1
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
2
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2024:10.1038/s41386-024-01997-x. [PMID: 39327472 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Liu J, Ye J, Ji C, Ren W, He Y, Xu F, Wang F. Mapping the Behavioral Signatures of Shank3b Mice in Both Sexes. Neurosci Bull 2024; 40:1299-1314. [PMID: 38900384 PMCID: PMC11365888 DOI: 10.1007/s12264-024-01237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorders (ASD) are characterized by social and repetitive abnormalities. Although the ASD mouse model with Shank3b mutations is widely used in ASD research, the behavioral phenotype of this model has not been fully elucidated. Here, a 3D-motion capture system and linear discriminant analysis were used to comprehensively record and analyze the behavioral patterns of male and female Shank3b mutant mice. It was found that both sexes replicated the core and accompanied symptoms of ASD, with significant sex differences. Further, Shank3b heterozygous knockout mice exhibited distinct autistic behaviors, that were significantly different from those those observed in the wild type and homozygous knockout groups. Our findings provide evidence for the inclusion of both sexes and experimental approaches to efficiently characterize heterozygous transgenic models, which are more clinically relevant in autistic studies.
Collapse
Affiliation(s)
- Jingjing Liu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunyuan Ji
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenting Ren
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Youwei He
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Feng Wang
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Thibaudeau A, Schmitt K, François L, Chatrousse L, Hoffmann D, Cousin L, Weiss A, Vuidel A, Jacob CB, Sommer P, Benchoua A, Wilbertz JH. Pharmacological modulation of developmental and synaptic phenotypes in human SHANK3 deficient stem cell-derived neuronal models. Transl Psychiatry 2024; 14:249. [PMID: 38858349 PMCID: PMC11165012 DOI: 10.1038/s41398-024-02947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Phelan-McDermid syndrome (PMDS) arises from mutations in the terminal region of chromosome 22q13, impacting the SHANK3 gene. The resulting deficiency of the postsynaptic density scaffolding protein SHANK3 is associated with autism spectrum disorder (ASD). We examined 12 different PMDS patient and CRISPR-engineered stem cell-derived neuronal models and controls and found that reduced expression of SHANK3 leads to neuronal hyperdifferentiation, increased synapse formation, and decreased neuronal activity. We performed automated imaging-based screening of 7,120 target-annotated small molecules and identified three compounds that rescued SHANK3-dependent neuronal hyperdifferentiation. One compound, Benproperine, rescued the decreased colocalization of Actin Related Protein 2/3 Complex Subunit 2 (ARPC2) with ß-actin and rescued increased synapse formation in SHANK3 deficient neurons when administered early during differentiation. Neuronal activity was only mildly affected, highlighting Benproperine's effects as a neurodevelopmental modulator. This study demonstrates that small molecular compounds that reverse developmental phenotypes can be identified in human neuronal PMDS models.
Collapse
|
6
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Cording KR, Tu EM, Wang H, Agopyan-Miu AHCW, Bateup HS. Cntnap2 loss drives striatal neuron hyperexcitability and behavioral inflexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593387. [PMID: 38766169 PMCID: PMC11100810 DOI: 10.1101/2024.05.09.593387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by two major diagnostic criteria - persistent deficits in social communication and interaction, and the presence of restricted, repetitive patterns of behavior (RRBs). Evidence from both human and animal model studies of ASD suggest that alteration of striatal circuits, which mediate motor learning, action selection, and habit formation, may contribute to the manifestation of RRBs. CNTNAP2 is a syndromic ASD risk gene, and loss of function of Cntnap2 in mice is associated with RRBs. How loss of Cntnap2 impacts striatal neuron function is largely unknown. In this study, we utilized Cntnap2-/- mice to test whether altered striatal neuron activity contributes to aberrant motor behaviors relevant to ASD. We find that Cntnap2-/- mice exhibit increased cortical drive of striatal projection neurons (SPNs), with the most pronounced effects in direct pathway SPNs. This enhanced drive is likely due to increased intrinsic excitability of SPNs, which make them more responsive to cortical inputs. We also find that Cntnap2-/- mice exhibit spontaneous repetitive behaviors, increased motor routine learning, and cognitive inflexibility. Increased corticostriatal drive, in particular of the direct pathway, may contribute to the acquisition of repetitive, inflexible behaviors in Cntnap2 mice.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
| | - Emilie M. Tu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Hongli Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
8
|
Gutierrez-Castellanos N, Sarra D, Godinho BS, Mainen ZF. Maturation of cortical input to dorsal raphe nucleus increases behavioral persistence in mice. eLife 2024; 13:e93485. [PMID: 38477558 PMCID: PMC10994666 DOI: 10.7554/elife.93485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.
