1
|
Thrasher CJ, Jia F, Yee DW, Kubiak JM, Wang Y, Lee MS, Onoda M, Hart AJ, Macfarlane RJ. Rationally Designing the Supramolecular Interfaces of Nanoparticle Superlattices with Multivalent Polymers. J Am Chem Soc 2024. [PMID: 38622048 DOI: 10.1021/jacs.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer-nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly.
Collapse
Affiliation(s)
- Carl J Thrasher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daryl W Yee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joshua M Kubiak
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuping Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margaret S Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michika Onoda
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - A John Hart
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Park W, Lee S, Oh MJ, Zhao Q, Kim J, Lee S, Haddadnezhad M, Jung I, Park S. Step-by-Step Nanoscale Top-Down Blocking and Etching Lead to Nanohexapods with Cartesian Geometry. ACS NANO 2024; 18:7402-7410. [PMID: 38411049 DOI: 10.1021/acsnano.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.
Collapse
Affiliation(s)
- Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Xi Z, Zhang R, Kiessling F, Lammers T, Pallares RM. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater Sci Eng 2024; 10:38-50. [PMID: 37249042 DOI: 10.1021/acsbiomaterials.3c00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.
Collapse
Affiliation(s)
- Zhongqian Xi
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
4
|
Jang SW, Kumari N, Nam E, Lee YK, Cha Y, An K, Lee IS. Soccer Ball-like Assembly of Edge-to-edge Oriented 2D-silica Nanosheets: A Promising Catalyst Support for High-Temperature Reforming. Angew Chem Int Ed Engl 2023:e202316630. [PMID: 38063060 DOI: 10.1002/anie.202316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/21/2023]
Abstract
Controlled assembly of nanoparticles into well-defined assembled architectures through precise manipulation of spatial arrangement and interactions allows the development of advanced mesoscale materials with tailored structures, hierarchical functionalities, and enhanced properties. Despite remarkable advancements, the controlled assembly of highly anisotropic 2Dnanosheets is significantly challenging, primarily due to the limited availability of selective edge-to-edge connectivity compared to the abundant large faces. Innovative strategies are needed to unlock the full potential of 2D-nanomaterialsin self-assembled structures with distinct and desirable properties. This research unveils the discovery of controlled self-assembly of 2D-silica nanosheets (2D-SiNSs) into hollow micron-sized soccer ball-like shells (SA-SiMS). The assembly is driven by the physical flexibility of the 2D-SiNSs and the differential electricdouble-layer charge gradient creating electrostatic bias on the edge and face regions. The resulting SA-SiMS structures exhibit high mechanical stability, even at high-temperatures, and exhibit excellent performance as catalyst support in the dry reforming of methane. The SA-SiMS structures facilitate improved mass transport, leading to enhanced reaction rates, while the thin silica shell prevents sintering of small catalyst nanocrystals, thereby preventing coke formation. This discovery sheds light on the controllable self-assembly of 2D nanomaterials and provides insights into the design and synthesis of advanced mesoscale materials with tailored properties.
Collapse
Affiliation(s)
- Sun Woo Jang
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Eonu Nam
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Yun Kyung Lee
- Park Systems, KANC 15F, Gwanggyo-ro 109, Suwon, 16229, South Korea
| | - Yunmi Cha
- Park Systems, KANC 15F, Gwanggyo-ro 109, Suwon, 16229, South Korea
| | - Kwangjin An
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
5
|
Akbarishandiz S, Khani S, Maia J. Adhesion dynamics of functionalized nanocarriers to endothelial cells: a dissipative particle dynamics study. SOFT MATTER 2023; 19:9254-9268. [PMID: 38009071 DOI: 10.1039/d3sm00865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Targeted drug delivery to endothelial cells utilizing functionalized nanocarriers (NCs) is an essential procedure in therapeutic and diagnosis therapies. Using dissipative particle dynamics simulation, NCs have been designed and combined with an endothelial environment, such as the endothelial glycocalyx (EG) layer, receptors, water, and cell wall. Furthermore, the energy landscapes of the functionalized NC with the endothelial cell have been analyzed as a function of properties such as the shape, size, initial orientation, and ligand density of NCs. Our results show that an appropriate higher ligand density for each particular NC provides more driving forces than barriers for the penetration of the NCs. Herein we report the importance of shell entropy loss for the NC shape effect on the adhesion and penetration into the EG layer. Moreover, the rotation of the disc shape NC as a wheel during the penetration is an extra driving force for its further inclusion. By increasing the NCs' size larger than the appropriate size for each particular ligand density, due to an increase in the NCs' shell entropy loss, the barriers surpass the driving forces for NC penetration. Furthermore, the parallel orientation provides the NCs with the best penetration capabilities. However, the rotation of the disc shape NCs enhances their diffusion in the perpendicular orientation too. Overall, our findings highlight the crucial role of the shell entropy loss in governing the penetration of NCs. Besides, studying NCs with a homogeneous ligand composition enabled us to cross barriers and probe energetics after the complete inclusion of the NCs.
Collapse
Affiliation(s)
- Saeed Akbarishandiz
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| | - Shaghayegh Khani
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| | - Joao Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| |
Collapse
|
6
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Kim Y, Ji S, Nam JM. A Chemist's View on Electronic and Steric Effects of Surface Ligands on Plasmonic Metal Nanostructures. Acc Chem Res 2023; 56:2139-2150. [PMID: 37522593 DOI: 10.1021/acs.accounts.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
ConspectusPlasmonic metal nanostructures have been extensively developed over the past few decades because of their ability to confine light within the surfaces and manipulate strong light-matter interactions. The light energy stored by plasmonic nanomaterials in the form of surface plasmons can be utilized to initiate chemical reactions, so-called plasmon-induced catalysis, which stresses the importance of understanding the surface chemistry of the plasmonic materials. Nevertheless, only physical interpretation of plasmonic behaviors has been a dominant theme, largely excluding chemical intuitions that facilitate understanding of plasmonic systems from molecular perspectives. To overcome and address the lack of this complementary understanding based on molecular viewpoints, in this Account we provide a new concept encompassing the well-developed physics of plasmonics and the corresponding surface chemistry while reviewing and discussing related references. Inspired by Roald Hoffmann's descriptions of solid-state surfaces based on the molecular orbital picture, we treat molecular interfaces of plasmonic metal nanostructures as a series of metal-ligand complexes. Accordingly, the effects of the surface ligands can be described by bisecting them into electronic and steric contributions to the systems. By exploration of the quality of orbital overlaps and the symmetry of the plasmonic systems, electronic effects of surface ligands on localized surface plasmon resonances (LSPRs), surface diffusion rates, and hot-carrier transfer mechanisms are investigated. Specifically, the propensity of ligands to donate electrons in a σ-bonding manner can change the LSPR by shifting the density of states near the Fermi level, whereas other types of ligands donating or accepting electrons in a π-bonding manner modulate surface diffusion rates by affecting the metal-metal bond strength. In addition, the formation of metal-ligand bonds facilitates direct hot-carrier transfer by forming a sort of molecular orbital between a plasmonic structure and ligands. Furthermore, effects of steric environments are discussed in terms of ligand-ligand and ligand-surface nonbonding interactions. The steric hindrance allows for controlling the accessibility of the surrounding chemical species toward the metal surface by modulating the packing density of ligands and generating repulsive interactions with the surface atoms. This unconventional approach of considering the plasmonic system as a delocalized molecular entity could establish a basis for integrating chemical intuition with physical phenomena. Our chemist's outlook on a molecular interface of the plasmonic surface can provide insights and avenues for the design and development of more exquisite plasmonic catalysts with regio- and enantioselectivities as well as advanced sensors with unprecedented chemical controllability and specificity.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Soohyun Ji
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
8
|
Fang L, Pan XT, Liu K, Jiang D, Ye D, Ji LN, Wang K, Xia XH. Surface-Roughened SERS-Active Single Silver Nanowire for Simultaneous Detection of Intracellular and Extracellular pHs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20677-20685. [PMID: 37071781 DOI: 10.1021/acsami.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The simultaneous and accurate detection of intracellular pH (pHi) and extracellular pH (pHe) is essential for studying the complex physiological activities of cancer cells and exploring pH-related therapeutic mechanisms. Here, we developed a super-long silver nanowire-based surface-enhanced Raman scattering (SERS) detection strategy for simultaneous sensing of pHi and pHe. A surface-roughened silver nanowire (AgNW) with a high aspect ratio is prepared at a nanoelectrode tip using a Cu-mediated oxidation process, which is then modified by pH-sensitive 4-mercaptobenzoic acid (4-MBA) to form 4-MBA@AgNW as a pH sensing probe. With the assistance of a 4D microcontroller, 4-MBA@AgNW is efficient in simultaneously detecting pHi and pHe in both 2D and 3D culture cancer cells by SERS, with minimal invasiveness, high sensitivity, and spatial resolution. Further investigation proves that the surface-roughened single AgNW can also be used in monitoring the dynamic variation of pHi and pHe of cancer cells upon stimulation with anticancer drugs or under a hypoxic environment.
