1
|
Ma Y, Tang CS, Yang X, Ho YW, Zhou J, Wu W, Sun S, Bao JK, Wang D, Lin X, Grzeszczyk M, Wang S, Breese MBH, Cai C, Wee ATS, Koperski M, Xu ZA, Yin X. Unraveling the role of Ta in the phase transition of Pb(Ta 1+xSe 2) 2 using temperature-dependent Raman spectroscopy. J Colloid Interface Sci 2025; 685:565-572. [PMID: 39855097 DOI: 10.1016/j.jcis.2025.01.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties. Here, we investigate the significant structural phase transitions in Pb(Ta1+xSe2)2 single crystals induced by Ta intercalation using a combination of Raman spectroscopy and first-principles calculations. The results highlight the pivotal role of Ta atoms in driving these transitions and elucidate the interplay between intercalation, phase transitions, and resulting electronic and vibrational properties in 2D-TMDs. By focusing on Pb(Ta1+xSe2)2 as an ideal case study and investigating like metal intercalation, this study advances understanding in the field and paves the way for the development of novel applications for 2D-TMDs, offering insights into the potential of these materials for future technological advancements.
Collapse
Affiliation(s)
- Yu Ma
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603 Singapore
| | - Xiaohui Yang
- Department of Physics, China Jiliang University, Hangzhou 310018 Zhejiang, China; School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Yi Wei Ho
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544 Singapore; Department of Physics, National University of Singapore, Singapore 117551 Singapore
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634 Singapore.
| | - Wenjun Wu
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Shuo Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jin-Ke Bao
- School of Physics and Hangzhou Key Laboratory of Quantum Matters, Hangzhou Normal University, Hangzhou 311121, China
| | - Dingguan Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Magdalena Grzeszczyk
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544 Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634 Singapore
| | - Mark B H Breese
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603 Singapore; Department of Physics, National University of Singapore, Singapore 117551 Singapore
| | - Chuanbing Cai
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, Singapore 117551 Singapore
| | - Maciej Koperski
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544 Singapore; Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 Singapore.
| | - Zhu-An Xu
- School of Physics, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China; Hefei National Laboratory, Hefei 230088, China.
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Jung H, Jung J, Won C, Park HR, Cheong SW, Kim J, Cho GY, Yeom HW. Chiral Pseudogap Metal Emerging from a Disordered Van der Waals Mott Insulator 1T-TaS 2 - xSe x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500287. [PMID: 40123274 DOI: 10.1002/adma.202500287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Indexed: 03/25/2025]
Abstract
The emergence of a pseudogap is a hallmark of anomalous electronic states formed through substantial manybody interaction but the mechanism of the pseudogap formation and its role in related emerging quantum states such as unconventional superconductivity remain largely elusive. Here, the emergence of an unusual pseudogap in a representative van der Waals chiral charge density wave (CDW) materials with strong electron correlation, 1T-TaS2 is reported, through isoelectronic substitute of S. The evolution of electronic band dispersions of 1T-TaS2 - xSex (0 ⩽ x ⩽ 2) is systematically investigated using angle-resolved photoemission spectroscopy (ARPES). The results show that the Se substitution induces a quantum transition from an insulating to a pseudogap metallic phase with the CDW order preserved. Moreover, the asymmetry of the pseudogap spectral function is found, which reflects the chiral nature of CDW structure. The present observation is contrasted with the previous suggestions of a Mott transition driven by band width control or charge transfer. Instead, the pseudogap phase is attributed to a disordered Mott insulator in line with the recent observation of substantial lateral electronic disorder. These findings provide a unique electronic system with chiral pseudogap, where the complex interplay between CDW, chirality, disorder, and electronic correlation may lead to unconventional emergent physics.
