1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Kim J, Zhao Q, Choi I, Oh MJ, Kwon S, Park S. Ensemble hot-spots in 3D supercrystals of plasmonic octahedral nanoparticles in tip-to-tip configured superlattices. Nat Commun 2025; 16:2762. [PMID: 40113774 PMCID: PMC11926180 DOI: 10.1038/s41467-025-58029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Nanoparticle assembly offers promising strategy for harnessing the physicochemical interparticle interactions. Despite its potential for boosting light-matter interaction, achieving nanoparticle assembly with tip-to-tip manner remains a significant challenge. Here we show a synthetic procedure for organizing gold octahedral nanoparticles into a distinct three-dimensional upright superstructure, where the pointed tips are oriented toward neighboring nanoparticles to promote enhanced near-field focusing at these apexes. This arrangement, referred to as the "coupling of the lightning rod effect", facilitates production in the form of "superpowder", which exhibits an extensive assembly order like a powder. Deviating from natural packing principles, this tip-to-tip alignment-the upright octahedral superlattice-optimizes near-field focusing on its vertices while maintaining consistently high porosity, allowing for deep penetration of adsorbates. This configuration is advantageous for enabling surface-enhanced Raman scattering of gaseous molecules with reduced background fluorescence signals, particularly under high-intensity laser excitation, a challenging feat with conventional surface-enhanced Raman scattering techniques.
Collapse
Affiliation(s)
- Jeongwon Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Inyoung Choi
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sunwoo Kwon
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wu YL, Jia J, Das J, Riordan KT, Flynn CD, Wang Y, Kelley SO, Odom TW. Antifouling Spiky Nanoelectrodes Enhance Detection of Bacterial mRNA. J Am Chem Soc 2025; 147:7868-7874. [PMID: 39989312 DOI: 10.1021/jacs.4c18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Nanomaterials have extensive applications in the development of sensitive biosensors, but the influence of their specific structural properties remains unclear. This work presents a platform that can provide mechanistic insight into how nanostructured electrodes improve the performance of electrochemical biosensors. We designed nanoelectrodes with sub-10 nm spike features through a combination of top-down lithography and solution-based synthesis. These anisotropic structures facilitated rapid electron-transfer, minimized biofouling, and promoted efficient target capture. Using these spiky nanoelectrodes in a biosensor, we detected bacterial mRNA at aM-levels and within 3 min. Our findings reveal the mechanism underlying signal enhancement from high-curvature regions on nanostructured electrodes, highlighting the structure-property relationships of nanostructures in electrochemical sensing.
Collapse
Affiliation(s)
- Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kimberly T Riordan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Juodėnas M, Khinevich N, Klyvis G, Henzie J, Tamulevičius T, Tamulevičius S. Lasing in an assembled array of silver nanocubes. NANOSCALE HORIZONS 2024; 10:142-149. [PMID: 39470004 DOI: 10.1039/d4nh00263f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We demonstrate a surface lattice resonance (SLR)-based plasmonic nanolaser that leverages bulk production of colloidal nanoparticles and assembly on templates with single particle resolution. SLRs emerge from the hybridization of the plasmonic and photonic modes when nanoparticles are arranged into periodic arrays and this can provide feedback for stimulated emission. It has been shown that perfect arrays are not a strict prerequisite for producing lasing. Here, we propose using high-quality colloids instead. Silver colloidal nanocubes feature excellent plasmonic properties due to their single-crystal nature and low facet roughness. We use capillarity-assisted nanoparticle assembly to produce substrates featuring SLR and comprising single nanocubes. Combined with the laser dye pyrromethene-597, the nanocube array lases at 574 nm with <1.2 nm linewidth, <100 μJ cm-2 lasing threshold, and produces a beam with <1 mrad divergence, despite less-than-perfect arrangement. Such plasmonic nanolasers can be produced on a large-scale and integrated in point-of-care diagnostics, photonic integrated circuits, and optical communications applications.
Collapse
Affiliation(s)
- Mindaugas Juodėnas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Nadzeya Khinevich
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Gvidas Klyvis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| |
Collapse
|
5
|
Jo JS, Lee J, Choi C, Jang JW. Tip-based Lithography with a Sacrificial Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309484. [PMID: 38287738 DOI: 10.1002/smll.202309484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Indexed: 01/31/2024]
Abstract
The fabrication of a highly controlled gold (Au) nanohole (NH) array via tip-based lithography is improved by incorporating a sacrificial layer-a tip-crash buffer layer. This inclusion mitigates scratches during the nano-indentation process by employing a 300 nm thick poly(methyl methacrylate) layer as a sacrificial layer on top of the Au film. Such a precaution ensures minimal scratches on the Au film, facilitating the creation of sub-50 nm Au NHs with a 15 nm gap between the Au NHs. The precision of this method exceeds that of fabricating Au NHs without a sacrificial layer. Demonstrating its versatility, this Au NH array is utilized in two distinct applications: as a dry etching mask to form a molybdenum disulfide hole array and as a catalyst in metal-assisted chemical etching, resulting in conical-shaped silicon nanostructures. Additionally, a significant electric field is generated when Au nanoparticles (NPs) are placed within the Au NHs. This effect arises from coupling electromagnetic waves, concentrated by the Au NHs and amplified by the Au NPs. A notable result of this configuration is the enhancement factor of surface-enhanced Raman scattering, which is an order of magnitude greater than that observed with just Au NHs and Au NPs alone.
Collapse
Affiliation(s)
- Jeong-Sik Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jinho Lee
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Chiwon Choi
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
6
|
Silvestri M, Sahoo A, Assogna L, Benassi P, Ferrante C, Ciattoni A, Marini A. Resonant third-harmonic generation driven by out-of-equilibrium electron dynamics in sodium-based near-zero index thin films. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2003-2013. [PMID: 39635087 PMCID: PMC11501270 DOI: 10.1515/nanoph-2023-0743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 12/07/2024]
Abstract
We investigate resonant third-harmonic generation in near-zero index thin films driven out-of-equilibrium by intense optical excitation. Adopting the Landau weak coupling formalism to incorporate electron-electron and electron-phonon scattering processes, we derive a novel set of hydrodynamic equations accounting for collision-driven nonlinear dynamics in sodium. By perturbatively solving hydrodynamic equations, we model third-harmonic generation by a thin sodium film, finding that such a nonlinear process is resonant at the near-zero index resonance of the third-harmonic signal. Thanks to the reduced absorption of sodium, we observe that third-harmonic resonance can be tuned by the impinging pump radiation angle, efficiently modulating the third-harmonic generation process. Furthermore, owing to the metallic sodium response at the pump optical wavelength, we find that the third-harmonic conversion efficiency is maximised at a peculiar thin film thickness where evanescent back-reflection provides increased field intensity within the thin film. Our results are relevant for the development of future ultraviolet light sources, with potential impact for innovative integrated spectroscopy schemes.