Collapse
Affiliation(s)
| | - Dario Sarra
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Beatriz S Godinho
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
9
|
Jeong JH, Lee H, Kim D, Park E, Woo J, Cho Y, Keum G, Lee A, Kang T, Kim J, Choo H, Lee S, Jeon B. Identification of an Antagonist Targeting G Protein and β-Arrestin Signaling Pathways of 5-HT 7R. ACS Chem Neurosci 2024; 15:1026-1041. [PMID: 38387042 DOI: 10.1021/acschemneuro.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
In consideration of the limited number of FDA-approved drugs for autism spectrum disorder (ASD), significant efforts have been devoted to identifying novel drug candidates. Among these, 5-HT7R modulators have garnered considerable attention due to their potential in alleviating autism-like behaviors in ASD animal models. In this study, we designed and synthesized biphenyl-3-ylmethylpyrrolidines 3 and biphenyl-3-yl-dihydroimidazoles 4 as 5-HT7R modulators. Through extensive biological tests of 3 and 4 in G protein and β-arrestin signaling pathways of 5-HT7R, it was determined that 2-(2'-methoxy-[1,1'-biphenyl]-3-yl)-4,5-dihydro-1H-imidazole 4h acted as a 5-HT7R antagonist in both signaling pathways. In in vivo study with Shank3-/- transgenic (TG) mice, the self-grooming behavior test was performed with 4h, resulting in a significant reduction in the duration of self-grooming. In addition, an immunohistochemical experiment with 4h restored reduced neurogenesis in Shank3-/- TG mice, which is confirmed by the quantification of doublecortin (DCX) positive neurons, suggesting the promising therapeutic potential of 4h.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Haeun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Doyoung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunseo Park
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Wu M, Zhang X, Feng S, Freda SN, Kumari P, Dumrongprechachan V, Kozorovitskiy Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 2024; 112:141-154.e8. [PMID: 37922904 PMCID: PMC10841919 DOI: 10.1016/j.neuron.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The pathophysiology of affective disorders-particularly circuit-level mechanisms underlying bidirectional, periodic affective state transitions-remains poorly understood. In patients, disruptions of sleep and circadian rhythm can trigger transitions to manic episodes, whereas depressive states are reversed. Here, we introduce a hybrid automated sleep deprivation platform to induce transitions of affective states in mice. Acute sleep loss causes mixed behavioral states, featuring hyperactivity, elevated social and sexual behaviors, and diminished depressive-like behaviors, where transitions depend on dopamine (DA). Using DA sensor photometry and projection-targeted chemogenetics, we reveal that elevated DA release in specific brain regions mediates distinct behavioral changes in affective state transitions. Acute sleep loss induces DA-dependent enhancement in dendritic spine density and uncaging-evoked dendritic spinogenesis in the medial prefrontal cortex, whereas optically mediated disassembly of enhanced plasticity reverses the antidepressant effects of sleep deprivation on learned helplessness. These findings demonstrate that brain-wide dopaminergic pathways control sleep-loss-induced polymodal affective state transitions.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sihan Feng
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Pushpa Kumari
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
11
|
Shih YC, Nelson L, Janeček M, Peixoto RT. Late onset and regional heterogeneity of synaptic deficits in cortical PV interneurons of Shank3B -/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568500. [PMID: 38045377 PMCID: PMC10690261 DOI: 10.1101/2023.11.23.568500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Epilepsy and epileptiform patterns of cortical activity are highly prevalent in autism spectrum disorders (ASDs), but the neural substrates and pathophysiological mechanisms underlying the onset of cortical dysfunction in ASD remains elusive. Reduced cortical expression of Parvalbumin (PV) has been widely observed in ASD mouse models and human postmortem studies, suggesting a crucial role of PV interneurons (PVINs) in ASD pathogenesis. Shank3B -/- mice carrying a Δ13-16 deletion in SHANK3 exhibit cortical hyperactivity during postnatal development and reduced sensory responses in cortical GABAergic interneurons in adulthood. However, whether these phenotypes are associated with PVIN dysfunction is unknown. Using whole-cell electrophysiology and a viral-based strategy to label PVINs during postnatal development, we performed a developmental characterization of AMPAR miniature excitatory postsynaptic currents (mEPSCs) in PVINs and pyramidal (PYR) neurons of layer (L) 2/3 mPFC in Shank3B -/- mice. Surprisingly, reduced mEPSC frequency was observed in both PYR and PVIN populations, but only in adulthood. At P15, when cortical hyperactivity is already observed, both neuron types exhibited normal mEPSC amplitude and frequency, suggesting that glutamatergic connectivity deficits in these neurons emerge as compensatory mechanisms. Additionally, we found normal mEPSCs in adult PVINs of L2/3 somatosensory cortex, revealing region-specific phenotypic differences of cortical PVINs in Shank3B -/- mice. Together, these results demonstrate that loss of Shank3 alters PVIN function but suggest that PVIN glutamatergic synapses are a suboptimal therapeutic target for normalizing early cortical imbalances in SHANK3-associated disorders. More broadly, these findings underscore the complexity of interneuron dysfunction in ASDs, prompting further exploration of region and developmental stage specific phenotypes for understanding and developing effective interventions.