Collapse
Affiliation(s)
- Hyunjin Jung
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jiwon Jung
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - ChoongJae Won
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Laboratory for Pohang Emergent Materials, POSTECH, Pohang, 37673, Republic of Korea
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Republic of Korea
| | - Hae-Ryong Park
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sang-Wook Cheong
- Laboratory for Pohang Emergent Materials, POSTECH, Pohang, 37673, Republic of Korea
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Republic of Korea
- Rutgers Center for emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jaeyoung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Gil Young Cho
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Zhong W, Zhang H, Hong F, Yue B. Superconductivity in metal sulfides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:173002. [PMID: 40054069 DOI: 10.1088/1361-648x/adbe1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
The exploration of high-temperature superconductors and the mechanisms underlying superconductivity continues to present significant challenges in condensed matter physics. Identifying new potential superconducting (SC) platforms is critical for advancing our understanding of superconductivity and its interactions with other quantum states. Metal sulfides constitute a diverse family of materials that exhibit unique physical properties, with crystal structures that can be tailored from one-dimensional (1D) to three-dimensional (3D) by varying the metal-to-sulfur ratio. Recent investigations into the superconductivity of metal sulfides have revealed extraordinary quantum phenomena, including chiral superconductivity, two-dimensional (2D) Ising superconductivity, and the competition between charge density waves and superconductivity. Furthermore, pressure tuning-a refined technique for modifying electronic and crystal structures without introducing impurities-has facilitated the emergence of superconductivity in various semiconducting and even insulating metal sulfides. In this review, we summarize and analyze the rich SC properties of metal sulfides, encompassing 3D metal monosulfides, 2D metal disulfides, and quasi-1D transition metal trisulfides. We also discuss additional systems, including hydrogen sulfides, Th3P4-type sulfides, and Bi-S systems. Collectively, these findings underscore that metal sulfides not only represent promising SC materials but also serve as excellent platforms for further investigation into the mechanisms of superconductivity.
Collapse
Affiliation(s)
- Wei Zhong
- Center for High Pressure Science & Technology Advanced Research, 10 East Xibeiwang Road, Haidian, Beijing 100193, People's Republic of China
| | - He Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fang Hong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Binbin Yue
- Center for High Pressure Science & Technology Advanced Research, 10 East Xibeiwang Road, Haidian, Beijing 100193, People's Republic of China
| |
Collapse
|
4
|
Chen CJ, Chen CA, Cheng YH, Chung CT, Lin YT, Chiang YC, Lee TK, Lee YH. Tunable Electron Correlation in Epitaxial 1T-TaS 2 Spirals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413926. [PMID: 39690786 DOI: 10.1002/adma.202413926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Tantalum disulfide (1T-TaS2), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge. Here, spiral lattices in the epitaxial TaS2 spirals are studied to probe collective properties with tunable interlayer interactions. A scalable synthesis of epitaxial TaS2 spirals is presented. A more than 50%-increased interlayer spacing enables prototype decoupled monolayers for enhanced electronic correlation exhibiting Mott physics at room-temperature and a simplified system to explore collective properties in vdW materials.
Collapse
Affiliation(s)
- Chung-Jen Chen
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-An Chen
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Hsiang Cheng
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Tzu Chung
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ting Lin
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Cheng Chiang
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ting-Kuo Lee
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Hsien Lee
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
5
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Sun X, Deng Z, Yang Y, Yu S, Huang Y, Lu Y, Tao Q, Shen DW, He WY, Xi C, Pi L, Watanabe K, Taniguchi T, Xu ZA, Zheng Y. Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411655. [PMID: 39632468 DOI: 10.1002/adma.202411655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Van der Waals (vdW) crystals with strong spin-orbit coupling (SOC) provide great opportunities for exploring unconventional 2D superconductors, wherein new pairing states emerge due to the interplay of SOC with crystalline symmetries, electronic correlations, quenched disorders and external modulation forces, etc. Here, a distinct mirror-symmetry protected Ising pairing state with unprecedented Γ- and M-valley symmetries in natural vdW heterostructures (vdWH) of interweaving tetragonal SnSe and trigonal 1H-TaSe2 monolayers is reported, in which the unidirectional lattice interlocking effectively suppresses the K-valley Ising pairing mechanism by incommensurate charge-density-wave (CDW) transitions. In the 2D limit of an TaSe2/SnSe bilayer with intact basal mirror symmetry (Mz), the mirror-symmetric vdWH Ising superconductors show anomalous in-plane magnetic field B‖-controlled enhancements in the critical temperature Tc, which is completely absent for multilayer vdWHs with broken Mz induced by orthorhombic stacking between nearest-neighbour TaSe2 monolayers. The experimental observations consistently reveal a mirror symmetry-protected type-III Ising state in the inversion asymmetric lattice of 1H-TaSe2, which is predicted to be a mixture of spin-singlet and spin-triplet states.
