1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Daume J, Kamiński J, Salimpour Y, Gómez Palacio Schjetnan A, Anderson WS, Valiante TA, Mamelak AN, Rutishauser U. Persistent activity during working memory maintenance predicts long-term memory formation in the human hippocampus. Neuron 2024:S0896-6273(24)00661-5. [PMID: 39406238 DOI: 10.1016/j.neuron.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Working memory (WM) and long-term memory (LTM) are often viewed as separate cognitive systems. Little is known about how these systems interact when forming memories. We recorded single neurons in the human medial temporal lobe while patients maintained novel items in WM and completed a subsequent recognition memory test for the same items. In the hippocampus, but not in the amygdala, the level of WM content-selective persistent activity during WM maintenance was predictive of whether the item was later recognized with high confidence or forgotten. By contrast, visually evoked activity in the same cells was not predictive of LTM formation. During LTM retrieval, memory-selective neurons responded more strongly to familiar stimuli for which persistent activity was high while they were maintained in WM. Our study suggests that hippocampal persistent activity of the same cells supports both WM maintenance and LTM encoding, thereby revealing a common single-neuron component of these two memory systems.
Collapse
Affiliation(s)
- Jonathan Daume
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jan Kamiński
- Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Taufik A Valiante
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Electrical and Computer Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
3
|
Zheng J, Yebra M, Schjetnan AGP, Patel K, Katz CN, Kyzar M, Mosher CP, Kalia SK, Chung JM, Reed CM, Valiante TA, Mamelak AN, Kreiman G, Rutishauser U. Theta phase precession supports memory formation and retrieval of naturalistic experience in humans. Nat Hum Behav 2024:10.1038/s41562-024-01983-9. [PMID: 39363119 DOI: 10.1038/s41562-024-01983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Associating different aspects of experience with discrete events is critical for human memory. A potential mechanism for linking memory components is phase precession, during which neurons fire progressively earlier in time relative to theta oscillations. However, no direct link between phase precession and memory has been established. Here we recorded single-neuron activity and local field potentials in the human medial temporal lobe while participants (n = 22) encoded and retrieved memories of movie clips. Bouts of theta and phase precession occurred following cognitive boundaries during movie watching and following stimulus onsets during memory retrieval. Phase precession was dynamic, with different neurons exhibiting precession in different task periods. Phase precession strength provided information about memory encoding and retrieval success that was complementary with firing rates. These data provide direct neural evidence for a functional role of phase precession in human episodic memory.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurological Surgery, University of California, Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Yebra
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea G P Schjetnan
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kramay Patel
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chaim N Katz
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael Kyzar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suneil K Kalia
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Li J, Cao D, Li W, Sarnthein J, Jiang T. Re-evaluating human MTL in working memory: insights from intracranial recordings. Trends Cogn Sci 2024:S1364-6613(24)00195-5. [PMID: 39174398 DOI: 10.1016/j.tics.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- School of Psychology, Capital Normal University, Beijing, 100048, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Zurich Neuroscience Center, ETH Zurich, 8057 Zurich, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
6
|
Courellis HS, Minxha J, Cardenas AR, Kimmel DL, Reed CM, Valiante TA, Salzman CD, Mamelak AN, Fusi S, Rutishauser U. Abstract representations emerge in human hippocampal neurons during inference. Nature 2024; 632:841-849. [PMID: 39143207 PMCID: PMC11338822 DOI: 10.1038/s41586-024-07799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization1. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour2,3. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.
Collapse
Affiliation(s)
- Hristos S Courellis
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Juri Minxha
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Araceli R Cardenas
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Daniel L Kimmel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - C Daniel Salzman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefano Fusi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Courellis HS, Valiante TA, Mamelak AN, Adolphs R, Rutishauser U. Neural dynamics underlying minute-timescale persistent behavior in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603717. [PMID: 39071326 PMCID: PMC11275932 DOI: 10.1101/2024.07.16.603717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The ability to pursue long-term goals relies on a representations of task context that can both be maintained over long periods of time and switched flexibly when goals change. Little is known about the neural substrate for such minute-scale maintenance of task sets. Utilizing recordings in neurosurgical patients, we examined how groups of neurons in the human medial frontal cortex and hippocampus represent task contexts. When cued explicitly, task context was encoded in both brain areas and changed rapidly at task boundaries. Hippocampus exhibited a temporally dynamic code with fast decorrelation over time, preventing cross-temporal generalization. Medial frontal cortex exhibited a static code that decorrelated slowly, allowing generalization across minutes of time. When task context needed to be inferred as a latent variable, hippocampus encoded task context with a static code. These findings reveal two possible regimes for encoding minute-scale task-context representations that were engaged differently based on task demands.
Collapse
|
8
|
Daume J, Kamiński J, Salimpour Y, Anderson WS, Valiante TA, Mamelak AN, Rutishauser U. Persistent activity during working memory maintenance predicts long-term memory formation in the human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603630. [PMID: 39071325 PMCID: PMC11275810 DOI: 10.1101/2024.07.15.603630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Working Memory (WM) and Long-Term Memory (LTM) are often viewed as separate cognitive systems. Little is known about how these systems interact when forming memories. We recorded single neurons in the human medial temporal lobe while patients maintained novel items in WM and a subsequent recognition memory test for the same items. In the hippocampus but not the amygdala, the level of WM content-selective persist activity during WM maintenance was predictive of whether the item was later recognized with high confidence or forgotten. In contrast, visually evoked activity in the same cells was not predictive of LTM formation. During LTM retrieval, memory-selective neurons responded more strongly to familiar stimuli for which persistent activity was high while they were maintained in WM. Our study suggests that hippocampal persistent activity of the same cell supports both WM maintenance and LTM encoding, thereby revealing a common single-neuron component of these two memory systems.
