1
|
Shimizu T, Nomachi T, Matsumoto K, Hisamoto N. A cytidine deaminase regulates axon regeneration by modulating the functions of the Caenorhabditis elegans HGF/plasminogen family protein SVH-1. PLoS Genet 2024; 20:e1011367. [PMID: 39058749 PMCID: PMC11305532 DOI: 10.1371/journal.pgen.1011367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The pathway for axon regeneration in Caenorhabditis elegans is activated by SVH-1, a growth factor belonging to the HGF/plasminogen family. SVH-1 is a dual-function factor that acts as an HGF-like growth factor to promote axon regeneration and as a protease to regulate early development. It is important to understand how SVH-1 is converted from a protease to a growth factor for axon regeneration. In this study, we demonstrate that cytidine deaminase (CDD) SVH-17/CDD-2 plays a role in the functional conversion of SVH-1. We find that the codon exchange of His-755 to Tyr in the Asp-His-Ser catalytic triad of SVH-1 can suppress the cdd-2 defect in axon regeneration. Furthermore, the stem hairpin structure around the His-755 site in svh-1 mRNA is required for the activation of axon regeneration by SVH-1. These results suggest that CDD-2 promotes axon regeneration by transforming the function of SVH-1 from a protease to a growth factor through modification of svh-1 mRNA.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Nomachi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
2
|
Sakai Y, Shimizu T, Tsunekawa M, Hisamoto N, Matsumoto K. Rhotekin regulates axon regeneration through the talin-Vinculin-Vinexin axis in Caenorhabditis elegans. PLoS Genet 2023; 19:e1011089. [PMID: 38150455 PMCID: PMC10752531 DOI: 10.1371/journal.pgen.1011089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Axon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma. The other is mediated by the F-actin-binding protein DEB-1/vinculin and is independent of the MLC phosphorylation pathway. In this study, we identified the svh-7/rtkn-1 gene, encoding a homolog of the RhoA-binding protein Rhotekin, as a regulator of axon regeneration in motor neurons. However, we found that RTKN-1 does not function in the RhoA-ROCK-MLC phosphorylation pathway in the regulation of axon regeneration. We show that RTKN-1 interacts with ALP-1 and the vinculin-binding protein SORB-1/vinexin, and that SORB-1 acts with DEB-1 to promote axon regeneration. Thus, RTKN-1 links the DEB-1-SORB-1 complex to ALP-1 and physically connects phosphorylated MLC on ALP-1 to the actin cytoskeleton. These results suggest that TLN-1 signaling pathways coordinate MLC phosphorylation and recruitment of phosphorylated MLC to the actin cytoskeleton during axon regeneration.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Mayuka Tsunekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
3
|
Chen L, Zhang B, Xia L, Yue D, Han B, Sun W, Wang F, Lindsey K, Zhang X, Yang X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J Adv Res 2023; 51:13-25. [PMID: 36414168 PMCID: PMC10491974 DOI: 10.1016/j.jare.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Drought is the principal abiotic stress that severely impacts cotton (Gossypium hirsutum) growth and productivity. Upon sensing drought, plants activate stress-related signal transduction pathways, including ABA signal and mitogen-activated protein kinase (MAPK) cascade. However, as the key components with the fewest members in the MAPK cascade, the function and regulation of GhMKKs need to be elucidated. In addition, the relationship between MAPK module and the ABA core signaling pathway remains incompletely understood. OBJECTIVE Here we aim to elucidate the molecular mechanism of cotton response to drought, with a focus on mitogen-activated protein kinase (MAPK) cascades activating ABA signaling. METHODS Biochemical, molecular and genetic analysis were used to study the GhMAP3K62-GhMKK16-GhMPK32-GhEDT1 pathway genes. RESULTS A nucleus- and membrane-localized MAPK cascade pathway GhMAP3K62-GhMKK16-GhMPK32, which targets and phosphorylates the nuclear-localized transcription factor GhEDT1, to activate downstream GhNCED3 to mediate ABA-induced stomatal closure and drought response was characterized in cotton. Overexpression of GhMKK16 promotes ABA accumulation, and enhances drought tolerance via regulating stomatal closure under drought stress. Conversely, RNAi-mediated knockdown of GhMKK16 expression inhibits ABA accumulation, and reduces drought tolerance. Virus-induced gene silencing (VIGS)-mediated knockdown of either GhMAP3K62, GhMPK32 or GhEDT1 expression represses ABA accumulation and reduces drought tolerance through inhibiting stomatal closure. Expression knockdown of GhMPK32 or GhEDT1 in GhMKK16-overexpressing cotton reinstates ABA content and stomatal opening-dependent drought sensitivity to wild type levels. GhEDT1 could bind to the HD boxes in the promoter of GhNCED3 to activate its expression, resulting in ABA accumulation. We propose that the MAPK cascade GhMAP3K62-GhMKK16-GhMPK32 pathway functions on drought response through ABA-dependent stomatal movement in cotton.
Collapse
Affiliation(s)
- Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Zhao P, Mondal S, Martin C, DuPlissis A, Chizari S, Ma KY, Maiya R, Messing RO, Jiang N, Ben-Yakar A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat Methods 2023; 20:590-599. [PMID: 36928074 DOI: 10.1038/s41592-023-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/26/2023] [Indexed: 03/18/2023]
Abstract
Our understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single-neuron resolution in model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate neurons with specific regeneration phenotypes from C. elegans. We present femtosecond laser microdissection (fs-LM), a single-cell isolation method that dissects specific cells directly from living tissue by leveraging the micrometer-scale precision of fs-laser ablation. We show that fs-LM facilitates sensitive and specific gene expression profiling by single-cell RNA sequencing (scRNA-seq), while mitigating the stress-related transcriptional artifacts induced by tissue dissociation. scRNA-seq of fs-LM isolated regenerating neurons revealed transcriptional programs that are correlated with either successful or failed regeneration in wild-type and dlk-1 (0) animals, respectively. This method also allowed studying heterogeneity displayed by the same type of neuron and found gene modules with expression patterns correlated with axon regrowth rate. Our results establish fs-LM as a spatially resolved single-cell isolation method for phenotype-to-genotype mapping.