Collapse
Affiliation(s)
- Xikang Sun
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zhengkuan Deng
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yichen Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shuang Yu
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yuqiang Huang
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yunhao Lu
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Qian Tao
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Da-Wei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai, 200050, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wen-Yu He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Pi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Zhu-An Xu
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zheng
- School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Yang Q, Shi W, Zhong Z, Li X, Li Y, Meng X, Wang J, Chu J, Huang H. Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS 2. NANO LETTERS 2024; 24:16417-16425. [PMID: 39665786 DOI: 10.1021/acs.nanolett.4c05302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Two-dimensional 1T-TaS2 is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS2 attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive. Here, we systematically studied the evolution of multistep PTs during the I-V sweep in 1T-TaS2. Comprehensive investigations, covering variations in temperature, pulsed voltage duration, and light illumination, reveal that the underlying PT mechanism shifts from current-driven to thermally driven with increasing current. Initially, the current-driven PT step occurs at a constant current density, independent of the temperature. Subsequently, thermally driven PT steps manifest at a constant conductivity highly sensitive to the thermal effect. These transitions are strongly associated with the metastable CDW electronic structures and their response to carrier injection and thermal variations. Our findings reconcile long-standing debates regarding the electrically driven CDW PTs in 1T-TaS2.
Collapse
Affiliation(s)
- Qianyi Yang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Wu Shi
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Zhipeng Zhong
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Xiang Li
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Yan Li
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| | - Xiangjian Meng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Jianlu Wang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 201210, China
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Hai Huang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
| |
Collapse
|
8
|
Fujioka M, Zagarzusem K, Iwasaki S, Sharma A, Watanabe K, Nakayama R, Momai M, Yamaguchi Y, Shimada H, Nomura K, Mizutani Y, Sumi H, Tanaka M, Jeem M, Hattori M, Saitoh H, Ozaki T, Nagao M, Nagashima K. Hydrogen-Assisted Mg Intercalation into 2H-TaS 2. J Am Chem Soc 2024; 146:34324-34332. [PMID: 39626204 DOI: 10.1021/jacs.4c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Intercalation reactions are highly dependent on the electronic and structural relationships between host and guest materials. It is difficult for divalent ions, such as Mg, to undergo intercalation reactions compared with monovalent cations. However, further development of synthetic techniques for controlling divalent ions is strongly demanded to advance applied chemistry and fundamental physics. In this study, the cointercalation of Mg and H into the transition-metal chalcogenide TaS2 was utilized to obtain bulk polycrystalline MgxHyTaS2. Introduced H can be extracted via postannealing at approximately 400 °C without altering the crystal structure. This study clarified the relationship between superconducting properties and electronic carrier density from the perspectives of calculations and experiments, along with the advantages of using hydride as a multivalent intercalation reaction.