Collapse
Affiliation(s)
- Jonathan Daume
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jan Kamiński
- Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering | Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
9
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
10
|
Rogers B. Evaluating frontoparietal network topography for diagnostic markers of Alzheimer's disease. Sci Rep 2024; 14:14135. [PMID: 38898075 PMCID: PMC11187222 DOI: 10.1038/s41598-024-64699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.
Collapse
Affiliation(s)
- Bayard Rogers
- Department of Psychology, University of Glasgow, School of Psychology and Neuroscience, Glasgow, Scotland, UK.
| |
Collapse
|
11
|
Xiao X, Li J, Cao D, Zhang J, Jiang T. Contributions of repeated learning to memory in humans: insights from single-neuron recordings in the hippocampus and amygdala. Cereb Cortex 2024; 34:bhae244. [PMID: 38858840 DOI: 10.1093/cercor/bhae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
Despite the well-established phenomenon of improved memory performance through repeated learning, studies investigating the associated neural mechanisms have yielded complex and sometimes contradictory findings, and direct evidence from human neuronal recordings has been lacking. This study employs single-neuron recordings with exceptional spatial-temporal resolution, combined with representational similarity analysis, to explore the neural dynamics within the hippocampus and amygdala during repeated learning. Our results demonstrate that in the hippocampus, repetition enhances both representational specificity and fidelity, with these features predicting learning times. Conversely, the amygdala exhibits heightened representational specificity and fidelity during initial learning but does not show improvement with repetition, suggesting functional specialization of the hippocampus and amygdala during different stages of the learning repetition. Specifically, the hippocampus appears to contribute to sustained engagement necessary for benefiting from repeated learning, while the amygdala may play a role in the representation of novel items. These findings contribute to a comprehensive understanding of the intricate interplay between these brain regions in memory processes. Significance statement For over a century, understanding how repetition contributes to memory enhancement has captivated researchers, yet direct neuronal evidence has been lacking, with a primary focus on the hippocampus and a neglect of the neighboring amygdala. Employing advanced single-neuron recordings and analytical techniques, this study unveils a nuanced functional specialization within the amygdala-hippocampal circuit during various learning repetition. The results highlight the hippocampus's role in sustaining engagement for improved memory with repetition, contrasting with the amygdala's superior ability in representing novel items. This exploration not only deepens our comprehension of memory enhancement intricacies but also sheds light on potential interventions to optimize learning and memory processes.
Collapse
Affiliation(s)
- Xinyu Xiao
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Dan Cao
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Jiang
- Tianzi Jiang Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
12
|
Bays PM, Schneegans S, Ma WJ, Brady TF. Representation and computation in visual working memory. Nat Hum Behav 2024; 8:1016-1034. [PMID: 38849647 DOI: 10.1038/s41562-024-01871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/22/2024] [Indexed: 06/09/2024]
Abstract
The ability to sustain internal representations of the sensory environment beyond immediate perception is a fundamental requirement of cognitive processing. In recent years, debates regarding the capacity and fidelity of the working memory (WM) system have advanced our understanding of the nature of these representations. In particular, there is growing recognition that WM representations are not merely imperfect copies of a perceived object or event. New experimental tools have revealed that observers possess richer information about the uncertainty in their memories and take advantage of environmental regularities to use limited memory resources optimally. Meanwhile, computational models of visuospatial WM formulated at different levels of implementation have converged on common principles relating capacity to variability and uncertainty. Here we review recent research on human WM from a computational perspective, including the neural mechanisms that support it.
Collapse
Affiliation(s)
- Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Wei Ji Ma
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Timothy F Brady
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Williams Z. Coupled neural activity controls working memory in humans. Nature 2024; 629:291-292. [PMID: 38632417 DOI: 10.1038/d41586-024-00963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
14
|
Daume J, Kamiński J, Schjetnan AGP, Salimpour Y, Khan U, Kyzar M, Reed CM, Anderson WS, Valiante TA, Mamelak AN, Rutishauser U. Control of working memory by phase-amplitude coupling of human hippocampal neurons. Nature 2024; 629:393-401. [PMID: 38632400 PMCID: PMC11078732 DOI: 10.1038/s41586-024-07309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.
Collapse
Affiliation(s)
- Jonathan Daume
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jan Kamiński
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrea G P Schjetnan
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Umais Khan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Kyzar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Tomasello R, Carriere M, Pulvermüller F. The impact of early and late blindness on language and verbal working memory: A brain-constrained neural model. Neuropsychologia 2024; 196:108816. [PMID: 38331022 DOI: 10.1016/j.neuropsychologia.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Neural circuits related to language exhibit a remarkable ability to reorganize and adapt in response to visual deprivation. Particularly, early and late blindness induce distinct neuroplastic changes in the visual cortex, repurposing it for language and semantic processing. Interestingly, these functional changes provoke a unique cognitive advantage - enhanced verbal working memory, particularly in early blindness. Yet, the underlying neuromechanisms and the impact on language and memory-related circuits remain not fully understood. Here, we applied a brain-constrained neural network mimicking the structural and functional features of the frontotemporal-occipital cortices, to model conceptual acquisition in early and late blindness. The results revealed differential expansion of conceptual-related neural circuits into deprived visual areas depending on the timing of visual loss, which is most prominent in early blindness. This neural recruitment is fundamentally governed by the biological principles of neural circuit expansion and the absence of uncorrelated sensory input. Critically, the degree of these changes is constrained by the availability of neural matter previously allocated to visual experiences, as in the case of late blindness. Moreover, we shed light on the implication of visual deprivation on the neural underpinnings of verbal working memory, revealing longer reverberatory neural activity in 'blind models' as compared to the sighted ones. These findings provide a better understanding of the interplay between visual deprivations, neuroplasticity, language processing and verbal working memory.