Collapse
Affiliation(s)
- Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chris Martin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew DuPlissis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Chizari
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Rajani Maiya
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Deparment of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Shi C, Wang C, Zeng L, Peng Y, Li Y, Hao H, Zheng Y, Chen C, Chen H, Zhang J, Xiang M, Huang Y, Li H. Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130643. [PMID: 36586333 DOI: 10.1016/j.jhazmat.2022.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.
Collapse
Affiliation(s)
- Chongli Shi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lingjun Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yeyong Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibin Hao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yang Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Estrada-Valencia R, de Lima ME, Colonnello A, Rangel-López E, Saraiva NR, de Ávila DS, Aschner M, Santamaría A. The Endocannabinoid System in Caenorhabditis elegans. Rev Physiol Biochem Pharmacol 2023; 184:1-31. [PMID: 34401955 PMCID: PMC8850531 DOI: 10.1007/112_2021_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Collapse
Affiliation(s)
| | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nariani Rocha Saraiva
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
7
|
Ren DL, Hu B, Shao GJ, Wang XL, Wei ML. DUSP2 deletion with CRISPR/Cas9 promotes Mauthner cell axonal regeneration at the early stage of zebrafish. Neural Regen Res 2023; 18:577-581. [DOI: 10.4103/1673-5374.350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Zhan C, Chen L, Guo D, Sun J, Duan Y, Zhang P, Li P, Ma L, Xu M, Wang Y, Bao H, Gao G, Liu L, Zhang K. An Intestinal Symbiotic Bacterial Strain of Oscheius chongmingensis Modulates Host Viability at Both Global and Post-Transcriptional Levels. Int J Mol Sci 2022; 23:ijms232314692. [PMID: 36499019 PMCID: PMC9739912 DOI: 10.3390/ijms232314692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.
Collapse
Affiliation(s)
- Chengxiu Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunbin Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Panjie Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop (East China), Ministry of Agriculture and Rural Affairs, College of Horiticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| | - Keyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| |
Collapse
|
9
|
Sakai Y, Hanafusa H, Hisamoto N, Matsumoto K. Histidine dephosphorylation of the Gβ protein GPB-1 promotes axon regeneration in C. elegans. EMBO Rep 2022; 23:e55076. [PMID: 36278516 PMCID: PMC9724660 DOI: 10.15252/embr.202255076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gβ at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK-1 also inhibits axon regeneration via GPB-1 His-266 phosphorylation. Thus, His-phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC-51/ULK kinase that functions in autophagy as a PHIP-1-binding protein. We demonstrate that UNC-51 phosphorylates PHIP-1 at Ser-112 and activates its catalytic activity and that this phosphorylation is required for PHIP-1-mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
10
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
11
|
Zhao Y, Wang Q, Xie C, Cai Y, Chen X, Hou Y, He L, Li J, Yao M, Chen S, Wu W, Chen X, Hong A. Peptide ligands targeting FGF receptors promote recovery from dorsal root crush injury via AKT/mTOR signaling. Am J Cancer Res 2021; 11:10125-10147. [PMID: 34815808 PMCID: PMC8581430 DOI: 10.7150/thno.62525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Fibroblast growth factor receptors (FGFRs) are key targets for nerve regeneration and repair. The therapeutic effect of exogenous recombinant FGFs in vivo is limited due to their high molecular weight. Small peptides with low molecular weight, easy diffusion, low immunogenicity, and nontoxic metabolite formation are potential candidates. The present study aimed to develop a novel low-molecular-weight peptide agonist of FGFR to promote nerve injury repair. Methods: Phage display technology was employed to screen peptide ligands targeting FGFR2. The peptide ligand affinity for FGFRs was detected by isothermal titration calorimetry. Structural biology-based computer virtual analysis was used to characterize the interaction between the peptide ligand and FGFR2. The peptide ligand effect on axon growth, regeneration, and behavioral recovery of sensory neurons was determined in the primary culture of sensory neurons and dorsal root ganglia (DRG) explants in vitro and a rat spinal dorsal root injury (DRI) model in vivo. The peptide ligand binding to other membrane receptors was characterized by surface plasmon resonance (SPR) and liquid chromatography-mass spectrometry (LC-MS)/MS. Intracellular signaling pathways primarily affected by the peptide ligand were characterized by phosphoproteomics, and related pathways were verified using specific inhibitors. Results: We identified a novel FGFR-targeting small peptide, CH02, with seven amino acid residues. CH02 activated FGFR signaling through high-affinity binding with the extracellular segment of FGFRs and also had an affinity for several receptor tyrosine kinase (RTK) family members, including VEGFR2. In sensory neurons cultured in vitro, CH02 maintained the survival of neurons and promoted axon growth. Simultaneously, CH02 robustly enhanced nerve regeneration and sensory-motor behavioral recovery after DRI in rats. CH02-induced activation of FGFR signaling promoted nerve regeneration primarily via AKT and ERK signaling downstream of FGFRs. Activation of mTOR downstream of AKT signaling augmented axon growth potential in response to CH02. Conclusion: Our study revealed the significant therapeutic effect of CH02 on strengthening nerve regeneration and suggested a strategy for treating peripheral and central nervous system injuries.
