1
|
Medina J, Zhou Z. Unlock the potential: Auditory-evoked event-related potential (ERP) as a treatment-responsive biomarker for Rett syndrome. Neurotherapeutics 2024; 21:e00389. [PMID: 38944637 PMCID: PMC11284539 DOI: 10.1016/j.neurot.2024.e00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Affiliation(s)
- Joanna Medina
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Dong HW, Weiss K, Baugh K, Meadows MJ, Niswender CM, Neul JL. Potentiation of the muscarinic acetylcholine receptor 1 modulates neurophysiological features in a mouse model of Rett syndrome. Neurotherapeutics 2024; 21:e00384. [PMID: 38880672 PMCID: PMC11284553 DOI: 10.1016/j.neurot.2024.e00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified neurophysiological features, such as auditory event-related potentials, that correlate with disease severity, suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10 and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform discharges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of putative therapies in RTT.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Weiss
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathryn Baugh
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA
| | - Mac J Meadows
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Warren Center for Neuroscience Drug Discovery, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Chemical Biology, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA.
| |
Collapse
|
3
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Horvath PM, Piazza MK, Kavalali ET, Monteggia LM. MeCP2 loss-of-function dysregulates microRNAs regionally and disrupts excitatory/inhibitory synaptic transmission balance. Hippocampus 2022; 32:610-623. [PMID: 35851733 PMCID: PMC9344394 DOI: 10.1002/hipo.23455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022]
Abstract
Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.
Collapse
Affiliation(s)
- Patricia M. Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michelle K. Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA,Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Lisa M. Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
7
|
Key AP. Searching for a "Brain Signature" of Neurodevelopmental Disorders: Event-Related Potentials and the Quest for Biomarkers of Cognition. J Clin Neurophysiol 2022; 39:113-120. [PMID: 34366396 DOI: 10.1097/wnp.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY This review summarizes main applications of event-related potentials (ERPs) to the study of cognitive processes in persons with neurodevelopmental disorders, for whom traditional behavioral assessments may not be suitable. A brief introduction to the ERPs is followed by a review of empirical studies using passive ERP paradigms to address three main questions: characterizing individual differences, predicting risk for poor developmental outcomes, and documenting treatment effects in persons with neurodevelopmental disorders. Evidence across studies reveals feasibility of ERP methodology in a wide range of clinical populations and notes consistently stronger brain-behavior associations involving ERP measures of higher-order cognition compared with sensory-perceptual processes. The final section describes the current limitations of ERP methodology that need to be addressed before it could be used as a clinical tool and highlights the needed steps toward translating ERPs from group-level research applications to individually interpretable clinical use.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
8
|
Reviewing Evidence for the Relationship of EEG Abnormalities and RTT Phenotype Paralleled by Insights from Animal Studies. Int J Mol Sci 2021; 22:ijms22105308. [PMID: 34069993 PMCID: PMC8157853 DOI: 10.3390/ijms22105308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder that is usually caused by mutations of the MECP2 gene. Patients with RTT suffer from severe deficits in motor, perceptual and cognitive domains. Electroencephalogram (EEG) has provided useful information to clinicians and scientists, from the very first descriptions of RTT, and yet no reliable neurophysiological biomarkers related to the pathophysiology of the disorder or symptom severity have been identified to date. To identify consistently observed and potentially informative EEG characteristics of RTT pathophysiology, and ascertain areas most worthy of further systematic investigation, here we review the literature for EEG abnormalities reported in patients with RTT and in its disease models. While pointing to some promising potential EEG biomarkers of RTT, our review identify areas of need to realize the potential of EEG including (1) quantitative investigation of promising clinical-EEG observations in RTT, e.g., shift of mu rhythm frequency and EEG during sleep; (2) closer alignment of approaches between patients with RTT and its animal models to strengthen the translational significance of the work (e.g., EEG measurements and behavioral states); (3) establishment of large-scale consortium research, to provide adequate Ns to investigate age and genotype effects.
Collapse
|
9
|
Saby JN, Benke TA, Peters SU, Standridge SM, Matsuzaki J, Cutri-French C, Swanson LC, Lieberman DN, Key AP, Percy AK, Neul JL, Nelson CA, Roberts TP, Marsh ED. Multisite Study of Evoked Potentials in Rett Syndrome. Ann Neurol 2021; 89:790-802. [PMID: 33480039 PMCID: PMC8882338 DOI: 10.1002/ana.26029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the current study was to evaluate the utility of evoked potentials as a biomarker of cortical function in Rett syndrome (RTT). As a number of disease-modifying therapeutics are currently under development, there is a pressing need for biomarkers to objectively and precisely assess the effectiveness of these treatments. METHOD Yearly visual evoked potentials (VEPs) and auditory evoked potentials (AEPs) were acquired from individuals with RTT, aged 2 to 37 years, and control participants across 5 sites as part of the Rett Syndrome and Related Disorders Natural History Study. Baseline and year 1 data, when available, were analyzed and the repeatability of the results was tested. Two syndrome-specific measures from the Natural History Study were used for evaluating the clinical relevance of the VEP and AEP parameters. RESULTS At the baseline study, group level comparisons revealed reduced VEP and AEP amplitude in RTT compared to control participants. Further analyses within the RTT group indicated that this reduction was associated with RTT-related symptoms, with greater severity associated with lower VEP and AEP amplitude. In participants with RTT, VEP and AEP amplitude was also negatively associated with age. Year 1 follow-up data analyses yielded similar findings and evidence of repeatability of EPs at the individual level. INTERPRETATION The present findings indicate the promise of evoked potentials (EPs) as an objective measure of disease severity in individuals with RTT. Our multisite approach demonstrates potential research and clinical applications to provide unbiased assessment of disease staging, prognosis, and response to therapy. ANN NEUROL 2021;89:790-802.
