1
|
Yang Y, Wang C, Shi J, Zou Z. Joyful growth vs. compulsive hedonism: A meta-analysis of brain activation on romantic love and addictive disorders. Neuropsychologia 2024; 204:109003. [PMID: 39293637 DOI: 10.1016/j.neuropsychologia.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to the similarities in behavioral characteristics between romantic love and addictive disorders, the concept of being "addicted to someone" transcends mere literary metaphor, expanding perspectives on the study of romantic love and inspiring interventions for addiction. However, there has been a lack of studies systematically exploring the similarities and differences between romantic love and addiction at the neural level. In this study, we conducted an extensive literature search, incorporating 21 studies on romantic love and 28 on addictive disorders, focusing on fMRI research utilizing the cue reactivity paradigm. Using Activation Likelihood Estimation, we examined the similarities and differences in the neural mechanisms underlying love and addiction. The results showed that the anterior cingulate cortex (ACC) exhibited both shared and distinct activation clusters between romantic love and addictive disorders. Furthermore, ventromedial prefrontal cortex (VMPFC) was more frequently activated in romantic love than in addictive disorders, while greater activation within the posterior cingulate cortex (PCC) was found in addictive disorder compared with romantic love. We discussed that the activation of ACC and VMPFC may symbolize self-expansion, a process that characterizes the development of romantic love, contributing to a more enriched self. Our study suggests that while romantic love and addictive disorders share a common neural foundation, the discernible differences in their neural representations distinguish them as joyful growth versus compulsive hedonism.
Collapse
Affiliation(s)
- Yuhang Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China
| | - Chuan Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiling Zou
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China.
| |
Collapse
|
2
|
De Ridder D, Vanneste S. Thalamocortical dysrhythmia and reward deficiency syndrome as uncertainty disorders. Neuroscience 2024; 563:20-32. [PMID: 39505139 DOI: 10.1016/j.neuroscience.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
A common anatomical core has been described for psychiatric disorders, consisting of the dorsal anterior cingulate cortex (dACC) and anterior insula, processing uncertainty. A common neurophysiological core has been described for other brain related disorders, called thalamocortical dysrhythmia (TCD), consisting of persistent cross-frequency coupling between low and high frequencies. And a common genetic core has been described for yet another set of hypodopaminergic pathologies called reward deficiency syndromes (RDS). Considering that some RDS have the neurophysiological features of TCD, it can be hypothesized that TCD and RDS have a common anatomical core, yet a differentiating associated neurophysiological mechanism. The EEGs of 683 subjects are analysed in source space for both differences and conjunction between TCD and healthy controls, RDS and healthy controls, and between TCD and RDS. A balance between current densities of the pregenual anterior cingulate cortex (pgACC) extending into the ventromedial prefrontal cortex (vmPFC) and dACC is calculated as well. TCD and RDS share a common anatomical and neurophysiological core, consisting of beta activity in the dACC and theta activity in dACC extending into precuneus and dorsolateral prefrontal cortex. TCD and RDS differ in pgACC/vmPFC activity and demonstrate an opposite balance between pgACC/vmPFC and dACC. Based on the Bayesian brain model TCD and RDS can be defined as uncertainty disorders in which the pgACC/vmPFC and dACC have an opposite balance, possibly explained by an inverted-U curve profile of both pgACC/vmPFC and dACC.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
4
|
Cheng Y, Magnard R, Langdon AJ, Lee D, Janak PH. Chronic Ethanol Exposure Produces Sex-Dependent Impairments in Value Computations in the Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584332. [PMID: 38585868 PMCID: PMC10996555 DOI: 10.1101/2024.03.10.584332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Value-based decision-making relies on the striatum, where neural plasticity can be altered by chronic ethanol (EtOH) exposure, but the effects of such plasticity on striatal neural dynamics during decision-making remain unclear. This study investigated the long-term impacts of EtOH on reward-driven decision-making and striatal neurocomputations in male and female rats using a dynamic probabilistic reversal learning task. Following a prolonged withdrawal period, EtOH-exposed male rats exhibited deficits in adaptability and exploratory behavior, with a preference for value updating based on rewards rather than omissions. These behavioral changes were linked to altered neural encoding in the dorsomedial striatum (DMS), where EtOH increased outcome-related signals and decreased choice-related signals. In contrast, female rats showed minimal behavioral changes with distinct EtOH-evoked alterations of neural signals, revealing significant sex differences in the impact of chronic EtOH. Our findings underscore the profound impact of chronic EtOH exposure on adaptive decision-making, revealing enduring changes in neurocomputational processes in the striatum underlying cognitive deficits that differ by sex.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Robin Magnard
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Angela J. Langdon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daeyeol Lee
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Zanvyl Krieger Mind/Brain Institute, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Patricia H. Janak
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Gul A, Schafer AL, Arbel Y. Differential Neural Mechanisms of Feedback Processing in Children with Developmental Language Disorder: An Examination of Midfrontal Theta Connectivity. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1221. [PMID: 39457186 PMCID: PMC11505951 DOI: 10.3390/children11101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES Previous research indicates that children with Developmental Language Disorder (DLD) face challenges learning from feedback, resulting in suboptimal performance and learning outcomes. Feedback processing, a key developing executive function, involves cognitive processes critical for goal-directed behavior. This study examined the neural mechanisms underlying feedback processing in school-age children with DLD compared to typically developing (TD) peers, focusing on midfrontal theta band (4-8 Hz) oscillations as an index of cognitive control and error monitoring. METHODS We measured midfrontal theta inter-trial coherence (ITC) and inter-site coherence (ISC) at midfrontal (FCz), lateral prefrontal (F3/F4), and lateral central (C3/C4) sites in children with and without DLD (n = 33, age 8-13 years) in response to feedback provision within a Wisconsin Card Sorting Test (WCST) in two time windows (200-400 ms, which is associated with the Feedback-Related Negativity, or FRN, and 400-600 ms, which is associated with the P3a). RESULTS Children with and without DLD showed elevated midfrontal theta oscillations in response to negative feedback that was followed by successful behavioral adjustments in the FRN time window. Activation in the P3a time window was only found in the TD group. Group differences were also noted in the inter-site coherence (ISC) associated with the effective processing of negative feedback. While in the TD group, effective processing of negative feedback was linked to high connectivity between midfrontal and right sensorimotor regions, in the DLD group, effective processing of negative feedback was associated with high connectivity between midfrontal and left sensorimotor sites. CONCLUSIONS Differential ISC patterns in children with DLD may indicate that they employ alternative or compensatory neural strategies, possibly due to atypical right sensorimotor engagement.
Collapse
Affiliation(s)
- Asiya Gul
- Department of Communication Science and Disorders, MGH Institute of Health Professions, Boston, MA 02129, USA; (A.L.S.); (Y.A.)
| | | | | |
Collapse
|
6
|
Geramita MA, Ahmari SE, Yttri EA. Striatal indirect pathway mediates hesitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613332. [PMID: 39345379 PMCID: PMC11429858 DOI: 10.1101/2024.09.16.613332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Determining the best possible action in an uncertain situation is often challenging, and organisms frequently need extra time to deliberate. This pause in behavior in response to uncertainty - also known as hesitation - commonly occurs in many aspects of daily life, yet its neural circuits are poorly understood. Here we present the first experimental paradigm that reliably evokes hesitation in mice. Using cell-type specific electrophysiology and optogenetics, we show that indirect, but not direct, pathway spiny projection neurons specifically in the dorsomedial striatum mediate hesitation. These data indicate that the basal ganglia circuits controlling the pausing involved in cognitive processes like hesitation are distinct from those that control other types of behavioral inhibition, such as cue-induced stopping.