Collapse
Affiliation(s)
- Masaya Fujioka
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Khurelbaatar Zagarzusem
- Department of Electronics, School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia
| | - Suguru Iwasaki
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika, Tokyo 125-8585, Japan
| | - Aman Sharma
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Konosuke Watanabe
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Rei Nakayama
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Mizuki Momai
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Yuki Yamaguchi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Hiroyuki Shimada
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Katsuhiro Nomura
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Yasunobu Mizutani
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Hirofumi Sumi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Masashi Tanaka
- Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-Cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Melbert Jeem
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mineyuki Hattori
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Saitoh
- National Institutes for Quantum Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Toshinori Ozaki
- School of Engineering, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Masanori Nagao
- Center for Crystal Science and Technology, University of Yamanashi, Kofu, Yamanashi 400-0021, Japan
| | - Kazuki Nagashima
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
9
|
Hu W, Shen J, Wang T, Li Z, Xu Z, Lou Z, Qi H, Yan J, Wang J, Le T, Zheng X, Lu Y, Lin X. Lithium Ion Intercalation-Induced Metal-Insulator Transition in Inclined-Standing Grown 2D Non-Layered Cr 2S 3 Nanosheets. SMALL METHODS 2024; 8:e2400312. [PMID: 38654560 DOI: 10.1002/smtd.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Gate-controlled ionic intercalation in the van der Waals gap of 2D layered materials can induce novel phases and unlock new properties. However, this strategy is often unsuitable for densely packed 2D non-layered materials. The non-layered rhombohedral Cr2S3 is an intrinsic heterodimensional superlattice with alternating layers of 2D CrS2 and 0D Cr1/3. Here an innovative chemical vapor deposition method is reported, utilizing strategically modified metal precursors to initiate entirely new seed layers, yields ultrathin inclined-standing grown 2D Cr2S3 nanosheets with edge instead of face contact with substrate surfaces, enabling rapid all-dry transfer to other substrates while ensuring high crystal quality. The unconventional ordered vacancy channels within the 0D Cr1/3 layers, as revealed by cross-sectional scanning transmission electron microscope, permitting the insertion of Li+ ions. An unprecedented metal-insulator transition, with a resistance modulation of up to six orders of magnitude at 300 K, is observed in Cr2S3-based ionic field-effect transistors. Theoretical calculations corroborate the metallization induced by Li-ion intercalation. This work sheds light on the understanding of growth mechanism, structure-property correlation and highlights the diverse potential applications of 2D non-layered Cr2S3 superlattice.
Collapse
Affiliation(s)
- Wanghua Hu
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Jinbo Shen
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Zishun Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zhuokai Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Zhefeng Lou
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Qi
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Junjie Yan
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Jialu Wang
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Tian Le
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yunhao Lu
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
10
|
Li M, Ou T, Xiao C, Qiu Z, Wu X, Guo W, Zheng Y, Yang H, Wang Y. Controllable p-type doping and improved conductance of few-layer WSe 2via Lewis acid. NANOTECHNOLOGY 2024; 36:055701. [PMID: 39494696 DOI: 10.1088/1361-6528/ad8e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Manipulation of the electronic properties of layered transition-metal dichalcogenides (TMDs) is of fundamental significance for a wide range of electronic and optoelectronic applications. Surface charge transfer doping is considered to be a powerful technique to regulate the carrier density of TMDs. Herein, the controllable p-type surface modification of few-layer WSe2by FeCl3Lewis acid with different doping concentrations have been achieved. Effective hole doping of WSe2has been demonstrated using Raman spectra and XPS. Transport properties indicated the p-type FeCl3surface functionalization significantly increased the hole concentration with 1.2 × 1013cm-2, resulting in 6 orders of magnitude improvement for the conductance of FeCl3-modified WSe2compared with pristine WSe2. This work provides a promising approach and facilitate the further advancement of TMDs in electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Mengge Li
- School of microelectronics & data science, Anhui University of Technology, Maanshan 243032, People's Republic of China
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Tianjian Ou
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Cong Xiao
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Zhanjie Qiu
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiaoxiang Wu
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wenxuan Guo
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuan Zheng
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hancheng Yang
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yewu Wang
- School of Physics, Zhejiang Province Key Laboratory of Quantum Technology and device, Zhejiang University, Hangzhou 310027, People's Republic of China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
11
|
Wu S, Schoop LM, Sodemann I, Moessner R, Cava RJ, Ong NP. Charge-neutral electronic excitations in quantum insulators. Nature 2024; 635:301-310. [PMID: 39537889 DOI: 10.1038/s41586-024-08091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.
Collapse
Affiliation(s)
- Sanfeng Wu
- Department of Physics, Princeton University, Princeton, NJ, USA.