Collapse
Affiliation(s)
- Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany.
| | - Maxime Carriere
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4 Freie Universität Berlin, 14195, Berlin, Germany; Cluster of Excellence' Matters of Activity. Image Space Material', Humboldt Universität zu Berlin, 10099, Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10117, Berlin, Germany; Einstein Center for Neurosciences, 10117, Berlin, Germany
| |
Collapse
|
16
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
17
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
18
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory local field potential activity during visual working memory. iScience 2024; 27:109130. [PMID: 38380249 PMCID: PMC10877957 DOI: 10.1016/j.isci.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Oscillatory activity in the local field potential (LFP) is thought to be a marker of cognitive processes. To understand how it differentiates tasks and brain areas in humans, we recorded LFPs in 15 adults with intracranial depth electrodes, as they performed visual-spatial and shape working memory tasks. Stimulus appearance produced widespread, broad-band activation, including in occipital, parietal, temporal, insular, and prefrontal cortex, and the amygdala and hippocampus. Occipital cortex was characterized by most elevated power in the high-gamma (100-150 Hz) range during the visual stimulus presentation. The most consistent feature of the delay period was a systematic pattern of modulation in the beta frequency (16-40 Hz), which included a decrease in power of variable timing across areas, and rebound during the delay period. These results reveal the widespread nature of oscillatory activity across a broad brain network and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Leen M. Madiah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S. Elizabeth Gatti
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jenna N. Fulton
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Graham W. Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benoit M. Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K. Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Yoder L. Neural flip-flops I: Short-term memory. PLoS One 2024; 19:e0300534. [PMID: 38489250 PMCID: PMC10942071 DOI: 10.1371/journal.pone.0300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The networks proposed here show how neurons can be connected to form flip-flops, the basic building blocks in sequential logic systems. The novel neural flip-flops (NFFs) are explicit, dynamic, and can generate known phenomena of short-term memory. For each network design, all neurons, connections, and types of synapses are shown explicitly. The neurons' operation depends only on explicitly stated, minimal properties of excitement and inhibition. This operation is dynamic in the sense that the level of neuron activity is the only cellular change, making the NFFs' operation consistent with the speed of most brain functions. Memory tests have shown that certain neurons fire continuously at a high frequency while information is held in short-term memory. These neurons exhibit seven characteristics associated with memory formation, retention, retrieval, termination, and errors. One of the neurons in each of the NFFs produces all of the characteristics. This neuron and a second neighboring neuron together predict eight unknown phenomena. These predictions can be tested by the same methods that led to the discovery of the first seven phenomena. NFFs, together with a decoder from a previous paper, suggest a resolution to the longstanding controversy of whether short-term memory depends on neurons firing persistently or in brief, coordinated bursts. Two novel NFFs are composed of two and four neurons. Their designs follow directly from a standard electronic flip-flop design by moving each negation symbol from one end of the connection to the other. This does not affect the logic of the network, but it changes the logic of each component to a logic function that can be implemented by a single neuron. This transformation is reversible and is apparently new to engineering as well as neuroscience.
Collapse
Affiliation(s)
- Lane Yoder
- Department of Science and Mathematics, University of Hawaii, Honolulu, Hawaii, United States of America
| |
Collapse
|
20
|
Sakon JJ, Halpern DJ, Schonhaut DR, Kahana MJ. Human Hippocampal Ripples Signal Encoding of Episodic Memories. J Neurosci 2024; 44:e0111232023. [PMID: 38233218 PMCID: PMC10883616 DOI: 10.1523/jneurosci.0111-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Direct human brain recordings have confirmed the presence of high-frequency oscillatory events, termed ripples, during awake behavior. While many prior studies have focused on medial temporal lobe (MTL) ripples during memory retrieval, here we investigate ripples during memory encoding. Specifically, we ask whether ripples during encoding predict whether and how memories are subsequently recalled. Detecting ripples from MTL electrodes implanted in 116 neurosurgical participants (n = 61 male) performing a verbal episodic memory task, we find that encoding ripples do not distinguish recalled from not recalled items in any MTL region, even as high-frequency activity during encoding predicts recall in these same regions. Instead, hippocampal ripples increase during encoding of items that subsequently lead to recall of temporally and semantically associated items during retrieval, a phenomenon known as clustering. This subsequent clustering effect arises specifically when hippocampal ripples co-occur during encoding and retrieval, suggesting that ripples mediate both encoding and reinstatement of episodic memories.