Collapse
|
7
|
Hur KH, Meisler SL, Yassin W, Frederick BB, Kohut SJ. Prefrontal-Limbic Circuitry Is Associated With Reward Sensitivity in Nonhuman Primates. Biol Psychiatry 2024; 96:473-485. [PMID: 38432521 PMCID: PMC11338745 DOI: 10.1016/j.biopsych.2024.02.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Abnormal reward sensitivity is a risk factor for psychiatric disorders, including eating disorders such as overeating and binge-eating disorder, but the brain structural mechanisms that underlie it are not completely understood. Here, we sought to investigate the relationship between multimodal whole-brain structural features and reward sensitivity in nonhuman primates. METHODS Reward sensitivity was evaluated through behavioral economic analysis in which monkeys (adult rhesus macaques; 7 female, 5 male) responded for sweetened condensed milk (10%, 30%, 56%), Gatorade, or water using an operant procedure in which the response requirement increased incrementally across sessions (i.e., fixed ratio 1, 3, 10). Animals were divided into high (n = 6) or low (n = 6) reward sensitivity groups based on essential value for 30% milk. Multimodal magnetic resonance imaging was used to measure gray matter volume and white matter microstructure. Brain structural features were compared between groups, and their correlations with reward sensitivity for various stimuli was investigated. RESULTS Animals in the high sensitivity group had greater dorsolateral prefrontal cortex, centromedial amygdaloid complex, and middle cingulate cortex volumes than animals in the low sensitivity group. Furthermore, compared with monkeys in the low sensitivity group, high sensitivity monkeys had lower fractional anisotropy in the left dorsal cingulate bundle connecting the centromedial amygdaloid complex and middle cingulate cortex to the dorsolateral prefrontal cortex, and in the left superior longitudinal fasciculus 1 connecting the middle cingulate cortex to the dorsolateral prefrontal cortex. CONCLUSIONS These results suggest that neuroanatomical variation in prefrontal-limbic circuitry is associated with reward sensitivity. These brain structural features may serve as predictive biomarkers for vulnerability to food-based and other reward-related disorders.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
| | - Walid Yassin
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Blaise B Frederick
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
8
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Nigro M, Tortorelli LS, Yang H. Distinct roles of prefrontal cortex neurons in set shifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608808. [PMID: 39229035 PMCID: PMC11370324 DOI: 10.1101/2024.08.20.608808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies, requires adaptive processing of internal states and contextual cues to guide goal-oriented behavior, and is dependent on prefrontal cortex (PFC) functions. However, the neurophysiological underpinning of how the PFC supports cognitive flexibility is not well understood and has been under active investigation. We recorded spiking activity from single PFC neurons in mice performing the attentional set-shifting task, where mice learned to associate different contextually relevant sensory stimuli to reward. We identified subgroups of PFC neurons encoding task context, choice and trial outcome. Putative fast-spiking neurons were more involved in representing outcome and choice than putative regular-spiking neurons. Regression model further revealed that task context and trial outcome modulated the activity of choice-encoding neurons in rule-dependent and cell type-dependent manners. Together, our data provide new evidence to elucidate PFC's role in cognitive flexibility, suggesting differential cell type-specific engagement during set shifting, and that both contextual rule representation and trial outcome monitoring underlie PFC's unique capacity to support flexible behavioral switching.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Cole N, Harvey M, Myers-Joseph D, Gilra A, Khan AG. Prediction-error signals in anterior cingulate cortex drive task-switching. Nat Commun 2024; 15:7088. [PMID: 39154045 PMCID: PMC11330528 DOI: 10.1038/s41467-024-51368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Task-switching is a fundamental cognitive ability that allows animals to update their knowledge of current rules or contexts. Detecting discrepancies between predicted and observed events is essential for this process. However, little is known about how the brain computes cognitive prediction-errors and whether neural prediction-error signals are causally related to task-switching behaviours. Here we trained mice to use a prediction-error to switch, in a single trial, between responding to the same stimuli using two distinct rules. Optogenetic silencing and un-silencing, together with widefield and two-photon calcium imaging revealed that the anterior cingulate cortex (ACC) was specifically required for this rapid task-switching, but only when it exhibited neural prediction-error signals. These prediction-error signals were projection-target dependent and were larger preceding successful behavioural transitions. An all-optical approach revealed a disinhibitory interneuron circuit required for successful prediction-error computation. These results reveal a circuit mechanism for computing prediction-errors and transitioning between distinct cognitive states.
Collapse
Affiliation(s)
- Nicholas Cole
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Matthew Harvey
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Dylan Myers-Joseph
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Aditya Gilra
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
- Department of Computer Science, The University of Sheffield, Sheffield, UK
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
11
|
Kabanova A, Fedorov L, Eschenko O. The Projection-Specific Noradrenergic Modulation of Perseverative Spatial Behavior in Adult Male Rats. eNeuro 2024; 11:ENEURO.0063-24.2024. [PMID: 39160074 PMCID: PMC11334950 DOI: 10.1523/eneuro.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024] Open
Abstract
Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Leonid Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Zid M, Laurie VJ, Levine-Champagne A, Shourkeshti A, Harrell D, Herman AB, Ebitz RB. Humans forage for reward in reinforcement learning tasks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602539. [PMID: 39026817 PMCID: PMC11257465 DOI: 10.1101/2024.07.08.602539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How do we make good decisions in uncertain environments? In psychology and neuroscience, the classic answer is that we calculate the value of each option and then compare the values to choose the most rewarding, modulo some exploratory noise. An ethologist, conversely, would argue that we commit to one option until its value drops below a threshold, at which point we start exploring other options. In order to determine which view better describes human decision-making, we developed a novel, foraging-inspired sequential decision-making model and used it to ask whether humans compare to threshold ("Forage") or compare alternatives ("Reinforcement-Learn" [RL]). We found that the foraging model was a better fit for participant behavior, better predicted the participants' tendency to repeat choices, and predicted the existence of held-out participants with a pattern of choice that was almost impossible under RL. Together, these results suggest that humans use foraging computations, rather than RL, even in classic reinforcement learning tasks.
Collapse
Affiliation(s)
- Meriam Zid
- Department of Neuroscience, University of Montreal, Montreal, QC , H3T 1J4, Canada
| | - Veldon-James Laurie
- Department of Neuroscience, University of Montreal, Montreal, QC , H3T 1J4, Canada
| | | | - Akram Shourkeshti
- Department of Neuroscience, University of Montreal, Montreal, QC , H3T 1J4, Canada
| | - Dameon Harrell
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander B. Herman
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - R. Becket Ebitz
- Department of Neuroscience, University of Montreal, Montreal, QC , H3T 1J4, Canada
| |
Collapse
|
13
|
Tan S, Deng S, Song X, Su X, Zhao J, Yang K, Li H, Wang D, Fu J, Gong R, Lin X, Li X. Altered effective connectivity on rapid automatized naming deficits in Chinese children with developmental dyslexia: An rs-fMRI study with Ganger causality analysis. J Psychiatr Res 2024; 175:235-242. [PMID: 38749297 DOI: 10.1016/j.jpsychires.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 09/06/2024]
Abstract
Rapid Automatized Naming (RAN) is the core defect of developmental dyslexia (DD), requiring collaboration among brain areas to complete. However, it's still unclear which effective connectivity (EC) among brain areas are crucial for RAN deficits in Chinses children with DD. The current study aims to explore the EC among brain areas related to RAN deficits in Chinese children with DD. We recruited 36 Chinese children with DD and 64 typically developing (TD) children aged 8-12 to complete resting-state functional magnetic resonance imaging (rs-fMRI) scan. Granger causality analysis (GCA) was employed to analysis the EC among brain areas related to RAN, and to calculate the relationship between EC and RAN scores. Compared to TD group, the DD group exhibited significantly decreased EC from left precentral gyrus (PG) to right precuneus, left anterior cingulate and paracingulate gyrus (ACG), left calcarine and right angular, from left middle frontal gyrus (MFG) to left calcarine. Additionally, the DD group showed increased EC from right cuneus to left inferior frontal gyrus triangular part (IFGtri). The EC from left PG to left ACG was positively correlated with letters-RAN score. The results showed Chinese children with DD had both defect and compensatory mechanisms for their RAN deficits. The decreased EC output from left PG may be the core problem of the RAN deficits, which may influence the integration of visual-spatial information, attention, memory retrieval, and speech motor in speech production. The current study has important clinic implications for establishing intervention measures targeted brain.