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Inti Sodemann
- Institute for Theoretical Physics, University of Leipzig, Leipzig, Germany
| | - Roderich Moessner
- Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - N P Ong
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Domröse T, Fernandez N, Eckel C, Rossnagel K, Weitz RT, Ropers C. Nanoscale Operando Imaging of Electrically Driven Charge-Density Wave Phase Transitions. NANO LETTERS 2024; 24:12476-12485. [PMID: 39316412 PMCID: PMC11468880 DOI: 10.1021/acs.nanolett.4c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required. Here, we demonstrate nanoimaging of a current-induced phase transformation in the charge-density wave (CDW) material 1T-TaS2. Combining electrical characterizations with tailored contrast enhancement, we correlate macroscopic resistance changes with the nanoscale nucleation and growth of CDW phase domains. In particular, we locally determine the transformation barrier in the presence of dislocations and strain, underlining their non-negligible impact on future functional devices. Thereby, our results demonstrate the merit of tailored contrast enhancement and beam shaping for advanced operando microscopy of quantum materials and devices.
Collapse
Affiliation(s)
- Till Domröse
- Department
of Ultrafast Dynamics, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- 4th
Physical Institute − Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany
| | - Noelia Fernandez
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Christian Eckel
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Kai Rossnagel
- Institute
of Experimental and Applied Physics, Kiel
University, 24098 Kiel, Germany
- Ruprecht
Haensel Laboratory, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - R. Thomas Weitz
- 1st
Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, 37077 Göttingen, Germany
| | - Claus Ropers
- Department
of Ultrafast Dynamics, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- 4th
Physical Institute − Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Zhai Y, Shi Z, Xia Q, Han W, Li W, Deng X, Zhang X. Lithiation: Advancing Material Synthesis and Structural Engineering for Emerging Applications. ACS NANO 2024; 18:26477-26502. [PMID: 39301666 DOI: 10.1021/acsnano.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.
Collapse
Affiliation(s)
- Yanjie Zhai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Zhenqi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenkai Han
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Weisong Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang SJ, Miao F. On-device phase engineering. NATURE MATERIALS 2024; 23:1363-1369. [PMID: 38664497 DOI: 10.1038/s41563-024-01888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/03/2024] [Indexed: 08/15/2024]
Abstract
In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.
Collapse
Affiliation(s)
- Xiaowei Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Junjie Shan
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Tianjun Cao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liang Zhu
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Jiayu Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Zude Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qishuo Yang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Mingyu Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zenglin Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Shengnan Yan
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lizheng Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yudi Dai
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Junlin Xiong
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Fanqiang Chen
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Buwei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chen Pan
- Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Bin Cheng
- Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-Sen University, Guangzhou, China.
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, China.
| | - Shi-Jun Liang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Feng Miao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Szałowski K. Janus Monolayer of 1T-TaSSe: A Computational Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4591. [PMID: 39336331 PMCID: PMC11433230 DOI: 10.3390/ma17184591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Materials exhibiting charge density waves are attracting increasing attention owing to their complex physics and potential for applications. In this paper, we present a computational, first principles-based study of the Janus monolayer of 1T-TaSSe transition metal dichalcogenide. We extensively compare the results with those obtained for parent compounds, TaS2 and TaSe2 monolayers, with confirmed presence of 13×13 charge density waves. The structural and electronic properties of the normal (undistorted) phase and distorted phase with 13×13 periodic lattice distortion are discussed. In particular, for a normal phase, the emergence of dipolar moment due to symmetry breaking is demonstrated, and its sensitivity to an external electric field perpendicular to the monolayer is investigated. Moreover, the appearance of imaginary energy phonon modes suggesting structural instability is shown. For the distorted phase, we predict the presence of a flat, weakly dispersive band related to the appearance of charge density waves, similar to the one observed in parent compounds. The results suggest a novel platform for studying charge density waves in two-dimensional transition metal dichalcogenides.