Collapse
|
12
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Del Valle P, Baxter MG, Huntley GW, Benson DL. Development and cadherin-mediated control of prefrontal corticostriatal projections in mice. iScience 2023; 26:108002. [PMID: 37854688 PMCID: PMC10579443 DOI: 10.1016/j.isci.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.
Collapse
Affiliation(s)
- Roxana E. Mesías
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren G. Friedman
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayan Hussein
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Klavinskis-Whiting S, Bitzenhofer S, Hanganu-Opatz I, Ellender T. Generation and propagation of bursts of activity in the developing basal ganglia. Cereb Cortex 2023; 33:10595-10613. [PMID: 37615347 PMCID: PMC10560579 DOI: 10.1093/cercor/bhad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
The neonatal brain is characterized by intermittent bursts of oscillatory activity interspersed by relative silence. Although well-characterized for many cortical areas, to what extent these propagate and interact with subcortical brain areas is largely unknown. Here, early network activity was recorded from the developing basal ganglia, including motor/somatosensory cortex, dorsal striatum, and intralaminar thalamus, during the first postnatal weeks in mice. An unsupervised detection and classification method revealed two main classes of bursting activity, namely spindle bursts and nested gamma spindle bursts, characterized by oscillatory activity at ~ 10 and ~ 30 Hz frequencies, respectively. These were reliably identified across all three brain regions and exhibited region-specific differences in their structural, spectral, and developmental characteristics. Bursts of the same type often co-occurred in different brain regions and coherence and cross-correlation analyses reveal dynamic developmental changes in their interactions. The strongest interactions were seen for cortex and striatum, from the first postnatal week onwards, and cortex appeared to drive burst events in subcortical regions. Together, these results provide the first detailed description of early network activity within the developing basal ganglia and suggest that cortex is one of the main drivers of activity in downstream nuclei during this postnatal period.
Collapse
Affiliation(s)
| | - Sebastian Bitzenhofer
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ileana Hanganu-Opatz
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX13QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
14
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
16
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
18
|
He JL, Williams ZJ, Harris A, Powell H, Schaaf R, Tavassoli T, Puts NAJ. A working taxonomy for describing the sensory differences of autism. Mol Autism 2023; 14:15. [PMID: 37041612 PMCID: PMC10091684 DOI: 10.1186/s13229-022-00534-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/14/2022] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Individuals on the autism spectrum have been long described to process sensory information differently than neurotypical individuals. While much effort has been leveraged towards characterizing and investigating the neurobiology underlying the sensory differences of autism, there has been a notable lack of consistency in the terms being used to describe the nature of those differences. MAIN BODY We argue that inconsistent and interchangeable terminology-use when describing the sensory differences of autism has become problematic beyond mere pedantry and inconvenience. We begin by highlighting popular terms that are currently being used to describe the sensory differences of autism (e.g. "sensitivity", "reactivity" and "responsivity") and discuss why poor nomenclature may hamper efforts towards understanding the aetiology of sensory differences in autism. We then provide a solution to poor terminology-use by proposing a hierarchical taxonomy for describing and referring to various sensory features. CONCLUSION Inconsistent terminology-use when describing the sensory features of autism has stifled discussion and scientific understanding of the sensory differences of autism. The hierarchical taxonomy proposed was developed to help resolve lack of clarity when discussing the sensory differences of autism and to place future research targets at appropriate levels of analysis.