Collapse
Affiliation(s)
- Si Tan
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Simin Deng
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaojing Song
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xintong Su
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jingxian Zhao
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Kaize Yang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Hailin Li
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Daosen Wang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Jiaxuan Fu
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, 510080, Guangzhou, China
| | - Ranran Gong
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China
| | - Xinyun Lin
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China
| | - Xiuhong Li
- School of Public Health, Sun Yat-sen University, 518107, Shenzhen, China.
| |
Collapse
|
14
|
Güldener L, Pollmann S. Behavioral Bias for Exploration Is Associated with Enhanced Signaling in the Lateral and Medial Frontopolar Cortex. J Cogn Neurosci 2024; 36:1156-1171. [PMID: 38437186 DOI: 10.1162/jocn_a_02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.
Collapse
|
15
|
Ataei A, Amini A, Ghazizadeh A. Robust memory of face moral values is encoded in the human caudate tail: a simultaneous EEG-fMRI study. Sci Rep 2024; 14:12629. [PMID: 38824168 PMCID: PMC11144224 DOI: 10.1038/s41598-024-63085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Moral judgements about people based on their actions is a key component that guides social decision making. It is currently unknown how positive or negative moral judgments associated with a person's face are processed and stored in the brain for a long time. Here, we investigate the long-term memory of moral values associated with human faces using simultaneous EEG-fMRI data acquisition. Results show that only a few exposures to morally charged stories of people are enough to form long-term memories a day later for a relatively large number of new faces. Event related potentials (ERPs) showed a significant differentiation of remembered good vs bad faces over centerofrontal electrode sites (value ERP). EEG-informed fMRI analysis revealed a subcortical cluster centered on the left caudate tail (CDt) as a correlate of the face value ERP. Importantly neither this analysis nor a conventional whole-brain analysis revealed any significant coding of face values in cortical areas, in particular the fusiform face area (FFA). Conversely an fMRI-informed EEG source localization using accurate subject-specific EEG head models also revealed activation in the left caudate tail. Nevertheless, the detected caudate tail region was found to be functionally connected to the FFA, suggesting FFA to be the source of face-specific information to CDt. A further psycho-physiological interaction analysis also revealed task-dependent coupling between CDt and dorsomedial prefrontal cortex (dmPFC), a region previously identified as retaining emotional working memories. These results identify CDt as a main site for encoding the long-term value memories of faces in humans suggesting that moral value of faces activates the same subcortical basal ganglia circuitry involved in processing reward value memory for objects in primates.
Collapse
Affiliation(s)
- Ali Ataei
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran
- Sharif Brain Center, Sharif University of Technology, Tehran, Iran
| | - Arash Amini
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran
| | - Ali Ghazizadeh
- EE Department, Sharif University of Technology, Azadi Avenue, Tehran, 1458889694, Iran.
- Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Ritz H, Shenhav A. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. Nat Hum Behav 2024; 8:945-961. [PMID: 38459265 PMCID: PMC11219097 DOI: 10.1038/s41562-024-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/15/2024] [Indexed: 03/10/2024]
Abstract
The complex challenges of our mental life require us to coordinate multiple forms of neural information processing. Recent behavioural studies have found that people can coordinate multiple forms of attention, but the underlying neural control process remains obscure. We hypothesized that the brain implements multivariate control by independently monitoring feature-specific difficulty and independently prioritizing feature-specific processing. During functional MRI, participants performed a parametric conflict task that separately tags target and distractor processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially segregated encoding of target and distractor difficulty in the dorsal anterior cingulate cortex. Consistent with feature-specific attentional priority, our encoding geometry analysis revealed overlapping but orthogonal representations of target and distractor coherence in the intraparietal sulcus. Coherence representations were mediated by control demands and aligned with both performance and frontoparietal activity, consistent with top-down attention. Together, these findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive control.
Collapse
Affiliation(s)
- Harrison Ritz
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - Amitai Shenhav
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
González VV, Zhang Y, Ashikyan SA, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. Cereb Cortex 2024; 34:bhae135. [PMID: 38610085 PMCID: PMC11014886 DOI: 10.1093/cercor/bhae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Subjects are often willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No Info) vs. a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%) and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in the anterior cingulate cortex, orbitofrontal cortex, basolateral amygdala, or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of the anterior cingulate cortex destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that previous choice predicted current choice in all conditions, however previously rewarded Info trials strongly predicted preference in all conditions except in female rats following anterior cingulate cortex inhibition. The results reveal a causal, sex-dependent role for the anterior cingulate cortex in decisions involving information.
Collapse
Affiliation(s)
- Valeria V González
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Yifan Zhang
- Department of Computer Science, University of Southern California, Salvatori Computer Science Center, 941 Bloom Walk, Los Angeles, CA 90089, United States
| | - Sonya A Ashikyan
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Anne Rickard
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Ibrahim Yassine
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Juan Luis Romero-Sosa
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Aaron P Blaisdell
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| | - Alicia Izquierdo
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Addictions, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| |
Collapse
|
18
|
Balconi M, Greco S, Rovelli K, Angioletti L. Decisional brain of lawyers at the workplace. A neurolaw pilot study. Cogn Neurodyn 2024; 18:461-471. [PMID: 38699616 PMCID: PMC11061082 DOI: 10.1007/s11571-023-10020-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
This pilot study investigated legal and non-legal professionals' decision process during a typical working day. During self-evaluated highly relevant decisions (rated through a daily diary), the two groups were asked to wear the Muse™ Headband to record their electrophysiological (EEG) activity in terms of frequency bands (delta, theta, alpha and beta). EEG cognitive findings displayed a generally increased beta power in the anterior frontal region (mainly in the right than left) for both groups during highly relevant decisions. Significantly results were also found for the legal professionals' group, for which a decrease of alpha power was found in the left compared to right frontal cortex. Furthermore, a decreased alpha power and increased delta and theta power in the right compared to left Temporo-Parietal Junction was observed in the legal professionals when taking highly relevant decisions. This pilot study suggested a specific EEG pattern for legal professionals while taking highly relevant decisions.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Simone Greco
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
19
|
Fetcho RN, Parekh PK, Chou J, Kenwood M, Chalençon L, Estrin DJ, Johnson M, Liston C. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron 2024; 112:473-487.e4. [PMID: 37963470 PMCID: PMC11533377 DOI: 10.1016/j.neuron.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Puja K Parekh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Margaux Kenwood
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Chalençon
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
20
|
Perl O, Shuster A, Heflin M, Na S, Kidwai A, Booker N, Putnam WC, Fiore VG, Gu X. Nicotine-related beliefs induce dose-dependent responses in the human brain. NATURE. MENTAL HEALTH 2024; 2:177-188. [PMID: 39463822 PMCID: PMC11512134 DOI: 10.1038/s44220-023-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/21/2023] [Indexed: 10/29/2024]
Abstract
Beliefs have a powerful influence on our behavior, yet their neural mechanisms remain elusive. Here we investigate whether beliefs could impact brain activities in a way akin to pharmacological dose-dependent effects. Nicotine-dependent humans were told that nicotine strength in an electronic cigarette was either 'low', 'medium' or 'high', while nicotine content was held constant. After vaping, participants underwent functional neuroimaging and performed a decision-making task known to engage neural circuits affected by nicotine. Beliefs about nicotine strength induced dose-dependent responses in the thalamus, a key binding site for nicotine, but not in other brain regions such as the striatum. Nicotine-related beliefs also parametrically modulated the connectivity between the thalamus and ventromedial prefrontal cortex, a region important for decision-making. These findings reveal a high level of precision in the way beliefs influence the brain, offering mechanistic insights into humans' heterogeneous responses to drugs and a pivotal role of beliefs in addiction.
