanova J. Specification of Differentiated Adult Progenitors via Inhibition of Endocycle Entry in the Drosophila Trachea. Cell Rep 2014; 9:859-65. [DOI: 10.1016/j.celrep.2014.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
|
32
|
Kim SN, Jeibmann A, Halama K, Witte HT, Wälte M, Matzat T, Schillers H, Faber C, Senner V, Paulus W, Klämbt C. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 2014; 141:3233-42. [DOI: 10.1242/dev.106039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.
Collapse
Affiliation(s)
- Su Na Kim
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Kathrin Halama
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Hanna Teresa Witte
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Mike Wälte
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Hermann Schillers
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
33
|
|
34
|
Coutinho-Budd J, Freeman MR. Probing the enigma: unraveling glial cell biology in invertebrates. Curr Opin Neurobiol 2013; 23:1073-9. [PMID: 23896311 DOI: 10.1016/j.conb.2013.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Despite their predominance in the nervous system, the precise ways in which glial cells develop and contribute to overall neural function remain poorly defined in any organism. Investigations in simple model organisms have identified remarkable morphological, molecular, and functional similarities between invertebrate and vertebrate glial subtypes. Invertebrates like Drosophila and Caenorhabditis elegans offer an abundance of tools for in vivo genetic manipulation of single cells or whole populations of glia, ease of access to neural tissues throughout development, and the opportunity for forward genetic analysis of fundamental aspects of glial cell biology. These features suggest that invertebrate model systems have high potential for vastly improving the understanding of glial biology. This review highlights recent work in Drosophila and other invertebrates that reveal new insights into basic mechanisms involved in glial development.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | | |
Collapse
|
35
|
Qiu J, Zhang C, Lv Y, Zhang Y, Zhu C, Wang X, Yao W. Cdh1 inhibits reactive astrocyte proliferation after oxygen-glucose deprivation and reperfusion. Neurochem Int 2013; 63:87-92. [PMID: 23727062 DOI: 10.1016/j.neuint.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/19/2013] [Indexed: 12/23/2022]
Abstract
Anaphase-promoting complex (APC) and its co-activator Cdh1 are required for cell cycle regulation in proliferating cells. Recent studies have defined diverse functions of APC-Cdh1 in nervous system development and injury. Our previous studies have demonstrated the activity of APC-Cdh1 is down-regulated in hippocampus after global cerebral ischemia. But the detailed mechanisms of APC-Cdh1 in ischemic nervous injury are unclear. It is known that astrocyte proliferation is an important pathophysiological process following cerebral ischemia. However, the role of APC-Cdh1 in reactive astrocyte proliferation is not determined yet. In the present study, we cultured primary cerebral astrocytes and set up in vitro oxygen-glucose deprivation and reperfusion model. Our results showed that the expression of Cdh1 was decreased while Skp2 (the downstream substrate of APC-Cdh1) was increased in astrocytes after 1h oxygen-glucose deprivation and reperfusion. The down-regulation of APC-Cdh1 was coupled with reactive astrocyte proliferation. By constructing Cdh1 expressing lentivirus system, we also found exogenous Cdh1 can down-regulate Skp2 and inhibit reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion. Moreover, Western blot showed that other downstream proteins of APC-Cdh1, PFK-1 and SnoN, were decreased in the inhibition of reactive astrocyte proliferation with Cdh1 expressing lentivirus treatment. These results suggest that Cdh1 plays an important role in the regulation of reactive astrocyte proliferation induced by oxygen-glucose deprivation and reperfusion.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Gomez JM, Wang Y, Riechmann V. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis. ACTA ACUST UNITED AC 2013; 199:1131-43. [PMID: 23266957 PMCID: PMC3529531 DOI: 10.1083/jcb.201207150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tao initiates morphogenesis of a squamous epithelium by promoting the endocytosis of the adhesion molecule Fasciclin 2 from the lateral membrane. Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
37
|
Pick JE, Malumbres M, Klann E. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice. Learn Mem 2012; 20:11-20. [PMID: 23242419 DOI: 10.1101/lm.027383.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala.