Collapse
Affiliation(s)
- Karol Szałowski
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Ulica Pomorska 149/153, 90-236 Lodz, Poland
| |
Collapse
|
16
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
17
|
Hart JL, Pan H, Siddique S, Schnitzer N, Mallayya K, Xu S, Kourkoutis LF, Kim EA, Cha JJ. Real-space visualization of a defect-mediated charge density wave transition. Proc Natl Acad Sci U S A 2024; 121:e2402129121. [PMID: 39106309 PMCID: PMC11331100 DOI: 10.1073/pnas.2402129121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/14/2024] [Indexed: 08/09/2024] Open
Abstract
We study the coupled charge density wave (CDW) and insulator-to-metal transitions in the 2D quantum material 1T-TaS2. By applying in situ cryogenic 4D scanning transmission electron microscopy with in situ electrical resistance measurements, we directly visualize the CDW transition and establish that the transition is mediated by basal dislocations (stacking solitons). We find that dislocations can both nucleate and pin the transition and locally alter the transition temperature Tc by nearly ~75 K. This finding was enabled by the application of unsupervised machine learning to cluster five-dimensional, terabyte scale datasets, which demonstrate a one-to-one correlation between resistance-a global property-and local CDW domain-dislocation dynamics, thereby linking the material microstructure to device properties. This work represents a major step toward defect-engineering of quantum materials, which will become increasingly important as we aim to utilize such materials in real devices.
Collapse
Affiliation(s)
- James L. Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | - Haining Pan
- Department of Physics, Cornell University, Ithaca, NY14853
| | - Saif Siddique
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | | | - Shiyu Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | - Lena F. Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853
| | - Eun-ah Kim
- Department of Physics, Cornell University, Ithaca, NY14853
- Department of Physics, Ewha Womans University, Seoul03760, South Korea
| | - Judy J. Cha
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| |
Collapse
|
18
|
Mahatha SK, Phillips J, Corral-Sertal J, Subires D, Korshunov A, Kar A, Buck J, Diekmann F, Garbarino G, Ivanov YP, Chuvilin A, Mondal D, Vobornik I, Bosak A, Rossnagel K, Pardo V, Fumega AO, Blanco-Canosa S. Self-Stacked 1T-1H Layers in 6R-NbSeTe and the Emergence of Charge and Magnetic Correlations Due to Ligand Disorder. ACS NANO 2024. [PMID: 39086092 DOI: 10.1021/acsnano.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.
Collapse
Affiliation(s)
- Sanjoy K Mahatha
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Phillips
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela, Spain
- Instituto de Materiais iMATUS, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela, Spain
| | - Javier Corral-Sertal
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela, Spain
- CiQUS, Centro Singular de Investigacion en Quimica Biolóxica e Materiais Moleculares, Departamento de Quimica-Fisica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - David Subires
- Donostia International Physics Center (DIPC), E-20018 San Sebastián, Spain
- University of the Basque Country (UPV/EHU), Basque Country, Bilbao 48080 Spain
| | - Artem Korshunov
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - Arunava Kar
- Donostia International Physics Center (DIPC), E-20018 San Sebastián, Spain
| | - Jens Buck
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Florian Diekmann
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Gaston Garbarino
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex 9, France
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrey Chuvilin
- CIC Nanogune, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Debashis Mondal
- Consiglio Nazionale delle Ricerche (CNR)- Istituto Officina dei Materiali (IOM), Laboratorio TASC in Area Science, 34149 Trieste, Italy
- Sovarani Memorial College, Jagatballavpur, Howrah 711408, India
| | - Ivana Vobornik
- Consiglio Nazionale delle Ricerche (CNR)- Istituto Officina dei Materiali (IOM), Laboratorio TASC in Area Science, 34149 Trieste, Italy
| | - Alexei Bosak
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - Kai Rossnagel
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Victor Pardo
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela, Spain
- Instituto de Materiais iMATUS, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela, Spain
| | - Adolfo O Fumega
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Santiago Blanco-Canosa
- Donostia International Physics Center (DIPC), E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
19
|
López-Urías F, Rubio-Ponce A, Muñoz-Sandoval E, Sánchez-Ochoa F. Twisted graphene superlattices: resonating valence bond states and magnetic properties. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:405802. [PMID: 38941991 DOI: 10.1088/1361-648x/ad5d38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Resonating valence bond (RVB) states are fundamental for understanding quantum spin liquids in two-dimensional (2D) systems. The RVB state is a collective phenomenon in which spins are uncoupled. 2D lattices such as triangular, honeycomb, and dice lattices were investigated using the Hubbard model and exact diagonalization method. We analyzed the total spin, spin-spin correlation functions, local magnetic moments, and spin and charge gaps as a function of on-site Coulomb repulsion, electron concentration, and electronic hopping parameters. Phase diagrams showed that RVB states can live in half-filled and hole-doped anisotropic triangular lattices. We found two types of RVB states: one in the honeycomb sublattice and the other in the centered hexagons in the triangular lattices. Owing to the novel discovery of exotic magnetic ordering in triangular moiré patterns in twisted bilayer graphene and transition metal dichalcogenide systems, our results provide physical insights into the onset of magnetism and possible spin liquid states in these layered materials.