Collapse
|
12
|
CDK14 Promotes Axon Regeneration by Regulating the Noncanonical Wnt Signaling Pathway in a Kinase-Independent Manner. J Neurosci 2021; 41:8309-8320. [PMID: 34429379 PMCID: PMC8496196 DOI: 10.1523/jneurosci.0711-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
The postinjury regenerative capacity of neurons is known to be mediated by a complex interaction of intrinsic regenerative pathways and external cues. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the nonmuscle myosin light chain-4 (MLC-4) phosphorylation signaling pathway. In this study, we have identified svh-16/cdk-14, a mammalian CDK14 homolog, as a positive regulator of axon regeneration in motor neurons. We then isolated the CDK-14-binding protein MIG-5/Disheveled (Dsh) and found that EGL-20/Wnt and the MIG-1/Frizzled receptor (Fz) are required for efficient axon regeneration. Further, we demonstrate that CDK-14 activates EPHX-1, the C. elegans homolog of the mammalian ephexin Rho-type GTPase guanine nucleotide exchange factor (GEF), in a kinase-independent manner. EPHX-1 functions as a GEF for the CDC-42 GTPase, inhibiting myosin phosphatase, which maintains MLC-4 phosphorylation. These results suggest that CDK14 activates the RhoGEF–CDC42–MLC phosphorylation axis in a noncanonical Wnt signaling pathway that promotes axon regeneration. SIGNIFICANCE STATEMENT Noncanonical Wnt signaling is mediated by Frizzled receptor (Fz), Disheveled (Dsh), Rho-type GTPase, and nonmuscle myosin light chain (MLC) phosphorylation. This study identified svh-16/cdk-14, which encodes a mammalian CDK14 homolog, as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that CDK-14 binds to MIG-5/Dsh, and that EGL-20/Wnt, MIG-1/Fz, and EPHX-1/RhoGEF are required for axon regeneration. The phosphorylation-mimetic MLC-4 suppressed axon regeneration defects in mig-1, cdk-14, and ephx-1 mutants. CDK-14 mediates kinase-independent activation of EPHX-1, which functions as a guanine nucleotide exchange factor for CDC-42 GTPase. Activated CDC-42 inactivates myosin phosphatase and thereby maintains MLC phosphorylation. Thus, the noncanonical Wnt signaling pathway controls axon regeneration via the CDK-14–EPHX-1–CDC-42–MLC phosphorylation axis.
Collapse
|
13
|
Basu A, Behera S, Bhardwaj S, Dey S, Ghosh-Roy A. Regulation of UNC-40/DCC and UNC-6/Netrin by DAF-16 promotes functional rewiring of the injured axon. Development 2021; 148:268990. [PMID: 34109380 DOI: 10.1242/dev.198044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.
Collapse
Affiliation(s)
- Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Sibaram Behera
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Smriti Bhardwaj
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific PvT Ltd, International Trade Tower, Nehru Place, New Delhi 110019, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| |
Collapse
|
14
|
Sakai Y, Tsunekawa M, Ohta K, Shimizu T, Pastuhov S, Hanafusa H, Hisamoto N, Matsumoto K. The Integrin Signaling Network Promotes Axon Regeneration via the Src-Ephexin-RhoA GTPase Signaling Axis. J Neurosci 2021; 41:4754-4767. [PMID: 33963050 PMCID: PMC8260174 DOI: 10.1523/jneurosci.2456-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Axon regeneration is an evolutionarily conserved process essential for restoring the function of damaged neurons. In Caenorhabditis elegans hermaphrodites, initiation of axon regeneration is regulated by the RhoA GTPase-ROCK (Rho-associated coiled-coil kinase)-regulatory nonmuscle myosin light-chain phosphorylation signaling pathway. However, the upstream mechanism that activates the RhoA pathway remains unknown. Here, we show that axon injury activates TLN-1/talin via the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade and that TLN-1 induces multiple downstream events, one of which is integrin inside-out activation, leading to the activation of the RhoA-ROCK signaling pathway. We found that the nonreceptor tyrosine kinase Src, a key mediator of integrin signaling, activates the Rho guanine nucleotide exchange factor EPHX-1/ephexin by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.SIGNIFICANCE STATEMENT The ability of axons to regenerate after injury is governed by cell-intrinsic regeneration pathways. We have previously demonstrated that the Caenorhabditis elegans RhoA GTPase-ROCK (Rho-associated coiled-coil kinase) pathway promotes axon regeneration by inducing MLC-4 phosphorylation. In this study, we found that axon injury activates TLN-1/talin through the cAMP-Epac (exchange protein directly activated by cAMP)-Rap GTPase cascade, leading to integrin inside-out activation, which promotes axonal regeneration by activating the RhoA signaling pathway. In this pathway, SRC-1/Src acts downstream of integrin activation and subsequently activates EPHX-1/ephexin RhoGEF by phosphorylating the Tyr-568 residue in the autoinhibitory domain. Our results suggest that the C. elegans integrin signaling network regulates axon regeneration via the Src-RhoGEF-RhoA axis.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Mayuka Tsunekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kohei Ohta
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Strahil Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
15
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
16
|
BRCA1-BARD1 Regulates Axon Regeneration in Concert with the Gqα-DAG Signaling Network. J Neurosci 2021; 41:2842-2853. [PMID: 33593852 PMCID: PMC8018897 DOI: 10.1523/jneurosci.1806-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
The breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the Caenorhabditis elegans orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα–diacylglycerol (DAG) signaling pathway. This pathway is downregulated by DAG kinase (DGK), which converts DAG to phosphatidic acid (PA). We demonstrate that inactivation of DGK-3 suppresses the brc-1 brd-1 defect in axon regeneration, suggesting that BRC-1–BRD-1 inhibits DGK-3 function. Indeed, we show that BRC-1–BRD-1 poly-ubiquitylates DGK-3 in a manner dependent on its E3 ligase activity, causing DGK-3 degradation. Furthermore, we find that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. These results suggest that the BRC-1–BRD-1 complex regulates axon regeneration in concert with the Gqα–DAG signaling network. Thus, this study describes a new role for breast cancer proteins in fully differentiated neurons and the molecular mechanism underlying the regulation of axon regeneration in response to nerve injury. SIGNIFICANCE STATEMENT BRCA1–BRCA1-associated RING domain protein 1 (BARD1) is an E3-ubiquitin (Ub) ligase complex acting as a tumor suppressor in mitotic cells. The roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. We show here that Caenorhabditis elegans BRC-1/BRCA1 and BRD-1/BARD1 are required for adult-specific axon regeneration, a process that requires high diacylglycerol (DAG) levels in injured neurons. The DAG kinase (DGK)-3 inhibits axon regeneration by reducing DAG levels. We find that BRC-1–BRD-1 poly-ubiquitylates and degrades DGK-3, thereby keeping DAG levels elevated and promoting axon regeneration. Furthermore, we demonstrate that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. Thus, this study describes a new role for BRCA1–BARD1 in fully-differentiated neurons.