Collapse
Affiliation(s)
- Joseph E Pick
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
38
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Stegmüller J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development 2012; 139:3600-12. [PMID: 22949615 DOI: 10.1242/dev.081786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- MPI of Experimental Medicine, Hermann Rein Strasse 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
39
|
Meng X, Tian X, Wang X, Gao P, Zhang C. A novel binding protein of single-minded 2: the mitotic arrest-deficient protein MAD2B. Neurogenetics 2012; 13:251-60. [DOI: 10.1007/s10048-012-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
40
|
Gibson NJ, Tolbert LP, Oland LA. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. PLoS One 2012; 7:e33828. [PMID: 22493675 PMCID: PMC3320908 DOI: 10.1371/journal.pone.0033828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
41
|
Liu Z, Yuan F, Ren J, Cao J, Zhou Y, Yang Q, Xue Y. GPS-ARM: computational analysis of the APC/C recognition motif by predicting D-boxes and KEN-boxes. PLoS One 2012; 7:e34370. [PMID: 22479614 PMCID: PMC3315528 DOI: 10.1371/journal.pone.0034370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org.
Collapse
Affiliation(s)
- Zexian Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fang Yuan
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanhong Zhou
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Yang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (QY); (YX)
| | - Yu Xue
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (QY); (YX)
| |
Collapse
|
42
|
Chan CC, Epstein D, Hiesinger PR. Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 2012; 71:1227-45. [PMID: 21714102 DOI: 10.1002/dneu.20940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Department of Physiology and Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
43
|
Sun M, Xie W. Cell adhesion molecules in Drosophila synapse development and function. SCIENCE CHINA-LIFE SCIENCES 2012; 55:20-6. [PMID: 22314487 DOI: 10.1007/s11427-012-4273-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
Synapse is a highly specialized inter-cellular structure between neurons or between a neuron and its target cell that mediates cell-cell communications. Ample results indicate that synaptic adhesion molecules are critically important in modulating the complexity and specificity of the synapse. And disruption of adhesive properties of synapses may lead to neurodevelopmental or neurodegenerative diseases. In this review, we will use the Drosophila NMJ as a model system for glutamatergic synapses to discuss the structure and function of homophilic and heterophilic synaptic adhesion molecules with special focus on recent findings in neurexins and neuroligins in Drosophila.
Collapse
Affiliation(s)
- Mingkuan Sun
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | | |
Collapse
|
44
|
Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. Genetics 2011; 190:931-40. [PMID: 22174071 DOI: 10.1534/genetics.111.136465] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila collections of green fluorescent protein (GFP) trap lines have been used to probe the endogenous expression patterns of trapped genes or the subcellular localization of their protein products. Here, we describe a method, based on nonoverlapping, highly specific, shRNA transgenes directed against GFP, that extends the utility of these collections to loss-of-function studies. Furthermore, we used a MiMIC transposon to generate GFP traps in Drosophila cell lines with distinct subcellular localization patterns, which will permit high-throughput screens using fluorescently tagged proteins. Finally, we show that fluorescent traps, paired with recombinant nanobodies and mass spectrometry, allow the study of endogenous protein complexes in Drosophila.
Collapse
|
45
|
Yuva-Aydemir Y, Klämbt C. Long-range signaling systems controlling glial migration in the Drosophila eye. Dev Neurobiol 2011; 71:1310-6. [DOI: 10.1002/dneu.20893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Development of a glial network in the olfactory nerve: role of calcium and neuronal activity. ACTA ACUST UNITED AC 2011; 6:245-61. [PMID: 21933469 DOI: 10.1017/s1740925x11000081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In adult olfactory nerves of mammals and moths, a network of glial cells ensheathes small bundles of olfactory receptor axons. In the developing antennal nerve (AN) of the moth Manduca sexta, the axons of olfactory receptor neurons (ORNs) migrate from the olfactory sensory epithelium toward the antennal lobe. Here we explore developmental interactions between ORN axons and AN glial cells. During early stages in AN glial-cell migration, glial cells are highly dye coupled, dividing glia are readily found in the nerve and AN glial cells label strongly for glutamine synthetase. By the end of this period, dye-coupling is rare, glial proliferation has ceased, glutamine synthetase labeling is absent, and glial processes have begun to extend to enwrap bundles of axons, a process that continues throughout the remainder of metamorphic development. Whole-cell and perforated-patch recordings in vivo from AN glia at different stages of network formation revealed two potassium currents and an R-like calcium current. Chronic in vivo exposure to the R-type channel blocker SNX-482 halted or greatly reduced AN glial migration. Chronically blocking spontaneous Na-dependent activity by injection of tetrodotoxin reduced the glial calcium current implicating an activity-dependent interaction between ORNs and glial cells in the development of glial calcium currents.