Collapse
Affiliation(s)
- John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - David J Halpern
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Yiling Y, Klon-Lipok J, Shapcott K, Lazar A, Singer W. Dynamic fading memory and expectancy effects in the monkey primary visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2314855121. [PMID: 38354261 PMCID: PMC10895277 DOI: 10.1073/pnas.2314855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
In order to investigate the involvement of the primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multi-unit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of WM contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main60438, Germany
| |
Collapse
|
22
|
Li J, Cao D, Yu S, Wang H, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Theta-Alpha Connectivity in the Hippocampal-Entorhinal Circuit Predicts Working Memory Load. J Neurosci 2024; 44:e0398232023. [PMID: 38050110 PMCID: PMC10860618 DOI: 10.1523/jneurosci.0398-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Johannes Sarnthein
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
23
|
Kyzar M, Kamiński J, Brzezicka A, Reed CM, Chung JM, Mamelak AN, Rutishauser U. Dataset of human-single neuron activity during a Sternberg working memory task. Sci Data 2024; 11:89. [PMID: 38238342 PMCID: PMC10796636 DOI: 10.1038/s41597-024-02943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
We present a dataset of 1809 single neurons recorded from the human medial temporal lobe (amygdala and hippocampus) and medial frontal lobe (anterior cingulate cortex, pre-supplementary motor area, ventral medial prefrontal cortex) across 41 sessions from 21 patients that underwent seizure monitoring with depth electrodes. Subjects performed a screening task (907 neurons) to identify images for which highly selective cells were present. Subjects then performed a working memory task (902 neurons), in which they were sequentially presented with 1-3 images for which highly selective cells were present and, following a maintenance period, were asked if the probe was identical to one of the maintained images. This Neurodata Without Borders formatted dataset includes spike times, extracellular spike waveforms, stimuli presented, behavior, electrode locations, and subject demographics. As validation, we replicate previous findings on the selectivity of concept cells and their persistent activity during working memory maintenance. This large dataset of rare human single-neuron recordings and behavior enables the investigation of the neural mechanisms of working memory in humans.
Collapse
Affiliation(s)
- Michael Kyzar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Kamiński
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Brzezicka
- Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
24
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
25
|
Clairis N, Lopez-Persem A. Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research. Brain 2023; 146:4826-4844. [PMID: 37530487 PMCID: PMC10690029 DOI: 10.1093/brain/awad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) is a brain area subject to many theories and debates over its function(s). Even its precise anatomical borders are subject to much controversy. In the past decades, the dmPFC/dACC has been associated with more than 15 different cognitive processes, which sometimes appear quite unrelated (e.g. body perception, cognitive conflict). As a result, understanding what the dmPFC/dACC does has become a real challenge for many neuroscientists. Several theories of this brain area's function(s) have been developed, leading to successive and competitive publications bearing different models, which sometimes contradict each other. During the last two decades, the lively scientific exchanges around the dmPFC/dACC have promoted fruitful research in cognitive neuroscience. In this review, we provide an overview of the anatomy of the dmPFC/dACC, summarize the state of the art of functions that have been associated with this brain area and present the main theories aiming at explaining the dmPFC/dACC function(s). We explore the commonalities and the arguments between the different theories. Finally, we explain what can be learned from these debates for future investigations of the dmPFC/dACC and other brain regions' functions.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics (LGC)- Brain Mind Institute (BMI)- Sciences de la Vie (SV), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alizée Lopez-Persem
- FrontLab, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne University, AP HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
26
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from neurons with and without persistent activity in the primate prefrontal cortex. J Neurophysiol 2023; 130:1392-1402. [PMID: 37910532 PMCID: PMC11068397 DOI: 10.1152/jn.00290.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Averaged across all neurons and stimuli, the firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory; however, this grand average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of stimulus information. These results reveal that prefrontal neurons that generate persistent activity maintain information more reliably during working memory.NEW & NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. Although the two models have been debated on theoretical terms, direct comparison of empirical results has been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
Affiliation(s)
- Lilianna Thrower
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Rye G Jaffe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Jasmine D Sun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
27
|
Courellis HS, Mixha J, Cardenas AR, Kimmel D, Reed CM, Valiante TA, Salzman CD, Mamelak AN, Fusi S, Rutishauser U. Abstract representations emerge in human hippocampal neurons during inference behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566490. [PMID: 37986878 PMCID: PMC10659400 DOI: 10.1101/2023.11.10.566490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization 1 . However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning, and how they relate to behavior 2,3 . Here we characterized the representational geometry of populations of neurons (single-units) recorded in the hippocampus, amygdala, medial frontal cortex, and ventral temporal cortex of neurosurgical patients who are performing an inferential reasoning task. We find that only the neural representations formed in the hippocampus simultaneously encode multiple task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consisted of disentangled directly observable and discovered latent task variables. Interestingly, learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behavior suggests that abstract/disentangled representational geometries are important for complex cognition.
Collapse
|
28
|
Logie RH. Strategies, debates, and adversarial collaboration in working memory: The 51st Bartlett Lecture. Q J Exp Psychol (Hove) 2023; 76:2431-2460. [PMID: 37526243 PMCID: PMC10585951 DOI: 10.1177/17470218231194037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Frederic Bartlett championed the importance of individual strategy differences when remembering details of events. I will describe how long-running theoretical debates in the area of working memory may be resolved by considering differences across participants in the strategies that they use when performing cognitive tasks, and through adversarial collaboration between rival laboratories. In common with the established view within experimental cognitive psychology, I assume that adults have a range of cognitive functions, evolved for everyday life. However, I will present evidence showing that these functions can be engaged selectively for laboratory tasks, and that how they are deployed may differ between and within individuals for the same task. Reliance on aggregate data, while treating inter- and intra-participant variability in data patterns as statistical noise, may lead to misleading conclusions about theoretical principles of cognition, and of working memory in particular. Moreover, different theoretical perspectives may be focused on different levels of explanation and different theoretical goals rather than being mutually incompatible. Yet researchers from contrasting theoretical frameworks pursue science as a competition, rarely do researchers from competing labs work in collaboration, and debates self-perpetuate. These approaches to research can stall debate resolution and generate ever-increasing scientific diversity rather than scientific progress. The article concludes by describing a recent extended adversarial collaboration (the WoMAAC project) focused on theoretical contrasts in working memory, and illustrates how this approach to conducting research may help resolve scientific debate and facilitate scientific advance.