Collapse
|
17
|
A Unique Anti-Cancer 3-Styrylchromone Suppresses Inflammatory Response via HMGB1-RAGE Signaling. MEDICINES 2021; 8:medicines8040017. [PMID: 33805209 PMCID: PMC8064355 DOI: 10.3390/medicines8040017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Background: High mobility group box 1 (HMGB1)-receptor for advanced glycation endo-products (RAGE) axis serves as a key player in linking inflammation and carcinogenesis. Recently, papaverine was revealed to suppress the HMGB1-RAGE inflammatory signaling pathway and cancer cell proliferation. Therefore, a dual suppressor targeting this axis is expected to become a new type of therapeutic agent to treat cancer. Methods: Papaverine 3D pharmacophore mimetic compounds were selected by the LigandScout software from our in-house, anti-cancer chemical library and assessed for their anti-inflammatory activities by a HMGB1-RAGE-mediated interleukin-6 production assay using macrophage-like RAW264.7 cells. Molecular-biological analyses, such as Western blotting, were performed to clarify the mechanism of action. Results: A unique 6-methoxy-3-hydroxy-styrylchromone was found to possess potent anti-inflammatory and anti-cancer activities via the suppression of the HMGB1-RAGE-extracellular signal-regulated kinase 1/2 signaling pathway. Furthermore, the 3D pharmacophore-activity relationship analyses revealed that the hydroxyl group at the C4′ position of the benzene ring in a 3-styryl moiety was significant in its dual suppressive effects. Conclusions: These findings indicated that this compound may provide a valuable scaffold for the development of a new type of anti-cancer drug possessing anti-inflammatory activity and as a tool for understanding the link between inflammation and carcinogenesis.
Collapse
|
18
|
Shimizu T, Hisamoto N. Factors regulating axon regeneration via JNK MAP kinase in Caenorhabditis elegans. J Biochem 2021; 167:433-439. [PMID: 32091576 DOI: 10.1093/jb/mvaa020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Axon regeneration following nerve injury is a highly conserved process in animals. The nematode Caenorhabditis elegans is an excellent model for investigating the molecular mechanisms of axon regeneration. Recent studies using C. elegans have shown that the c-Jun N-terminal kinase (JNK) plays the important role in axon regeneration. Furthermore, many factors have been identified that act upstream of the JNK cascade after axotomy. This review introduces these factors and describes their roles during the regulation of axon regeneration.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Caenorhabditis elegans F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor. J Neurosci 2021; 41:2373-2381. [PMID: 33514673 PMCID: PMC7984584 DOI: 10.1523/jneurosci.1024-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. SDZ-33 targets MDL-1 for poly-ubiquitylation and degradation. Furthermore, we demonstrate that SDZ-33 promotes axotomy-induced nuclear degradation of MDL-1, resulting in the activation of svh-2 expression in animals. These results suggest that the F-box protein is required for RTK signaling in the control of axon regeneration. SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury via the Ets-like transcription factor ETS-4, whose transcriptional activity is inhibited by the Mad-like transcription factor MDL-1. Axon injury leads to the degradation of MDL-1, and this is linked to the activation of ETS-4 transcriptional activity. In this study, we identify the sdz-33 gene encoding a protein containing an F-box domain as a regulator of axon regeneration. We demonstrate that MDL-1 is poly-ubiquitylated and degraded through the SDZ-33-mediated 26S proteasome pathway. These results reveal that an F-box protein promotes axon regeneration by degrading the Mad transcription factor.