Collapse
Affiliation(s)
- Ofer Perl
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia Shuster
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Heflin
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soojung Na
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ambereen Kidwai
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Natalie Booker
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William C. Putnam
- Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Vincenzo G. Fiore
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaosi Gu
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
González VV, Ashikyan SA, Zhang Y, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551514. [PMID: 37577596 PMCID: PMC10418268 DOI: 10.1101/2023.08.03.551514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Subjects often are willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No-info) vs a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%), and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory DREADDs in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), basolateral amygdala (BLA), or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of ACC destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that the previous choice strongly predicted preference in control animals, but not in female rats following ACC inhibition. The results reveal a causal, sex-dependent role for ACC in decisions involving information.
Collapse
|
22
|
Yuan Z, Qi Z, Wang R, Cui Y, An S, Wu G, Feng Q, Lin R, Dai R, Li A, Gong H, Luo Q, Fu L, Luo M. A corticoamygdalar pathway controls reward devaluation and depression using dynamic inhibition code. Neuron 2023; 111:3837-3853.e5. [PMID: 37734380 DOI: 10.1016/j.neuron.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Reward devaluation adaptively controls reward intake. It remains unclear how cortical circuits causally encode reward devaluation in healthy and depressed states. Here, we show that the neural pathway from the anterior cingulate cortex (ACC) to the basolateral amygdala (BLA) employs a dynamic inhibition code to control reward devaluation and depression. Fiber photometry and imaging of ACC pyramidal neurons reveal reward-induced inhibition, which weakens during satiation and becomes further attenuated in depression mouse models. Ablating or inhibiting these neurons desensitizes reward devaluation, causes reward intake increase and ultimate obesity, and ameliorates depression, whereas activating the cells sensitizes reward devaluation, suppresses reward consumption, and produces depression-like behaviors. Among various ACC neuron subpopulations, the BLA-projecting subset bidirectionally regulates reward devaluation and depression-like behaviors. Our study thus uncovers a corticoamygdalar circuit that encodes reward devaluation via blunted inhibition and suggests that enhancing inhibition within this circuit may offer a therapeutic approach for treating depression.
Collapse
Affiliation(s)
- Zhengwei Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Zhongyang Qi
- National Institute of Biological Sciences, Beijing 102206, China; Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuting Cui
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sile An
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoli Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Ruicheng Dai
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Anan Li
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Tiantan Hospital, 100070 Beijing, China.
| |
Collapse
|
23
|
Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2023; 29:751-766. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Narcolepsy is a sleep disorder manifesting symptoms such as excessive daytime sleepiness and often cataplexy, a sudden and involuntary loss of muscle activity during wakefulness. The underlying neuropathological basis of narcolepsy is the loss of orexin neurons from the lateral hypothalamus. To date numerous animal models of narcolepsy have been produced in the laboratory, being invaluable tools for delineating the brain circuits of narcolepsy. This review will examine the evidence regarding the function of the orexin system, and how loss of this wake-promoting system manifests in excessive daytime sleepiness. This review will also outline the brain circuits controlling cataplexy, focusing on the contribution of orexin signaling loss in narcolepsy. Although our understanding of the brain circuits of narcolepsy has made great progress in recent years, much remains to be understood.
Collapse
Affiliation(s)
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Kim D, Wang Z, Sakagami M, Sasaki Y, Watanabe T. Only cortical prediction error signals are involved in visual learning, despite availability of subcortical prediction error signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566726. [PMID: 38014275 PMCID: PMC10680585 DOI: 10.1101/2023.11.13.566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Both the midbrain systems, encompassing the ventral striatum (VS), and the cortical systems, including the dorsal anterior cingulate cortex (dACC), play roles in reinforcing and enhancing learning. However, the specific contributions of signals from these regions in learning remains unclear. To investigate this, we examined how VS and dACC are involved in visual perceptual learning (VPL) through an orientation discrimination task. In the primary experiment, subjects fasted for 5 hours before each of 14 days of training sessions and 3 days of test sessions. Subjects were rewarded with water for accurate trial responses. During the test sessions, BOLD signals were recorded from regions including VS and dACC. Although BOLD signals in both areas were associated with positive and negative RPEs, only those in dACC associated with negative RPE showed a significant correlation with performance improvement. Additionally, no significant correlation was observed between BOLD signals associated with RPEs in VS and dACC. These results suggest that although signals associated with positive and negative RPEs from both midbrain and cortical systems are readily accessible, only RPE signals in the prefrontal system, generated without linking to RPE signals in VS, are utilized for the enhancement of VPL.
Collapse
|
25
|
Sun S, Cao R, Rutishauser U, Yu R, Wang S. A uniform human multimodal dataset for emotion perception and judgment. Sci Data 2023; 10:773. [PMID: 37935738 PMCID: PMC10630434 DOI: 10.1038/s41597-023-02693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577, Japan.
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, Los Angeles, 90048, California, USA
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Walker EY, Pohl S, Denison RN, Barack DL, Lee J, Block N, Ma WJ, Meyniel F. Studying the neural representations of uncertainty. Nat Neurosci 2023; 26:1857-1867. [PMID: 37814025 DOI: 10.1038/s41593-023-01444-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
The study of the brain's representations of uncertainty is a central topic in neuroscience. Unlike most quantities of which the neural representation is studied, uncertainty is a property of an observer's beliefs about the world, which poses specific methodological challenges. We analyze how the literature on the neural representations of uncertainty addresses those challenges and distinguish between 'code-driven' and 'correlational' approaches. Code-driven approaches make assumptions about the neural code for representing world states and the associated uncertainty. By contrast, correlational approaches search for relationships between uncertainty and neural activity without constraints on the neural representation of the world state that this uncertainty accompanies. To compare these two approaches, we apply several criteria for neural representations: sensitivity, specificity, invariance and functionality. Our analysis reveals that the two approaches lead to different but complementary findings, shaping new research questions and guiding future experiments.
Collapse
Affiliation(s)
- Edgar Y Walker
- Department of Physiology and Biophysics, Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Stephan Pohl
- Department of Philosophy, New York University, New York, NY, USA
| | - Rachel N Denison
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - David L Barack
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Philosophy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Lee
- Center for Neural Science, New York University, New York, NY, USA
| | - Ned Block
- Department of Philosophy, New York University, New York, NY, USA
| | - Wei Ji Ma
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Florent Meyniel
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Mao C, Zhang Y, Jiang J, Qin R, Ye Q, Zhu X, Wu J. Magnetic Resonance Imaging Biomarkers of Punding in Parkinson's Disease. Brain Sci 2023; 13:1423. [PMID: 37891792 PMCID: PMC10605844 DOI: 10.3390/brainsci13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Punding is a rare condition triggered by dopaminergic therapy in Parkinson's disease (PD), characterized by a complex, excessive, repetitive, and purposeless abnormal movement, and its pathogenesis remains unclear. We aimed to assess the brain structure alterations related to punding by using multipametric magnetic resonance imaging (MRI). Thirty-eight PD patients (19 with punding and 19 without punding) from the Parkinson's Progression Marker Initiative (PPMI) were included in this study. Cortical thickness was assessed with FreeSurfer, and the integrity of white matter fiber tracts and network topologies were analyzed by using FMRIB Software Library (FSL) and Pipeline for Analyzing braiN Diffusion imAges (PANDA). PD patients with punding showed a higher apathy score and more severe cortical atrophy in the left superior parietal, right inferior parietal, and right superior frontal gyrus, and worse integrity of the right cingulum cingulate tract compared to those without punding. On the other hand, no significant difference in structural network topologies was detected between the two groups. These data suggest that the specific area of destruction may be an MRI biomarker of punding risk, and these findings may have important implications for understanding the neural mechanisms of punding in PD.
Collapse
Affiliation(s)
- Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Qing Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| | - Jiayong Wu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (C.M.); (Y.Z.); (J.J.); (R.Q.); (Q.Y.); (X.Z.)