Collapse
Affiliation(s)
- Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Helen Powell
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Roseann Schaaf
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Teresa Tavassoli
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
19
|
Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, Le Sourd AM, Coqueran S, Schmitt J, Rochefort C, Rondi-Reig L, Leboucher A, Boland A, Fin B, Deleuze JF, Boeckers TM, Ey E, Bourgeron T. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci 2023; 16:1139118. [PMID: 37008785 PMCID: PMC10061084 DOI: 10.3389/fnmol.2023.1139118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Elisabeth Verpy
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Forget
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Fabrice De Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Florian Mueller
- Imagerie et Modélisation, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Anne-Marie Le Sourd
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Sabrina Coqueran
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Julien Schmitt
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Christelle Rochefort
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Laure Rondi-Reig
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Aziliz Leboucher
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
- Centre d’Étude du Polymorphisme Humain, Paris, France
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Elodie Ey
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm UMR-S 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| |
Collapse
|
20
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Valle PD, Baxter MG, Huntley GW, Benson DL. Development of prefrontal corticostriatal connectivity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532475. [PMID: 36993639 PMCID: PMC10054964 DOI: 10.1101/2023.03.14.532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.
Collapse
|
21
|
Rotaru DC, Wallaard I, de Vries M, van der Bie J, Elgersma Y. UBE3A expression during early postnatal brain development is required for proper dorsomedial striatal maturation. JCI Insight 2023; 8:e166073. [PMID: 36810252 PMCID: PMC9977510 DOI: 10.1172/jci.insight.166073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder (NDD) caused by loss of functional ubiquitin protein ligase E3A (UBE3A). Previous studies showed that UBE3A plays an important role in the first postnatal weeks of mouse brain development, but its precise role is unknown. Since impaired striatal maturation has been implicated in several mouse models for NDDs, we studied the importance of UBE3A in striatal maturation. We used inducible Ube3a mouse models to investigate the maturation of medium spiny neurons (MSNs) from dorsomedial striatum. MSNs of mutant mice matured properly till postnatal day 15 (P15) but remained hyperexcitable with fewer excitatory synaptic events at later ages, indicative of stalled striatal maturation in Ube3a mice. Reinstatement of UBE3A expression at P21 fully restored MSN excitability but only partially restored synaptic transmission and the operant conditioning behavioral phenotype. Gene reinstatement at P70 failed to rescue both electrophysiological and behavioral phenotypes. In contrast, deletion of Ube3a after normal brain development did not result in these electrophysiological and behavioral phenotypes. This study emphasizes the role of UBE3A in striatal maturation and the importance of early postnatal reinstatement of UBE3A expression to obtain a full rescue of behavioral phenotypes associated with striatal function in AS.
Collapse
Affiliation(s)
- Diana C. Rotaru
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Maud de Vries
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Julia van der Bie
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
22
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
23
|
Pang W, Wang M, Bi Q, Li H, Zhou Q, Ye X, Xiang W, Xiao L. Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo. Mol Neurobiol 2023; 60:2973-2985. [PMID: 36754912 DOI: 10.1007/s12035-023-03241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of unknown cause, although one hypothesis suggests a potential imbalance between excitation and inhibition that leads to changes in neuronal activity and a disturbance in the brain network. However, the mechanisms through which neuronal activity contributes to the development of ASD remain largely unexplained. In this study, we described that neuronal activity at the transcriptional and translational levels regulated the expression of Auts2 isoforms. The prolonged stimulation of cultured cortical neurons significantly reduced the auts2 transcripts, accompanied by the decrease of FL-Auts2 protein, as well as one of the short isoforms (S-Auts2 var.1). Blocking neuronal activity increased the number of auts2 transcripts but not protein levels. Furthermore, blocking the NMDA receptors during stimulation could partially restore the FL-Auts2 and S-Auts2 var.1 at protein level, but not at mRNA level. Finally, Auts2 expression in the hippocampus was reduced in mice exposed to an enriched environment, a behavior paradigm designed to increase the brain activity through abundant sensory and social stimulations. Thus, our study revealed a novel regulatory effect of neuronal activity on the transcription and translation of ASD-risk gene auts2.