Collapse
|
20
|
Nakajima S, Ogawa N, Yokoue N, Tachibana H, Tamada K, Okazawa M, Sato A, Oyama T, Abe H, Kamiya T, Yoshimori A, Yoshizawa K, Inoue S, Yokomizo T, Uchiumi F, Abe T, Tanuma SI. Trimebutine attenuates high mobility group box 1-receptor for advanced glycation end-products inflammatory signaling pathways. Biochem Biophys Res Commun 2020; 533:1155-1161. [PMID: 33041002 DOI: 10.1016/j.bbrc.2020.09.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/10/2023]
Abstract
We previously identified papaverine as an inhibitor of receptor for advanced glycation end-products (RAGE) and showed its suppressive effect on high mobility group box 1 (HMGB1)-mediated responses to inflammation. Here, we found trimebutine to be a 3D pharmacophore mimetics of papaverine. Trimebutine was revealed to have more potent suppressive effects on HMGB1-induced production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in macrophage-like RAW264.7 cells and mouse bone marrow primarily differentiated macrophages than did papaverine. However, the inhibitory effect of trimebutine on the interaction of HMGB1 and RAGE was weaker than that of papaverine. Importantly, mechanism-of-action analyses revealed that trimebutine strongly inhibited the activation of RAGE downstream inflammatory signaling pathways, especially the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are mediator/effector kinases recruited to the intracellular domain of RAGE. Consequently, the activation of Jun amino terminal kinase, which is an important effector kinase for the up-regulation of pro-inflammatory cytokines, was inhibited. Taken together, these results suggest that trimebutine may exert its suppressive effect on the HMGB1-RAGE inflammatory signal pathways by strongly blocking the recruitment of ERK1/2 to the intracellular tail domain of RAGE in addition to its weak inhibition of the extracellular interaction of HMGB1 with RAGE. Thus, trimebutine may provide a unique scaffold for the development of novel dual inhibitors of RAGE for inflammatory diseases.
Collapse
Affiliation(s)
- Shingo Nakajima
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsumi Ogawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsuki Yokoue
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Haruki Tachibana
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Kenya Tamada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Takanori Kamiya
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., Fujisawa, Kanagawa, 251-0012, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takehiko Abe
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo, 102-0084, Japan
| | - Sei-Ichi Tanuma
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
21
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Chang C, Hisamoto N. Engulfment Genes Promote Neuronal Regeneration in
Caenorhabditis Elegans
: Two Divergent But Complementary Views. Bioessays 2020; 42:e1900185. [DOI: 10.1002/bies.201900185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/23/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chieh Chang
- Department of Biological Sciences University of Illinois at Chicago Chicago Illinois 60607 USA
| | - Naoki Hisamoto
- Dept. of Biological Science Graduate School of Science Nagoya University Furo‐cho, Chikusa‐ku, Aichi Prefecture Nagoya 464‐8602 Japan
| |
Collapse
|
23
|
WANG Y, WANG Z. [Research progress on intrinsic signaling pathways in axon regeneration]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:82-89. [PMID: 32621408 PMCID: PMC8800775 DOI: 10.3785/j.issn.1008-9292.2020.02.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/01/2020] [Indexed: 06/11/2023]
Abstract
The intrinsic regrowth ability of injured neurons is essential for axon regeneration and functional recovery. Recently, numerous intrinsic pathways that regulate axon regeneration have been discovered, among which the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway are arguably the best characterized examples. MAPK signaling pathway is involved in multiple processes including sensing injury signals, initiating and promoting axonal regrowth through regulating cytoskeleton dynamics and protein synthesis. The PI3K/Akt signaling pathway regulates axon regeneration mainly through gene transcription and translation. Combinatory manipulation of multiple regeneration-promoting signals can further improve the extend of axonal regrowth. This paper summarizes current progresses on axon regeneration studies in various organisms and discuss their potentials in promoting functional recovery in vivo.
Collapse
Affiliation(s)
| | - Zhiping WANG
- 王志萍(1980—),女,博士,研究员,博士生导师,主要从事神经发育和神经再生研究;E-mail:
;
https://orcid.org/0000-0001-8944-9557
| |
Collapse
|
24
|
Schellino R, Boido M, Vercelli A. JNK Signaling Pathway Involvement in Spinal Cord Neuron Development and Death. Cells 2019; 8:E1576. [PMID: 31817379 PMCID: PMC6953032 DOI: 10.3390/cells8121576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The c-Jun NH2-terminal protein kinase (JNK) is a Janus-faced kinase, which, in the nervous system, plays important roles in a broad range of physiological and pathological processes. Three genes, encoding for 10 JNK isoforms, have been identified: jnk1, jnk2, and jnk3. In the developing spinal cord, JNK proteins control neuronal polarity, axon growth/pathfinding, and programmed cell death; in adulthood they can drive degeneration and regeneration, after pathological insults. Indeed, recent studies have highlighted a role for JNK in motor neuron (MN) diseases, such as amyotrophic lateral sclerosis and spinal muscular atrophy. In this review we discuss how JNK-dependent signaling regulates apparently contradictory functions in the spinal cord, in both the developmental and adult stages. In addition, we examine the evidence that the specific targeting of JNK signaling pathway may represent a promising therapeutic strategy for the treatment of MN diseases.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| |
Collapse
|
25
|
The C. elegans BRCA2-ALP/Enigma Complex Regulates Axon Regeneration via a Rho GTPase-ROCK-MLC Phosphorylation Pathway. Cell Rep 2019; 24:1880-1889. [PMID: 30110643 DOI: 10.1016/j.celrep.2018.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that the RHO-1/Rho GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC-4/MLC) phosphorylation signaling pathway regulates axon regeneration. BRC-2 functions between RHO-1 and LET-502, suggesting that BRC-2 is required for the activation of LET-502 by RHO-1-GTP. We also find that one component that interacts with BRC-2, the ALP (α-actinin-associated LIM protein)/Enigma protein ALP-1, is required for regeneration and acts between LET-502 and MLC-4 phosphorylation. Furthermore, we demonstrate that ALP-1 associates with LET-502 and MLC-4. Thus, ALP-1 serves as a platform to activate MLC-4 phosphorylation mediated by the RHO-1-LET-502 signaling pathway.