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China
| |
Collapse
|
28
|
Peng XR, Bundil I, Schulreich S, Li SC. Neural correlates of valence-dependent belief and value updating during uncertainty reduction: An fNIRS study. Neuroimage 2023; 279:120327. [PMID: 37582418 DOI: 10.1016/j.neuroimage.2023.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
Selective use of new information is crucial for adaptive decision-making. Combining a gamble bidding task with assessing cortical responses using functional near-infrared spectroscopy (fNIRS), we investigated potential effects of information valence on behavioral and neural processes of belief and value updating during uncertainty reduction in young adults. By modeling changes in the participants' expressed subjective values using a Bayesian model, we dissociated processes of (i) updating beliefs about statistical properties of the gamble, (ii) updating values of a gamble based on new information about its winning probabilities, as well as (iii) expectancy violation. The results showed that participants used new information to update their beliefs and values about the gambles in a quasi-optimal manner, as reflected in the selective updating only in situations with reducible uncertainty. Furthermore, their updating was valence-dependent: information indicating an increase in winning probability was underweighted, whereas information about a decrease in winning probability was updated in good agreement with predictions of the Bayesian decision theory. Results of model-based and moderation analyses showed that this valence-dependent asymmetry was associated with a distinct contribution of expectancy violation, besides belief updating, to value updating after experiencing new positive information regarding winning probabilities. In line with the behavioral results, we replicated previous findings showing involvements of frontoparietal brain regions in the different components of updating. Furthermore, this study provided novel results suggesting a valence-dependent recruitment of brain regions. Individuals with stronger oxyhemoglobin responses during value updating was more in line with predictions of the Bayesian model while integrating new information that indicates an increase in winning probability. Taken together, this study provides first results showing expectancy violation as a contributing factor to sub-optimal valence-dependent updating during uncertainty reduction and suggests limitations of normative Bayesian decision theory.
Collapse
Affiliation(s)
- Xue-Rui Peng
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| | - Indra Bundil
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Stefan Schulreich
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Cognitive Psychology, Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Yao YW, Song KR, Schuck NW, Li X, Fang XY, Zhang JT, Heekeren HR, Bruckner R. The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. Neuroimage 2023; 279:120326. [PMID: 37579997 DOI: 10.1016/j.neuroimage.2023.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Decisions that require taking effort costs into account are ubiquitous in real life. The neural common currency theory hypothesizes that a particular neural network integrates different costs (e.g., risk) and rewards into a common scale to facilitate value comparison. Although there has been a surge of interest in the computational and neural basis of effort-related value integration, it is still under debate if effort-based decision-making relies on a domain-general valuation network as implicated in the neural common currency theory. Therefore, we comprehensively compared effort-based and risky decision-making using a combination of computational modeling, univariate and multivariate fMRI analyses, and data from two independent studies. We found that effort-based decision-making can be best described by a power discounting model that accounts for both the discounting rate and effort sensitivity. At the neural level, multivariate decoding analyses indicated that the neural patterns of the dorsomedial prefrontal cortex (dmPFC) represented subjective value across different decision-making tasks including either effort or risk costs, although univariate signals were more diverse. These findings suggest that multivariate dmPFC patterns play a critical role in computing subjective value in a task-independent manner and thus extend the scope of the neural common currency theory.
Collapse
Affiliation(s)
- Yuan-Wei Yao
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany.
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Yi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Executive University Board, Universität Hamburg, Hamburg, Germany
| | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
30
|
Olguin SL, Cavanagh JF, Young JW, Brigman JL. Impaired cognitive control after moderate prenatal alcohol exposure corresponds to altered EEG power during a rodent touchscreen continuous performance task. Neuropharmacology 2023; 236:109599. [PMID: 37217074 PMCID: PMC10330662 DOI: 10.1016/j.neuropharm.2023.109599] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Although it is well established that alcohol consumption during pregnancy can lead to lifelong difficulties in offspring, Fetal Alcohol Spectrum Disorders (FASD) remain a common neurodevelopmental syndrome. Translational behavioral tools that target similar brain circuits across species can facilitate understanding of these cognitive consequences. Touchscreen behavioral tasks for rodents enable easy integration of dura recordings of electroencephalographic (EEG) activity in awake behaving animals, with clear translational generalizability. Recently, we showed that Prenatal Alcohol Exposure (PAE) impairs cognitive control on the touchscreen 5-Choice Continuous Performance Task (5C-CPT) which requires animals to touch on target trials (hit) and withhold responding on non-target trials (correct rejection). Here, we extended these findings to determine whether dura EEG recordings would detect task-relevant differences in medial prefrontal cortex (mPFC) and posterior parietal cortex (PPC) corresponding with behavioral alterations in PAE animals. Replicating previous findings, PAE mice made more false alarm responses versus controls and had a significantly lower sensitivity index. All mice, regardless of sex or treatment, demonstrated increased frontal theta-band power during correct trials that followed an error (similar to post-error monitoring commonly seen in human participants). All mice showed a significant decrease in parietal beta-band power when performing a correct rejection versus a hit. PAE mice of both sexes showed a significantly larger decrease in parietal beta-band power when successfully rejecting non-target stimuli. These findings suggest that moderate exposure to alcohol during development can have long lasting effects on cognitive control, and task-relevant neural signals may provide a biomarker of impaired function across species.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jared W Young
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
31
|
Chen HY, Marxen M, Dahl MJ, Glöckner F. Effects of Adult Age and Functioning of the Locus Coeruleus Norepinephrinergic System on Reward-Based Learning. J Neurosci 2023; 43:6185-6196. [PMID: 37541835 PMCID: PMC10476638 DOI: 10.1523/jneurosci.2006-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC) magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42, 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41, 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the β parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34, 29 males) showed a lower LC-MRI contrast than younger adults (N = 25, 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning.SIGNIFICANCE STATEMENT Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the LC-NE system may affect reward-based learning. Here, we show that compared with younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural MRI of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Methods of Psychology and Cognitive Modeling, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Davis School of Gerontology, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Franka Glöckner
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
32
|
Lynch CJ, Elbau I, Ng T, Ayaz A, Zhu S, Manfredi N, Johnson M, Wolk D, Power JD, Gordon EM, Kay K, Aloysi A, Moia S, Caballero-Gaudes C, Victoria LW, Solomonov N, Goldwaser E, Zebley B, Grosenick L, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Williams N, Gunning FM, Liston C. Expansion of a frontostriatal salience network in individuals with depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.551651. [PMID: 37645792 PMCID: PMC10461904 DOI: 10.1101/2023.08.09.551651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
|
33
|
Colautti L, Magenes S, Rago S, Camerin S, Zanaboni Dina C, Antonietti A, Cancer A. Creative thinking in Tourette's syndrome: A comparative study of patients and healthy controls. J Clin Exp Neuropsychol 2023; 45:482-497. [PMID: 37667639 DOI: 10.1080/13803395.2023.2251644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Tourette's syndrome is a neurological disorder characterized by tics, that may interfere with patients' everyday life. Research suggested that creative thinking (namely, divergent and convergent thinking) could help patients cope with their symptoms, and therefore it can be a resource in non-pharmacological interventions. The present study aimed at investigating (i) possible differences in creative thinking between Tourette's syndrome patients and healthy controls and (ii) whether creative thinking can support patients in coping with their symptomatology. METHODS A group of 25 Tourette's syndrome patients and 25 matched healthy controls underwent an assessment of creative thinking, fluid intelligence, and depressive symptoms. Creative thinking was compared between patients and healthy controls after controlling for fluid intelligence and depressive symptoms. Moreover, the moderating role of divergent and convergent thinking on the subjective impact of tics was tested in a group of 30 patients. RESULTS Tourette's syndrome patients outperformed healthy controls in convergent thinking. Moreover, divergent thinking was found as a significant moderator of the relationship between tics severity and the subjective impact in Tourette's syndrome patients. CONCLUSIONS Findings highlighted the specific impact of convergent and divergent thinking on Tourette's syndrome patients. Considering the supportive role of creative thinking in Tourette's syndrome, our results confirm that higher levels of divergent thinking may reduce the tic-related discomfort. These findings suggest the potential positive implications of creative thinking in non-pharmacological interventions for Tourette's syndrome.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Sara Magenes
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Fraternità e Amicizia Società Cooperativa Sociale ONLUS, Milan, Italy
| | - Sabrina Rago
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Stefania Camerin
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Carlotta Zanaboni Dina
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Tourette Syndrome Centre, IRCCS, San Raffaele,Milan, Italy
| | | | - Alice Cancer
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
34
|
Pupillo F, Ortiz-Tudela J, Bruckner R, Shing YL. The effect of prediction error on episodic memory encoding is modulated by the outcome of the predictions. NPJ SCIENCE OF LEARNING 2023; 8:18. [PMID: 37248232 DOI: 10.1038/s41539-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
Expectations can lead to prediction errors of varying degrees depending on the extent to which the information encountered in the environment conforms with prior knowledge. While there is strong evidence on the computationally specific effects of such prediction errors on learning, relatively less evidence is available regarding their effects on episodic memory. Here, we had participants work on a task in which they learned context/object-category associations of different strengths based on the outcomes of their predictions. We then used a reinforcement learning model to derive subject-specific trial-to-trial estimates of prediction error at encoding and link it to subsequent recognition memory. Results showed that model-derived prediction errors at encoding influenced subsequent memory as a function of the outcome of participants' predictions (correct vs. incorrect). When participants correctly predicted the object category, stronger prediction errors (as a consequence of weak expectations) led to enhanced memory. In contrast, when participants incorrectly predicted the object category, stronger prediction errors (as a consequence of strong expectations) led to impaired memory. These results highlight the important moderating role of choice outcome that may be related to interactions between the hippocampal and striatal dopaminergic systems.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany.