Collapse
Affiliation(s)
- Matteo Silvestri
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100L’Aquila, Italy
| | - Ambaresh Sahoo
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100L’Aquila, Italy
| | - Luca Assogna
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100L’Aquila, Italy
| | - Paola Benassi
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100L’Aquila, Italy
- CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila67100, Italy
| | - Carino Ferrante
- CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila67100, Italy
| | - Alessandro Ciattoni
- CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila67100, Italy
| | - Andrea Marini
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100L’Aquila, Italy
- CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila67100, Italy
| |
Collapse
|
7
|
Boddeti AK, Wang Y, Juarez XG, Boltasseva A, Odom TW, Shalaev V, Alaeian H, Jacob Z. Reducing Effective System Dimensionality with Long-Range Collective Dipole-Dipole Interactions. PHYSICAL REVIEW LETTERS 2024; 132:173803. [PMID: 38728721 DOI: 10.1103/physrevlett.132.173803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 05/12/2024]
Abstract
Dimensionality plays a crucial role in long-range dipole-dipole interactions (DDIs). We demonstrate that a resonant nanophotonic structure modifies the apparent dimensionality in an interacting ensemble of emitters, as revealed by population decay dynamics. Our measurements on a dense ensemble of interacting quantum emitters in a resonant nanophotonic structure with long-range DDIs reveal an effective dimensionality reduction to d[over ¯]=2.20(12), despite the emitters being distributed in 3D. This contrasts with the homogeneous environment, where the apparent dimension is d[over ¯]=3.00. Our work presents a promising avenue to manipulate dimensionality in an ensemble of interacting emitters.
Collapse
Affiliation(s)
- Ashwin K Boddeti
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - Xitlali G Juarez
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexandra Boltasseva
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Teri W Odom
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Vladimir Shalaev
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hadiseh Alaeian
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
- School of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zubin Jacob
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Qi X, Pérez LA, Alonso MI, Mihi A. High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1259-1267. [PMID: 38011896 PMCID: PMC10788823 DOI: 10.1021/acsami.3c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Surface lattice resonances (SLRs) sustained by ordered metal arrays are characterized by their narrow spectral features, remarkable quality factors, and the ability to tune their spectral properties based on the periodicity of the array. However, the majority of these structures are fabricated using classical lithographic processes or require postannealing steps at high temperatures to enhance the quality of the metal. These limitations hinder the widespread utilization of these periodic metal arrays in various applications. In this work, we use the scalable technique of template-assisted assembly of metal colloids to produce plasmonic supercrystals over centimeter areas capable of sustaining SLRs with high Q factors reaching up to 270. Our approach obviates the need for any postprocessing, offering a streamlined and efficient fabrication route. Furthermore, our method enables extensive tunability across the entire visible and near-infrared spectral ranges, empowering the design of tailored plasmonic resonant structures for a wide range of applications.
Collapse
Affiliation(s)
| | | | - Maria Isabel Alonso
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Agustín Mihi
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
9
|
Jia J, Metzkow N, Park SM, Wu YL, Sample AD, Diloknawarit B, Jung I, Odom TW. Spike Growth on Patterned Gold Nanoparticle Scaffolds. NANO LETTERS 2023. [PMID: 38048438 DOI: 10.1021/acs.nanolett.3c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nadia Metzkow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Zhang M, Chai Y, Liu H, He Z, Kang G. Crossed grating sensing refractive index change in the non-laboratory environment. OPTICS LETTERS 2023; 48:5815-5818. [PMID: 37910766 DOI: 10.1364/ol.504556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Surface plasmon polaritons (SPPs) have been widely applied to refractive index (RI) sensing for their extremely high sensitivity to the surrounding RI change. Many efforts have been devoted to narrowing the linewidth of the SPP mode and enhancing the sensitivity of SPP sensors. However, most reported SPP-based RI sensing platforms could only operate in a laboratory environment for their bulky volume or sophisticated measuring systems. In this context, we have developed a miniaturized and portable RI sensing platform based on a 2D crossed grating coupled SPP sensor that can work under a non-laboratory environment. The crossed grating is fabricated by the laser interference lithography (LIL) method, which is cost-effective and reproductive. A series of glucose solutions with different concentrations have been used as analytes to verify the sensing performance of the fabricated crossed grating.
Collapse
|
11
|
Wang D, Hu J, Schatz GC, Odom TW. Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics. J Phys Chem Lett 2023; 14:8525-8530. [PMID: 37722092 DOI: 10.1021/acs.jpclett.3c02158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
This paper describes how two-dimensional plasmonic nanoparticle lattices covered with microscale arrays of dielectric patches can show superlattice surface lattice resonances (SLRs). These optical resonances originate from multiscale diffractive coupling that can be controlled by the periodicity and size of the patterned dielectrics. The features in the optical dispersion diagram are similar to those of index-matched microscale arrays of metal nanoparticle lattices, having the same lateral dimensions as the dielectric patches. With an increase in nanoparticle size, superlattice SLRs can also support quadrupole excitations with distinct dispersion diagrams. The tunable optical band structure enabled by patterned dielectrics on plasmonic nanoparticle arrays offers prospects for enhanced nonlinear optics, nanoscale lasing, and engineered parity-time symmetries.
Collapse
|
12
|
Han D, Ye T, Wei Y. Spatial modulation of scalable nanostructures by combining maskless plasmonic lithography and grayscale-patterned strategy. NANOSCALE ADVANCES 2023; 5:4424-4434. [PMID: 37638165 PMCID: PMC10448319 DOI: 10.1039/d3na00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/23/2023] [Indexed: 08/29/2023]
Abstract
Nanolithography techniques providing good scalability and feature size controllability are of great importance for the fabrication of integrated circuits (IC), MEMS/NEMS, optical devices, nanophotonics, etc. Herein, a cost-effective, easy access, and high-fidelity patterning strategy that combines the high-resolution capability of maskless plasmonic lithography with the spatial morphology controllability of grayscale lithography is proposed to generate the customized pattern profile from microscale to nanoscale. Notably, the scaling effect of gap size in plasmonic lithography with a contact bowtie-shaped nanoaperture (BNA) is found to be essential to the rapid decay characteristics of an evanescent field, which leads to a wide energy bandwidth of the required optimal dose to record pattern in per unit volume, and hence, achieves the volumetrically scalable control of the photon energy deposition in the space more precisely. Based on the proper calibration and cooperation of pattern width and depth, a grayscale-patterned map is designed to compensate for the dose difference caused by the loss of the high spatial frequency component of the evanescent field. A Lena nanostructure with varying feature sizes by spatially modulating the exposure dose distribution was successfully demonstrated, and besides, we also successfully generated a microlens array (MLA) with high uniformity. The practical patterning method makes plasmonic lithography significant in the fabrication of functional nanostructures with high performance, including metasurfaces, plasmonics, and optical imaging systems.