Collapse
Affiliation(s)
- Joni N. Saby
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy A. Benke
- Department of Pediatrics, Neurology, Pharmacology and Otolaryngology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Shannon M. Standridge
- Cincinnati Children’s Hospital Medical Center, Division of Neurology and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Junko Matsuzaki
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Clare Cutri-French
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsay C. Swanson
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - David N. Lieberman
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Alan K. Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L. Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School
| | - Timothy P.L. Roberts
- Division of Radiology Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Patrizi A, Awad PN, Chattopadhyaya B, Li C, Di Cristo G, Fagiolini M. Accelerated Hyper-Maturation of Parvalbumin Circuits in the Absence of MeCP2. Cereb Cortex 2021; 30:256-268. [PMID: 31038696 DOI: 10.1093/cercor/bhz085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 02/21/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) mutations are the primary cause of Rett syndrome, a severe neurodevelopmental disorder. Cortical parvalbumin GABAergic interneurons (PV) make exuberant somatic connections onto pyramidal cells in the visual cortex of Mecp2-deficient mice, which contributes to silencing neuronal cortical circuits. This phenotype can be rescued independently of Mecp2 by environmental, pharmacological, and genetic manipulation. It remains unknown how Mecp2 mutation can result in abnormal inhibitory circuit refinement. In the present manuscript, we examined the development of GABAergic circuits in the primary visual cortex of Mecp2-deficient mice. We identified that PV circuits were the only GABAergic interneurons to be upregulated, while other interneurons were downregulated. Acceleration of PV cell maturation was accompanied by increased PV cells engulfment by perineuronal nets (PNNs) and by an increase of PV cellular and PNN structural complexity. Interestingly, selective deletion of Mecp2 from PV cells was sufficient to drive increased structure complexity of PNN. Moreover, the accelerated PV and PNN maturation was recapitulated in organotypic cultures. Our results identify a specific timeline of disruption of GABAergic circuits in the absence of Mecp2, indicating a possible cell-autonomous role of MeCP2 in the formation of PV cellular arbors and PNN structures in the visual cortex.
Collapse
Affiliation(s)
- Annarita Patrizi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Schaller Research Group Leader at the German Cancer Research Center (DKFZ), Heildeberg, Germany
| | - Patricia N Awad
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Chloe Li
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montreal, Canada.,CHU Ste Justine Research Center, Montreal, QC Canada
| | - Michela Fagiolini
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| |
Collapse
|
11
|
Dong HW, Erickson K, Lee JR, Merritt J, Fu C, Neul JL. Detection of neurophysiological features in female R255X MeCP2 mutation mice. Neurobiol Dis 2020; 145:105083. [PMID: 32927061 PMCID: PMC7572861 DOI: 10.1016/j.nbd.2020.105083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder (NDD) that is nearly always caused by loss of function mutations in Methyl-CpG-binding Protein 2 (MECP2) and shares many clinical features with other NDD. Genetic restoration of Mecp2 in symptomatic mice lacking MeCP2 expression can reverse symptoms, providing hope that disease modifying therapies can be identified for RTT. Effective and rapid clinical trial completion relies on well-defined clinical outcome measures and robust biomarkers of treatment responses. Studies on other NDD have found evidence of differences in neurophysiological measures that correlate with disease severity. However, currently there are no well-validated biomarkers in RTT to predict disease prognosis or treatment responses. To address this, we characterized neurophysiological features in a mouse model of RTT containing a knock-in nonsense mutation (p.R255X) in the Mecp2 locus. We found a variety of changes in heterozygous female Mecp2R255X/X mice including age-related changes in sleep/wake architecture, alterations in baseline EEG power, increased incidence of spontaneous epileptiform discharges, and changes in auditory evoked potentials. Furthermore, we identified association of some neurophysiological features with disease severity. These findings provide a set of potential non-invasive and translatable biomarkers that can be utilized in preclinical therapy trials in animal models of RTT and eventually within the context of clinical trials.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Kirsty Erickson
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jessica R Lee
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jonathan Merritt
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Cary Fu
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| | - Jeffrey L Neul
- Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.
| |
Collapse
|
12
|
Saby JN, Peters SU, Roberts TPL, Nelson CA, Marsh ED. Evoked Potentials and EEG Analysis in Rett Syndrome and Related Developmental Encephalopathies: Towards a Biomarker for Translational Research. Front Integr Neurosci 2020; 14:30. [PMID: 32547374 PMCID: PMC7271894 DOI: 10.3389/fnint.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Rett syndrome is a debilitating neurodevelopmental disorder for which no disease-modifying treatment is available. Fortunately, advances in our understanding of the genetics and pathophysiology of Rett syndrome has led to the development of promising new therapeutics for the condition. Several of these therapeutics are currently being tested in clinical trials with others likely to progress to clinical trials in the coming years. The failure of recent clinical trials for Rett syndrome and other neurodevelopmental disorders has highlighted the need for electrophysiological or other objective biological markers of treatment response to support the success of clinical trials moving forward. The purpose of this review is to describe the existing studies of electroencephalography (EEG) and evoked potentials (EPs) in Rett syndrome and discuss the open questions that must be addressed before the field can adopt these measures as surrogate endpoints in clinical trials. In addition to summarizing the human work on Rett syndrome, we also describe relevant studies with animal models and the limited research that has been carried out on Rett-related disorders, particularly methyl-CpG binding protein 2 (MECP2) duplication syndrome, CDKL5 deficiency disorder, and FOXG1 disorder.
Collapse
Affiliation(s)
- Joni N. Saby
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy P. L. Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric D. Marsh
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Eric D. Marsh
| |
Collapse
|
13
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Mossner JM, Batista-Brito R, Pant R, Cardin JA. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. eLife 2020; 9:55639. [PMID: 32343226 PMCID: PMC7213975 DOI: 10.7554/elife.55639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Rett Syndrome is a devastating neurodevelopmental disorder resulting from mutations in the gene MECP2. Mutations of Mecp2 that are restricted to GABAergic cell types largely replicate the behavioral phenotypes associated with mouse models of Rett Syndrome, suggesting a pathophysiological role for inhibitory interneurons. Recent work has suggested that vasoactive intestinal peptide-expressing (VIP) interneurons may play a critical role in the proper development and function of cortical circuits, making them a potential key point of vulnerability in neurodevelopmental disorders. However, little is known about the role of VIP interneurons in Rett Syndrome. Here we find that loss of MeCP2 specifically from VIP interneurons replicates key neural and behavioral phenotypes observed following global Mecp2 loss of function.
Collapse
Affiliation(s)
- James M Mossner
- Department of Neuroscience, Yale University, New Haven, United States
| | - Renata Batista-Brito
- Department of Neuroscience, Yale University, New Haven, United States.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Rima Pant
- Department of Neuroscience, Yale University, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
15
|
Lavery LA, Ure K, Wan YW, Luo C, Trostle AJ, Wang W, Jin H, Lopez J, Lucero J, Durham MA, Castanon R, Nery JR, Liu Z, Goodell M, Ecker JR, Behrens MM, Zoghbi HY. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 2020; 9:e52981. [PMID: 32159514 PMCID: PMC7065908 DOI: 10.7554/elife.52981] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.