Collapse
|
47
|
Cdk5 regulates the size of an axon initial segment-like compartment in mushroom body neurons of the Drosophila central brain. J Neurosci 2011; 31:10451-62. [PMID: 21775591 DOI: 10.1523/jneurosci.0117-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axon initial segment (AIS) is the specialized compartment of vertebrate axons where action potentials are initiated. Despite longtime attention to the unique functions of this compartment, the mechanisms that regulate AIS formation and maintenance are not known. Here, we identify a novel compartment in Drosophila mushroom body neurons that mirrors the molecular hallmarks of the vertebrate AIS as judged by accumulation of the anchoring protein Ankyrin1, presence of a specialized actin cytoskeleton, exclusion of both axon-specific and somatodendritic-specific cell surface proteins, and accumulation of a unique combination of voltage-gated ion channels. Using pharmacological treatments, we show that, similar to the vertebrate AIS, the integrity of this region of γ-neurons and its ability to tether membrane proteins depends on an intact actin cytoskeleton. We further show that Cdk5/p35 kinase regulates the formation and maintenance of the putative AIS by controlling the position of its distal boundary. Thus, boosting Cdk5 activity in γ-neurons extends the AIS by as much as 100%, while eliminating Cdk5 activity causes the domain to shrink proximally or disappear altogether. These data demonstrate that Cdk5/p35 kinase is a key regulator of the development and maintenance of the AIS in Drosophila.
Collapse
|
48
|
Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2011; 49:387-93. [PMID: 21884797 DOI: 10.1016/j.mcn.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023] Open
Abstract
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, and synaptic development and function. Endocytic membrane trafficking of receptors ensures that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism controlling receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
49
|
Abstract
The development of multicellular organisms requires the well balanced and coordinated migration of many cell types. This is of particular importance within the developing nervous system, where glial cells often move long distances to reach their targets. The majority of glial cells in the peripheral nervous system of the Drosophila embryo is derived from the CNS and migrates along motor axons toward their targets. In the developing Drosophila eye, CNS-derived glial cells move outward toward the nascent photoreceptor cells, but the molecular mechanisms coupling the migration of glial cells with the growth of the eye imaginal disc are mostly unknown. Here, we used an enhancer trap approach to identify the gene spinster, which encodes a multipass transmembrane protein involved in endosome-lysosome trafficking, as being expressed in many glial cells. spinster mutants are characterized by glial overmigration. Genetic experiments demonstrate that Spinster modulates the activity of several signaling cascades. Within the migrating perineurial glial cells, Spinster is required to downregulate Dpp (Decapentaplegic) signaling activity, which ceases migratory abilities. In addition, Spinster affects the growth of the carpet cell, which indirectly modulates glial migration.
Collapse
|
50
|
The emerging role of APC/CCdh1 in development. Semin Cell Dev Biol 2011; 22:579-85. [PMID: 21497201 DOI: 10.1016/j.semcdb.2011.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 01/10/2023]
Abstract
The function of APC/C (anaphase-promoting complex/cyclosome) was initially implicated with the onset of anaphase during mitosis, where its association with Cdc20 targets securin for destruction, thereby allowing the separation of two duplicated daughter genomes. When combined with Cdh1, APC regulates G1/S transition and DNA replication during cell cycle. Beyond cell cycle control, results from recent biochemical and mouse genetic studies have attracted our attention to the unexpected impact of APC/C(Cdh1) in cellular differentiation, genomic integrity and pathogenesis of various diseases. This review will aim to summarize current understanding of APC/C(Cdh1) in regulating crucial events during development.
Collapse
|