Collapse
Affiliation(s)
- Dandan Han
- University of Chinese Academy of Sciences, School of Integrated Circuits Beijing 100049 China
| | - Tianchun Ye
- University of Chinese Academy of Sciences, School of Integrated Circuits Beijing 100049 China
- Chinese Academy of Sciences, Institute of Microelectronics Beijing 100029 China
| | - Yayi Wei
- University of Chinese Academy of Sciences, School of Integrated Circuits Beijing 100049 China
- Chinese Academy of Sciences, Institute of Microelectronics Beijing 100029 China
| |
Collapse
|
13
|
Gao Z, Wildenborg A, Kocoj CA, Liu E, Sheofsky C, Rawashdeh A, Qu H, Guo P, Suh JY, Yang A. Low-Loss Plasmonics with Nanostructured Potassium and Sodium-Potassium Liquid Alloys. NANO LETTERS 2023; 23:7150-7156. [PMID: 37477493 DOI: 10.1021/acs.nanolett.3c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Alkali metals have low optical losses in the visible to near-infrared (NIR) compared with noble metals. However, their high reactivity prohibits the exploration of their optical properties. Recently sodium (Na) has been experimentally demonstrated as a low-loss plasmonic material. Here we report on a thermo-assisted nanoscale embossing (TANE) technique for fabricating plasmonic nanostructures from pure potassium (K) and NaK liquid alloys. We show high-quality-factor resonances from K as narrow as 15 nm in the NIR, which we attribute to the high material quality and low optical loss. We further demonstrate liquid Na-K plasmonics by exploiting the Na-K eutectic phase diagram. Our study expands the material library for alkali metal plasmonics and liquid plasmonics, potentially enabling a range of new material platforms for active metamaterials and photonic devices.
Collapse
Affiliation(s)
- Zhi Gao
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Aaron Wildenborg
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Eric Liu
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Caden Sheofsky
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Abdelsalam Rawashdeh
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Hongwei Qu
- Department of Electrical & Computer Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jae Yong Suh
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ankun Yang
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
14
|
Tanjil MRE, Gupta T, Gole MT, Suero KP, Yin Z, McCleeary DJ, Douglas ORT, Kincanon MM, Rudawski NG, Anderson AB, Murphy CJ, Zhao H, Wang MC. Nanoscale goldbeating: Solid-state transformation of 0D and 1D gold nanoparticles to anisotropic 2D morphologies. PNAS NEXUS 2023; 2:pgad267. [PMID: 37621403 PMCID: PMC10446819 DOI: 10.1093/pnasnexus/pgad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Goldbeating is the ancient craft of thinning bulk gold (Au) into gossamer leaves. Pioneered by ancient Egyptian craftsmen, modern mechanized iterations of this technique can fabricate sheets as thin as ∼100 nm. We take inspiration from this millennia-old craft and adapt it to the nanoscale regime, using colloidally synthesized 0D/1D Au nanoparticles (AuNPs) as highly ductile and malleable nanoscopic Au ingots and subjecting them to solid-state, uniaxial compression. The applied stress induces anisotropic morphological transformation of AuNPs into 2D leaf form and elucidates insights into metal nanocrystal deformation at the extreme length scales. The induced 2D morphology is found to be dependent on the precursor 0D/1D NP morphology, size (0D nanosphere diameter and 1D nanorod diameter and length), and their on-substrate arrangement (e.g., interparticle separation and packing order) prior to compression. Overall, this versatile and generalizable solid-state compression technique enables new pathways to synthesize and investigate the anisotropic morphological transformation of arbitrary NPs and their resultant emergent phenomena.
Collapse
Affiliation(s)
- Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Tanuj Gupta
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Matthew T Gole
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keegan P Suero
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhewen Yin
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Donald J McCleeary
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Ossie R T Douglas
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Maegen M Kincanon
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas G Rudawski
- Herbert Wertheim College of Engineering Research Service Centers, University of Florida, Gainesville, FL 32611, USA
| | - Alissa B Anderson
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huijuan Zhao
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
| | - Michael Cai Wang
- Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
15
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Rawashdeh A, Wildenborg A, Liu E, Gao Z, Czaplewski DA, Qu H, Suh JY, Yang A. High-Quality Surface Plasmon Polaritons in Large-Area Sodium Nanostructures. NANO LETTERS 2023; 23:469-475. [PMID: 36630601 DOI: 10.1021/acs.nanolett.2c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sodium (Na) is predicted to be an ideal plasmonic material with ultralow optical loss across visible to near-infrared (NIR). However, there has been limited research on Na plasmonics. Here we develop a scalable fabrication method for Na nanostructures by combining phase-shift photolithography and a thermo-assisted spin-coating process. Using this method, we fabricated Na nanopit arrays with varying periodicities (300-600 nm) and with tunable surface plasmon polariton (SPP) modes spanning visible to NIR. We achieved SPP resonances as narrow as 9.3 nm. In addition, Na nanostructures showed line width narrowing from visible toward NIR, showing their prospect operating in the NIR. To address the challenges associated with the high reactivity of Na, we designed a simple encapsulation strategy and stabilized the Na nanostructures in ambient conditions for more than two months. As a low-cost and low-loss plasmonic material, Na offers a competitive option for nanophotonic devices and plasmon-enhanced applications.
Collapse
Affiliation(s)
- Abdelsalam Rawashdeh
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan48309, United States
| | - Aaron Wildenborg
- Department of Physics, Michigan Technological University, Houghton, Michigan49931, United States
| | - Eric Liu
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan48309, United States
| | - Zhi Gao
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan48309, United States
| | - David A Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hongwei Qu
- Department of Electrical & Computer Engineering, Oakland University, Rochester, Michigan48309, United States
| | - Jae Yong Suh
- Department of Physics, Michigan Technological University, Houghton, Michigan49931, United States
| | - Ankun Yang
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan48309, United States
| |
Collapse
|
17
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Geng J, Yan W, Shi L, Qiu M. Quasicylindrical Waves for Ordered Nanostructuring. NANO LETTERS 2022; 22:9658-9663. [PMID: 36394454 DOI: 10.1021/acs.nanolett.2c03851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced self-organization of periodic nanostructures on highly absorbing materials is widely understood to be due to interference between laser and surface plasmon polaritons (SPPs) that are excited by initial surface roughness. The structure order naturally emerges from the propagation phase of SPPs. Here, we reveal an unexplored mechanism that is predominantly induced by quasicylindrical waves (QCWs) with negligible contributions from SPPs. This mechanism features a new principle of order emergence in growth of periodic nanostructures through short-range electromagnetic interactions between QCWs and marginal nanofringes. In this scenario, the periodicity of nanostructures is not simply determined by the electromagnetic wavelength. With suppressed long-range interactions, the formation of nanostructures shows a domino-like growth process, thus significantly improving structure uniformity. An in situ microscopic observation is performed to characterize the temporal dynamics of structural growth and verify the new mechanism. Further, the QCWs are directly observed in experiments, which are theoretically supported by a scattering model.