Collapse
|
26
|
Sakai Y, Hanafusa H, Pastuhov SI, Shimizu T, Li C, Hisamoto N, Matsumoto K. TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor. EMBO Rep 2019; 20:e47517. [PMID: 31393064 PMCID: PMC6776894 DOI: 10.15252/embr.201847517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Strahil Iv Pastuhov
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Tatsuhiro Shimizu
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Chun Li
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
27
|
Shimizu T, Kato Y, Sakai Y, Hisamoto N, Matsumoto K. N-Glycosylation of the Discoidin Domain Receptor Is Required for Axon Regeneration in Caenorhabditis elegans. Genetics 2019; 213:491-500. [PMID: 31371405 PMCID: PMC6781908 DOI: 10.1534/genetics.119.302492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/25/2019] [Indexed: 01/17/2023] Open
Abstract
Axon regeneration following neuronal injury is an important repair mechanism that is not well understood at present. In Caenorhabditis elegans, axon regeneration is regulated by DDR-2, a receptor tyrosine kinase (RTK) that contains a discoidin domain and modulates the Met-like SVH-2 RTK-JNK MAP kinase signaling pathway. Here, we describe the svh-10/sqv-3 and svh-11 genes, which encode components of a conserved glycosylation pathway, and show that they modulate axon regeneration in C. elegans Overexpression of svh-2, but not of ddr-2, can suppress the axon regeneration defect observed in svh-11 mutants, suggesting that SVH-11 functions between DDR-2 and SVH-2 in this glycosylation pathway. Furthermore, we found that DDR-2 is N-glycosylated at the Asn-141 residue located in its discoidin domain, and mutation of this residue caused an axon regeneration defect. These findings indicate that N-linked glycosylation plays an important role in axon regeneration in C. elegans.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Japan
| | - Yuka Kato
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Japan
| | - Yoshiki Sakai
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, 464-8602, Japan
| |
Collapse
|
28
|
Wei X, Luo L, Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019; 8:cells8091075. [PMID: 31547370 PMCID: PMC6769890 DOI: 10.3390/cells8091075] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), is a serine/threonine protein kinase and belongs to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family. mTOR interacts with other subunits to form two distinct complexes, mTORC1 and mTORC2. mTORC1 coordinates cell growth and metabolism in response to environmental input, including growth factors, amino acid, energy and stress. mTORC2 mainly controls cell survival and migration through phosphorylating glucocorticoid-regulated kinase (SGK), protein kinase B (Akt), and protein kinase C (PKC) kinase families. The dysregulation of mTOR is involved in human diseases including cancer, cardiovascular diseases, neurodegenerative diseases, and epilepsy. Tissue damage caused by trauma, diseases or aging disrupt the tissue functions. Tissue regeneration after injuries is of significance for recovering the tissue homeostasis and functions. Mammals have very limited regenerative capacity in multiple tissues and organs, such as the heart and central nervous system (CNS). Thereby, understanding the mechanisms underlying tissue regeneration is crucial for tissue repair and regenerative medicine. mTOR is activated in multiple tissue injuries. In this review, we summarize the roles of mTOR signaling in tissue regeneration such as neurons, muscles, the liver and the intestine.
Collapse
Affiliation(s)
- Xiangyong Wei
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingfei Luo
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinzi Chen
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
29
|
C. elegans Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways. J Neurosci 2019; 39:5662-5672. [PMID: 31109965 DOI: 10.1523/jneurosci.2059-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Axon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen. Analysis of these genes, called the svh genes, has shed new light on the regulation of axon regeneration, revealing the involvement of a signaling cascade consisting of a growth factor SVH-1 and its receptor, the tyrosine kinase SVH-2. Here, we characterize the svh-6/tns-1 gene, which is a homolog of mammalian tensin, and show that it is a positive regulator of axon regeneration in motor neurons. We demonstrate that TNS-1 interacts with tyrosine-autophosphorylated SVH-2 and the integrin β subunit PAT-3 via its SH2 and PTB domains, respectively, to promote axon regeneration. These results suggest that TNS-1 acts as an adaptor to link the SVH-2 and integrin signaling pathways.SIGNIFICANCE STATEMENT The Caenorhabditis elegans JNK MAPK pathway regulates the initiation of axon regeneration. Previously, we showed that a signaling cascade consisting of the HGF-like growth factor SVH-1 and its Met-like receptor tyrosine kinase SVH-2 promotes axon regeneration through activation of the JNK pathway. In this study, we show that the C. elegans tensin, TNS-1, is required for efficient regeneration after axon injury. Phosphorylation of SVH-2 on tyrosine mediates its interaction with the SH2 domain of TNS-1 to positively regulate axon regeneration. Furthermore, TNS-1 interacts via its PTB domain with the integrin β subunit PAT-3. These results suggest that TNS-1 plays a critical role in the regulation of axon regeneration by linking the SVH-2 and integrin signaling pathways.
Collapse
|
30
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
31
|
Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nat Commun 2018; 9:3099. [PMID: 30082731 PMCID: PMC6079064 DOI: 10.1038/s41467-018-05478-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Following axon injury, a cascade of signaling events is triggered to initiate axon regeneration. However, the mechanisms regulating axon regeneration are not well understood at present. In Caenorhabditis elegans, axon regeneration utilizes many of the components involved in phagocytosis, including integrin and Rac GTPase. Here, we identify the transthyretin (TTR)-like protein TTR-11 as a component functioning in axon regeneration upstream of integrin. We show that TTR-11 binds to both the extracellular domain of integrin-α and phosphatidylserine (PS). Axon injury induces the accumulation of PS around the injured axons in a manner dependent on TTR-11, the ABC transporter CED-7, and the caspase CED-3. Furthermore, we demonstrate that CED-3 activates CED-7 during axon regeneration. Thus, TTR-11 functions to link the PS injury signal to activation of the integrin pathway, which then initiates axon regeneration.