Collapse
Affiliation(s)
- Wenbin Pang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Meijuan Wang
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qingshang Bi
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Hongai Li
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Qionglin Zhou
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Xiaoshan Ye
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China.
| | - Le Xiao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
| |
Collapse
|
24
|
Ahmed NY, Knowles R, Liu L, Yan Y, Li X, Schumann U, Wang Y, Sontani Y, Reynolds N, Natoli R, Wen J, Del Pino I, Mi D, Dehorter N. Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder. Front Cell Dev Biol 2023; 11:1112062. [PMID: 36819097 PMCID: PMC9930104 DOI: 10.3389/fcell.2023.1112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed to track striatal developing interneurons and elucidate the molecular and physiological alterations in the Cntnap2 knockout mouse model. Using Stereo-seq and single-cell RNA sequencing data, we first characterized the pattern of expression of Cntnap2 in the adult brain and at embryonic stages in the medial ganglionic eminence (MGE), a transitory structure producing most cortical and striatal interneurons. We found that Cntnap2 is enriched in the striatum, compared to the cortex, particularly in the developing striatal cholinergic interneurons. We then revealed enhanced MGE-derived cell proliferation, followed by increased cell loss during the canonical window of developmental cell death in the Cntnap2 knockout mice. We uncovered specific cellular and molecular alterations in the developing Lhx6-expressing cholinergic interneurons of the striatum, which impacts interneuron firing properties during the first postnatal week. Overall, our work unveils some of the mechanisms underlying the shift in the developmental trajectory of striatal interneurons which greatly contribute to the ASD pathogenesis.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Rhys Knowles
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Lixinyu Liu
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yiming Yan
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Li
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ulrike Schumann
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yumeng Wang
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Yovina Sontani
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Nathan Reynolds
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Riccardo Natoli
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Jiayu Wen
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia
| | - Isabel Del Pino
- Institute of Neurosciences, Spanish National Research Council (CSIC), Sant Joan d’Alacant, Spain
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nathalie Dehorter
- The Australian National University, The John Curtin School of Medical Research, Canberra, ACT, Australia,*Correspondence: Nathalie Dehorter,
| |
Collapse
|
25
|
Chhabra S, Nardi L, Leukel P, Sommer CJ, Schmeisser MJ. Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Front Psychiatry 2023; 14:1110525. [PMID: 36970280 PMCID: PMC10030619 DOI: 10.3389/fpsyt.2023.1110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.
Collapse
Affiliation(s)
- Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| |
Collapse
|
26
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
27
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
28
|
McGuirt A, Pigulevskiy I, Sulzer D. Developmental regulation of thalamus-driven pauses in striatal cholinergic interneurons. iScience 2022; 25:105332. [PMID: 36325074 PMCID: PMC9619292 DOI: 10.1016/j.isci.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
In response to salient sensory cues, the tonically active striatal cholinergic interneuron (ChI) exhibits a characteristic synchronized "pause" thought to facilitate learning and the execution of motivated behavior. We report that thalamostriatal-driven ChI pauses are enhanced in ex vivo brain slices from infantile (P10) mice, with decreasing expression in preadolescent (P28) and adult (P100) mice concurrent with waning excitatory input to ChIs. Our data are consistent with previous reports that the adult ChI pause is dependent on dopamine signaling, but we find that the robust pausing at P10 is dopamine independent. Instead, elevated expression of the noninactivating delayed rectifier Kv7.2/3 current promotes pausing in infantile ChIs. Because this current decreases over development, a parallel increase in Ih further attenuates pause expression. These findings demonstrate that cell intrinsic and circuit mechanisms of ChI pause expression are developmentally determined and may underlie changes in learning properties as the nervous system matures.