Collapse
|
29
|
Lançon K, Séguéla P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain. Front Pharmacol 2023; 14:1289218. [PMID: 37954846 PMCID: PMC10634228 DOI: 10.3389/fphar.2023.1289218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.
Collapse
Affiliation(s)
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Alan Edwards Centre for Research on Pain, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
30
|
Li HH, Curtis CE. Neural population dynamics of human working memory. Curr Biol 2023; 33:3775-3784.e4. [PMID: 37595590 PMCID: PMC10528783 DOI: 10.1016/j.cub.2023.07.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC.20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps.26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
31
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory LFP activity during visual working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556554. [PMID: 37732263 PMCID: PMC10508766 DOI: 10.1101/2023.09.06.556554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Oscillatory activity is thought to be a marker of cognitive processes, although its role and distribution across the brain during working memory has been a matter of debate. To understand how oscillatory activity differentiates tasks and brain areas in humans, we recorded local field potentials (LFPs) in 12 adults as they performed visual-spatial and shape-matching memory tasks. Tasks were designed to engage working memory processes at a range of delay intervals between stimulus delivery and response initiation. LFPs were recorded using intracranial depth electrodes implanted to localize seizures for management of intractable epilepsy. Task-related LFP power analyses revealed an extensive network of cortical regions that were activated during the presentation of visual stimuli and during their maintenance in working memory, including occipital, parietal, temporal, insular, and prefrontal cortical areas, and subcortical structures including the amygdala and hippocampus. Across most brain areas, the appearance of a stimulus produced broadband power increase, while gamma power was evident during the delay interval of the working memory task. Notable differences between areas included that occipital cortex was characterized by elevated power in the high gamma (100-150 Hz) range during the 500 ms of visual stimulus presentation, which was less pronounced or absent in other areas. A decrease in power centered in beta frequency (16-40 Hz) was also observed after the stimulus presentation, whose magnitude differed across areas. These results reveal the interplay of oscillatory activity across a broad network, and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Leen M Madiah
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Jenna N Fulton
- Department of Neurology, Vanderbilt University Medical Center
| | - Graham W Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Benoit M Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Sarah K Bick
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurology, Vanderbilt University Medical Center
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University
- Neuroscience Program, Vanderbilt University
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| |
Collapse
|
32
|
Zhao Y, Zhong Y, Chen W, Chang S, Cao Q, Wang Y, Yang L. Ocular and neural genes jointly regulate the visuospatial working memory in ADHD children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:14. [PMID: 37658396 PMCID: PMC10472596 DOI: 10.1186/s12993-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China.
| |
Collapse
|
33
|
Mozumder R, Constantinidis C. Single-neuron and population measures of neuronal activity in working memory tasks. J Neurophysiol 2023; 130:694-705. [PMID: 37609703 PMCID: PMC10649843 DOI: 10.1152/jn.00245.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Information represented in working memory is reflected in the firing rate of neurons in the prefrontal cortex and brain areas connected to it. In recent years, there has been an increased realization that population measures capture more accurately neural correlates of cognitive functions. We examined how single neuron firing in the prefrontal and posterior parietal cortex of two male monkeys compared with population measures in spatial working memory tasks. Persistent activity was observed in the dorsolateral prefrontal and posterior parietal cortex and firing rate predicted working memory behavior, particularly in the prefrontal cortex. These findings had equivalents in population measures, including trajectories in state space that became less separated in error trials. We additionally observed rotations of stimulus representations in the neuronal state space for different task conditions, which were not obvious in firing rate measures. These results suggest that population measures provide a richer view of how neuronal activity is associated with behavior, largely confirming that persistent activity is the core phenomenon that maintains visual-spatial information in working memory.NEW & NOTEWORTHY Recordings from large numbers of neurons led to a reevaluation of neural correlates of cognitive functions, which traditionally were defined based on responses of single neurons or averages of firing rates. Analysis of neuronal recordings from the dorsolateral prefrontal and posterior parietal cortex revealed that properties of neuronal firing captured in classical studies of persistent activity can account for population representations, though some population characteristics did not have clear correlates in single neuron activity.