Collapse
|
32
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
33
|
Chen L. Microtubules and axon regeneration in C. elegans. Mol Cell Neurosci 2018; 91:160-166. [PMID: 29551667 DOI: 10.1016/j.mcn.2018.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022] Open
Abstract
Axon regeneration is a fundamental and conserved process that allows the nervous system to repair circuits after trauma. Due to its conserved genome, transparent body, and relatively simple neuroanatomy, C. elegans has become a powerful model organism for studying the cellular and molecular mechanisms underlying axon regeneration. Various studies from different model organisms have found microtubule dynamics to be pivotal to axon regrowth. In this review, we will discuss the latest findings on how microtubule dynamics are regulated during axon regeneration in C. elegans. Understanding the mechanisms of axon regeneration will aid in the development of more effective therapeutic strategies for treatments of diseases involving disconnection of axons, such as spinal cord injury and stroke.
Collapse
Affiliation(s)
- Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
34
|
Koch M, Nicolas M, Zschaetzsch M, de Geest N, Claeys A, Yan J, Morgan MJ, Erfurth ML, Holt M, Schmucker D, Hassan BA. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury. Front Cell Neurosci 2018; 11:416. [PMID: 29472843 PMCID: PMC5809495 DOI: 10.3389/fncel.2017.00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Maya Nicolas
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Marlen Zschaetzsch
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Natalie de Geest
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Annelies Claeys
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Jiekun Yan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Morgan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Neuronal Wiring Lab, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matthew Holt
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Laboratory of Glia Biology, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Dietmar Schmucker
- Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Neuronal Wiring Lab, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Bassem A Hassan
- Laboratory of Neurogenetics, Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, KU Leuven, Leuven, Belgium.,Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Paris, France
| |
Collapse
|
35
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Yu B, Wang X, Wei S, Fu T, Dzakah EE, Waqas A, Walthall WW, Shan G. Convergent Transcriptional Programs Regulate cAMP Levels in C. elegans GABAergic Motor Neurons. Dev Cell 2017; 43:212-226.e7. [PMID: 29033363 DOI: 10.1016/j.devcel.2017.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Both transcriptional regulation and signaling pathways play crucial roles in neuronal differentiation and plasticity. Caenorhabditis elegans possesses 19 GABAergic motor neurons (MNs) called D MNs, which are divided into two subgroups: DD and VD. DD, but not VD, MNs reverse their cellular polarity in a developmental process called respecification. UNC-30 and UNC-55 are two critical transcription factors in D MNs. By using chromatin immunoprecipitation with CRISPR/Cas9 knockin of GFP fusion, we uncovered the global targets of UNC-30 and UNC-55. UNC-30 and UNC-55 are largely converged to regulate over 1,300 noncoding and coding genes, and genes in multiple biological processes, including cAMP metabolism, are co-regulated. Increase in cAMP levels may serve as a timing signal for respecification, whereas UNC-55 regulates genes such as pde-4 to keep the cAMP levels low in VD. Other genes modulating DD respecification such as lin-14, irx-1, and oig-1 are also found to affect cAMP levels.
Collapse
Affiliation(s)
- Bin Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Xiaolin Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Shuai Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Tao Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Emmanuel Enoch Dzakah
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ahmed Waqas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| |
Collapse
|
37
|
The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans. J Neurosci 2017; 36:9710-21. [PMID: 27629720 DOI: 10.1523/jneurosci.0453-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. SIGNIFICANCE STATEMENT The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.
Collapse
|
38
|
Hisamoto N, Matsumoto K. Signal transduction cascades in axon regeneration: insights from C. elegans. Curr Opin Genet Dev 2017; 44:54-60. [PMID: 28213159 DOI: 10.1016/j.gde.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons. Extensive studies over several years using this organism have revealed a number of intrinsic and extrinsic signal transduction cascades that regulate axon regeneration, and these are found to be conserved from worms to humans. Further studies have demonstrated that these cascades consist of several signaling networks that ultimately merge into the c-Jun N-terminal kinase (JNK) cascade. In this review, we describe some recent insights into the signaling cascades controlling axon regeneration in C. elegans and describe their conserved roles in other organisms including mammals.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kunihiro Matsumoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
39
|
Hisamoto N, Nagamori Y, Shimizu T, Pastuhov SI, Matsumoto K. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration. PLoS Genet 2016; 12:e1006475. [PMID: 27984580 PMCID: PMC5161311 DOI: 10.1371/journal.pgen.1006475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2–JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration. An axon’s ability to regenerate after injury is governed by cell-intrinsic regeneration pathways. The C. elegans JNK MAP kinase pathway is required for the regrowth of neurons after injury. Previously, we identified several svh genes involved in JNK-mediated signaling. Among them, the svh-1 and svh-2 genes encode a growth factor and its receptor tyrosine kinase (RTK), respectively. This SVH-1–SVH-2 signaling cascade positively regulates axon regeneration through the JNK pathway. In the present study, we investigate the role of the svh-4/ddr-2 gene, which encodes an RTK containing a discoidin domain that is activated by collagen. Indeed, DDR-2 functions downstream of EMB-9 collagen type IV. Here, we show that the ddr-2 and emb-9 mutations delay initiation of regeneration after axon injury. Furthermore, we demonstrate that DDR-2 modulates the SVH-1–SVH-2–JNK pathway through the scaffold protein SHC-1. Thus, two different RTK signaling networks play coordinated roles in the regulation of axonal regeneration.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| | - Yuki Nagamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Strahil I. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| |
Collapse
|
40
|
Marudhupandiyan S, Balamurugan K. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans. Immunol Res 2016; 65:609-621. [DOI: 10.1007/s12026-016-8879-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