Collapse
Affiliation(s)
- Avery McGuirt
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Irena Pigulevskiy
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
29
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
30
|
De Gregorio R, Subah G, Chan JC, Speranza L, Zhang X, Ramakrishnan A, Shen L, Maze I, Stanton PK, Sze JY. Sex-biased effects on hippocampal circuit development by perinatal SERT expression in CA3 pyramidal neurons. Development 2022; 149:dev200549. [PMID: 36178075 PMCID: PMC10655925 DOI: 10.1242/dev.200549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Neurodevelopmental disorders ranging from autism to intellectual disability display sex-biased prevalence and phenotypical presentations. Despite increasing knowledge about temporospatial cortical map development and genetic variants linked to neurodevelopmental disorders, when and how sex-biased neural circuit derailment may arise in diseased brain remain unknown. Here, we identify in mice that serotonin uptake transporter (SERT) in non-serotonergic neurons - hippocampal and prefrontal pyramidal neurons - confers sex-biased effects specifically during neural circuit development. A set of gradient-patterned CA3 pyramidal neurons transiently express SERT to clear extracellular serotonin, coinciding with hippocampal synaptic circuit establishment. Ablating pyramidal neuron SERT (SERTPyramidΔ) alters dendritic spine developmental trajectory in the hippocampus, and precipitates sex-biased impairments in long-term activity-dependent hippocampal synaptic plasticity and cognitive behaviors. Transcriptomic analyses identify sex-biased alterations in gene sets associated with autism, dendritic spine structure, synaptic function and male-specific enrichment of dysregulated genes in glial cells in early postnatal SERTPyramidΔ hippocampus. Our data suggest that SERT function in these pyramidal neurons underscores a temporal- and brain region-specific regulation of normal sex-dimorphic circuit development and a source for sex-biased vulnerability to cognitive and behavioral impairments. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Jennifer C. Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Ji Y. Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Dumrongprechachan V, Salisbury RB, Butler L, MacDonald ML, Kozorovitskiy Y. Dynamic proteomic and phosphoproteomic atlas of corticostriatal axons in neurodevelopment. eLife 2022; 11:e78847. [PMID: 36239373 PMCID: PMC9629834 DOI: 10.7554/elife.78847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian axonal development begins in embryonic stages and continues postnatally. After birth, axonal proteomic landscape changes rapidly, coordinated by transcription, protein turnover, and post-translational modifications. Comprehensive profiling of axonal proteomes across neurodevelopment is limited, with most studies lacking cell-type and neural circuit specificity, resulting in substantial information loss. We create a Cre-dependent APEX2 reporter mouse line and map cell-type-specific proteome of corticostriatal projections across postnatal development. We synthesize analysis frameworks to define temporal patterns of axonal proteome and phosphoproteome, identifying co-regulated proteins and phosphorylations associated with genetic risk for human brain disorders. We discover proline-directed kinases as major developmental regulators. APEX2 transgenic reporter proximity labeling offers flexible strategies for subcellular proteomics with cell type specificity in early neurodevelopment, a critical period for neuropsychiatric disease.