Collapse
Affiliation(s)
- Rana Mozumder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
34
|
Bai T, Zhan L, Zhang N, Lin F, Saur D, Xu C. Learning-prolonged maintenance of stimulus information in CA1 and subiculum during trace fear conditioning. Cell Rep 2023; 42:112853. [PMID: 37481720 DOI: 10.1016/j.celrep.2023.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/12/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Temporal associative learning binds discontiguous conditional stimuli (CSs) and unconditional stimuli (USs), possibly by maintaining CS information in the hippocampus after its offset. Yet, how learning regulates such maintenance of CS information in hippocampal circuits remains largely unclear. Using the auditory trace fear conditioning (TFC) paradigm, we identify a projection from the CA1 to the subiculum critical for TFC. Deep-brain calcium imaging shows that the peak of trace activity in the CA1 and subiculum is extended toward the US and that the CS representation during the trace period is enhanced during learning. Interestingly, such plasticity is consolidated only in the CA1, not the subiculum, after training. Moreover, CA1 neurons, but not subiculum neurons, increasingly become active during CS-and-trace and shock periods, respectively, and correlate with CS-evoked fear retrieval afterward. These results indicate that learning dynamically enhances stimulus information maintenance in the CA1-subiculum circuit during learning while storing CS and US memories primarily in the CA1 area.
Collapse
Affiliation(s)
- Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feikai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dieter Saur
- Department of Internal Medicine 2, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China.
| |
Collapse
|
35
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from persistent and activity-silent neurons in the primate prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550371. [PMID: 37546782 PMCID: PMC10402050 DOI: 10.1101/2023.07.25.550371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have recently challenged this idea. Activity-silent theories posit that stimulus information may be maintained by the activity pattern of neurons that do not produce firing rate significantly elevated about their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Although averaged across all neurons and stimuli, firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory, this grant average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of information about the stimulus identity. These results reveal that prefrontal neurons with generate persistent activity constitute the primary mechanism of working memory maintenance in the cortex. NEW AND NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. While the two models have been debated on theoretical terms, direct comparison of empirical results have been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
|
36
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
37
|
Slotnick SD. No convincing evidence the hippocampus is associated with working memory. Cogn Neurosci 2023. [PMID: 37300307 DOI: 10.1080/17588928.2023.2223919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/03/2023] [Indexed: 06/12/2023]
Abstract
In a previous discussion paper , twenty-six working memory fMRI studies that reported activity in the hippocampus were systematically analyzed. None of these studies provided convincing evidence that the hippocampus was active during the late delay phase, the only period in which working memory can be isolated from long-term memory processes. Based on these results, it was concluded that working memory does not activate the hippocampus. Six commentaries on the discussion paper were received from Courtney (2022), Kessels & Bergmann (2022), Peters and Reithler (2022), Rose and Chao (2022), Stern & Hasselmo (2022), and Wood, Clark, and Nee (2022). Based on these commentaries, the present response paper considered whether there is evidence of sustained hippocampal activity during the working memory delay period based on depth-electrode recording, whether there are activity-silent working memory mechanisms in the hippocampus, and whether there is hippocampal lesion evidence indicating this region is important for working memory. There was no convincing electrophysiological or neuropsychological evidence that the hippocampus is associated with working memory maintenance, and activity-silent mechanisms were arguably speculative. Given that only a small fraction (approximately 5%) of fMRI studies have reported hippocampal activity in working memory tasks and lesion evidence indicates the hippocampus is not necessary for working memory, the burden of proof is on proponents of view that the hippocampus is important for working memory to provide compelling evidence to support their position. To date, in my view, there is no convincing evidence that the hippocampus is associated with working memory.
Collapse
|
38
|
Aquino TG, Cockburn J, Mamelak AN, Rutishauser U, O'Doherty JP. Neurons in human pre-supplementary motor area encode key computations for value-based choice. Nat Hum Behav 2023; 7:970-985. [PMID: 36959327 PMCID: PMC10330469 DOI: 10.1038/s41562-023-01548-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Adaptive behaviour in real-world environments requires that choices integrate several variables, including the novelty of the options under consideration, their expected value and uncertainty in value estimation. Here, to probe how integration over decision variables occurs during decision-making, we recorded neurons from the human pre-supplementary motor area (preSMA), ventromedial prefrontal cortex and dorsal anterior cingulate. Unlike the other areas, preSMA neurons not only represented separate pre-decision variables for each choice option but also encoded an integrated utility signal for each choice option and, subsequently, the decision itself. Post-decision encoding of variables for the chosen option was more widely distributed and especially prominent in the ventromedial prefrontal cortex. Our findings position the human preSMA as central to the implementation of value-based decisions.
Collapse
Affiliation(s)
- Tomas G Aquino
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jeffrey Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John P O'Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
39
|
Li J, Cao D, Yu S, Xiao X, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing. Nat Commun 2023; 14:2921. [PMID: 37217494 PMCID: PMC10203226 DOI: 10.1038/s41467-023-38571-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Both the hippocampus and amygdala are involved in working memory (WM) processing. However, their specific role in WM is still an open question. Here, we simultaneously recorded intracranial EEG from the amygdala and hippocampus of epilepsy patients while performing a WM task, and compared their representation patterns during the encoding and maintenance periods. By combining multivariate representational analysis and connectivity analyses with machine learning methods, our results revealed a functional specialization of the amygdala-hippocampal circuit: The mnemonic representations in the amygdala were highly distinct and decreased from encoding to maintenance. The hippocampal representations, however, were more similar across different items but remained stable in the absence of the stimulus. WM encoding and maintenance were associated with bidirectional information flow between the amygdala and the hippocampus in low-frequency bands (1-40 Hz). Furthermore, the decoding accuracy on WM load was higher by using representational features in the amygdala during encoding and in the hippocampus during maintenance, and by using information flow from the amygdala during encoding and that from the hippocampus during maintenance, respectively. Taken together, our study reveals that WM processing is associated with functional specialization and interaction within the amygdala-hippocampus circuit.