- TS Social and Behavioral Sciences, Tilburg University, Tilburg, Netherlands.
| | | | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Malakasis N, Chavlis S, Poirazi P. Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541722. [PMID: 37292929 PMCID: PMC10245885 DOI: 10.1101/2023.05.22.541722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tasks while operating with the energy of a small lightbulb. We use a biologically constrained spiking neural network model to explore how the neural tissue achieves such high efficiency and assess its learning capacity on discrimination tasks. We found that synaptic turnover, a form of structural plasticity, which is the ability of the brain to form and eliminate synapses continuously, increases both the speed and the performance of our network on all tasks tested. Moreover, it allows accurate learning using a smaller number of examples. Importantly, these improvements are most significant under conditions of resource scarcity, such as when the number of trainable parameters is halved and when the task difficulty is increased. Our findings provide new insights into the mechanisms that underlie efficient learning in the brain and can inspire the development of more efficient and flexible machine learning algorithms.
Collapse
Affiliation(s)
- Nikos Malakasis
- School of Medicine, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
36
|
Bousseyrol E, Didienne S, Takillah S, Prevost-Solié C, Come M, Ahmed Yahia T, Mondoloni S, Vicq E, Tricoire L, Mourot A, Naudé J, Faure P. Dopaminergic and prefrontal dynamics co-determine mouse decisions in a spatial gambling task. Cell Rep 2023; 42:112523. [PMID: 37200189 DOI: 10.1016/j.celrep.2023.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/28/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
The neural mechanisms by which animals initiate goal-directed actions, choose between options, or explore opportunities remain unknown. Here, we develop a spatial gambling task in which mice, to obtain intracranial self-stimulation rewards, self-determine the initiation, direction, vigor, and pace of their actions based on their knowledge of the outcomes. Using electrophysiological recordings, pharmacology, and optogenetics, we identify a sequence of oscillations and firings in the ventral tegmental area (VTA), orbitofrontal cortex (OFC), and prefrontal cortex (PFC) that co-encodes and co-determines self-initiation and choices. This sequence appeared with learning as an uncued realignment of spontaneous dynamics. Interactions between the structures varied with the reward context, particularly the uncertainty associated with the different options. We suggest that self-generated choices arise from a distributed circuit based on an OFC-VTA core determining whether to wait for or initiate actions, while the PFC is specifically engaged by reward uncertainty in action selection and pace.
Collapse
Affiliation(s)
- Elise Bousseyrol
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Steve Didienne
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Samir Takillah
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Clement Prevost-Solié
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Maxime Come
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tarek Ahmed Yahia
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Eléonore Vicq
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Ludovic Tricoire
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Jérémie Naudé
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; CNRS, Université de Montpellier, INSERM - Institut de Génomique Fonctionnelle, 34094 Montpellier, France.
| | - Philippe Faure
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France.
| |
Collapse
|
37
|
Vives ML, de Bruin D, van Baar JM, FeldmanHall O, Bhandari A. Uncertainty aversion predicts the neural expansion of semantic representations. Nat Hum Behav 2023; 7:765-775. [PMID: 36997668 DOI: 10.1038/s41562-023-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/17/2023] [Indexed: 04/01/2023]
Abstract
Correctly identifying the meaning of a stimulus requires activating the appropriate semantic representation among many alternatives. One way to reduce this uncertainty is to differentiate semantic representations from each other, thereby expanding the semantic space. Here, in four experiments, we test this semantic-expansion hypothesis, finding that uncertainty-averse individuals exhibit increasingly differentiated and separated semantic representations. This effect is mirrored at the neural level, where uncertainty aversion predicts greater distances between activity patterns in the left inferior frontal gyrus when reading words, and enhanced sensitivity to the semantic ambiguity of these words in the ventromedial prefrontal cortex. Two direct tests of the behavioural consequences of semantic expansion further reveal that uncertainty-averse individuals exhibit reduced semantic interference and poorer generalization. Together, these findings show that the internal structure of our semantic representations acts as an organizing principle to make the world more identifiable.
Collapse
Affiliation(s)
- Marc-Lluís Vives
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
- Department of Psychology, Leiden University, Leiden, The Netherlands.
| | - Daantje de Bruin
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA
| | - Jeroen M van Baar
- Trimbos Institute, Netherlands Institute for Mental Health and Addiction, Utrecht, The Netherlands
| | - Oriel FeldmanHall
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Apoorva Bhandari
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
38
|
Cazettes F, Mazzucato L, Murakami M, Morais JP, Augusto E, Renart A, Mainen ZF. A reservoir of foraging decision variables in the mouse brain. Nat Neurosci 2023; 26:840-849. [PMID: 37055628 PMCID: PMC10280691 DOI: 10.1038/s41593-023-01305-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
In any given situation, the environment can be parsed in different ways to yield decision variables (DVs) defining strategies useful for different tasks. It is generally presumed that the brain only computes a single DV defining the current behavioral strategy. Here to test this assumption, we recorded neural ensembles in the frontal cortex of mice performing a foraging task admitting multiple DVs. Methods developed to uncover the currently employed DV revealed the use of multiple strategies and occasional switches in strategy within sessions. Optogenetic manipulations showed that the secondary motor cortex (M2) is needed for mice to use the different DVs in the task. Surprisingly, we found that regardless of which DV best explained the current behavior, M2 activity concurrently encoded a full basis set of computations defining a reservoir of DVs appropriate for alternative tasks. This form of neural multiplexing may confer considerable advantages for learning and adaptive behavior.
Collapse
Affiliation(s)
| | - Luca Mazzucato
- Departments of Biology, Mathematics & Physics, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Masayoshi Murakami
- Champalimaud Foundation, Lisbon, Portugal
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
39
|
Vives ML, Heffner J, FeldmanHall O. Conceptual representations of uncertainty predict risky decision-making. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01090-8. [PMID: 37029276 DOI: 10.3758/s13415-023-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Decisions made under uncertainty often are considered according to their perceived subjective value. We move beyond this traditional framework to explore the hypothesis that conceptual representations of uncertainty influence risky choice. Results reveal that uncertainty concepts are represented along a dimension that jointly captures probabilistic and valenced features of the conceptual space. These uncertainty representations predict the degree to which an individual engages in risky decision-making. Moreover, we find that most individuals have two largely distinct representations: one for uncertainty and another for certainty. In contrast, a minority of individuals exhibit substantial overlap between their representations of uncertainty and certainty. Together, these findings reveal the relationship between the conceptualization of uncertainty and risky decisions.