Collapse
Affiliation(s)
- Laura A Lavery
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Wei Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Haijing Jin
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Joanna Lopez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Mark A Durham
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Margaret Goodell
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene Therapy, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Howard Hughes Medical Institute, The Salk Institute for Biological StudiesLa JollaUnited States
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Department of Psychiatry, University of California San DiegoLa JollaUnited States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
16
|
Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 2020; 23:520-532. [PMID: 32123378 PMCID: PMC7131894 DOI: 10.1038/s41593-020-0598-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.
Collapse
|
17
|
Davis BA, David F, O’Regan C, Adam MA, Harwood AJ, Crunelli V, Isles AR. Impairments in sensory-motor gating and information processing in a mouse model of Ehmt1 haploinsufficiency. Brain Neurosci Adv 2020; 4:2398212820928647. [PMID: 32954001 PMCID: PMC7479861 DOI: 10.1177/2398212820928647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Regulators of chromatin dynamics and transcription are increasingly implicated in the aetiology of neurodevelopmental disorders. Haploinsufficiency of EHMT1, encoding a histone methyltransferase, is associated with several neurodevelopmental disorders, including Kleefstra syndrome, developmental delay and autism spectrum disorder. Using a mouse model of Ehmt1 haploinsufficiency (Ehmt1 D6Cre/+), we examined a number of brain and behavioural endophenotypes of relevance to neurodevelopmental disorders. Specifically, we show that Ehmt1 D6Cre/+ mice have deficits in information processing, evidenced by abnormal sensory-motor gating, a complete absence of object recognition memory, and a reduced magnitude of auditory evoked potentials in both paired-pulse inhibition and mismatch negativity. The electrophysiological experiments show that differences in magnitude response to auditory stimulus were associated with marked reductions in total and evoked beta- and gamma-band oscillatory activity, as well as significant reductions in phase synchronisation. The pattern of electrophysiological deficits in Ehmt1 D6Cre/+ matches those seen in control mice following administration of the selective NMDA-R antagonist, ketamine. This, coupled with reduction of Grin1 mRNA expression in Ehmt1 D6Cre/+ hippocampus, suggests that Ehmt1 haploinsufficiency may lead to disruption in NMDA-R. Taken together, these data indicate that reduced Ehmt1 dosage during forebrain development leads to abnormal circuitry formation, which in turn results in profound information processing deficits. Such information processing deficits are likely paramount to our understanding of the cognitive and neurological dysfunctions shared across the neurodevelopmental disorders associated with EHMT1 haploinsufficiency.
Collapse
Affiliation(s)
- Brittany A Davis
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - François David
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Ciara O’Regan
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| | - Manal A Adam
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| | - Adrian J Harwood
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Vincenzo Crunelli
- Neuroscience and Mental Health
Research Institute and School of Biosciences, Cardiff University, Cardiff,
UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric
Genetics and Genomics, School of Medicine, Cardiff University, Cardiff,
UK
| |
Collapse
|
18
|
Sysoeva OV, Smirnov K, Stroganova TA. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: Systematic review. Clin Neurophysiol 2019; 131:213-224. [PMID: 31812082 DOI: 10.1016/j.clinph.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Systematically review the abnormalities in event related potential (ERP) recorded in Rett Syndrome (RTT) patients and animals in search of translational biomarkers of deficits related to the particular neurophysiological processes of known genetic origin (MECP2 mutations). METHODS Pubmed, ISI Web of Knowledge and BIORXIV were searched for the relevant articles according to PRISMA standards. RESULTS ERP components are generally delayed across all sensory modalities both in RTT patients and its animal model, while findings on ERPs amplitude strongly depend on stimulus properties and presentation rate. Studies on RTT animal models uncovered the abnormalities in the excitatory and inhibitory transmission as critical mechanisms underlying the ERPs changes, but showed that even similar ERP alterations in auditory and visual domains have a diverse neural basis. A range of novel approaches has been developed in animal studies bringing along the meaningful neurophysiological interpretation of ERP measures in RTT patients. CONCLUSIONS While there is a clear evidence for sensory ERPs abnormalities in RTT, to further advance the field there is a need in a large-scale ERP studies with the functionally-relevant experimental paradigms. SIGNIFICANCE The review provides insights into domain-specific neural basis of the ERP abnormalities and promotes clinical application of the ERP measures as the non-invasive functional biomarkers of RTT pathophysiology.
Collapse
Affiliation(s)
- Olga V Sysoeva
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA; The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; The Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - Kirill Smirnov
- Department of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia.
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG-Center), Moscow State University of Psychology and Education (MSUPE), Moscow, Russia; Autism Research Laboratory, Moscow State University of Psychology and Education (MSUPE), Moscow, Russia.
| |
Collapse
|
19
|
Yang H, Li K, Han S, Zhou A, Zhou ZJ. Leveraging the genetic basis of Rett syndrome to ascertain pathophysiology. Neurobiol Learn Mem 2019; 165:106961. [PMID: 30447288 PMCID: PMC6635128 DOI: 10.1016/j.nlm.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/18/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), a progressive X-linked neurological disorder characterized by loss of developmental milestones, intellectual disability and breathing abnormality. Despite being a monogenic disorder, the pathogenic mechanisms by which mutations in MeCP2 impair neuronal function and underlie the RTT symptoms have been challenging to elucidate. The seemingly simple genetic root and the availability of genetic data from RTT patients have led to the generation and characterization of a series of mouse models recapitulating RTT-associated genetic mutations. This review focuses on the studies of RTT mouse models and describe newly obtained pathogenic insights from these studies. We also highlight the potential of studying pathophysiology using genetics-based modeling approaches in rodents and suggest a future direction to tackle the pathophysiology of intellectual disability with known or complex genetic causes.