Collapse
Affiliation(s)
- Leyi Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Kim JM, Kim J, Choi K, Nam JM. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208250. [PMID: 36680474 DOI: 10.1002/adma.202208250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
10
|
Wan S, Xi X, Zhang H, Ning J, Zheng Z, Zhang Z, Long Y, Deng Y, Fan P, Yang D, Li T, Dong A. Shape-Mediated Oriented Assembly of Concave Nanoparticles under Cylindrical Confinement. ACS NANO 2022; 16:21315-21323. [PMID: 36468886 DOI: 10.1021/acsnano.2c09479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This contribution describes the self-assembly of colloidal nanodumbbells (NDs) with tunable shapes within cylindrical channels. We present that the intrinsic concave geometry of NDs endows them with peculiar packing and interlocking behaviors, which, in conjunction with the adjustable confinement constraint, leads to a variety of superstructures such as tilted-ladder chains and crossed-chain superlattices. A mechanistic investigation, corroborated by geometric calculations, reveals that the phase behavior of NDs under strong confinement can be rationalized by the entropy-driven maximization of the packing efficiency. Based on the experimental results, an empirical phase diagram is generated, which could provide general guidance in the design of intended superstructures from NDs. This study provides essential insight into how the interplay between the particle shape and confinement conditions can be exploited to direct the orientationally ordered assembly of concave nanoparticles into unusual superlattices.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Heyang Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Jing Ning
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Ziyue Zheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Ying Long
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Yuwei Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Pengshuo Fan
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Yu J, Jin H, Wang Q, Wei X, Chen H, Wang Y. Coalescence of Au-Pd Nanoropes and their Application as Enhanced Electrocatalysts for the Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203458. [PMID: 36123144 DOI: 10.1002/smll.202203458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lattice distortions and defects can lead to a strain effect that greatly affects the electronic structure of the noble metal surface and the chemical adsorption of ligands on the surfaces. Introducing defects is an efficient strategy to improve the activity of noble metal catalysts. Herein, a fusion approach is developed to fine-tune the defects and lattice strain in Au-Pd nanowires. Specifically, braided strands in Au-Pd nanoropes gradually coalesce to form solid nanowires upon H2 O2 treatment and heating, leading to a series of Au-Pd nanowires with various amounts of defects. Owing to the 1D morphology, as well as the optimized lattice strain and surface electronic structure, the intermediate Au-Pd nanowire obtained after 60 min heating (denoted as Au-Pd NW60 ) exhibits excellent catalytic activity and stability toward the oxygen reduction reaction, with the half-wave potential at 0.918 V, 45 mV higher than that of the commercial Pt/C; and specific activity reaches up to 1.7 mA cm-2 , 7.3 times higher than that of the Pt/C.
Collapse
Affiliation(s)
- Jialong Yu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hui Jin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaoliang Wei
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongyu Chen
- School of Science, Westlake University, Hangzhou, 310064, P. R. China
| | - Yawen Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
12
|
Pyo K, Matus MF, Malola S, Hulkko E, Alaranta J, Lahtinen T, Häkkinen H, Pettersson M. Tailoring the interaction between a gold nanocluster and a fluorescent dye by cluster size: creating a toolbox of range-adjustable pH sensors. NANOSCALE ADVANCES 2022; 4:4579-4588. [PMID: 36425249 PMCID: PMC9606730 DOI: 10.1039/d2na00487a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
We present a novel strategy for tailoring the fluorescent azadioxatriangulenium (KU) dye-based pH sensor to the target pH range by regulating the pK a value of the gold nanoclusters. Based on the correlation between the pK a and surface curvature of ligand-protected nanoparticles, the pK a value of the gold nanoclusters was controlled by size. In particular, three different-sized para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters, Au25(p-MBA)18, Au102(p-MBA)44, and Au210-230(p-MBA)70-80 were used as the regulator for the pH range of the KU response. The negatively charged gold nanoclusters enabled the positively charged KU to bind to the surface, forming a complex and quenching the fluorescence of the KU by the energy transfer process. The fluorescence was restored after adjusting the surface charge of the gold nanocluster by controlling the solution pH. In addition, the KU exhibited a significantly different pH response behaviour for each gold nanocluster. Au210-230(p-MBA)70-80 showed a higher pH response range than Au102(p-MBA)44, which was intuitive. However, Au25(p-MBA)18 showed an unexpectedly high pH response behaviour. pK a titration measurement, molecular dynamics simulations, and essential dynamics analysis showed that small nanoclusters do not follow the scaling between the curvature and the pK a value. Instead, the behaviour is governed by the distribution and interaction of p-MBA ligands on the nanocluster surface. This work presents an effective design strategy for fabricating a range adjustable pH sensor by understanding the protonation behaviour of the ultrasmall gold nanoclusters in an atomic range.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - María Francisca Matus
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Sami Malola
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Eero Hulkko
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Johanna Alaranta
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Tanja Lahtinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
- Department of Physics, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä P. O. Box 35 FI-40014 Finland
| |
Collapse
|
13
|
Hu Y, Li Y, Yu L, Zhang Y, Lai Y, Zhang W, Xie W. Universal linker-free assembly of core-satellite hetero-superstructures. Chem Sci 2022; 13:11792-11797. [PMID: 36320924 PMCID: PMC9580622 DOI: 10.1039/d2sc02843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal superstructures comprising hetero-building blocks often show unanticipated physical and chemical properties. Here, we present a universal assembly methodology to prepare hetero-superstructures. This straightforward methodology allows the assembly of building block materials varying from inorganic nanoparticles to living cells to form superstructures. No molecular linker is required to bind the building blocks together and thus the products do not contain any unwanted adscititious material. The Fourier transform infrared spectra, high resolution transmission electron microscopic images and nanoparticle adhesion force measurement results reveal that the key to self-organization is stripping surface ligands by adding non-polar solvents or neutralizing surface charge by adding salts, which allow us to tune the balance between van der Waals attraction and electrostatic repulsion in the colloid so as to trigger the assembling process. As a proof-of-concept, the superior photocatalytic activity and single-particle surface-enhanced Raman scattering of the corresponding superstructures are demonstrated. Our methodology greatly extends the scope of building blocks for superstructure assembly and enables scalable construction of colloidal multifunctional materials.