Collapse
Affiliation(s)
- Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinyu Xiao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
- Zurich Neuroscience Center, ETH Zurich, 8057, Zurich, Switzerland.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, 311100, Hangzhou, China.
| |
Collapse
|
40
|
Eisenkolb VM, Held LM, Utzschmid A, Lin XX, Krieg SM, Meyer B, Gempt J, Jacob SN. Human acute microelectrode array recordings with broad cortical access, single-unit resolution, and parallel behavioral monitoring. Cell Rep 2023; 42:112467. [PMID: 37141095 DOI: 10.1016/j.celrep.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
There are vast gaps in our understanding of the organization and operation of the human nervous system at the level of individual neurons and their networks. Here, we report reliable and robust acute multichannel recordings using planar microelectrode arrays (MEAs) implanted intracortically in awake brain surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained high-quality extracellular neuronal activity at the microcircuit, local field potential level and at the cellular, single-unit level. Recording from the parietal association cortex, a region rarely explored in human single-unit studies, we demonstrate applications on these complementary spatial scales and describe traveling waves of oscillatory activity as well as single-neuron and neuronal population responses during numerical cognition, including operations with uniquely human number symbols. Intraoperative MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms of a wide range of human brain functions.
Collapse
Affiliation(s)
- Viktor M Eisenkolb
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lisa M Held
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Utzschmid
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
41
|
Reber TP, Mackay S, Bausch M, Kehl MS, Borger V, Surges R, Mormann F. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat Commun 2023; 14:2496. [PMID: 37120437 PMCID: PMC10148801 DOI: 10.1038/s41467-023-38190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
A central function of the human brain is to adapt to new situations based on past experience. Adaptation is reflected behaviorally by shorter reaction times to repeating or similar stimuli, and neurophysiologically by reduced neural activity in bulk-tissue measurements with fMRI or EEG. Several potential single-neuron mechanisms have been hypothesized to cause this reduction of activity at the macroscopic level. We here explore these mechanisms using an adaptation paradigm with visual stimuli bearing abstract semantic similarity. We recorded intracranial EEG (iEEG) simultaneously with spiking activity of single neurons in the medial temporal lobes of 25 neurosurgical patients. Recording from 4917 single neurons, we demonstrate that reduced event-related potentials in the macroscopic iEEG signal are associated with a sharpening of single-neuron tuning curves in the amygdala, but with an overall reduction of single-neuron activity in the hippocampus, entorhinal cortex, and parahippocampal cortex, consistent with fatiguing in these areas.
Collapse
Affiliation(s)
- Thomas P Reber
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland.
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany.
| | - Sina Mackay
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel Bausch
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel S Kehl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Centre, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
42
|
Daume J, Kaminski J, Schjetnan AGP, Salimpour Y, Khan U, Reed C, Anderson W, Valiante TA, Mamelak AN, Rutishauser U. Control of working memory maintenance by theta-gamma phase amplitude coupling of human hippocampal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535772. [PMID: 37066145 PMCID: PMC10104113 DOI: 10.1101/2023.04.05.535772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Retaining information in working memory (WM) is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference. How cognitive control regulates WM storage, however, remains unknown. We hypothesized that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in WM. In the hippocampus, TG-PAC was indicative of WM load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. These PAC neurons were more strongly coordinated with frontal theta activity when cognitive control demand was high, and they introduced information-enhancing and behaviorally relevant noise correlations with persistently active neurons in the hippocampus. We show that TG-PAC integrates cognitive control and WM storage to improve the fidelity of WM representations and facilitate behavior.
Collapse
Affiliation(s)
- Jonathan Daume
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Kaminski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrea G P Schjetnan
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Yousef Salimpour
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Umais Khan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
43
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
44
|
Xie W, Chapeton JI, Bhasin S, Zawora C, Wittig JH, Inati SK, Zhang W, Zaghloul KA. The medial temporal lobe supports the quality of visual short-term memory representation. Nat Hum Behav 2023; 7:627-641. [PMID: 36864132 PMCID: PMC11393809 DOI: 10.1038/s41562-023-01529-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
The quality of short-term memory (STM) underlies our ability to recall the exact details of a recent event, yet how the human brain enables this core cognitive function remains poorly understood. Here we use multiple experimental approaches to test the hypothesis that the quality of STM, such as its precision or fidelity, relies on the medial temporal lobe (MTL), a region commonly associated with the ability to distinguish similar information remembered in long-term memory. First, with intracranial recordings, we find that delay-period MTL activity retains item-specific STM content that is predictive of subsequent recall precision. Second, STM recall precision is associated with an increase in the strength of intrinsic MTL-to-neocortical functional connections during a brief retention interval. Finally, perturbing the MTL through electrical stimulation or surgical removal can selectively reduce STM precision. Collectively, these findings provide converging evidence that the MTL is critically involved in the quality of STM representation.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Julio I Chapeton
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Srijan Bhasin
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Zawora
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, CA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Derner M, Reber TP, Faber J, Surges R, Mormann F, Fell J. A key role of the hippocampal P3 in the attentional blink. Neuroimage 2023; 271:120028. [PMID: 36925086 DOI: 10.1016/j.neuroimage.2023.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The attentional blink (AB) refers to an impaired identification of target stimuli (T2), which are presented shortly after a prior target (T1) within a rapid serial visual presentation (RSVP) stream. It has been suggested that the AB is related to a failed transfer of T2 into working memory and that hippocampus (HC) and entorhinal cortex (EC) are regions crucial for this transfer. Since the event-related P3 component has been linked to inhibitory processes, we hypothesized that the hippocampal P3 elicited by T1 may impact on T2 processing within HC and EC. To test this hypothesis, we reanalyzed microwire data from 21 patients, who performed an RSVP task, during intracranial recordings for epilepsy surgery assessment (Reber et al., 2017). We identified T1-related hippocampal P3 components in the local field potentials (LFPs) and determined the temporal onset of T2 processing in HC/EC based on single-unit response onset activity. In accordance with our hypothesis, T1-related single-trial P3 amplitudes at the onset of T2 processing were clearly larger for unseen compared to seen T2-stimuli. Moreover, increased T1-related single-trial P3 peak latencies were found for T2[unseen] versus T2[seen] trials in case of lags 1 to 3, which was in line with our predictions. In conclusion, our findings support inhibition models of the AB and indicate that the hippocampal P3 elicited by T1 plays a central role in the AB.