Collapse
Affiliation(s)
- Hua Yang
- Qingdao Jiaozhou Central Hospital, Jiaozhou City, Shandong Province 266300, China
| | - Kequan Li
- Qingdao Jiaozhou Central Hospital, Jiaozhou City, Shandong Province 266300, China
| | - Song Han
- Jiaozhou People's Hospital, Jiaozhou City, Shandong Province 266300, China
| | - Ailing Zhou
- Jiaozhou People's Hospital, Jiaozhou City, Shandong Province 266300, China
| | - Zhaolan Joe Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Banerjee A, Miller MT, Li K, Sur M, Kaufmann WE. Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain 2019; 142:239-248. [PMID: 30649225 DOI: 10.1093/brain/awy323] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
With the recent 50th anniversary of the first publication on Rett syndrome, and the almost 20 years since the first report on the link between Rett syndrome and MECP2 mutations, it is important to reflect on the tremendous advances in our understanding and their implications for the diagnosis and treatment of this neurodevelopmental disorder. Rett syndrome features an interesting challenge for biologists and clinicians, as the disorder lies at the intersection of molecular mechanisms of epigenetic regulation and neurophysiological alterations in synapses and circuits that together contribute to severe pathophysiological endophenotypes. Genetic, clinical, and neurobiological evidences support the notion that Rett syndrome is primarily a synaptic disorder, and a disease model for both intellectual disability and autism spectrum disorder. This review examines major developments in both recent neurobiological and preclinical findings of Rett syndrome, and to what extent they are beginning to impact our understanding and management of the disorder. It also discusses potential applications of knowledge on synaptic plasticity abnormalities in Rett syndrome to its diagnosis and treatment.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Meghan T Miller
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffman-La Roche, Basel, Switzerland
| | - Keji Li
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
21
|
Vidal S, Xiol C, Pascual-Alonso A, O'Callaghan M, Pineda M, Armstrong J. Genetic Landscape of Rett Syndrome Spectrum: Improvements and Challenges. Int J Mol Sci 2019; 20:ijms20163925. [PMID: 31409060 PMCID: PMC6719047 DOI: 10.3390/ijms20163925] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the MECP2 gene, the research community's effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome spectrum and provides an overview of the RTT-related genes described to date, many of which are involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation. Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide proper genetic counselling from a patient's perspective and the appropriate treatment.
Collapse
Affiliation(s)
- Silvia Vidal
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Clara Xiol
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - M O'Callaghan
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Neurology Service, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Mercè Pineda
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
| | - Judith Armstrong
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
| |
Collapse
|
22
|
Roche KJ, LeBlanc JJ, Levin AR, O'Leary HM, Baczewski LM, Nelson CA. Electroencephalographic spectral power as a marker of cortical function and disease severity in girls with Rett syndrome. J Neurodev Disord 2019; 11:15. [PMID: 31362710 PMCID: PMC6668116 DOI: 10.1186/s11689-019-9275-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022] Open
Abstract
Background Rett syndrome is a neurodevelopmental disorder caused by a mutation in the X-linked MECP2 gene. Individuals with Rett syndrome typically develop normally until around 18 months of age before undergoing a developmental regression, and the disorder can lead to cognitive, motor, sensory, and autonomic dysfunction. Understanding the mechanism of developmental regression represents a unique challenge when viewed through a neuroscience lens. Are circuits that were previously established erased, and are new ones built to supplant old ones? One way to examine circuit-level changes is with the use of electroencephalography (EEG). Previous studies of the EEG in individuals with Rett syndrome have focused on morphological characteristics, but few have explored spectral power, including power as an index of brain function or disease severity. This study sought to determine if EEG power differs in girls with Rett syndrome and typically developing girls and among girls with Rett syndrome based on various clinical characteristics in order to better understand neural connectivity and cortical organization in individuals with this disorder. Methods Resting state EEG data were acquired from girls with Rett syndrome (n = 57) and typically developing children without Rett syndrome (n = 37). Clinical data were also collected for girls with Rett syndrome. EEG power across several brain regions in numerous frequency bands was then compared between girls with Rett syndrome and typically developing children and power in girls with Rett syndrome was compared based on these clinical measures. 1/ƒ slope was also compared between groups. Results Girls with Rett syndrome demonstrate significantly lower power in the middle frequency bands across multiple brain regions. Additionally, girls with Rett syndrome that are postregression demonstrate significantly higher power in the lower frequency delta and theta bands and a significantly more negative slope of the power spectrum. Increased power in these bands, as well as a more negative 1/ƒ slope, trended with lower cognitive assessment scores. Conclusions Increased power in lower frequency bands is consistent with previous studies demonstrating a “slowing” of the background EEG in Rett syndrome. This increase, particularly in the delta band, could represent abnormal cortical inhibition due to dysfunctional GABAergic signaling and could potentially be used as a marker of severity due to associations with more severe Rett syndrome phenotypes.
Collapse
Affiliation(s)
- Katherine J Roche
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Jocelyn J LeBlanc
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA.,F.M. Kirby Neurobiology Center, Neurology Department, Harvard Medical School, Boston, MA, USA
| | - April R Levin
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Heather M O'Leary
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Lauren M Baczewski
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA
| | - Charles A Nelson
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA. .,Graduate School of Education, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Zhou C, Yan S, Qian S, Wang Z, Shi Z, Xiong Y, Zhou Y. Atypical Response Properties of the Auditory Cortex of Awake MECP2-Overexpressing Mice. Front Neurosci 2019; 13:439. [PMID: 31133783 PMCID: PMC6515258 DOI: 10.3389/fnins.2019.00439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Methyl-CpG binding protein 2 (MECP2) is a gene associated with DNA methylation and has been found to be important for maintaining brain function. In humans, overexpression of MECP2 can cause a severe developmental disorder known as MECP2 duplication syndrome. However, it is still unclear whether MECP2 overexpression also causes auditory abnormalities, which are common in people with autism. MECP2-TG is a mouse model of MECP2 duplication syndrome and has been widely used for research on social difficulty and other autism-like disorders. In this study, we used a combination of multiple electrophysiological techniques to document the response properties of the auditory cortex of awake MECP2-TG mice. Our results showed that while the auditory brainstem responses are similar, cortical activity patterns including local field potentials (LFPs), multiunit activity (MUA), and single-neuron responses differ between MECP2-TG and wild-type (WT) mice. At the single-neuron level, the spike waveform of fast-spiking (FS) neurons from MECP2-TG mice is different from that of WT mice, as reflected by reduced peak/trough ratios in the transgenic mice. Both regular-spiking (RS) and FS neurons exhibited atypical response properties in MECP2-TG mice compared with WT mice, such as prolonged latency and an elevated intensity threshold; furthermore, regarding the response strength to different stimuli, MECP2-TG mice exhibited stronger responses to noise than to pure tone, while this pattern was not observed in WT mice. Our findings suggest that MECP2 overexpression can cause the auditory cortex to have atypical response properties, an implication that could be helpful for further understanding the nature of auditory deficits in autism.