Collapse
Affiliation(s)
- Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Linfeng Yu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuming Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
14
|
Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat Commun 2022; 13:5549. [PMID: 36138015 PMCID: PMC9500018 DOI: 10.1038/s41467-022-33125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal liquid crystals are an emerging class of soft materials that naturally combine the unique properties of both liquid crystal molecules and colloidal particles. Chiral liquid crystal blue phases are attractive for use in fast optical displays and electrooptical devices, but the construction of blue phases is limited to a few chiral building blocks and the formation of blue phases from achiral ones is often counterintuitive. Herein we demonstrate that achiral dumbbell-shaped colloids can assemble into a rich variety of characteristic liquid crystal phases, including nematic phases with lock structures, smectic phase, and particularly experimental observation of blue phase III with double-twisted chiral columns. Phase diagrams from experiments and simulations show that the existence and stable regions of different liquid crystal phases are strongly dependent on the geometrical parameters of dumbbell-shaped colloids. This work paves a new route to the design and construction of blue phases for photonic applications. Colloidal liquid crystals account for various applications due to the combination of characteristics relevant for liquid crystals and colloids. The authors elaborate the impact of concave geometry on the properties of colloidal liquid crystals for development of functional materials.
Collapse
|
15
|
Cheng Z, Jones MR. Assembly of planar chiral superlattices from achiral building blocks. Nat Commun 2022; 13:4207. [PMID: 35864092 PMCID: PMC9304327 DOI: 10.1038/s41467-022-31868-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
The spontaneous assembly of chiral structures from building blocks that lack chirality is fundamentally important for colloidal chemistry and has implications for the formation of advanced optical materials. Here, we find that purified achiral gold tetrahedron-shaped nanoparticles assemble into two-dimensional superlattices that exhibit planar chirality under a balance of repulsive electrostatic and attractive van der Waals and depletion forces. A model accounting for these interactions shows that the growth of planar structures is kinetically preferred over similar three-dimensional products, explaining their selective formation. Exploration and mapping of different packing symmetries demonstrates that the hexagonal chiral phase forms exclusively because of geometric constraints imposed by the presence of constituent tetrahedra with sharp tips. A formation mechanism is proposed in which the chiral phase nucleates from within a related 2D achiral phase by clockwise or counterclockwise rotation of tetrahedra about their central axis. These results lay the scientific foundation for the high-throughput assembly of planar chiral metamaterials. The formation of nanostructures with chiral symmetry often requires chiral directing agents at a smaller length scale. Here, the authors report the self-assembly of 2D chiral superlattices from achiral tetrahedron-shaped building blocks.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Chemistry, Rice University, Houston, TX, US
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, US. .,Department of Materials Science & Nanoengineering, Rice University, Houston, TX, US.
| |
Collapse
|
16
|
Wang Y, Chen J, Zhong Y, Jeong S, Li R, Ye X. Structural Diversity in Dimension-Controlled Assemblies of Tetrahedral Gold Nanocrystals. J Am Chem Soc 2022; 144:13538-13546. [PMID: 35863043 DOI: 10.1021/jacs.2c03196] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhedron packings have fascinated humans for centuries and continue to inspire scientists of modern disciplines. Despite extensive computer simulations and a handful of experimental investigations, understanding of the phase behaviors of synthetic tetrahedra has remained fragmentary largely due to the lack of tetrahedral building blocks with tunable size and versatile surface chemistry. Here, we report the remarkable richness of and complexity in dimension-controlled assemblies of gold nanotetrahedra. By tailoring nanocrystal interactions from long-range repulsive to hard-particle-like or to systems with short-ranged directional attractions through control of surface ligands and assembly conditions, nearly a dozen of two-dimensional and three-dimensional superstructures including the cubic diamond and hexagonal diamond polymorphs are selectively assembled. We further demonstrate multiply twinned icosahedral supracrystals by drying aqueous gold nanotetrahedra on a hydrophobic substrate. This study expands the toolbox of the superstructure by design using tetrahedral building blocks and could spur future computational and experimental work on self-assembly and phase behavior of anisotropic colloidal particles with tunable interactions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Soojin Jeong
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
de Araújo CB, de Oliveira EJL, Lyra ML, Mirantsev LV, de Oliveira IN. Formation of topological defects in nematic shells with a dumbbell-like shape. SOFT MATTER 2022; 18:4189-4196. [PMID: 35605981 DOI: 10.1039/d2sm00378c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study investigates dumbbell-shaped nematic liquid crystal shells. Using molecular dynamics (MD) simulations, we consider the effects of an external electric field on nematic ordering by computing the average molecular alignment's time evolution and equilibrium configuration. We show that the number and location of topological defects are strongly affected by the external field, with the orientational ordering's equilibrium configuration depending on field direction about the shell's long axis. For a transverse external field, it is verified that the defect rearrangement presents a non-linear dynamics, with a field independent characteristic time scale delimiting the short and long time regimes. Effects associated with varying the shell's Gaussian curvature are also analyzed.
Collapse
Affiliation(s)
- C B de Araújo
- Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| | - E J L de Oliveira
- Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| | - M L Lyra
- Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| | - L V Mirantsev
- Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
| | - I N de Oliveira
- Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
18
|
Luo Y, Ma Y, Chen Z, Gao Y, Zhou Y, Liu X, Liu X, Gao X, Li Z, Liu C, Leo HL, Yu H, Guo Q. Shape-Anisotropic Microembolics Generated by Microfluidic Synthesis for Transarterial Embolization Treatment. Adv Healthc Mater 2022; 11:e2102281. [PMID: 35106963 DOI: 10.1002/adhm.202102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Indexed: 11/11/2022]
Abstract
Particulate embolic agents with calibrated sizes, which employ interventional procedures to achieve endovascular embolization, have recently attracted tremendous interest in therapeutic embolotherapies for a wide plethora of diseases. However, the particulate shape effect, which may play a critical role in embolization performances, has been rarely investigated. Here, polyvinyl alcohol (PVA)-based shape-anisotropic microembolics are developed using a facile droplet-based microfluidic fabrication method via heat-accelerated PVA-glutaraldehyde crosslinking reaction at a mild temperature of 38 ° C. Precise geometrical controls of the microembolics are achieved with a nearly capsule shape through regulating surfactant concentration and flow rate ratio between dispersed phase and continuous phase in the microfluidics. Two specific models are employed, i.e., in vitro decellularized rabbit liver embolization model and in vivo rabbit ear embolization model, to systematically evaluate the embolization behaviors of the nonspherical microembolics. Compared to microspheres of the same volume, the elongated microembolics demonstrated advantageous endovascular navigation capability, penetration depth and embolization stability due to their comparatively smaller radial diameter and their central cylindrical part providing larger contact area with distal vessels. Such nonspherical microembolics present a promising platform to apply shape anisotropy to achieve distinctive therapeutic effects for endovascular treatments.