42
|
Byrne AB, Hammarlund M. Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Exp Neurol 2016; 287:300-309. [PMID: 27569538 DOI: 10.1016/j.expneurol.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
43
|
Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors. PLoS Genet 2016; 12:e1006237. [PMID: 27487365 PMCID: PMC4972359 DOI: 10.1371/journal.pgen.1006237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
Food and feeding-state dependent changes in chemoreceptor gene expression may allow Caenorhabditis elegans to modify their chemosensory behavior, but the mechanisms essential for these expression changes remain poorly characterized. We had previously shown that expression of a feeding state-dependent chemoreceptor gene, srh-234, in the ADL sensory neuron of C. elegans is regulated via the MEF-2 transcription factor. Here, we show that MEF-2 acts together with basic helix-loop-helix (bHLH) transcription factors to regulate srh-234 expression as a function of feeding state. We identify a cis-regulatory MEF2 binding site that is necessary and sufficient for the starvation-induced down regulation of srh-234 expression, while an E-box site known to bind bHLH factors is required to drive srh-234 expression in ADL. We show that HLH-2 (E/Daughterless), HLH-3 and HLH-4 (Achaete-scute homologs) act in ADL neurons to regulate srh-234 expression. We further demonstrate that the expression levels of srh-234 in ADL neurons are regulated remotely by MXL-3 (Max-like 3 homolog) and HLH-30 (TFEB ortholog) acting in the intestine, which is dependent on insulin signaling functioning specifically in ADL neurons. We also show that this intestine-to-neuron feeding-state regulation of srh-234 involves a subset of insulin-like peptides. These results combined suggest that chemoreceptor gene expression is regulated by both cell-autonomous and non-cell-autonomous transcriptional mechanisms mediated by MEF2 and bHLH factors, which may allow animals to fine-tune their chemosensory responses in response to changes in their feeding state. Plasticity in chemoreceptor gene expression may be a simple strategy by which an animal can modulate its chemosensory responses in changing external and internal state conditions. However, the transcriptional mechanisms required for these chemoreceptor gene expression changes are poorly understood. Here, we describe the identification of a transcriptional module(s) consisting of MEF-2 and basic helix-loop-helix (bHLH) transcription factors and their cognate binding sites in Caenorhabditis elegans that act together in ADL sensory neurons to properly regulate expression of a feeding-state dependent chemoreceptor gene. We also showed that chemoreceptor gene expression in ADL neurons are regulated remotely by bHLH factors acting in the intestine through an insulin-mediated signaling pathway, implying a sensory neuron-gut interaction for modulating chemoreceptor gene expression as a function of feeding state. This work describes transcriptional mechanisms mediated by MEF-2 and bHLH factors by which the expression of individual chemoreceptor genes in C. elegans are changed in response to changes in feeding state conditions.
Collapse
|
44
|
He Z, Jin Y. Intrinsic Control of Axon Regeneration. Neuron 2016; 90:437-51. [DOI: 10.1016/j.neuron.2016.04.022] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023]
|
45
|
Grossi G, Grimaldi A, Cardone RA, Monné M, Reshkin SJ, Girardello R, Greco MR, Coviello E, Laurino S, Falabella P. Extracellular matrix degradation via enolase/plasminogen interaction: Evidence for a mechanism conserved in Metazoa. Biol Cell 2016; 108:161-78. [PMID: 26847147 DOI: 10.1111/boc.201500095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND INFORMATION While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion. RESULTS We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism. CONCLUSIONS These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species. SIGNIFICANCE To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.
Collapse
Affiliation(s)
- Gerarda Grossi
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Rosa A Cardone
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Magnus Monné
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Stephan J Reshkin
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, 21100, Italy
| | - Maria R Greco
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Elena Coviello
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Simona Laurino
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | | |
Collapse
|
46
|
Andrusiak MG, Jin Y. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans. J Biol Chem 2016; 291:7796-804. [PMID: 26907690 DOI: 10.1074/jbc.r115.711101] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.
Collapse
Affiliation(s)
| | - Yishi Jin
- From the Howard Hughes Medical Institute and the Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
47
|
Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 2016; 7:10388. [PMID: 26790951 PMCID: PMC4735912 DOI: 10.1038/ncomms10388] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.
Collapse
Affiliation(s)
- Tanimul Alam
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroki Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Strahil Iv. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Paola Nix
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Michael Bastiani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
48
|
Li C, Hisamoto N, Matsumoto K. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways. PLoS Genet 2015; 11:e1005603. [PMID: 26484536 PMCID: PMC4618690 DOI: 10.1371/journal.pgen.1005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.
Collapse
Affiliation(s)
- Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (NH); (KM)
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (NH); (KM)
| |
Collapse
|
49
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
50
|
Kim KW, Jin Y. Neuronal responses to stress and injury in C. elegans. FEBS Lett 2015; 589:1644-52. [PMID: 25979176 DOI: 10.1016/j.febslet.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022]
Abstract
The nervous system plays critical roles in the stress response. Animals can survive and function under harsh conditions, and resist and recover from injuries because neurons perceive and respond to various stressors through specific regulatory mechanisms. Caenorhabditis elegans has served as an excellent model to discover fundamental mechanisms underlying the neuronal response to stress. The basic physiological processes that C. elegans exhibits under stress conditions are similar to those observed in higher organisms. Many molecular pathways activated by environmental and cellular stresses are also conserved. In this review, we summarize major findings in examining neuronal responses to hypoxia, oxidative stress, osmotic stress, and traumatic injury. These studies from C. elegans have provided novel insights into our understanding of neuronal responses to stress at the molecular, cellular, and circuit levels.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|