Collapse
Affiliation(s)
- Chang Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Sumei Yan
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Shaowen Qian
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhaoqun Wang
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhiyue Shi
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ying Xiong
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Key AP, Jones D, Peters S. Spoken word processing in Rett syndrome: Evidence from event-related potentials. Int J Dev Neurosci 2019; 73:26-31. [PMID: 30630072 DOI: 10.1016/j.ijdevneu.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
This study examined the feasibility of using auditory event-related potentials to evaluate spoken word processing during passive listening in girls with Rett syndrome (n = 11) and typical peers (n = 33), age 4-12 years. The typical group demonstrated the expected pattern of more negative amplitudes within 200-500 ms in response to words than nonwords at left temporal sites. In participants with Rett syndrome, word-nonword differentiation was observed at the right temporal sites. More negative left hemisphere amplitudes in response to words were associated (at trend level) with better receptive language skills and more adaptive behavior. The results indicate that girls with Rett syndrome differentiate known words from novel nonwords, but may do so using potentially atypical neural processes. Brain-behavior correlations support validity of the proposed neural markers of word processing, making passive listening paradigms a promising approach for assessing speech and language processing in participants with limited spoken language skills.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, United States; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States.
| | - Dorita Jones
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, United States.
| | - Sarika Peters
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, United States.
| |
Collapse
|
25
|
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Reusable Multielectrode Array Technique for Electroencephalography in Awake Freely Moving Mice. Front Integr Neurosci 2018; 12:53. [PMID: 30416434 PMCID: PMC6213968 DOI: 10.3389/fnint.2018.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
Translational comparison of rodent models of neurological and neuropsychiatric diseases to human electroencephalography (EEG) biomarkers in these conditions will require multisite rodent EEG on the skull surface, rather than local area electrocorticography (ECoG) or multisite local field potential (LFP) recording. We have developed a technique for planar multielectrode array (MEA) implantation on the mouse skull surface, which enables multisite EEG in awake and freely moving mice and reusability of the MEA probes. With this method, we reliably obtain 30-channel low-noise EEG from awake mice. Baseline and stimulus-evoked EEG recordings can be readily obtained and analyzed. For example, we have demonstrated EEG responses to auditory stimuli. Broadband noise elicits reliable 30-channel auditory event-related potentials (ERPs), and chirp stimuli induce phase-locked EEG responses just as in human sound presentation paradigms. This method is unique in achieving chronic implantation of novel MEA technology onto the mouse skull surface for chronic multisite EEG recordings. Furthermore, we demonstrate a reliable method for reusing MEA probes for multiple serial implantations without loss of EEG quality. This skull surface MEA methodology can be used to obtain simultaneous multisite EEG recordings and to test EEG biomarkers in diverse mouse models of human neurological and neuropsychiatric diseases. Reusability of the MEA probes makes it more cost-effective to deploy this system for various studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jonathan W Lovelace
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
26
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
27
|
Golden CE, Buxbaum JD, De Rubeis S. Disrupted circuits in mouse models of autism spectrum disorder and intellectual disability. Curr Opin Neurobiol 2018; 48:106-112. [PMID: 29222989 PMCID: PMC5825272 DOI: 10.1016/j.conb.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are caused by a wide range of genetic mutations, a significant fraction of which reside in genes important for synaptic function. Studies have found that sensory, prefrontal, hippocampal, cerebellar, and striatal regions, as well as the circuits that connect them, are perturbed in mouse models of ASD and ID. Dissecting the disruptions in morphology and activity in these neural circuits might help us to understand the shared risk between the two disorders as well as their clinical heterogeneity. Treatments that target the balance between excitation and inhibition in these regions are able to reverse pathological phenotypes, elucidating this deficit as a commonality across models and opening new avenues for intervention.
Collapse
Affiliation(s)
- Carla Em Golden
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, 10029 NY, USA.
| |
Collapse
|
28
|
Wither RG, Colic S, Bardakjian BL, Snead OC, Zhang L, Eubanks JH. Electrographic and pharmacological characterization of a progressive epilepsy phenotype in female MeCP2-deficient mice. Epilepsy Res 2018; 140:177-183. [PMID: 29414525 DOI: 10.1016/j.eplepsyres.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/27/2022]
Abstract
Rett Syndrome is a neurodevelopmental disorder caused primarily by mutations in the gene encoding Methyl-CpG-binding protein 2 (MECP2). Spontaneous epileptiform activity is a common co-morbidity present in Rett syndrome, and hyper-excitable neural networks are present in MeCP2-deficient mouse models of Rett syndrome. In this study we conducted a longitudinal assessment of spontaneous cortical electrographic discharges in female MeCP2-deficient mice and defined the pharmacological responsiveness of these discharges to anti-convulsant drugs. Our data show that cortical discharge activity in female MeCP2-deficient mice progressively increases in severity as the mice age, with discharges being more frequent and of longer durations at 19-24 months of age compared to 3 months of age. Semiologically and pharmacologically, this basal discharge activity in female MeCP2-deficient mice displayed electroclinical properties consistent with absence epilepsy. Only rarely were convulsive seizures observed in these mice at any age. Since absence epilepsy is infrequently observed in Rett syndrome patients, these results indicate that the predominant spontaneous electroclinical phenotype of MeCP2-deficient mice we examined does not faithfully recapitulate the most prevalent seizure types observed in affected patients.