Collapse
Affiliation(s)
- Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Department of Biomedical Engineering National University of Singapore Engineering Drive 3, Engineering Block 4, #04‐08 Singapore 117583 Singapore
| | - Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yuping Zhou
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xuezhe Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xu Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuang Liu
- Cryo‐EM Center Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hwa Liang Leo
- Department of Biomedical Engineering National University of Singapore Engineering Drive 3, Engineering Block 4, #04‐08 Singapore 117583 Singapore
| | - Hanry Yu
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
- Institute of Bioengineering and Nanotechnology Agency for Science Technology and Research Singapore 138669 Singapore
- Department of Physiology Yong Loo Lin School of Medicine National University of Singapore Singapore 117593 Singapore
- Singapore‐MIT Alliance for Research and Technology Singapore 138602 Singapore
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Jiao S, Liu Y, Wang S, Wang S, Ma F, Yuan H, Zhou H, Zheng G, Zhang Y, Dai K, Liu C. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1398. [PMID: 35564107 PMCID: PMC9104380 DOI: 10.3390/nano12091398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been regarded as a most efficient and sensitive strategy for the detection of pollutants at ultra-low concentrations. Fabrication of SERS substrates is of key importance in obtaining the homogeneous and sensitive SERS signals. Cellulose filter papers loaded with plasmonic metal NPs are well known as cost-effective and efficient paper-based SERS substrates. In this manuscript, face-to-face assembly of silver nanoplates via solvent-evaporation strategies on the cellulose filter papers has been developed for the SERS substrates. Furthermore, these developed paper-based SERS substrates are utilized for the ultra-sensitive detection of the rhodamine 6G dye and thiram pesticides. Our theoretical studies reveal the creation of high density hotspots, with a huge localized and enhanced electromagnetic field, near the corners of the assembled structures, which justifies the ultrasensitive SERS signal in the fabricated paper-based SERS platform. This work provides an excellent paper-based SERS substrate for practical applications, and one which can also be beneficial to human health and environmental safety.
Collapse
Affiliation(s)
- Sulin Jiao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Yixin Liu
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China;
| | - Shuo Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| | - Fengying Ma
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Huiyu Yuan
- Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guangchao Zheng
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Yuan Zhang
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Yan M, Liu T, Li X, Zhou S, Zeng H, Liang Q, Liang K, Wei X, Wang J, Gu Z, Jiang L, Zhao D, Kong B. Soft Patch Interface-Oriented Superassembly of Complex Hollow Nanoarchitectures for Smart Dual-Responsive Nanospacecrafts. J Am Chem Soc 2022; 144:7778-7789. [PMID: 35413189 DOI: 10.1021/jacs.2c01096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Meticulous surface patterning of nanoparticles with anisotropic patches as analogs of functional groups offers fascinating potential in many fields, particularly in controllable materials assembly. However, patchy colloids generally evolve into high-symmetry solid structures, mainly because the assembly interactions arise between patches via patch-to-patch recognition. Here, we report an assembly concept, that is, a soft patch, which enables selective and directional fusion of liquid droplets for producing highly asymmetrical hollow nanospacecrafts. Our approach enables precise control of hollow nanoparticle diameters by manipulating droplet fusion regions. By controlling the patch number, more orientations are accessible to droplet fusion, allowing for increased degrees of complexity of hollow self-assemblies. The versatility and curvature-selective growth of this strategy are demonstrated on three nonspherical nanoparticles, enabling the creation of highly asymmetric nanospacecrafts. By patterning Au-core Ag-shell nanorods, the nanospacecraft can be programmed in response to either H2O2 or near-infrared light, exhibiting dual-mode response behavior with a 208% increase in the diffusion coefficient in both modes compared with other nanoscale low-asymmetry active materials. Overall, these findings are a significant step toward designing new patch interactions for materials self-assembly for creating complex hollow colloids and functional nanodevices that are otherwise inaccessible.
Collapse
Affiliation(s)
- Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xunbin Wei
- Biomedical Engineering Department and Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, Beijing 100081, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
21
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions. Angew Chem Int Ed Engl 2022; 61:e202117406. [PMID: 34981650 DOI: 10.1002/anie.202117406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/05/2022]
Abstract
Nanoscale curvature-dependent interactions are of paramount importance in biological systems. Here, we report that nanoscale curvature plays an important role in regulating the chirality of self-assembled nanocomposites from chiral organic molecules and achiral nanoparticles. Specifically, we show that the supramolecular chirality of the nanocomposites markedly depends on the nanoparticle curvature, where small-sized nanoparticles of high curvature and large-sized nanoparticles of low curvature lead to nanocomposites with opposite chirality. Quantitative kinetic experiments and molecular dynamics simulations reveal that nanoparticle curvature plays a key role in promoting the pre-nucleation oligomerization of chiral molecules, which consequently regulates the supramolecular chirality of the nanocomposites. We anticipate that this study will aid in rational design of an artificial cooperative system giving rise to emergent assembling phenomena that can be surprisingly rich and often cannot be understood by studying the conventional noncooperative systems.
Collapse
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
22
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self‐Assembled Nanocomposites Directed by Curvature‐Mediated Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| |
Collapse
|
23
|
Yu S, Kim D, Qi Z, Louisia S, Li Y, Somorjai GA, Yang P. Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO 2 Conversion. J Am Chem Soc 2021; 143:19919-19927. [PMID: 34783547 DOI: 10.1021/jacs.1c09777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microenvironment in which the catalysts are situated is as important as the active sites in determining the overall catalytic performance. Recently, it has been found that nanoparticle (NP) surface ligands can actively participate in creating a favorable catalytic microenvironment, as part of the nanoparticle/ordered-ligand interlayer (NOLI), for selective CO2 conversion. However, much of the ligand-ligand interactions presumed essential to the formation of such a catalytic interlayer remains to be understood. Here, by varying the initial size of NPs and utilizing spectroscopic and electrochemical techniques, we show that the assembly of NPs leads to the necessary ligand interactions for the NOLI formation. The large surface curvature of small NPs promotes strong noncovalent interactions between ligands of adjacent NPs through ligand interdigitation. This ensures their collective behavior in electrochemical conditions and gives rise to the structurally ordered ligand layer of the NOLI. Thus, the use of smaller NPs was shown to result in a greater catalytically effective NOLI area associated with desolvated cations and electrostatic stabilization of intermediates, leading to the enhancement of intrinsic CO2-to-CO turnover. Our findings highlight the potential use of tailored microenvironments for NP catalysis by controlling its surface ligand interactions.
Collapse
Affiliation(s)
- Sunmoon Yu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dohyung Kim
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhiyuan Qi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gabor A Somorjai
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Pothukuchi RP, Prajapat VK, Radhakrishna M. Charge-Driven Self-Assembly of Polyelectrolyte-Grafted Nanoparticles in Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12007-12015. [PMID: 34617762 DOI: 10.1021/acs.langmuir.1c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle self-assembly in solution has gained immense interest due to the enhanced optical, chemical, magnetic, and electrical properties which manifest at the macroscale. Material properties in bulk are a direct consequence of the morphology of these nanoparticles in solutions. Precise control on the orientation, spatial arrangement, shape, size, composition, and control over the interactions of individual nanoparticles play a key role in enhancing their properties. While previous studies have used asymmetry in the nanoparticle and/or the use of linker grafts, nanoparticles grafted with polyelectrolyte grafts provide us a wide parameter space to control and tune their self-assembly in solutions. In this study, we have performed coarse-grained molecular dynamics simulations to understand the charge-driven self-assembly of spherical nanoparticles grafted with polyelectrolyte chains. Nanoparticles grafted with either positively or negatively charged polyelectrolyte chains self-assemble to different structures driven by both excluded volume and electrostatic interactions. Our study shows that by tuning the graft density, the chain length, and the charge density of the grafts, we could build and control a variety of self-assembled structures ranging from rings, dimers, strings, coil-like aggregates, and disordered-to-ordered aggregates.