Collapse
Affiliation(s)
- Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Liping Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan 430079, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
19
|
Della Sala F, Pachter R, Sukharev M. Advances in modeling plasmonic systems. J Chem Phys 2022; 157:190401. [DOI: 10.1063/5.0130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Fabio Della Sala
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, LE, Italy
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
20
|
Garg A, Mejia E, Nam W, Vikesland P, Zhou W. Biomimetic Transparent Nanoplasmonic Meshes by Reverse-Nanoimprinting for Bio-Interfaced Spatiotemporal Multimodal SERS Bioanalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204517. [PMID: 36161480 DOI: 10.1002/smll.202204517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Mejia E, Song J, Zhao Y, Qian Y, Xiao C, Lezec HJ, Agrawal A, Zhou W. Scalable two-tier protruding micro-/nano-optoelectrode arrays with hybrid optical-electrical modalities by hierarchical modular design. NANOSCALE 2022; 14:15373-15383. [PMID: 36218083 DOI: 10.1039/d2nr03820j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In situ spatiotemporal characterization of correlated bioelectrical and biochemical processes in living multicellular systems remains a formidable challenge but can offer crucial opportunities in biology and medicine. A promising approach is to develop bio-interfaced multifunctional micro-/nano-sensor arrays with complementary biophotonic-bioelectronic modalities and biomimetic topology to achieve combined bioelectrical and biochemical detection and tight device-cell coupling. However, a system-level engineering strategy is still missing to create multifunctional micro-/nano-sensor arrays that meet the multifaceted design requirements for in situ spatiotemporal characterizations of living systems. Here, we demonstrate a hierarchical modular design and fabrication approach to develop scalable two-tier protruding micro-/nano-optoelectrode arrays that extend the design space of biomimetic micro-/nano-pillar topology, plasmonic nanoantenna-based biophotonic function in surface-enhanced Raman spectroscopy (SERS), and micro-/nano-electrode-based bioelectronics function in electrochemical impedance spectroscopy (EIS). Notably, two-tier protruding micro-/nano-optoelectrode arrays composed of nanolaminate nanoantenna arrays on top of micropillar electrode arrays can support plasmonic nanocavity modes with high SERS enhancement factors (≈106) and large surface-to-volume ratio with significantly reduced interfacial impedance in EIS measurements. We envision that scalable two-tier protruding micro-/nano-optoelectrode arrays can potentially serve as bio-interfaced multifunctional micro-/nano-sensor arrays for in situ correlated spatiotemporal bioelectrical-biochemical measurements of living multicellular systems such as neuronal network cultures, cancerous organoids, and microbial biofilms.
Collapse
Affiliation(s)
- Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Junyeob Song
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yuming Zhao
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yizhou Qian
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chuan Xiao
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Henri J Lezec
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Amit Agrawal
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Choi BB, Kim B, Bice J, Taylor C, Jiang P. Inverse DVD-R grating structured SPR sensor platform with high sensitivity and figure of merit. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
24
|
Bojanowski NM, Huck C, Veith L, Strunk KP, Bäuerle R, Melzer C, Freudenberg J, Wacker I, Schröder RR, Tegeder P, Bunz UHF. Electron-beam lithography of cinnamate polythiophene films: conductive nanorods for electronic applications. Chem Sci 2022; 13:7880-7885. [PMID: 35865884 PMCID: PMC9258344 DOI: 10.1039/d2sc01867e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
We report the electron-beam induced crosslinking of cinnamate-substituted polythiophene proceeding via excited state [2+2]-cycloaddition. Network formation in thin films is evidenced by infrared spectroscopy and film retention experiments. For the polymer studied herin, the electron-stimulated process appears to be superior to photo (UV)-induced crosslinking as it leads to less degradation. Electron beam lithography (EBL) patterns cinnamate-substituted polythiophene thin films on the nanoscale with a resolution of around 100 nm. As a proof of concept, we fabricated nanoscale organic transistors using doped and cross-linked P3ZT as contact fingers in thin film transistors. Electron beam lithography patterns selectively cinnamate-substituted polythiophene thin films via [2+2]-cycloaddition. A nanoscale organic field effect transistor is constructed using cross-linked and doped polythiophene as electrodes.![]()
Collapse
Affiliation(s)
- N Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Christian Huck
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany.,Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Lisa Veith
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | | | - Rainer Bäuerle
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany .,InnovationLab GmbH Speyerer Straße 4 69115 Heidelberg Germany
| | | | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Irene Wacker
- BioQuant, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Rasmus R Schröder
- BioQuant, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Petra Tegeder
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany.,Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany .,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
25
|
Geng J, Yan W, Shi L, Qiu M. Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. LIGHT, SCIENCE & APPLICATIONS 2022; 11:189. [PMID: 35739105 PMCID: PMC9226179 DOI: 10.1038/s41377-022-00883-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 05/20/2023]
Abstract
It is always a great challenge to bridge the nano- and macro-worlds in nanoscience, for instance, manufacturing uniform nanogratings on a whole wafer in seconds instead of hours even days. Here, we demonstrate a single-step while extremely high-throughput femtosecond laser scanning technique to obtain wafer-scale, highly regular nanogratings on semiconductor-on-metal thin films. Our technique takes advantage of long-range surface plasmons-laser interference, which is regulated by a self-initiated seed. By controlling the scanning speed, two types of nanogratings are readily manufactured, which are produced by either oxidation or ablation. We achieve a record manufacturing speed (>1 cm2 s-1), with tunable periodicity of Λ < 1 µm. The fractional variation of their periodicity is evaluated to be as low as ∆Λ/Λ ≈ 0.5%. Furthermore, by utilizing the semiconductor-on-metal film-endowed interference effects, an extremely high energy efficiency is achieved via suppressing light reflection during femtosecond laser nano-processing. As the fabricated nanogratings exhibit multi-functionality, we exemplify their practical applications in highly sensitive refractive index sensing, vivid structural colors, and durable superhydrophilicity.
Collapse
Affiliation(s)
- Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Liping Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
26
|
Segervald J, Boulanger N, Salh R, Jia X, Wågberg T. Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering. NANO SELECT 2022. [DOI: 10.1002/nano.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | | | - Xueen Jia
- Department of Physics Umeå University Umeå Sweden
| | | |
Collapse
|
27
|
Zhao J, Chen H, Song K, Xiang L, Zhao Q, Shang C, Wang X, Shen Z, Wu X, Hu Y, Zhao X. Ultralow loss visible light metamaterials assembled by metaclusters. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2953-2966. [PMID: 39634084 PMCID: PMC11501988 DOI: 10.1515/nanoph-2022-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/07/2024]
Abstract
Optical metamaterials give birth to the control and regulation of light. However, because of strong energy dissipation and fabrication difficulty in meta-atoms, low-loss isotropic three dimensional negative index metamaterials (NIMs) in the visible spectrum has long been regarded as an extremely challenging. Here, we report an ultralow loss isotropic metamaterials for visible light and its inverse Doppler effect. The ball-thorn-shaped metaclusters with symmetrical structure consisting of the dielectric and its surface dispersed super-thin silver layer was proposed, the surface plasma resonance is formed by discrete silver layer with a thickness of two or three atomic layers. We invented a unique technique for preparing ultralow loss isotropic clusters and three-dimensional large block samples. The negative refractive index and the inverse Doppler effect of green and red light is measured by the prism method for the first time. The discrete super-thin silver layer produced by the photoreduction method greatly reduces the generation of loss and break through noble metal high energy losses of traditional optical frequency metamaterial, the metaclusters unfold bottleneck of the nano-assemble visible light metamaterials, opening a door for disorder assembling ultralow loss isotropic three-dimensional large block NIMs devices of arbitrary shape.