Collapse
Affiliation(s)
- Robert G Wither
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sinisa Colic
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Berj L Bardakjian
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - O Carter Snead
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liang Zhang
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada; University of Toronto Epilepsy Research Program, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada; University of Toronto Epilepsy Research Program, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
29
|
Peters SU, Katzenstein A, Jones D, Key AP. Distinguishing response to names in Rett and MECP2 Duplication syndrome: An ERP study of auditory social information processing. Brain Res 2017; 1675:71-77. [DOI: 10.1016/j.brainres.2017.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 11/26/2022]
|
30
|
Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, Copping NA, Pride MC, Smith DG, Rotenberg A, Crawley JN, Sahin M. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism 2017. [PMID: 28638591 PMCID: PMC5472997 DOI: 10.1186/s13229-017-0142-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. METHODS In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant (Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each behavioral domain, including social, repetitive, cognitive, anxiety-related, sensory, and motor categories of assays. RESULTS Relative to WT mice, Shank3B KO mice displayed a dramatic resistance to PTZ seizure induction and an enhancement of gamma band oscillatory EEG activity indicative of enhanced inhibitory tone. These findings replicated in two separate cohorts. Behaviorally, Shank3B KO mice exhibited repetitive grooming, deficits in aspects of reciprocal social interactions and vocalizations, and reduced open field activity, as well as variable deficits in sensory responses, anxiety-related behaviors, learning and memory. CONCLUSIONS Robust animal models and quantitative, replicable biomarkers of neural dysfunction are needed to decrease risk and enable successful drug discovery and development for ASD and other neurodevelopmental disorders. Complementary to the replicated behavioral phenotypes of the Shank3B mutant mouse is the new identification of a robust, translational in vivo neurophysiological phenotype. Our findings provide strong evidence for robustness and replicability of key translational phenotypes in Shank3B mutant mice and support the usefulness of this mouse model of ASD for therapeutic discovery.
Collapse
Affiliation(s)
- Sameer C Dhamne
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95821 USA
| | - Chloe E Super
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Stephen H T Lammers
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Meera E Modi
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Nycole A Copping
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95821 USA
| | - Michael C Pride
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95821 USA
| | - Daniel G Smith
- Autism Speaks, Inc., Boston, MA USA.,Present address: BlackThorn Therapeutics, Inc., Cambridge, MA USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95821 USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
31
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
32
|
Lamonica JM, Kwon DY, Goffin D, Fenik P, Johnson BS, Cui Y, Guo H, Veasey S, Zhou Z. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest 2017; 127:1889-1904. [PMID: 28394263 DOI: 10.1172/jci90967] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach.
Collapse
|
33
|
Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain. Neurosci Bull 2017; 33:205-218. [PMID: 28271437 PMCID: PMC5360850 DOI: 10.1007/s12264-017-0112-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/12/2017] [Indexed: 01/01/2023] Open
Abstract
Transgenic mice carrying mutations that cause Autism Spectrum Disorders (ASDs) continue to be valuable for determining the molecular underpinnings of the disorders. Recently, researchers have taken advantage of such models combined with Cre-loxP and similar systems to manipulate gene expression over space and time. Thus, a clearer picture is starting to emerge of the cell types, circuits, brain regions, and developmental time periods underlying ASDs. ASD-causing mutations have been restricted to or rescued specifically in excitatory or inhibitory neurons, different neurotransmitter systems, and cells specific to the forebrain or cerebellum. In addition, mutations have been induced or corrected in adult mice, providing some evidence for the plasticity and reversibility of core ASD symptoms. The limited availability of Cre lines that are highly specific to certain cell types or time periods provides a challenge to determining the cellular and circuitry bases of autism, but other technological advances may eventually overcome this obstacle.
Collapse
|
34
|
Modi ME, Sahin M. Translational use of event-related potentials to assess circuit integrity in ASD. Nat Rev Neurol 2017; 13:160-170. [DOI: 10.1038/nrneurol.2017.15] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kim D, Yeon C, Kim K. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings. SENSORS 2017; 17:s17020326. [PMID: 28208777 PMCID: PMC5335932 DOI: 10.3390/s17020326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/30/2016] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.
Collapse
Affiliation(s)
- Donghyeon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Kiseon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| |
Collapse
|
36
|
Yuan B, Cheng TL, Yang K, Zhang X, Qiu Z. Autism-related protein MeCP2 regulates FGF13 expression and emotional behaviors. J Genet Genomics 2017; 44:63-66. [PMID: 27916441 DOI: 10.1016/j.jgg.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Bo Yuan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Lin Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Yang
- Institute of Chemistry and Bioengineering, Donghua University, Shanghai 200051, China
| | - Xu Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Clinical Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zilong Qiu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Clinical Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
37
|
MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun 2017; 8:14077. [PMID: 28098153 PMCID: PMC5253927 DOI: 10.1038/ncomms14077] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life, but how disruption of experience-dependent plasticity contributes to cognitive and behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett syndrome. In response to learned maternal experience, Mecp2het females exhibited transient changes to cortical inhibitory networks typically associated with limited plasticity. Averting these changes in Mecp2het through genetic or pharmacological manipulations targeting the GABAergic network restored gathering behaviour. We propose that pup gathering learning triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2 mutations suppress adult plasticity independently from their effects on early development. Rett syndrome is associated with impaired synaptic connectivity beginning in early development. Here the authors show in female mice heterozygous for Mecp2, a model of Rett syndrome, that during adulthood, auditory cortex plasticity associated with a learned maternal behaviour is also impaired.
Collapse
|
38
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
39
|
Herrera JA, Ward CS, Wehrens XH, Neul JL. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis. Hum Mol Genet 2016; 25:4983-4995. [PMID: 28159985 PMCID: PMC6078594 DOI: 10.1093/hmg/ddw326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.
Collapse
Affiliation(s)
- José A. Herrera
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Christopher S. Ward
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Xander H.T. Wehrens
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute
- Departments of Medicine
- Molecular Physiology and Biophysics
- Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L. Neul
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Molecular Physiology and Biophysics
- Neuroscience
- Human and Molecular Genetics
- Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc Natl Acad Sci U S A 2016; 113:E7287-E7296. [PMID: 27803317 DOI: 10.1073/pnas.1615330113] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rett syndrome (RTT) arises from loss-of-function mutations in methyl-CpG binding protein 2 gene (Mecp2), but fundamental aspects of its physiological mechanisms are unresolved. Here, by whole-cell recording of synaptic responses in MeCP2 mutant mice in vivo, we show that visually driven excitatory and inhibitory conductances are both reduced in cortical pyramidal neurons. The excitation-to-inhibition (E/I) ratio is increased in amplitude and prolonged in time course. These changes predict circuit-wide reductions in response reliability and selectivity of pyramidal neurons to visual stimuli, as confirmed by two-photon imaging. Targeted recordings reveal that parvalbumin-expressing (PV+) interneurons in mutant mice have reduced responses. PV-specific MeCP2 deletion alone recapitulates effects of global MeCP2 deletion on cortical circuits, including reduced pyramidal neuron responses and reduced response reliability and selectivity. Furthermore, MeCP2 mutant mice show reduced expression of the cation-chloride cotransporter KCC2 (K+/Cl- exporter) and a reduced KCC2/NKCC1 (Na+/K+/Cl- importer) ratio. Perforated patch recordings demonstrate that the reversal potential for GABA is more depolarized in mutant mice, but is restored by application of the NKCC1 inhibitor bumetanide. Treatment with recombinant human insulin-like growth factor-1 restores responses of PV+ and pyramidal neurons and increases KCC2 expression to normalize the KCC2/NKCC1 ratio. Thus, loss of MeCP2 in the brain alters both excitation and inhibition in brain circuits via multiple mechanisms. Loss of MeCP2 from a specific interneuron subtype contributes crucially to the cell-specific and circuit-wide deficits of RTT. The joint restoration of inhibition and excitation in cortical circuits is pivotal for functionally correcting the disorder.