Collapse
Affiliation(s)
- Rajesh Pavan Pothukuchi
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Vinod Kumar Prajapat
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Mithun Radhakrishna
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
25
|
Liu Y, Klement M, Wang Y, Zhong Y, Zhu B, Chen J, Engel M, Ye X. Macromolecular Ligand Engineering for Programmable Nanoprism Assembly. J Am Chem Soc 2021; 143:16163-16172. [PMID: 34549954 DOI: 10.1021/jacs.1c07281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ligands play a central role for the energetics and kinetics of nanocrystal assembly. Yet, the precise and simultaneous manipulation of ligands to dictate assembly outcome has proven difficult. Here, we present macromolecular ligand-engineering strategies to control, characterize, and model four molecular parameters of grafted polymer chains: chain length, chain dispersity, grafting density, and chain distribution. Direct ligand-exchange between nanoprisms and polymers functionalizes facets selectively and produces patchy nanocrystals. We develop a generalizable two-step ligand-exchange approach for the independent control of the two emergent brush parameters, brush thickness and brush softness. The resultant polymer-grafted prismatic nanocrystals with programmable ligand brushes self-assemble into thin-film superstructures of different wallpaper symmetries and faceted supracrystals. Our experiments are complemented by coarse-grained computer simulations of nanoprisms with directional, facet-specific interactions. This work paves the way for the precision synthesis of polymer-nanocrystal hybrid materials and enables the further refinement of theoretical models for particle brush materials.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Marco Klement
- Institute for Multiscale Simulation, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Yi Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jun Chen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
26
|
Self-regulated co-assembly of soft and hard nanoparticles. Nat Commun 2021; 12:5682. [PMID: 34584088 PMCID: PMC8479080 DOI: 10.1038/s41467-021-25995-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Controlled self-assembly of colloidal particles into predetermined organization facilitates the bottom-up manufacture of artificial materials with designated hierarchies and synergistically integrated functionalities. However, it remains a major challenge to assemble individual nanoparticles with minimal building instructions in a programmable fashion due to the lack of directional interactions. Here, we develop a general paradigm for controlled co-assembly of soft block copolymer micelles and simple unvarnished hard nanoparticles through variable noncovalent interactions, including hydrogen bonding and coordination interactions. Upon association, the hairy micelle corona binds with the hard nanoparticles with a specific valence depending exactly on their relative size and feeding ratio. This permits the integration of block copolymer micelles with a diverse array of hard nanoparticles with tunable chemistry into multidimensional colloidal molecules and polymers. Secondary co-assembly of the resulting colloidal molecules further leads to the formation of more complex hierarchical colloidal superstructures. Notably, such colloidal assembly is processible on surface either through initiating the alternating co-assembly from a micelle immobilized on a substrate or directly grafting a colloidal oligomer onto the micellar anchor. Colloidal self-assembly enables bottom-up manufacture of materials with designed hierarchies and functions. Here the authors develop a facile method to construct multidimensional colloidal architectures via the association of soft block copolymer micelles with simple unvarnished hard nanoparticles.
Collapse
|
27
|
Wei Y, Zhang F, Wei J, Yang Z. CdSe 1D/2D Mixed-Dimensional Heterostructures: Curvature-Complementary Self-Assembly for Enhanced Visible-Light Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102047. [PMID: 34254443 DOI: 10.1002/smll.202102047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Mixed-dimensional heterostructures (MDHs), which combine nanomaterials of different dimensionalities deliver on the promise to bypass intrinsic limitations of a given low-dimensional material. Here, a strategy to engineer MDHs between two low-dimensional materials by curvature-complementary self-assembly is described. CdSe nanotubes rolled from 2D nanosheets and 1D CdSe nanorods, with negative and positive curvatures, respectively, are selected to illustrate complementary curvature self-assembly. The assembly process, optical, and photoelectrical properties of the CdSe MDHs are thoroughly investigated. Several remarkable features of CdSe MDHs, including increased light absorption, efficient charge separation, and appropriate bandgap structure are confirmed. The MDHs significantly alleviate the sluggish kinetics of electron transfer in the quantum sized CdSe subunits (onset potential of 0.21 V vs RHE for MDHs; 0.4 V lower than their low-dimensional building blocks), while the spatial nano-confinement effect in the CdSe MDHs also assists the interfacial reaction kinetics to render them ideal photocatalysts for benzylamine oxidation (conversion > 99% in 4 h with a two times higher rate than simple mixtures). The results highlight opportunities for building MDHs from low-dimensional building blocks with curvature-complementary features and expand the application spectrum of low dimensional materials in artificial photosynthesis.
Collapse
Affiliation(s)
- Yanze Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| |
Collapse
|
28
|
Xiong K, Mitomo H, Su X, Shi Y, Yonamine Y, Sato SI, Ijiro K. Molecular configuration-mediated thermo-responsiveness in oligo(ethylene glycol) derivatives attached on gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3762-3769. [PMID: 36133023 PMCID: PMC9418479 DOI: 10.1039/d1na00187f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Biomolecular systems actively control their local environment on a sub-nm scale via changes in molecular configuration from their flexible structures and derive emergent functions. Although this functional emergence based on local environmental control is attracting a great deal of attention in chemistry, it remains challenging to realize this artificially. Herein, we report the tuning of the thermo-responsive properties of oligo(ethylene glycol) (OEG) derivatives attached on gold nanoparticles via local environmental control not only by the hydrophobic moiety at their terminus but also by their molecular configuration. OEG-attached alkane thiol-modified AuNPs showed thermo-responsive assembly/disassembly in water through the hydration/dehydration of the OEG portions in a manner dependent both on the hydrophobicity at their terminus and the surface curvature of the core nanoparticles. Further, the assembly temperature (T A) was also tuned by ligand mixing with a non-thermo-responsive ligand with a shorter OEG length. Molecular dynamics simulations show that the distribution of the hydrophobic terminus in the normal direction along the gold surface varied in accordance with the surface curvature, indicating variations in molecular configuration. It is expected that a bent configuration could accelerate the thermo-responsiveness of OEG by allowing them greater accessibility to the hydrophobic terminus. Experimental and simulation results support the notion that local OEG density tuning by surface curvature or ligand mixing with a different OEG length leads to different degrees of accessibility to the hydrophobic terminus via changes in molecular configuration, promoting local environmental control-directed assembly temperature tuning.
Collapse
Affiliation(s)
- Kun Xiong
- Graduate School of Life Sciences, Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo 060-0810 Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| | - Xueming Su
- Graduate School of Chemical Engineering and Sciences, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Yier Shi
- Graduate School of Life Sciences, Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo 060-0810 Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Sato
- Graduate School of Chemical Engineering and Sciences, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| |
Collapse
|
29
|
Mati IK, Edwards W, Marson D, Howe EJ, Stinson S, Posocco P, Kay ER. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules. ACS NANO 2021; 15:8295-8305. [PMID: 33938222 DOI: 10.1021/acsnano.0c09190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter-the distance between reactive site and nanoparticle surface-showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.