Collapse
Affiliation(s)
- Marc-Lluís Vives
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Joseph Heffner
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Oriel FeldmanHall
- Department of Cognitive, Linguistic, Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
40
|
Fornari L, Ioumpa K, Nostro AD, Evans NJ, De Angelis L, Speer SPH, Paracampo R, Gallo S, Spezio M, Keysers C, Gazzola V. Neuro-computational mechanisms and individual biases in action-outcome learning under moral conflict. Nat Commun 2023; 14:1218. [PMID: 36878911 PMCID: PMC9988878 DOI: 10.1038/s41467-023-36807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Learning to predict action outcomes in morally conflicting situations is essential for social decision-making but poorly understood. Here we tested which forms of Reinforcement Learning Theory capture how participants learn to choose between self-money and other-shocks, and how they adapt to changes in contingencies. We find choices were better described by a reinforcement learning model based on the current value of separately expected outcomes than by one based on the combined historical values of past outcomes. Participants track expected values of self-money and other-shocks separately, with the substantial individual difference in preference reflected in a valuation parameter balancing their relative weight. This valuation parameter also predicted choices in an independent costly helping task. The expectations of self-money and other-shocks were biased toward the favored outcome but fMRI revealed this bias to be reflected in the ventromedial prefrontal cortex while the pain-observation network represented pain prediction errors independently of individual preferences.
Collapse
Affiliation(s)
- Laura Fornari
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Kalliopi Ioumpa
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Alessandra D Nostro
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Nathan J Evans
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Lorenzo De Angelis
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Sebastian P H Speer
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Selene Gallo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Michael Spezio
- Psychology, Neuroscience, & Data Science, Scripps College, 1030 Columbia Ave, CA 91711, Claremont, CA, USA
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands. .,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Le Bouc R, Borderies N, Carle G, Robriquet C, Vinckier F, Daunizeau J, Azuar C, Levy R, Pessiglione M. Effort avoidance as a core mechanism of apathy in frontotemporal dementia. Brain 2023; 146:712-726. [PMID: 36401873 DOI: 10.1093/brain/awac427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
Apathy is a core symptom in patients with behavioural variant frontotemporal dementia (bvFTD). It is defined by the observable reduction in goal-directed behaviour, but the underlying mechanisms are poorly understood. According to decision theory, engagement in goal-directed behaviour depends on a cost-benefit optimization trading off the estimated effort (related to the behaviour) against the expected reward (related to the goal). In this framework, apathy would thus result from either a decreased appetence for reward, or from an increased aversion to effort. Here, we phenotyped the motivational state of 21 patients with bvFTD and 40 matched healthy controls using computational analyses of behavioural responses in a comprehensive series of behavioural tasks, involving both expression of preference (comparing reward value and effort cost) and optimization of performance (adjusting effort production to the reward at stake). The primary finding was an elevated aversion to effort, consistent across preference and performance tasks in patients with bvFTD compared to controls. Within the bvFTD group, effort avoidance was correlated to cortical atrophy in the dorsal anterior cingulate cortex and to apathy score measured on a clinical scale. Thus, our results highlight elevated effort aversion (not reduced reward appetence) as a core dysfunction that might generate apathy in patients with bvFTD. More broadly, they provide novel behavioural tests and computational tools to identify the dysfunctional mechanisms producing motivation deficits in patients with brain damage.
Collapse
Affiliation(s)
- Raphaël Le Bouc
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France.,Department of Neurology, Pitié Salpêtrière Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), F75013 Paris, France
| | - Nicolas Borderies
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Guilhem Carle
- Department of Neurology, Pitié Salpêtrière Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), F75013 Paris, France.,FrontLab, Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Chloé Robriquet
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Fabien Vinckier
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France.,Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, University of Paris, F-75014 Paris, France
| | - Jean Daunizeau
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Carole Azuar
- Department of Neurology, Pitié Salpêtrière Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), F75013 Paris, France.,FrontLab, Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Richard Levy
- Department of Neurology, Pitié Salpêtrière Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), F75013 Paris, France.,FrontLab, Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Mathias Pessiglione
- Motivation, Brain and Behavior Laboratory (MBB), Paris Brain Institute (ICM), Sorbonne University, INSERM UMRS 1127, CNRS UMR 7225, Pitié Salpêtrière Hospital, F-75013 Paris, France
| |
Collapse
|
42
|
de A Marcelino AL, Gray O, Al-Fatly B, Gilmour W, Douglas Steele J, Kühn AA, Gilbertson T. Pallidal neuromodulation of the explore/exploit trade-off in decision-making. eLife 2023; 12:79642. [PMID: 36727860 PMCID: PMC9940911 DOI: 10.7554/elife.79642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Every decision that we make involves a conflict between exploiting our current knowledge of an action's value or exploring alternative courses of action that might lead to a better, or worse outcome. The sub-cortical nuclei that make up the basal ganglia have been proposed as a neural circuit that may contribute to resolving this explore-exploit 'dilemma'. To test this hypothesis, we examined the effects of neuromodulating the basal ganglia's output nucleus, the globus pallidus interna, in patients who had undergone deep brain stimulation (DBS) for isolated dystonia. Neuromodulation enhanced the number of exploratory choices to the lower value option in a two-armed bandit probabilistic reversal-learning task. Enhanced exploration was explained by a reduction in the rate of evidence accumulation (drift rate) in a reinforcement learning drift diffusion model. We estimated the functional connectivity profile between the stimulating DBS electrode and the rest of the brain using a normative functional connectome derived from heathy controls. Variation in the extent of neuromodulation induced exploration between patients was associated with functional connectivity from the stimulation electrode site to a distributed brain functional network. We conclude that the basal ganglia's output nucleus, the globus pallidus interna, can adaptively modify decision choice when faced with the dilemma to explore or exploit.
Collapse
Affiliation(s)
- Ana Luisa de A Marcelino
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Facility GenomicsBerlinGermany
| | - Owen Gray
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - Bassam Al-Fatly
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
| | - William Gilmour
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
| | - Andrea A Kühn
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus MitteBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Facility GenomicsBerlinGermany
- Berlin School of Mind and Brain, Charité - University Medicine BerlinBerlinGermany
- NeuroCure, Charité - University Medicine BerlinBerlinGermany
- DZNE, German Centre for Degenerative DiseasesBerlinGermany
| | - Tom Gilbertson
- Division of Imaging Science and Technology, Medical School, University of DundeeDundeeUnited Kingdom
- Department of Neurology, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| |
Collapse
|
43
|
Cox J, Minerva AR, Fleming WT, Zimmerman CA, Hayes C, Zorowitz S, Bandi A, Ornelas S, McMannon B, Parker NF, Witten IB. A neural substrate of sex-dependent modulation of motivation. Nat Neurosci 2023; 26:274-284. [PMID: 36646878 DOI: 10.1038/s41593-022-01229-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2022] [Indexed: 01/18/2023]
Abstract
While there is emerging evidence of sex differences in decision-making behavior, the neural substrates that underlie such differences remain largely unknown. Here we demonstrate that in mice performing a value-based decision-making task, while choices are similar between the sexes, motivation to engage in the task is modulated by action value more strongly in females than in males. Inhibition of activity in anterior cingulate cortex (ACC) neurons that project to the dorsomedial striatum (DMS) preferentially disrupts this relationship between value and motivation in females, without affecting choice in either sex. In line with these effects, in females compared to males, ACC-DMS neurons have stronger representations of negative outcomes and more neurons are active when the value of the chosen option is low. By contrast, the representation of each choice is similar between the sexes. Thus, we identify a neural substrate that contributes to sex-specific modulation of motivation by value.