Collapse
Affiliation(s)
- Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
| | - Ryan B Salisbury
- Department of Psychiatry, University of PittsburghPittsburghUnited States
| | - Lindsey Butler
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
32
|
Yoo T, Yoo YE, Kang H, Kim E. Age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice. Front Mol Neurosci 2022; 15:1017512. [PMID: 36311023 PMCID: PMC9597470 DOI: 10.3389/fnmol.2022.1017512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Shank3 is an abundant excitatory postsynaptic scaffolding protein implicated in various neurodevelopmental disorders, including autism spectrum disorder (ASD), Phelan-McDermid syndrome, intellectual disability, and schizophrenia. Shank3-mutant mice show various molecular, synaptic, and behavioral deficits, but little is known about how transcriptomic phenotypes vary across different ages, brain regions, and gene dosages. Here, we report transcriptomic patterns in the forebrains of juvenile and adult homozygous Shank3-mutant mice that lack exons 14-16 and also the prefrontal, hippocampal, and striatal transcriptomes in adult heterozygous and homozygous Shank3-mutant mice. The juvenile and adult mutant transcriptomes show patterns opposite from and similar to those observed in ASD (termed reverse-ASD and ASD-like patterns), respectively. The juvenile transcriptomic changes accompany synaptic upregulations and ribosomal and mitochondrial downregulations, whereas the adult transcriptome show opposite changes. The prefrontal, hippocampal, and striatal transcriptomes show differential changes in ASD-related gene expressions and biological functions associated with synapse, ribosome, mitochondria, and spliceosome. These patterns also differ across heterozygous and homozygous Shank3-mutant mice. These results suggest age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
33
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Kim S, Oh H, Choi SH, Yoo YE, Noh YW, Cho Y, Im GH, Lee C, Oh Y, Yang E, Kim G, Chung WS, Kim H, Kang H, Bae Y, Kim SG, Kim E. Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice. Cell Rep 2022; 40:111398. [PMID: 36130507 DOI: 10.1016/j.celrep.2022.111398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/28/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022] Open
Abstract
Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.
Collapse
Affiliation(s)
- Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Young Woo Noh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Yusang Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Gyuri Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea
| | - Yongchul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
35
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
36
|
Lim HK, Yoon JH, Song M. Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Front Mol Neurosci 2022; 15:922840. [PMID: 35726297 PMCID: PMC9206533 DOI: 10.3389/fnmol.2022.922840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian brain comprises structurally and functionally distinct regions. Each of these regions has characteristic molecular mechanisms that mediate higher-order tasks, such as memory, learning, emotion, impulse, and motor control. Many genes are involved in neuronal signaling and contribute to normal brain development. Dysfunction of essential components of neural signals leads to various types of brain disorders. Autism spectrum disorder is a neurodevelopmental disorder characterized by social deficits, communication challenges, and compulsive repetitive behaviors. Long-term genetic studies have uncovered key genes associated with autism spectrum disorder, such as SH3 and multiple ankyrin repeat domains 3, methyl-CpG binding protein 2, neurexin 1, and chromodomain helicase DNA binding protein 8. In addition, disease-associated networks have been identified using animal models, and the understanding of the impact of these genes on disease susceptibility and compensation is deepening. In this review, we examine rescue strategies using key models of autism spectrum disorder.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
37
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
38
|
Gao L, Zhao J, Ardiel EL, Hall Q, Nurrish S, Kaplan JM. Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. eLife 2022; 11:75140. [PMID: 35266450 PMCID: PMC8937234 DOI: 10.7554/elife.75140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here we show that the C. elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1's effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote microdomain coupling of BK with CaV1.
Collapse
Affiliation(s)
- Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Jian Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
39
|
Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 2022; 119:2112852119. [PMID: 35165191 PMCID: PMC8872729 DOI: 10.1073/pnas.2112852119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
FOXP1 haploinsufficiency underlies cognitive and motor impairments in individuals with FOXP1 syndrome. Here, we show that mice lacking one Foxp1 copy exhibit similar behavioral deficits, which may be caused by striatal dysfunction. Indeed, Foxp1+/− striatal medium spiny neurons display reduced neurite branching, and we show altered mitochondrial biogenesis and dynamics; increased mitophagy; reduced mitochondrial membrane potential, structure, and motility; and elevated oxygen species in the striatum of these animals. As FOXP1 is highly conserved, our data strongly suggest that mitochondrial dysfunction and excessive oxidative stress contribute to the motor and cognitive impairments seen in individuals with FOXP1 syndrome. Thus, mitochondrial homeostasis is critical for normal development and can explain deficits in neurodevelopmental disorders. FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/− mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/− mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/− mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.