Collapse
Affiliation(s)
- Jing Zhao
- Medtronic plc, Boulder, CO80301, USA
| | - Huan Chen
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Kun Song
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Liqin Xiang
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Qian Zhao
- State Key Lab Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Chaohong Shang
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Xiaonong Wang
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Zhijie Shen
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Xianfeng Wu
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Yajie Hu
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| | - Xiaopeng Zhao
- Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an710129, P. R. China
| |
Collapse
|
28
|
Xu C, Liu H, Yang S. Drawing at the Nanoscale through Macroscopic Movement. SMALL METHODS 2022; 6:e2200293. [PMID: 35478330 DOI: 10.1002/smtd.202200293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Nanopatterns are important for applications in various nanodevice fields. Existing nanopatterning techniques mainly directly manufacture the nanopatterns through various lithographic methods, which usually are laborious, time-consuming, and need expensive equipment. Here, an extremely simple drawing at the nanoscale (DAN) concept to indirectly fabricate rational nanopatterns through controlling the macroscopic movement of the substrate , is demonstrated. The structure of the nanopatterns is completely determined by and can be shrunk by millions of times from the moving track of the substrate. Multiple surface nanopatterns of different materials with accurately tailorable relative positions can be simply stacked together by moving the substrate by macroscopic distances during different DAN processes. In combination with sophisticated lithographic methods, the DAN method is anticipated to enable substantial advances in nanofabrication.
Collapse
Affiliation(s)
- Chao Xu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Medical Oncology, The first affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
29
|
Deng S, Park JE, Kang G, Guan J, Li R, Schatz GC, Odom TW. Interfacial engineering of plasmonic nanoparticle metasurfaces. Proc Natl Acad Sci U S A 2022; 119:e2202621119. [PMID: 35605124 PMCID: PMC9295783 DOI: 10.1073/pnas.2202621119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceMolecules interacting with metallic nanostructures can show tunable exciton-plasmon coupling, ranging from weak to strong. One factor that influences the interactions is the spatial organization of the molecules relative to the localized plasmon-enhanced electromagnetic fields. In this work, we show that the arrangement of aromatic dye molecules can be tuned within plasmonic hotspots by interfacial engineering of nanoparticle surfaces. By controlling the local chemical and physical interactions, we could modulate lasing thresholds. Surface-functionalized plasmonic metasurfaces open prospects for programmable light-matter interactions at the nanoscale.
Collapse
Affiliation(s)
- Shikai Deng
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Jeong-Eun Park
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Gyeongwon Kang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Jun Guan
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Ran Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
30
|
Yang L, Conley BM, Rathnam C, Cho HY, Pongkulapa T, Conklin B, Lee KB. Predictive Biophysical Cue Mapping for Direct Cell Reprogramming Using Combinatorial Nanoarrays. ACS NANO 2022; 16:5577-5586. [PMID: 35301847 DOI: 10.1021/acsnano.1c10344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
31
|
Plasmon-Induced Transparency for Tunable Atom Trapping in a Chiral Metamaterial Structure. NANOMATERIALS 2022; 12:nano12030516. [PMID: 35159861 PMCID: PMC8838906 DOI: 10.3390/nano12030516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022]
Abstract
Plasmon-induced transparency (PIT), usually observed in plasmonic metamaterial structure, remains an attractive topic for research due to its unique optical properties. However, there is almost no research on using the interaction of plasmonic metamaterial and high refractive index dielectric to realize PIT. Here, we report a novel nanophotonics system that makes it possible to realize PIT based on guided-mode resonance and numerically demonstrate its transmission and reflection characteristics by finite element method simulations. The system is composed of a high refractive-index dielectric material and a two-dimensional metallic photonic crystal with 4-fold asymmetric holes. The interaction mechanism of the proposed structure is analyzed by the coupled-mode theory, and the effects of the parameters on PIT are investigated in detail. In addition, we first consider this PIT phenomenon of such fields on atom trapping (87Rb), and the results show that a stable 3D atom trapping with a tunable range of position of about ~17 nm is achieved. Our work provides a novel, efficient way to realize PIT, and it further broadens the application of plasmonic metamaterial systems.
Collapse
|
32
|
Tang J, Zou R, Zhang X, Zhong Y, Li M, Feng Y, Wei X, Wang J. Combination of Universal Chemical Deposition and Unique Liquid Etching for the Design of Superhydrophobic Aramid Paper with Bioinspired Multiscale Hierarchical Dendritic Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4791-4807. [PMID: 35029108 DOI: 10.1021/acsami.1c24513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is urgent and significant for the further development of superhydrophobic materials to exploit a facile, low-cost, scalable, and eco-friendly method for the manufacture of superhydrophobic materials with self-cleaning, antifouling, directional transportation, and other characteristics. Herein, an outstanding superhydrophobic material composed of a flexible microconvex aramid paper substrate, micron-scale cone-shaped copper, micro-nanoscale dendritic copper oxide, and hydrophobic copper stearate film has been successfully constructed through delicate architectural design and a convenient preparation approach. Based on the microstructure evolution and composition analysis results, it is revealed that the cone-shaped copper was etched into a dendritic copper oxide structure step by step from the top to bottom and from the outside to inside in an alkaline liquid environment. Moreover, by virtue of the compositional features and structural characteristics, the constructed superhydrophobic material showcased a high contact angle (CA), low sliding angle (SA), high porosity, low surface free energy, and adhesion work. Meanwhile, the dendritic microstructure analysis, the calculation of solid-liquid interfacial tension, and the force analysis of water droplets jointly revealed the mechanism of the bounce and merged bounce of water droplets. Finally, this superhydrophobic material has the functions of self-cleaning, antifouling, and directional transportation, especially by controlling the deformation of the material to realize the transportation of water droplets in a specified direction.