Collapse
|
41
|
Foxe JJ, Burke KM, Andrade GN, Djukic A, Frey HP, Molholm S. Automatic cortical representation of auditory pitch changes in Rett syndrome. J Neurodev Disord 2016; 8:34. [PMID: 27594924 PMCID: PMC5009506 DOI: 10.1186/s11689-016-9166-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Background Over the typical course of Rett syndrome, initial language and communication abilities deteriorate dramatically between the ages of 1 and 4 years, and a majority of these children go on to lose all oral communication abilities. It becomes extremely difficult for clinicians and caretakers to accurately assess the level of preserved auditory functioning in these children, an issue of obvious clinical import. Non-invasive electrophysiological techniques allow for the interrogation of auditory cortical processing without the need for overt behavioral responses. In particular, the mismatch negativity (MMN) component of the auditory evoked potential (AEP) provides an excellent and robust dependent measure of change detection and auditory sensory memory. Here, we asked whether females with Rett syndrome would produce the MMN to occasional changes in pitch in a regularly occurring stream of auditory tones. Methods Fourteen girls with genetically confirmed Rett syndrome and 22 age-matched neurotypical controls participated (ages 3.9–21.1 years). High-density electrophysiological recordings from 64 scalp electrodes were made while participants passively listened to a regularly occurring stream of 503-Hz auditory tone pips that was occasionally (15 % of presentations) interrupted by a higher-pitched deviant tone of 996 Hz. The MMN was derived by subtracting the AEP to these deviants from the AEP produced to the standard. Results Despite clearly anomalous morphology and latency of the AEP to simple pure-tone inputs in Rett syndrome, the MMN response was evident in both neurotypicals and Rett patients. However, we found that the pitch-evoked MMN was both delayed and protracted in duration in Rett, pointing to slowing of auditory responsiveness. Conclusions The presence of the MMN in Rett patients suggests preserved abilities to process pitch changes in auditory sensory memory. This work represents a beginning step in an effort to comprehensively map the extent of auditory cortical functioning in Rett syndrome. These easily obtained objective brain measures of auditory processing have promise as biomarkers against which future therapeutic efforts can be assayed.
Collapse
Affiliation(s)
- John J Foxe
- Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA ; Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461 USA ; The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Kelly M Burke
- Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461 USA ; The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Gizely N Andrade
- Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461 USA
| | - Aleksandra Djukic
- Department of Neurology, Rett Syndrome Center, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY 10467 USA
| | - Hans-Peter Frey
- Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461 USA ; Department of Neurology, Columbia University Medical Center, New York, NY 10032 USA
| | - Sophie Molholm
- Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461 USA ; The Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
42
|
Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model. Neuron 2016; 91:739-747. [PMID: 27499081 DOI: 10.1016/j.neuron.2016.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/01/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022]
Abstract
Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.
Collapse
|
43
|
Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, Schloesser RJ, Martinowich K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl Psychiatry 2016; 6:e873. [PMID: 27552586 PMCID: PMC5022093 DOI: 10.1038/tp.2016.153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior.
Collapse
Affiliation(s)
- J L Hill
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - N F Hardy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - D V Jimenez
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - K R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - A S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - C J Pollock
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - R J Schloesser
- Sheppard Pratt-Lieber Research Institute, Inc., Baltimore, MD, USA
| | - K Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Lieber Institute for Brain Development, 855 North Wolfe Street, 347B, Suite 300, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
44
|
Meng X, Wang W, Lu H, He LJ, Chen W, Chao ES, Fiorotto ML, Tang B, Herrera JA, Seymour ML, Neul JL, Pereira FA, Tang J, Xue M, Zoghbi HY. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. eLife 2016; 5. [PMID: 27328325 PMCID: PMC4946906 DOI: 10.7554/elife.14199] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
Many postnatal onset neurological disorders such as autism spectrum disorders (ASDs) and intellectual disability are thought to arise largely from disruption of excitatory/inhibitory homeostasis. Although mouse models of Rett syndrome (RTT), a postnatal neurological disorder caused by loss-of-function mutations in MECP2, display impaired excitatory neurotransmission, the RTT phenotype can be largely reproduced in mice simply by removing MeCP2 from inhibitory GABAergic neurons. To determine what role excitatory signaling impairment might play in RTT pathogenesis, we generated conditional mouse models with Mecp2 either removed from or expressed solely in glutamatergic neurons. MeCP2 deficiency in glutamatergic neurons leads to early lethality, obesity, tremor, altered anxiety-like behaviors, and impaired acoustic startle response, which is distinct from the phenotype of mice lacking MeCP2 only in inhibitory neurons. These findings reveal a role for excitatory signaling impairment in specific neurobehavioral abnormalities shared by RTT and other postnatal neurological disorders.