Collapse
Affiliation(s)
- Ioulia K Mati
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - William Edwards
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Edward J Howe
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Scott Stinson
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
30
|
Chew AK, Dallin BC, Van Lehn RC. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles. ACS NANO 2021; 15:4534-4545. [PMID: 33621066 DOI: 10.1021/acsnano.0c08623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hydrophobicity of monolayer-protected gold nanoparticles is a crucial design parameter that influences self-assembly, preferential binding to proteins and membranes, and other nano-bio interactions. Predicting the effects of monolayer components on nanoparticle hydrophobicity is challenging due to the nonadditive, cooperative perturbations to interfacial water structure that dictate hydrophobicity at the nanoscale. In this work, we quantify nanoparticle hydrophobicity by using atomistic molecular dynamics simulations to calculate local hydration free energies at the nanoparticle-water interface. The simulations reveal that the hydrophobicity of large gold nanoparticles is determined primarily by ligand end group chemistry, as expected. However, for small gold nanoparticles, long alkanethiol ligands interact to form anisotropic bundles that lead to substantial spatial variations in hydrophobicity even for homogeneous monolayer compositions. We further show that nanoparticle hydrophobicity is modulated by changing the ligand structure, ligand chemistry, and gold core size, emphasizing that single-ligand properties alone are insufficient to characterize hydrophobicity. Finally, we illustrate that hydration free energy measurements correlate with the preferential binding of propane as a representative hydrophobic probe molecule. Together, these results show that both physical and chemical properties influence the hydrophobicity of small nanoparticles and must be considered together when predicting gold nanoparticle interactions with biomolecules.
Collapse
Affiliation(s)
- Alex K Chew
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Bradley C Dallin
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Adsorption of Polymer-Grafted Nanoparticles on Curved Surfaces. CHEMISTRY 2021. [DOI: 10.3390/chemistry3010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanometer-curved surfaces are abundant in biological systems as well as in nano-sized technologies. Properly functionalized polymer-grafted nanoparticles (PGNs) adhere to surfaces with different geometries and curvatures. This work explores some of the energetic and mechanical characteristics of the adhesion of PGNs to surfaces with positive, negative and zero curvatures using Coarse-Grained Molecular Dynamics (CGMD) simulations. Our calculated free energies of binding of the PGN to the curved and flat surfaces as a function of separation distance show that curvature of the surface critically impacts the adhesion strength. We find that the flat surface is the most adhesive, and the concave surface is the least adhesive surface. This somewhat counterintuitive finding suggests that while a bare nanoparticle is more likely to adhere to a positively curved surface than a flat surface, grafting polymer chains to the nanoparticle surface inverts this behavior. Moreover, we studied the rheological behavior of PGN upon separation from the flat and curved surfaces under external pulling force. The results presented herein can be exploited in drug delivery and self-assembly applications.
Collapse
|
32
|
Li Y, Lin H, Zhou W, Sun L, Samanta D, Mirkin CA. Corner-, edge-, and facet-controlled growth of nanocrystals. SCIENCE ADVANCES 2021; 7:7/3/eabf1410. [PMID: 33523912 PMCID: PMC7810373 DOI: 10.1126/sciadv.abf1410] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 05/19/2023]
Abstract
The ability to precisely control nanocrystal (NC) shape and composition is useful in many fields, including catalysis and plasmonics. Seed-mediated strategies have proven effective for preparing a wide variety of structures, but a poor understanding of how to selectively grow corners, edges, and facets has limited the development of a general strategy to control structure evolution. Here, we report a universal synthetic strategy for directing the site-specific growth of anisotropic seeds to prepare a library of designer nanostructures. This strategy leverages nucleation energy barrier profiles and the chemical potential of the growth solution to control the site-specific growth of NCs into exotic shapes and compositions. This strategy can be used to not only control where growth occurs on anisotropic seeds but also control the exposed facets of the newly grown regions. NCs of many shapes are synthesized, including over 10 here-to-fore never reported NCs and, in principle, many others are possible.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Haixin Lin
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Lin Sun
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Devleena Samanta
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
33
|
Backes IK, González-Garcı A L, Holtsch A, Müller F, Jacobs K, Kraus T. Molecular Origin of Electrical Conductivity in Gold-Polythiophene Hybrid Particle Films. J Phys Chem Lett 2020; 11:10538-10547. [PMID: 33290078 DOI: 10.1021/acs.jpclett.0c02831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid electronic materials combine inorganic metals and semiconductors with π-conjugated polymers. The orientation of the polymer molecules in relation to the inorganic components is crucial for electrical material properties and device performance, but little is known of the configuration of π-conjugated polymers that bind to inorganic surfaces. Highly curved surfaces are common when using nanoscale components, for example, metal nanocrystal cores covered with conductive polymers. It is important to understand their effect on molecular arrangement. Here, we compare the molecular structures and electrical conductivities of well-defined nanoscale gold spheres and rods with shells of the covalently bound polythiophene PTEBS (poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate]). We prepared aqueous sinter-free inks from the particles and printed them. The particles formed highly conductive films immediately after drying. Films with spherical metal cores consistently had 40% lower conductivities than films based on nanorods. Raman and X-ray photoelectron spectroscopy revealed differences in the gold-sulfur bonds of PTEBS on rods and spheres. The fractions of bond sulfur groups implied differences in the alignment of PTEBS with the surface. More polymer molecules were bound in an edge-on configuration on spheres than on rods, where almost all polymers aligned "face-on" with the metal surface. This leads to different interface resistances: gold-polythiophene-gold interfaces between rods with π-π-tacked face-on PTEBS apparently foster electron transport along the surface-normal direction, while edge-on PTEBS does not. Molecular confinement thus increases the conductivity of hybrid inks based on highly curved nanostructures.
Collapse
Affiliation(s)
- Indra K Backes
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Anne Holtsch
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Karin Jacobs
- Experimental Physics and Center for Biophysics, Campus E2 9, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers (Basel) 2020; 12:polym12102282. [PMID: 33027995 PMCID: PMC7601300 DOI: 10.3390/polym12102282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization with end-tethered weak polyelectrolytes (PE) is a versatile way to modify and control surface properties, given their ability to alter their degree of charge depending on external cues like pH and salt concentration. Weak PEs find usage in a wide range of applications, from colloidal stabilization, lubrication, adhesion, wetting to biomedical applications such as drug delivery and theranostics applications. They are also ubiquitous in many biological systems. Here, we present an overview of some of the main theoretical methods that we consider key in the field of weak PE at interfaces. Several applications involving engineered nanoparticles, synthetic and biological nanopores, as well as biological macromolecules are discussed to illustrate the salient features of systems involving weak PE near an interface or under (nano)confinement. The key feature is that by confining weak PEs near an interface the degree of charge is different from what would be expected in solution. This is the result of the strong coupling between structural organization of weak PE and its chemical state. The responsiveness of engineered and biological nanomaterials comprising weak PE combined with an adequate level of modeling can provide the keys to a rational design of smart nanosystems.
Collapse
|
35
|
Lee YH, Shi W, Yang Y, Kao YC, Lee HK, Chu R, Pang YL, Lay CL, Li S, Ling XY. Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. Angew Chem Int Ed Engl 2020; 59:21183-21189. [PMID: 32767617 DOI: 10.1002/anie.202009941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 01/11/2023]
Abstract
In nanoparticle self-assembly, the current lack of strategy to modulate orientational order creates challenges in isolating large-area plastic crystals. Here, we achieve two orientationally distinct supercrystals using one nanoparticle shape, including plastic crystals and uniform metacrystals. Our approach integrates multi-faceted Archimedean polyhedra with molecular-level surface polymeric interactions to tune nanoparticle orientational order during self-assembly. Experiments and simulations show that coiled surface polymer chains limit interparticle interactions, creating various geometrical configurations among Archimedean polyhedra to form plastic crystals. In contrast, brush-like polymer chains enable molecular interdigitation between neighboring particles, favoring consistent particle configurations and result in uniform metacrystals. Our strategy enhances supercrystal diversity for polyhedra comprising multiple nondegenerate facets.