Collapse
Affiliation(s)
- Jianbin Tang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Ruiqing Zou
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Zhang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Yun Zhong
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Mengyao Li
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Yujia Feng
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xinpeng Wei
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
33
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
35
|
Sample AD, Guan J, Hu J, Reese T, Cherqui CR, Park JE, Freire-Fernández F, Schaller RD, Schatz GC, Odom TW. Strong Coupling Between Plasmons and Molecular Excitons in Metal-Organic Frameworks. NANO LETTERS 2021; 21:7775-7780. [PMID: 34490777 DOI: 10.1021/acs.nanolett.1c02740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This Letter describes strong coupling of densely packed molecular emitters in metal-organic frameworks (MOFs) and plasmonic nanoparticle (NP) lattices. Porphyrin-derived ligands with small transition dipole moments in an ordered MOF film were grown on Ag NP arrays. Angle-resolved optical measurements of the MOF-NP lattice system showed the formation of a polariton that is lower in energy and does not cross the uncoupled MOF Q1 band. Modeling predicted the upper polariton energy and a calculated Rabi splitting of 110 meV. The coupling strength was systematically controlled by detuning the plasmon energy by changing the refractive index of the solvents infiltrating the MOF pores. Through transient absorption spectroscopy, we found that the lower polariton decays quickly at shorter time scales (<500 ps) and slowly at longer times because of energy transfer from the upper polariton. This hybrid system demonstrates how MOFs can function as an accessible excitonic material for polariton chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | |
Collapse
|
36
|
Jia S, Li Z, Chen J. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array. OPTICS EXPRESS 2021; 29:21358-21368. [PMID: 34265925 DOI: 10.1364/oe.430684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic sensors exhibit enormous potential in the areas of environmental monitoring, biomedical diagnostics, healthcare, food safety, security, and chemical reactions. However, the large bandwidths of surface-plasmon response spectra greatly reduce the sensitivities and detection limits of plasmonic sensors. Herein, we propose to tilt a metallic nano-groove array to reduce linewidths of Fano resonances, and the figure of merit (FOM) of a refractive index sensor is greatly increased. The Fano resonances stem from interference between narrow SPP resonant modes and a broad LSP mode in the metallic nano-groove array. When tilting the metallic nano-groove array, new Fano resonances emerge, greatly compressing the linewidth of Fano resonance of interest to ∼1.1 nm in the simulation. Experimentally, a narrow Fano resonance with a linewidth of Δλ≈2.5 nm is achieved, and a high-FOM (FOM ≈ 263) plasmonic sensor is demonstrated. This value of FOM is more than 4.7 times that (FOM ≤ 55) of Fano sensors based on SPP modes, and it is even approximately twice that (FOM ≈ 140) of the previous Fano sensor based on Wood's Anomaly.
Collapse
|
37
|
Nanophotonic biosensors harnessing van der Waals materials. Nat Commun 2021; 12:3824. [PMID: 34158483 PMCID: PMC8219843 DOI: 10.1038/s41467-021-23564-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enhance plasmonic field confinement, boosting sensitivity and efficiency compared to conventional nanophotonic devices that rely on surface plasmon resonance in metallic films. Furthermore, the reduction of dielectric screening in vdW materials enables electrostatic tunability of different polariton modes, including plasmons, excitons, and phonons. One-dimensional vdW materials, particularly single-walled carbon nanotubes, possess unique form factors with confined excitons to enable single-molecule detection as well as in vivo biosensing. We discuss basic sensing principles based on vdW materials, followed by technological challenges such as surface chemistry, integration, and toxicity. Finally, we highlight progress in harnessing vdW materials to demonstrate new sensing functionalities that are difficult to perform with conventional metal/dielectric sensors. This review presents an overview of scenarios where van der Waals (vdW) materials provide unique advantages for nanophotonic biosensing applications. The authors discuss basic sensing principles based on vdW materials, advantages of the reduced dimensionality as well as technological challenges.
Collapse
|
38
|
Choi BB, Kim B, Chen Y, Jiang P. Improved Surface Plasmon Resonance Sensing Sensitivity due to an Electrochemically Potential-Induced Gold Reconstruction. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2020.01767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kim I, Martins RJ, Jang J, Badloe T, Khadir S, Jung HY, Kim H, Kim J, Genevet P, Rho J. Nanophotonics for light detection and ranging technology. NATURE NANOTECHNOLOGY 2021; 16:508-524. [PMID: 33958762 DOI: 10.1038/s41565-021-00895-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/10/2021] [Indexed: 05/21/2023]
Abstract
Light detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and unmanned aerial vehicle reconnaissance. Until recently, LiDAR has relied on light sources and detectors mounted on multiple mechanically rotating optical transmitters and receivers to cover an entire scene. Such an architecture gives rise to limitations in terms of the imaging frame rate and resolution. In this Review, we examine how novel nanophotonic platforms could overcome the hardware restrictions of existing LiDAR technologies. After briefly introducing the basic principles of LiDAR, we present the device specifications required by the industrial sector. We then review a variety of LiDAR-relevant nanophotonic approaches such as integrated photonic circuits, optical phased antenna arrays and flat optical devices based on metasurfaces. The latter have already demonstrated exceptional functional beam manipulation properties, such as active beam deflection, point-cloud generation and device integration using scalable manufacturing methods, and are expected to disrupt modern optical technologies. In the outlook, we address the upcoming physics and engineering challenges that must be overcome from the viewpoint of incorporating nanophotonic technologies into commercially viable, fast, ultrathin and lightweight LiDAR systems.
Collapse
Affiliation(s)
- Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Renato Juliano Martins
- Université Côte d'Azur, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications (CRHEA), CNRS, Valbonne, France
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Samira Khadir
- Université Côte d'Azur, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications (CRHEA), CNRS, Valbonne, France
| | - Ho-Youl Jung
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hyeongdo Kim
- Advanced Technology Research Center, SL Corporation, Gyeongsan, Republic of Korea
| | - Jongun Kim
- Advanced Technology Research Center, SL Corporation, Gyeongsan, Republic of Korea
| | - Patrice Genevet
- Université Côte d'Azur, Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications (CRHEA), CNRS, Valbonne, France.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
40
|
Li QS, Zhang XL, Yang JH, Ma YH, Cai L, Yang Y, Shi JG, Dong WF. Extremely sensitive multi-order mode refractive index sensor using TiO 2 nanograss film and weakly bounded waveguide modes. OPTICS EXPRESS 2021; 29:13520-13529. [PMID: 33985085 DOI: 10.1364/oe.421691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
An extremely sensitive multi-order mode refractive index (RI) sensor was fabricated by coupling titanium dioxide nanograss film coated FTO conductive glass with Kretschmann prism. Both calculation and experimental studies were carried out. Theoretical analysis by employing resonant waveguide modes indicated that the maximum sensitivity could be achieved when the mode worked at the weakly-bounded condition. The experimental results showed that for p-polarized and s-polarized light, the sensor exhibited a maximum RI sensitivity of 2938.21 nm/RI unit (RIU) and 1484.39 nm/RIU in the 1st order mode, respectively. Its maximum figure of merit was as high as 77.77. The proposed sensor is promising to be applied in environmental monitoring, immune analysis, nucleic acid test, etc.