Collapse
Affiliation(s)
- Xiangling Meng
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Wei Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hui Lu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Ling-Jie He
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Wu Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Bin Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jose A Herrera
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| | - Michelle L Seymour
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Jeffrey L Neul
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Fred A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States.,Bobby R Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| |
Collapse
|
45
|
Ure K, Lu H, Wang W, Ito-Ishida A, Wu Z, He LJ, Sztainberg Y, Chen W, Tang J, Zoghbi HY. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. eLife 2016; 5. [PMID: 27328321 PMCID: PMC4946897 DOI: 10.7554/elife.14198] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2+/- mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome. DOI:http://dx.doi.org/10.7554/eLife.14198.001 Rett syndrome is a childhood brain disorder that mainly affects girls and causes symptoms including anxiety, tremors, uncoordinated movements and breathing difficulties. Rett syndrome is caused by mutations in a gene called MECP2, which is found on the X chromosome. Males with MECP2 mutations are rare but have more severe symptoms and die young. Many researchers who study Rett syndrome use mice as a model of the disorder. In particular, male mice with the mouse equivalent of the human MECP2 gene switched off in every cell in the body (also known as Mecp2-null mice) show many of the features of Rett syndrome and die at a young age. The MECP2 gene is important for healthy brain activity. The brain contains two major types of neurons: excitatory neurons, which encourage other neurons to be active; and inhibitory neurons, which stop or dampen the activity of other neurons. In 2010, researchers reported that mice lacking Mecp2 in only their inhibitory neurons develop most of the same problems as those mice with no Mecp2 at all. This discovery led Ure et al. – including a researcher involved in the 2010 study – to ask if activating Mecp2 in the same neurons in otherwise Mecp2-null mice was enough to prevent some of their Rett syndrome-like symptoms. The experiments showed that male mice that only have Mecp2 activated in their inhibitory neurons lived several months longer than male Mecp2-null mice. These male “rescue mice” also moved normally and had a normal body weight, though they still experienced anxiety, tremors and breathing difficulties. Female mice represent a better model of human Rett syndrome patients, and Ure et al. found that female rescue mice showed smaller improvements than the males. These data suggest that when a brain is missing Mecp2 everywhere, as in male Mecp2-null mice, turning on Mecp2 in inhibitory neurons can make the brain network nearly normal and prevent most Rett-syndrome-like symptoms. However, the brains of female rescue mice contain both normal cells and cells with mutated Mecp2. This mixture of normal and abnormal cells appears to cause abnormalities that cannot be overcome by rescuing just the activity of the inhibitory neurons. These findings also highlight the importance of doing future studies in female mice to better understand the development of Rett syndrome. The next challenge is to test different ways of activating the inhibitory neurons in the female mouse brain, for example by using drugs that target these neurons. It is hoped these methods will help researchers to refine a path toward potential new treatments for Rett syndrome patients. Finally, in a related study, Meng et al. asked how deleting or activating Mecp2 only in the excitatory neurons of mice affected Rett-syndrome-like symptoms. DOI:http://dx.doi.org/10.7554/eLife.14198.002
Collapse
Affiliation(s)
- Kerstin Ure
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Hui Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Wei Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Aya Ito-Ishida
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Ling-Jie He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Wu Chen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Cain Foundation Laboratories, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
46
|
Zhang L, Wither RG, Lang M, Wu C, Sidorova-Darmos E, Netchev H, Matolcsy CB, Snead OC, Eubanks JH. A Role for Diminished GABA Transporter Activity in the Cortical Discharge Phenotype of MeCP2-Deficient Mice. Neuropsychopharmacology 2016; 41:1467-76. [PMID: 26499511 PMCID: PMC4832024 DOI: 10.1038/npp.2015.323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/13/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
Cortical network hyper-excitability is a common phenotype in mouse models lacking the transcriptional regulator methyl-CPG-binding protein 2 (MeCP2). Here, we implicate enhanced GABAB receptor activity stemming from diminished cortical expression of the GABA transporter GAT-1 in the genesis of this network hyper-excitability. We found that administering the activity-dependent GABAB receptor allosteric modulator GS-39783 to female Mecp2(+/-) mice at doses producing no effect in wild-type mice strongly potentiated their basal rates of spontaneous cortical discharge activity. Consistently, administering the GABAB receptor antagonist CGP-35348 significantly decreased basal discharge activity in these mice. Expression analysis revealed that while GABAB or extra-synaptic GABAA receptor prevalence is preserved in the MeCP2-deficient cortex, the expression of GAT-1 is significantly reduced from wild-type levels. This decrease in GAT-1 expression is consequential, as low doses of the GAT-1 inhibitor NO-711 that had no effects in wild-type mice strongly exacerbated cortical discharge activity in female Mecp2(+/-) mice. Taken together, these data indicate that the absence of MeCP2 leads to decreased cortical levels of the GAT-1 GABA transporter, which facilitates cortical network hyper-excitability in MeCP2-deficient mice by increasing the activity of cortical GABAB receptors.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Robert G Wither
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Min Lang
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chiping Wu
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Elena Sidorova-Darmos
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hristo Netchev
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Catherine B Matolcsy
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Orlando Carter Snead
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada,Toronto Western Hospital, 8KD-417, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada, Tel: +1 416 603 5800, ext. 2933, Fax: +1 416 603 5745, E-mail:
| |
Collapse
|
47
|
Benítez-Burraco A, Murphy E. The Oscillopathic Nature of Language Deficits in Autism: From Genes to Language Evolution. Front Hum Neurosci 2016; 10:120. [PMID: 27047363 PMCID: PMC4796018 DOI: 10.3389/fnhum.2016.00120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders involving a number of deficits to linguistic cognition. The gap between genetics and the pathophysiology of ASD remains open, in particular regarding its distinctive linguistic profile. The goal of this article is to attempt to bridge this gap, focusing on how the autistic brain processes language, particularly through the perspective of brain rhythms. Due to the phenomenon of pleiotropy, which may take some decades to overcome, we believe that studies of brain rhythms, which are not faced with problems of this scale, may constitute a more tractable route to interpreting language deficits in ASD and eventually other neurocognitive disorders. Building on recent attempts to link neural oscillations to certain computational primitives of language, we show that interpreting language deficits in ASD as oscillopathic traits is a potentially fruitful way to construct successful endophenotypes of this condition. Additionally, we will show that candidate genes for ASD are overrepresented among the genes that played a role in the evolution of language. These genes include (and are related to) genes involved in brain rhythmicity. We hope that the type of steps taken here will additionally lead to a better understanding of the comorbidity, heterogeneity, and variability of ASD, and may help achieve a better treatment of the affected populations.
Collapse
Affiliation(s)
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|
48
|
Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes. Neuron 2016; 88:651-8. [PMID: 26590342 DOI: 10.1016/j.neuron.2015.10.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/16/2015] [Accepted: 09/16/2015] [Indexed: 01/02/2023]
Abstract
Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors.
Collapse
|
49
|
Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 2015; 350:aab3897. [PMID: 26472761 PMCID: PMC4739545 DOI: 10.1126/science.aab3897] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.
Collapse
Affiliation(s)
- Mustafa Sahin
- F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mriganka Sur
- Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|