Collapse
Affiliation(s)
- Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yijie Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ya-Chuan Kao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rongrong Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yee Ling Pang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
36
|
Lee YH, Shi W, Yang Y, Kao Y, Lee HK, Chu R, Pang YL, Lay CL, Li S, Ling XY. Modulating Orientational Order to Organize Polyhedral Nanoparticles into Plastic Crystals and Uniform Metacrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yih Hong Lee
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Yijie Yang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Ya‐Chuan Kao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Rongrong Chu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Yee Ling Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
37
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
38
|
Liu C, Ou Z, Guo F, Luo B, Chen W, Qi L, Chen Q. "Colloid-Atom Duality" in the Assembly Dynamics of Concave Gold Nanoarrows. J Am Chem Soc 2020; 142:11669-11673. [PMID: 32543864 DOI: 10.1021/jacs.0c04444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We use liquid-phase transmission electron microscopy (TEM) to study self-assembly dynamics of charged gold nanoarrows (GNAs), which reveal an unexpected "colloid-atom duality". On one hand, they assemble following the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for colloids when van der Waals attraction overruns slightly screened electrostatic repulsion. Due to concaveness in shape, GNAs adopt zipper motifs with lateral offset in their assembly matching with our modeling of inter-GNA interaction, which form into unconventional structures resembling degenerate crystals. On the other hand, further screening of electrostatic repulsion leads to merging of clusters assembled from GNAs, reminiscent of the coalescence growth mode in atomic crystals driven by minimization of surface energy, as we measure from the surface fluctuation of clusters. Liquid-phase TEM captures the initial formation of highly curved necks bridging the two clusters. Analysis of the real-time evolution of neck width illustrates the first-time observation of coalescence in colloidal assemblies facilitated by rapid surface diffusion of GNAs. We attribute the duality to the confluence of factors (e.g., nanoscale colloidal interaction, diffusional dynamics) that we access by liquid-phase TEM, taking turns to dominate at different conditions, which is potentially generic to the nanoscale. The atom aspect, in particular, can inspire utilization of atomic crystal synthesis strategies to encode structure and dynamics in nanoscale assembly.
Collapse
Affiliation(s)
| | | | - Fucheng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, Beijing 100871, China
| | | | | | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University, Beijing 100871, China
| | | |
Collapse
|
39
|
Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. NANOMATERIALS 2020; 10:nano10061115. [PMID: 32516931 PMCID: PMC7353348 DOI: 10.3390/nano10061115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/13/2023]
Abstract
Nowadays, magnetic resonance imaging (MRI) is one of the key, noninvasive modalities to detect and stage cancer which benefits from contrast agents (CA) to differentiate healthy from tumor tissue. An innovative class of MRI CAs is represented by Gd-loaded gold nanoparticles. The size, shape and chemical functionalization of Gd-loaded gold nanoparticles appear to affect the observed relaxation enhancement of water protons in their suspensions. The herein reported results shed more light on the determinants of the relaxation enhancement brought by Gd-loaded concave cube gold nanoparticles (CCGNPs). It has been found that, in the case of nanoparticles endowed with concave surfaces, the relaxivity is remarkably higher compared to the corresponding spherical (i.e., convex) gold nanoparticles (SPhGNPs). The main determinant for the observed relaxation enhancement is represented by the occurrence of a large contribution from second sphere water molecules which can be exploited in the design of high-efficiency MRI CA.
Collapse
|
40
|
Liu Y, Deng K, Yang J, Wu X, Fan X, Tang M, Quan Z. Shape-directed self-assembly of nanodumbbells into superstructure polymorphs. Chem Sci 2020; 11:4065-4073. [PMID: 34122872 PMCID: PMC8152806 DOI: 10.1039/d0sc00592d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Self-assembly of colloidal nanoparticles into ordered superstructures provides a promising route to create novel/enhanced functional materials. Much progress has been made in self-assembly of anisotropic nanoparticles, but the complexity and tunability of superstructures remain restricted by their available geometries. Here we report the controlled packing of nanodumbbells (NDs) with two spherical lobes connected by one rod-like middle bar into varied superstructure polymorphs. When assembled into two-dimensional (2D) monolayer assemblies, such NDs with specific shape parameters could form orientationally ordered degenerate crystals with a 6-fold symmetry, in which these NDs possess no translational order but three allowed orientations with a rotational symmetry of 120 degrees. Detailed analyses identify the distinct roles of subunits in the ND assembly: the spherical lobes direct NDs to closely assemble together into a hexagonal pattern, and the rod-like connection between the lobes endows NDs with this specific orientational order. Such intralayer assembly features are well maintained in the two-layer superstructures of NDs; however, the interlayer stackings could be adjusted to produce stable bilayer superstructures and a series of metastable moiré patterns. Moreover, in addition to horizontal alignment, these NDs could gradually stand up to form tilted or even vertical packing based on the delicate control over the liquid-liquid interface and ND dimensions. This study provides novel insights into creating superstructures by controlling geometric features of nanoscale building blocks and may spur their novel applications.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kerong Deng
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Jun Yang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xiaotong Wu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Xiaokun Fan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Min Tang
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Zewei Quan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| |
Collapse
|
41
|
Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. NANOTECHNOLOGY 2020; 31:132002. [PMID: 31770746 PMCID: PMC7105107 DOI: 10.1088/1361-6528/ab5bc8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 05/05/2023]
Abstract
Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting to understand the mechanisms of those interactions. Systematic studies about cell behavior as a response to specific nanoparticle properties are scarce in the literature even when they are necessary for the rational design of medical nanodevices. Information in the literature shows that the physicochemical properties determine the bioactivity, biocompatibility, and safety of nanomaterials. The information available regarding the interaction and responses of cells to nanomaterials has not been analyzed and discussed in a single document. Hence, in this review, we present the latest advances about cellular responses to nanomaterials and integrate the available information into concrete considerations for the development of innovative, efficient, specific and, more importantly, safe biomedical nanodevices. We focus on how physicochemical nanoparticle properties (size, chemical surface, shape, charge, and topography) influence cell behavior in a first attempt to provide a practical guide for designing medical nanodevices, avoiding common experimental omissions that may lead to data misinterpretation. Finally, we emphasize the importance of the systematic study of nano-bio interactions to acquire sufficient reproducible information that allows accurate control of cell behavior based on tuning of nanomaterial properties. This information is useful to guide the design of specific nanodevices and nanomaterials to elicit desired cell responses, like targeting, drug delivery, cell attachment, differentiation, etc, or to avoid undesired side effects.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Instituto de Biotecnología. Universidad Nacional Autónoma de México. Ave. Universidad 2001. Col. Chamilpa. Cuernavaca, Morelos 62210, México
Villanueva-Flores F: ; Castro-Lugo A: ; Ramírez O: ; Palomares L:
| | - Andrés Castro-Lugo
- Instituto de Biotecnología. Universidad Nacional Autónoma de México. Ave. Universidad 2001. Col. Chamilpa. Cuernavaca, Morelos 62210, México
Villanueva-Flores F: ; Castro-Lugo A: ; Ramírez O: ; Palomares L:
| | - Octavio T Ramírez
- Instituto de Biotecnología. Universidad Nacional Autónoma de México. Ave. Universidad 2001. Col. Chamilpa. Cuernavaca, Morelos 62210, México
Villanueva-Flores F: ; Castro-Lugo A: ; Ramírez O: ; Palomares L:
| | - Laura A Palomares
- Instituto de Biotecnología. Universidad Nacional Autónoma de México. Ave. Universidad 2001. Col. Chamilpa. Cuernavaca, Morelos 62210, México
Villanueva-Flores F: ; Castro-Lugo A: ; Ramírez O: ; Palomares L:
| |
Collapse
|
42
|
Yang C, Tao X, Yang Y, Liu K. Patterning of polyoxometalate rings on gold nanorods. Chem Commun (Camb) 2020; 56:1677-1680. [PMID: 31939455 DOI: 10.1039/c9cc06968b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile method for the self-assembly of various polyoxometalates (POMs) on cetyltriethylammonium bromide-covered gold nanorods (GNRs) into an ordered array of POM rings along their long axis. The periodic distance of POM rings can be tuned by the POM charge and the transverse curvature of GNRs.