Collapse
|
41
|
Liu Q, Zhao J, Guo J, Wu R, Liu W, Chen Y, Du G, Duan H. Sub-5 nm Lithography with Single GeV Heavy Ions Using Inorganic Resist. NANO LETTERS 2021; 21:2390-2396. [PMID: 33683892 DOI: 10.1021/acs.nanolett.0c04304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we demonstrate a process having the capability to realize single-digit nanometer lithography using single heavy ions. By adopting 2.15 GeV 86Kr26+ ions as the exposure source and hydrogen silsesquioxane (HSQ) as a negative-tone inorganic resist, ultrahigh-aspect-ratio nanofilaments with sub-5 nm feature size, following the trajectory of single heavy ions, were reliably obtained. Control experiments and simulation analysis indicate that the high-resolution capabilities of both HSQ resist and the heavy ions contribute the sub-5 nm fabrication result. Our work on the one hand provides a robust evidence that single heavy ions have the potential for single-digit nanometer lithography and on the other hand proves the capability of inorganic resists for reliable sub-5 nm patterning. Along with the further development of heavy-ion technology, their ultimate patterning resolution is supposed to be more accessible for device prototyping and resist evaluation at the single-digit nanometer scale.
Collapse
Affiliation(s)
- Qing Liu
- National Engineering Research Center for High Efficiency Grinding, State-Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jing Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruqun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqin Chen
- National Engineering Research Center for High Efficiency Grinding, State-Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huigao Duan
- National Engineering Research Center for High Efficiency Grinding, State-Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
42
|
Deng S, Zhang B, Choo P, Smeets PJM, Odom TW. Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices. NANO LETTERS 2021; 21:1523-1529. [PMID: 33508199 DOI: 10.1021/acs.nanolett.0c05029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports that strongly coupled bimetallic core-shell nanoparticle arrays show photoelectrocatalytic activity for hydrogen evolution reactions (HER). We fabricated large-area Cu-Pt nanoparticle lattices by combining top-down lithography and solution-based chemistry. These coupled lattices support two different types of plasmon modes, localized surface plasmons from individual particles and surface lattice resonances (SLRs) from the 2D lattice, that increased HER catalytic activity under white-light illumination up to 60%. Comparing photoelectrocatalytic performances of the two plasmon modes at different wavelength ranges, we found that SLRs had two-fold activity enhancement over that from localized surface plasmons.
Collapse
Affiliation(s)
- Shikai Deng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bowei Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul J M Smeets
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Pan Y, Wang L, Su X, Gao D, Cheng P. Nanolasers Incorporating Co xGa 0.6-xZnSe 0.4 Nanoparticle Arrays with Wavelength Tunability at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6975-6986. [PMID: 33502158 DOI: 10.1021/acsami.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Semiconductor nanolaser has important research value and wide applications in many fields. However, it is still a challenge to obtain a nanolaser with tunability and high intensity at the nanoscale. Here, we report on lasers with two modes of emission wavelengths operating in near-infrared of nanohole filled with CoxGa0.6-xZnSe0.4 nanoparticle arrays at room temperature. The nanohole arrays are drawn on the photoresist by using the method of three-beam laser interferometric etching. Graphene with graphite which is coated on nanohole arrays is conducted by pulsed laser deposition (PLD) to construct the cavity. The CoxGa0.6-xZnSe0.4 nanoparticles are filled into the nanohole acting laser gain medium via the magnetic traction nanofilling technology. The results show that the laser at 868 and 903 nm is radiated, which can be tuned by changing the concentration and position of the filled nanoparticles in terms of wavelength and intensity. The nanolasers based on this approach represent an advantageous alternative to other design and fabrication methods. This nanoparticle nanolasers can be used in a micronano light source of an intelligent photonic chip.
Collapse
Affiliation(s)
- Yong Pan
- College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li Wang
- Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xueqiong Su
- Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Dongwen Gao
- Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Peng Cheng
- Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
44
|
Xiao C, Zhao Y, Zhou W. Nanoimprinted conducting nanopillar arrays made of MWCNT/polymer nanocomposites: a study by electrochemical impedance spectroscopy. NANOSCALE ADVANCES 2021; 3:556-566. [PMID: 36131730 PMCID: PMC9419572 DOI: 10.1039/d0na00200c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/26/2020] [Indexed: 06/15/2023]
Abstract
Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved electrical recording and electrochemical sensing performance in bio-electronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by the conventional nanofabrication approach still face challenges in terms of high manufacturing costs, poor scalability, and limited carrier substrates. Here, we report a new type of conducting nanopillar array composed of multi-walled carbon nanotube (MWCNT) doped polymeric nanocomposites, which are manufactured on the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of perfluoropolyether nanowell-array templates into uncured MWCNT/polymer mixtures. By controlling the MWCNT ratios and the annealing temperatures during the fabrication process, MWCNT/polymer nanopillar arrays can be endowed with outstanding electrical properties with high DC conductivity (∼4 S m-1) and low AC electrochemical impedance (∼104 Ω at 1000 Hz). Moreover, by electrochemical impedance spectroscopy (EIS) measurements and equivalent circuit modeling analysis, we can decompose the overall impedance of the MWCNT/polymer nanopillar arrays in the electrolyte into multiple bulk and interfacial circuit components, and can thus illustrate their different dependences on the MWCNT ratios and the annealing temperatures. In particular, we find that an appropriate annealing process can significantly reduce the anomalous ion diffusion impedance and improve the MWCNT/polymer nanopillars' impedance properties in the electrolyte.
Collapse
Affiliation(s)
- Chuan Xiao
- Department of Electrical and Computer Engineering, Virginia Tech Blacksburg VA 24060 USA
| | - Yuming Zhao
- Department of Electrical and Computer Engineering, Virginia Tech Blacksburg VA 24060 USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech Blacksburg VA 24060 USA
| |
Collapse
|
45
|
Su Y, Geng Z, Fang W, Lv X, Wang S, Ma Z, Pei W. Route to Cost-Effective Fabrication of Wafer-Scale Nanostructure through Self-Priming Nanoimprint. MICROMACHINES 2021; 12:121. [PMID: 33498873 PMCID: PMC7911382 DOI: 10.3390/mi12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Nanoimprint technology is powerful for fabricating nanostructures in a large area. However, expensive equipment, high cost, and complex process conditions hinder the application of nano-imprinting technology. Therefore, double-layer self-priming nanoimprint technology was proposed to fabricate ordered metal nanostructures uniformly on 4-inch soft and hard substrates without the aid of expensive instruments. Different nanostructure (gratings, nanoholes and nanoparticles) and different materials (metal and MoS2) were patterned, which shows wide application of double-layer self-priming nanoimprint technology. Moreover, by a double-layer system, the width and the height of metal can be adjusted through the photoresist thickness and developing condition, which provide a programmable way to fabricate different nanostructures using a single mold. The double-layer self-priming nanoimprint method can be applied in poor condition without equipment and be programmable in nanostructure parameters using a single mold, which reduces the cost of instruments and molds.