Collapse
Affiliation(s)
- Julia Cox
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adelaide R Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Weston T Fleming
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Cameron Hayes
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel Zorowitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Akhil Bandi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sharon Ornelas
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nathan F Parker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
44
|
Eckert MA, Iuricich F, Harris KC, Hamlett ED, Vazey EM, Aston-Jones G. Locus coeruleus and dorsal cingulate morphology contributions to slowed processing speed. Neuropsychologia 2023; 179:108449. [PMID: 36528219 PMCID: PMC9906468 DOI: 10.1016/j.neuropsychologia.2022.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Slowed information processing speed is a defining feature of cognitive aging. Nucleus locus coeruleus (LC) and medial prefrontal regions are targets for understanding slowed processing speed because these brain regions influence neural and behavioral response latencies through their roles in optimizing task performance. Although structural measures of medial prefrontal cortex have been consistently related to processing speed, it is unclear if 1) declines in LC structure underlie this association because of reciprocal connections between LC and medial prefrontal cortex, or 2) if LC declines provide a separate explanation for age-related changes in processing speed. LC and medial prefrontal structural measures were predicted to explain age-dependent individual differences in processing speed in a cross-sectional sample of 43 adults (19-79 years; 63% female). Higher turbo-spin echo LC contrast, based on a persistent homology measure, and greater dorsal cingulate cortical thickness were significantly and each uniquely related to faster processing speed. However, only dorsal cingulate cortical thickness appeared to statistically mediate age-related differences in processing speed. The results suggest that individual differences in cognitive processing speed can be attributed, in part, to structural variation in nucleus LC and medial prefrontal cortex, with the latter key to understanding why older adults exhibit slowed processing speed.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA.
| | - Federico Iuricich
- Visual Computing Division, School of Computing, Clemson University, Clemson, S.C., 29634, USA
| | - Kelly C Harris
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, MSC 550, Charleston, S.C., 29425-5500, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, S.C., 29425-5500, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003-9297, USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
45
|
Zhao Y, Dahmani L, Li M, Hu Y, Ren J, Lui S, Wang D, Kuang W, Gong Q, Liu H. Individualized Functional Connectome Identified Replicable Biomarkers for Dysphoric Symptoms in First-Episode Medication-Naïve Patients With Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:42-51. [PMID: 34995770 DOI: 10.1016/j.bpsc.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a heterogeneous syndrome and can be conceptualized as a mixture of dimensional abnormalities across several specific brain circuits. The neural underpinnings of different symptom dimensions in MDD are not well understood. We aimed to identify robust, generalizable, functional connectivity (FC)-based biomarkers for different symptom dimensions in MDD using individualized functional connectomes. METHODS Patterns of FC associated with symptom severity were identified using a novel, individualized, functional network parcellation analysis in conjunction with hierarchical clustering. Dimension-specific prediction models were trained to estimate symptom severity in first-episode medication-naïve patients (discovery dataset, n = 95) and replicated in an independent validation dataset (n = 94). The correlation between FC changes and symptom changes was further explored in a treatment dataset (n = 55). RESULTS Two distinct symptom clusters previously identified in patients with MDD, namely dysphoric and anxiosomatic clusters, were robustly replicated in our data. A connectivity biomarker associated with dysphoric symptoms was identified, which mainly involved the default, dorsal attention, and limbic networks. Critically, this brain-symptom association was confirmed in the validation dataset. Moreover, the marker also tracked dysphoric symptom improvement following a 2-week antidepressant treatment. For comparison, we repeated our analyses using a nonindividualized approach and failed to identify replicable brain-symptom biomarkers. Further quantitative analysis indicated that the generalizability of the connectivity-symptom association was hampered when functional regions were not localized in individuals. CONCLUSIONS This work reveals robust, replicable FC biomarkers for dysphoric symptoms in MDD, demonstrates the advantage of individual-oriented approach, and emphasizes the importance of independent validation in psychiatric neuroimaging analysis.
Collapse
Affiliation(s)
- Youjin Zhao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Meiling Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yongbo Hu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
46
|
Nishimaru H, Matsumoto J, Setogawa T, Nishijo H. Neuronal structures controlling locomotor behavior during active and inactive motor states. Neurosci Res 2022; 189:83-93. [PMID: 36549389 DOI: 10.1016/j.neures.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Animal behaviors can be divided into two states according to their motor activity: the active motor state, which involves significant body movements, and the inactive motor state, which refers to when the animal is stationary. The timing and duration of these states are determined by the activity of the neuronal circuits involved in motor control. Among these motor circuits, those that generate locomotion are some of the most studied neuronal networks and are widely distributed from the spinal cord to the cerebral cortex. In this review, we discuss recent discoveries, mainly in rodents using state-of-the-art experimental approaches, of the neuronal mechanisms underlying the initiation and termination of locomotion in the brainstem, basal ganglia, and prefrontal cortex. These findings is discussed with reference to studies on the neuronal mechanism of motor control during sleep and the modulation of cortical states in these structures. Accumulating evidence has unraveled the complex yet highly structured network that controls the transition between motor states.
Collapse
Affiliation(s)
- Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan.
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan; Graduate school of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan; Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
47
|
Stolz C, Pickering AD, Mueller EM. Dissociable feedback valence effects on frontal midline theta during reward gain versus threat avoidance learning. Psychophysiology 2022; 60:e14235. [PMID: 36529988 DOI: 10.1111/psyp.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
While frontal midline theta (FMθ) has been associated with threat processing, with cognitive control in the context of anxiety, and with reinforcement learning, most reinforcement learning studies on FMθ have used reward rather than threat-related stimuli as reinforcer. Accordingly, the role of FMθ in threat-related reinforcement learning is largely unknown. Here, n = 23 human participants underwent one reward-, and one punishment-, based reversal learning task, which differed only with regard to the kind of reinforcers that feedback was tied to (i.e., monetary gain vs. loud noise burst, respectively). In addition to single-trial EEG, we assessed single-trial feedback expectations based on both a reinforcement learning computational model and trial-by-trial subjective feedback expectation ratings. While participants' performance and feedback expectations were comparable between the reward and punishment tasks, FMθ was more reliably amplified to negative vs. positive feedback in the reward vs. punishment task. Regressions with feedback valence, computationally derived, and self-reported expectations as predictors and FMθ as criterion further revealed that trial-by-trial variations in FMθ specifically relate to reward-related feedback-valence and not to threat-related feedback or to violated expectations/prediction errors. These findings suggest that FMθ as measured in reinforcement learning tasks may be less sensitive to the processing of events with direct relevance for fear and anxiety.
Collapse
Affiliation(s)
- Christopher Stolz
- Department of Psychology University of Marburg Marburg Germany
- Leibniz Institute for Neurobiology (LIN) Magdeburg Germany
- Department of Psychology Goldsmiths, University of London London UK
| | | | - Erik M. Mueller
- Department of Psychology University of Marburg Marburg Germany
| |
Collapse
|
48
|
Janssen P, Isa T, Lanciego J, Leech K, Logothetis N, Poo MM, Mitchell AS. Visualizing advances in the future of primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100064. [PMID: 36582401 PMCID: PMC9792703 DOI: 10.1016/j.crneur.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
| | - Tadashi Isa
- Graduate School of Medicine, Kyoto University, Japan
| | - Jose Lanciego
- Department Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, CiberNed., Pamplona, Spain
| | - Kirk Leech
- European Animal Research Association, United Kingdom
| | - Nikos Logothetis
- International Center for Primate Brain Research, Shanghai, China
| | - Mu-Ming Poo
- International Center for Primate Brain Research, Shanghai, China
| | - Anna S. Mitchell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand,Department of Experimental Psychology, University of Oxford, United Kingdom,Corresponding author. School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
49
|
Zhang Z. Functionally similar yet distinct neural mechanisms underlie different choice behaviors: ALE meta-analyses of decision-making under risk in adolescents and adults. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Janet R, Ligneul R, Losecaat-Vermeer AB, Philippe R, Bellucci G, Derrington E, Park SQ, Dreher JC. Regulation of social hierarchy learning by serotonin transporter availability. Neuropsychopharmacology 2022; 47:2205-2212. [PMID: 35945275 PMCID: PMC9630526 DOI: 10.1038/s41386-022-01378-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.
Collapse
Affiliation(s)
- Remi Janet
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Romain Ligneul
- grid.421010.60000 0004 0453 9636Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Annabel B. Losecaat-Vermeer
- grid.10420.370000 0001 2286 1424Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria ,grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Remi Philippe
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Gabriele Bellucci
- grid.419501.80000 0001 2183 0052Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Edmund Derrington
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Soyoung Q. Park
- grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany ,grid.418213.d0000 0004 0390 0098Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jean-Claude Dreher
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France.
| |
Collapse
|