Collapse
Affiliation(s)
- Chenggong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | |
Collapse
|
43
|
Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2019; 49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.
Collapse
Affiliation(s)
- Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China and Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Jie He
- Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| |
Collapse
|
44
|
Litti L, Reguera J, García de Abajo FJ, Meneghetti M, Liz-Marzán LM. Manipulating chemistry through nanoparticle morphology. NANOSCALE HORIZONS 2019; 5:102-108. [PMID: 32756696 DOI: 10.1039/c9nh00456d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate that the protonation chemistry of molecules adsorbed at nanometer distances from the surface of anisotropic gold nanoparticles can be manipulated through the effect of surface morphology on the local proton density of an organic coating. Direct evidence of this remarkable effect was obtained by monitoring surface-enhanced Raman scattering (SERS) from mercaptobenzoic acid and 4-aminobenzenethiol molecules adsorbed on gold nanostars. By smoothing the initially sharp nanostar tips through a mild thermal treatment, changes were induced on protonation of the molecules, which can be observed through changes in the measured SERS spectra. These results shed light on the local chemical environment near anisotropic colloidal nanoparticles and open an alternative avenue to actively control chemistry through surface morphology.
Collapse
Affiliation(s)
- Lucio Litti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain. and CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca I Estudis Avanca[combining cedilla]ts, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Moreno Meneghetti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain and CIBER-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
45
|
Grupi A, Ashur I, Degani-Katzav N, Yudovich S, Shapira Z, Marzouq A, Morgenstein L, Mandel Y, Weiss S. Interfacing the Cell with "Biomimetic Membrane Proteins". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903006. [PMID: 31765076 DOI: 10.1002/smll.201903006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins mediate a myriad of cellular processes and are the target of many therapeutic drugs. Enhancement and extension of the functional scope of membrane proteins can be realized by membrane incorporation of engineered nanoparticles designed for specific diagnostic and therapeutic applications. In contrast to hydrophobic insertion of small amphiphilic molecules, delivery and membrane incorporation of particles on the nanometric scale poses a crucial barrier for technological development. In this perspective, the transformative potential of biomimetic membrane proteins (BMPs), current state of the art, and the barriers that need to be overcome in order to advance the field are discussed.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Idan Ashur
- Agricultural Research Organization, The Volcani Center, Institute of Agricultural Engineering, Rishon LeZion, 7505101, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adan Marzouq
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lion Morgenstein
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yossi Mandel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
46
|
Santos PJ, Cao Z, Zhang J, Alexander-Katz A, Macfarlane RJ. Dictating Nanoparticle Assembly via Systems-Level Control of Molecular Multivalency. J Am Chem Soc 2019; 141:14624-14632. [PMID: 31465688 DOI: 10.1021/jacs.9b04999] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoparticle assembly can be controlled by multivalent binding interactions between surface ligands, indicating that more precise control over these interactions is important to design complex nanoscale architectures. It has been well-established in natural materials that the arrangement of different molecular species in three dimensions can affect the ability of individual supramolecular units to coordinate their binding, thereby regulating the strength and specificity of their collective molecular interactions. However, in artificial systems, limited examples exist that quantitatively demonstrate how changes in nanoscale geometry can be used to rationally modulate the thermodynamics of individual molecular binding interactions. As a result, the use of nanoscale design features to regulate molecular bonding remains an underutilized design handle to control nanomaterials synthesis. Here we demonstrate a polymer-coated nanoparticle material where supramolecular bonding and nanoscale structure are used in conjunction to dictate the thermodynamics of their multivalent interactions, resulting in emergent bundling of supramolecular binding groups that would not be expected on the basis of the molecular structures alone. Additionally, we show that these emergent phenomena can controllably alter the superlattice symmetry by using the mesoscale particle arrangement to alter the thermodynamics of the supramolecular bonding behavior. The ability to rationally program molecular multivalency via a systems-level approach therefore provides a major step forward in the assembly of complex artificial structures, with implications for future designs of both nanoparticle- and supramolecular-based materials.
Collapse
Affiliation(s)
- Peter J Santos
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Zhen Cao
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jianyuan Zhang
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
47
|
Kim A, Zhou S, Yao L, Ni S, Luo B, Sing CE, Chen Q. Tip-Patched Nanoprisms from Formation of Ligand Islands. J Am Chem Soc 2019; 141:11796-11800. [DOI: 10.1021/jacs.9b05312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Zhao B, Li D, Long Y, Song K. Precisely Endowing Colloidal Particles with Silica Branches. Sci Rep 2019; 9:8591. [PMID: 31197202 PMCID: PMC6565735 DOI: 10.1038/s41598-019-44742-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
A method to modify colloidal particles with silica rods in a water/n-pentanol system is reported here. Because of the interfacial tension between aqueous and n-pentanol phase, water which surrounds the colloidal particles de-wets into droplets during the deposition process of silica. As a result of unidirectional deposition, silica rods grow perpendicularly on the surface of the colloidal particles at the site of the smallest curvature where the water droplet has been de-wetted. By controlling the hydrolysis conditions, particles with certain number of branches or rambutan-like particles can be obtained. This approach opens a path towards the higher levels of colloidal complexity.
Collapse
Affiliation(s)
- Bin Zhao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- Environmental Monitoring Station of Chenghua District of Chengdu, 610056, Chengdu, China
| | - Dongzhi Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yue Long
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Kai Song
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
49
|
Eller MJ, Chandra K, Coughlin EE, Odom TW, Schweikert EA. Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Anal Chem 2019; 91:5566-5572. [PMID: 30932475 PMCID: PMC6896788 DOI: 10.1021/acs.analchem.8b03715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper describes a label free technique for determining ligand loading on metal nanoparticles using a variant of secondary ion mass spectrometry. Au4004+ clusters bombard DNA-functionalized anisotropic gold nanostars and isotropic nanospheres with similar surface areas to determine ligand density. For each projectile impact, co-localized molecules within the emission area of a single impact (diameter of 10-15 nm) were examined for each particle. Individual nanoparticle analysis allows for determination of the relationship between particle geometry and DNA loading. We found that branched particles exhibited increased ligand density versus nanospheres and determined that positive and neutral curvature could facilitate additional loading. This methodology can be applied to optimize loading for any ligand-core interaction independent of nanoparticle core, ligand, or attachment chemistry.
Collapse
Affiliation(s)
- Michael J. Eller
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kavita Chandra
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma E. Coughlin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emile A. Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
50
|
Galati E, Tao H, Tebbe M, Ansari R, Rubinstein M, Zhulina EB, Kumacheva E. Helicoidal Patterning of Nanorods with Polymer Ligands. Angew Chem Int Ed Engl 2019; 58:3123-3127. [PMID: 30604462 PMCID: PMC6400493 DOI: 10.1002/anie.201812887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end-grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface-pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish-kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self-assembly modes.
Collapse
Affiliation(s)
- Elizabeth Galati
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Moritz Tebbe
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rija Ansari
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics and Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, 199004, Russia,
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|