Collapse
Affiliation(s)
- Yue Su
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (Y.S.); (W.F.); (X.L.); (Z.M.); (W.P.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing 100081, China
| | - Weihao Fang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (Y.S.); (W.F.); (X.L.); (Z.M.); (W.P.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (Y.S.); (W.F.); (X.L.); (Z.M.); (W.P.)
| | - Shicai Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
| | - Zhengtai Ma
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (Y.S.); (W.F.); (X.L.); (Z.M.); (W.P.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; (Y.S.); (W.F.); (X.L.); (Z.M.); (W.P.)
| |
Collapse
|
46
|
Ponomareva E, Volk K, Mulvaney P, Karg M. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13601-13612. [PMID: 33147412 DOI: 10.1021/acs.langmuir.0c02430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Surface lattice resonances are optical resonances composed of hybridized plasmonic and diffractive modes. These collective resonances occur in periodic arrays of plasmonic nanoparticles with wavelength-scale interparticle distances. The appearance and strength of surface lattice resonances strongly depend on the single particle localized surface plasmon resonance and its spectral overlap with the diffractive modes of the array. Coupling to in-plane orders of diffraction is also strongly affected by the refractive index environment and its symmetry. In this work, we address the impact of the interparticle distance, the symmetry of the refractive index environment, and structural imperfections in self-assembled colloidal monolayers on the plasmonic-diffractive coupling. For this purpose, we prepared hexagonally ordered, nonclose packed monolayers of gold nanoparticles using a fast and efficient, interface-mediated, colloidal self-assembly approach. By tuning the thickness and deformability of the polymer shells, we were able to prepare monolayers with a broad range of interparticle distances. The optical properties of the samples were studied experimentally by UV-Vis spectroscopy and theoretically by finite difference time domain simulations. The measured and simulated spectra allow a comprehensive analysis of the details of electromagnetic coupling in periodic plasmonic arrays. In particular, we identify relevant criteria required for surface lattice resonances in the visible wavelength range with optimized quality factors in self-assembled monolayers.
Collapse
Affiliation(s)
- Ekaterina Ponomareva
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Kirsten Volk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville VIC 3010, Australia
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Liu Q, Mundoor H, Sheetah GH, Smalyukh II. Plasmonic gold-cellulose nanofiber aerogels. OPTICS EXPRESS 2020; 28:34237-34245. [PMID: 33182897 DOI: 10.1364/oe.399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Assembly of plasmonic nanomaterials into a low refractive index medium, such as an aerogel, holds a great promise for optical metamaterials, optical sensors, and photothermal energy converters. However, conventional plasmonic aerogels are opaque and optically isotropic composites, impeding them from being used as low-loss or polarization-dependent optical materials. Here we demonstrate a plasmonic-cellulose nanofiber composite aerogel that comprises of well-dispersed gold nanorods within a cellulose nanofiber network. The cellulose aerogel host is highly transparent owing to the small scattering cross-section of the nanofibers and forms a nematic liquid crystalline medium with strong optical birefringence. We find that the longitudinal surface plasmon resonance peak of gold nanorods shows a dramatic shift when probed for the cellulose aerogel compared with the wet gels. Simulations reveal the shift of surface plasmon resonance peak with gel drying can be attributed to the change of the effective refractive index of the gels. This composite material may provide a platform for three- dimensional plasmonic devices ranging from optical sensors to metamaterials.
Collapse
|
48
|
Wang X, Wang H. Self-assembled nitride-metal nanocomposites: recent progress and future prospects. NANOSCALE 2020; 12:20564-20579. [PMID: 33090168 DOI: 10.1039/d0nr06316a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-phase nanocomposites have gained significant research interest because of their multifunctionalities, tunable geometries and potential device applications. Different from the previously demonstrated oxide-oxide 2-phase nanocomposites, coupling nitrides with metals shows high potential for building alternative hybrid plasmonic metamaterials towards chemical sensing, tunable plasmonics, and nonlinear optics. Unique advantages, including distinct atomic interface, excellent crystalline quality, large-scale surface coverage and durable solid-state platform, address the high demand for new hybrid metamaterial designs for versatile optical material needs. This review summarizes the recent progress on nitride-metal nanocomposites, specifically targeting bottom-up self-assembled nanocomposite thin films. Various morphologies including vertically aligned nanocomposites (VANs), self-organized nanoinclusions, and nanoholes fabricated by additional chemical treatments are introduced. Starting from thin film nucleation and growth, the prerequisites of successful strain coupling and the underlying growth mechanisms are discussed. These findings facilitate a better control of tunable nanostructures and optical functionalities. Future research directions are proposed, including morphological control of the secondary phase to enhance its homogeneity, coupling nitrides with magnetic phase for the magneto-optical effect and growing all-ceramic nanocomposites to extend functionalities and anisotropy.
Collapse
Affiliation(s)
- Xuejing Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA. and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA. and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
49
|
Deng S, Li R, Park JE, Guan J, Choo P, Hu J, Smeets PJM, Odom TW. Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proc Natl Acad Sci U S A 2020; 117:23380-23384. [PMID: 32900952 PMCID: PMC7519217 DOI: 10.1073/pnas.2008818117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper reports how the spectral linewidths of plasmon resonances can be narrowed down to a few nanometers by optimizing the morphology, surface roughness, and crystallinity of metal nanoparticles (NPs) in two-dimensional (2D) lattices. We developed thermal annealing procedures to achieve ultranarrow surface lattice resonances (SLRs) with full-width at half-maxima linewidths as narrow as 4 nm from arrays of Au, Ag, Al, and Cu NPs. Besides annealing, we developed a chemical vapor deposition process to use Cu NPs as catalytic substrates for graphene growth. Graphene-encapsulated Cu NPs showed the narrowest SLR linewidths (2 nm) and were stable for months. These ultranarrow SLR nanocavity modes supported even narrower lasing emission spectra and high nonlinearity in the input-output light-light curves.
Collapse
Affiliation(s)
- Shikai Deng
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Ran Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Jeong-Eun Park
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Jun Guan
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL 60208
| | - Priscilla Choo
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Jingtian Hu
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | | | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL 60208
| |
Collapse
|
50
|
Barrios CA. Pressure Sensitive Adhesive Tape: A Versatile Material Platform for Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185303. [PMID: 32948000 PMCID: PMC7570651 DOI: 10.3390/s20185303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Pressure sensitive adhesive (PSA) tapes are a versatile, safe and easy-to-use solution for fastening, sealing, masking, or joining. They are widely employed in daily life, from domestic use to industrial applications in sectors such as construction and the automotive industry. In recent years, PSA tapes have found a place in the field of micro- and nanotechnology, particularly in contact transfer techniques where they can be used as either sacrificial layers or flexible substrates. As a consequence, various optical sensing configurations based on PSA tapes have been developed. In this paper, recent achievements related to the use of PSA tapes as functional and integral parts of optical sensors are reviewed. These include refractive index sensors, optomechanical sensors and vapor sensors.
Collapse
Affiliation(s)
- Carlos Angulo Barrios
- Institute for Optoelectronic Systems and Microtechnology (ISOM), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
- Department of Photonics and Bioengineering (TFB), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|