Collapse
|
40
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Krüttner S, Falasconi A, Valbuena S, Galimberti I, Bouwmeester T, Arber S, Caroni P. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron 2022; 110:1468-1482.e5. [DOI: 10.1016/j.neuron.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
|
42
|
Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2022; 110:195-208. [PMID: 34847355 PMCID: PMC8776599 DOI: 10.1016/j.neuron.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023]
Abstract
Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
43
|
Vyas Y, Cheyne JE, Lee K, Jung Y, Cheung PY, Montgomery JM. Shankopathies in the Developing Brain in Autism Spectrum Disorders. Front Neurosci 2022; 15:775431. [PMID: 35002604 PMCID: PMC8727517 DOI: 10.3389/fnins.2021.775431] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein–protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in SHANKs reflect their importance to synapse development and plasticity. This is evident in autism spectrum disorder (ASD), a neurodevelopmental disorder resulting in behavioural changes including repetitive behaviours, lack of sociability, sensory issues, learning, and language impairments. Human genetic studies have revealed ASD mutations commonly occur in SHANKs. Rodent models expressing these mutations display ASD behavioural impairments, and a subset of these deficits are rescued by reintroduction of Shank in adult animals, suggesting that lack of SHANK during key developmental periods can lead to permanent changes in the brain’s wiring. Here we explore the differences in synaptic function and plasticity from development onward in rodent Shank ASD models. To date the most explored brain regions, relate to the behavioural changes observed, e.g., the striatum, hippocampus, sensory, and prefrontal cortex. In addition, less-studied regions including the hypothalamus, cerebellum, and peripheral nervous system are also affected. Synaptic phenotypes include weakened but also strengthened synaptic function, with NMDA receptors commonly affected, as well as changes in the balance of excitation and inhibition especially in cortical brain circuits. The effects of shankopathies in activity-dependent brain wiring is an important target for therapeutic intervention. We therefore highlight areas of research consensus and identify remaining questions and challenges.
Collapse
Affiliation(s)
- Yukti Vyas
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pang Ying Cheung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
45
|
Zourray C, Kurian MA, Barral S, Lignani G. Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Front Mol Neurosci 2022; 15:839366. [PMID: 35250479 PMCID: PMC8888527 DOI: 10.3389/fnmol.2022.839366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Human cortical development is an intricate process resulting in the generation of many interacting cell types and long-range connections to and from other brain regions. Human stem cell-derived cortical organoids are now becoming widely used to model human cortical development both in physiological and pathological conditions, as they offer the advantage of recapitulating human-specific aspects of corticogenesis that were previously inaccessible. Understanding the electrophysiological properties and functional maturation of neurons derived from human cortical organoids is key to ensure their physiological and pathological relevance. Here we review existing data on the electrophysiological properties of neurons in human cortical organoids, as well as recent advances in the complexity of cortical organoid modeling that have led to improvements in functional maturation at single neuron and neuronal network levels. Eventually, a more comprehensive and standardized electrophysiological characterization of these models will allow to better understand human neurophysiology, model diseases and test novel treatments.
Collapse
Affiliation(s)
- Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Gabriele Lignani,
| |
Collapse
|
46
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
47
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
48
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
49
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
50
|
Benthall KN, Cording KR, Agopyan-Miu AHCW, Wong CD, Chen EY, Bateup HS. Loss of Tsc1 from striatal direct pathway neurons impairs endocannabinoid-LTD and enhances motor routine learning. Cell Rep 2021; 36:109511. [PMID: 34380034 PMCID: PMC8404511 DOI: 10.1016/j.celrep.2021.109511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder that often presents with psychiatric conditions, including autism spectrum disorder (ASD). ASD is characterized by restricted, repetitive, and inflexible behaviors, which may result from abnormal activity in striatal circuits that mediate motor learning and action selection. To test whether altered striatal activity contributes to aberrant motor behaviors in the context of TSC, we conditionally deleted Tsc1 from direct or indirect pathway striatal projection neurons (dSPNs or iSPNs, respectively). We find that dSPN-specific loss of Tsc1 impairs endocannabinoid-mediated long-term depression (eCB-LTD) at cortico-dSPN synapses and strongly enhances corticostriatal synaptic drive, which is not observed in iSPNs. dSPN-Tsc1 KO, but not iSPN-Tsc1 KO, mice show enhanced motor learning, a phenotype observed in several mouse models of ASD. These findings demonstrate that dSPNs are particularly sensitive to Tsc1 loss and suggest that enhanced corticostriatal activation may contribute to altered motor behaviors in TSC.
Collapse
Affiliation(s)
- Katelyn N Benthall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine R Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Corinna D Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Y Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|