Collapse
Affiliation(s)
- Marlene Derner
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany.
| | - Thomas P Reber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany; Faculty of Psychology, UniDistance Suisse, Schinerstrasse 18, Brig 3900, Switzerland
| | - Jennifer Faber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Juergen Fell
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
47
|
Xie W, Cappiello M, Yassa MA, Ester E, Zaghloul KA, Zhang W. The entorhinal-DG/CA3 pathway in the medial temporal lobe retains visual working memory of a simple surface feature. eLife 2023; 12:83365. [PMID: 36861959 PMCID: PMC10019891 DOI: 10.7554/elife.83365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
Classic models consider working memory (WM) and long-term memory as distinct mental faculties that are supported by different neural mechanisms. Yet, there are significant parallels in the computation that both types of memory require. For instance, the representation of precise item-specific memory requires the separation of overlapping neural representations of similar information. This computation has been referred to as pattern separation, which can be mediated by the entorhinal-DG/CA3 pathway of the medial temporal lobe (MTL) in service of long-term episodic memory. However, although recent evidence has suggested that the MTL is involved in WM, the extent to which the entorhinal-DG/CA3 pathway supports precise item-specific WM has remained elusive. Here, we combine an established orientation WM task with high-resolution fMRI to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual WM of a simple surface feature. Participants were retrospectively cued to retain one of the two studied orientation gratings during a brief delay period and then tried to reproduce the cued orientation as precisely as possible. By modeling the delay-period activity to reconstruct the retained WM content, we found that the anterior-lateral entorhinal cortex (aLEC) and the hippocampal DG/CA3 subfield both contain item-specific WM information that is associated with subsequent recall fidelity. Together, these results highlight the contribution of MTL circuitry to item-specific WM representation.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, National Institute of Neurological Disorders and StrokeBethesdaUnited States
- Department of Psychology, University of California, RiversideRiversideUnited States
- Department of Psychology, University of MarylandCollege ParkUnited States
| | - Marcus Cappiello
- Department of Psychology, University of California, RiversideRiversideUnited States
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, IrvineIrvineUnited States
| | - Edward Ester
- Department of Psychology, University of NevadaRenoUnited States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and StrokeBethesdaUnited States
| | - Weiwei Zhang
- Department of Psychology, University of California, RiversideRiversideUnited States
| |
Collapse
|
48
|
Witztum J, Singh A, Zhang R, Johnson M, Liston C. An automated platform for Assessing Working Memory and prefrontal circuit function. Neurobiol Stress 2023; 24:100518. [PMID: 36970451 PMCID: PMC10033752 DOI: 10.1016/j.ynstr.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Working memory is a process for actively maintaining and updating task-relevant information, despite interference from competing inputs, and is supported in part by sustained activity in prefrontal cortical pyramidal neurons and coordinated interactions with inhibitory interneurons, which may serve to regulate interference. Chronic stress has potent effects on working memory performance, possibly by interfering with these interactions or by disrupting long-range inputs from key upstream brain regions. Still, the mechanisms by which chronic stress disrupts working memory are not well understood, due in part to a need for scalable, easy-to-implement behavioral assays that are compatible with two-photon calcium imaging and other tools for recording from large populations of neurons. Here, we describe the development and validation of a platform that was designed specifically for automated, high-throughput assessments of working memory and simultaneous two-photon imaging in chronic stress studies. This platform is relatively inexpensive and easy to build; fully automated and scalable such that one investigator can test relatively large cohorts of animals concurrently; fully compatible with two-photon imaging, yet also designed to mitigate head-fixation stress; and can be easily adapted for other behavioral paradigms. Our validation data confirm that mice could be trained to perform a delayed response working memory task with relatively high-fidelity over the course of ∼15 days. Two-photon imaging data validate the feasibility of recording from large populations of cells during working memory tasks performance and characterizing their functional properties. Activity patterns in >70% of medial prefrontal cortical neurons were modulated by at least one task feature, and a majority of cells were engaged by multiple task features. We conclude with a brief literature review of the circuit mechanisms supporting working memory and their disruption in chronic stress states-highlighting directions for future research enabled by this platform.
Collapse
|
49
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
50
|
Peters JC, Reithler J. Hippocampal activity in working memory tasks: sparse, yet relevant. Cogn Neurosci 2022; 13:212-214. [DOI: 10.1080/17588928.2022.2131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Judith C. Peters
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Netherlands institute for neuroscience
| | - Joel Reithler
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Netherlands institute for neuroscience
| |
Collapse
|