Collapse
Affiliation(s)
- Florentino López-Urías
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col Lomas 4a sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Alberto Rubio-Ponce
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Ciudad de México, C.P. 02200, Mexico
| | - Emilio Muñoz-Sandoval
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col Lomas 4a sección, San Luis Potosí, S.L.P. 78216, Mexico
| | - Francisco Sánchez-Ochoa
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México, C.P. 01000, Mexico
| |
Collapse
|
20
|
Yang H, Lee B, Bang J, Kim S, Wulferding D, Lee S, Cho D. Origin of Distinct Insulating Domains in the Layered Charge Density Wave Material 1T-TaS 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401348. [PMID: 38728592 PMCID: PMC11267268 DOI: 10.1002/advs.202401348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Vertical charge order shapes the electronic properties in layered charge density wave (CDW) materials. Various stacking orders inevitably create nanoscale domains with distinct electronic structures inaccessible to bulk probes. Here, the stacking characteristics of bulk 1T-TaS2 are analyzed using scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. It is observed that Mott-insulating domains undergo a transition to band-insulating domains restoring vertical dimerization of the CDWs. Furthermore, STS measurements covering a wide terrace reveal two distinct band insulating domains differentiated by band edge broadening. These DFT calculations reveal that the Mott insulating layers preferably reside on the subsurface, forming broader band edges in the neighboring band insulating layers. Ultimately, buried Mott insulating layers believed to harbor the quantum spin liquid phase are identified. These results resolve persistent issues regarding vertical charge order in 1T-TaS2, providing a new perspective for investigating emergent quantum phenomena in layered CDW materials.
Collapse
Affiliation(s)
- Hyungryul Yang
- Department of PhysicsYonsei UniversitySeoul03722Republic of Korea
| | - Byeongin Lee
- Department of PhysicsYonsei UniversitySeoul03722Republic of Korea
| | - Junho Bang
- Department of PhysicsYonsei UniversitySeoul03722Republic of Korea
| | - Sunghun Kim
- Department of PhysicsAjou UniversitySuwon16499Republic of Korea
| | - Dirk Wulferding
- Center for Correlated Electron SystemsInstitute for Basic ScienceSeoul08826Republic of Korea
- Department of Physics and AstronomySeoul National UniversitySeoul08826Republic of Korea
| | - Sung‐Hoon Lee
- Department of Applied PhysicsKyung Hee UniversityYongin17104Republic of Korea
| | - Doohee Cho
- Department of PhysicsYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
21
|
Phillips J, Lado JL, Pardo V, Fumega AO. Self-doped flat band and spin-triplet superconductivity in monolayer 1T-TaSe 2-xTe x. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:385804. [PMID: 38885693 DOI: 10.1088/1361-648x/ad5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Two-dimensional van der Waals materials have become an established platform to engineer flat bands which can lead to strongly-correlated emergent phenomena. In particular, the family of Ta dichalcogenides in the 1T phase presents a star-of-David charge density wave that creates a flat band at the Fermi level. For TaS2and TaSe2this flat band is at half filling leading to a magnetic insulating phase. In this work, we theoretically demonstrate that ligand substitution in the TaSe2-xTexsystem produces a transition from the magnetic insulator to a non-magnetic metal in which the flat band gets doped away from half-filling. Forx∈[0.846,1.231]the spin-polarized flat band is self-doped and the system becomes a magnetic metal. In this regime, we show that attractive interactions promote three different spin-triplet superconducting phases as a function ofx, corresponding to a nodal f-wave and two topologically-different chiral p-wave superconducting phases. Our results establish monolayer TaSe2-xTexas a promising platform for correlated flat band physics leading to unconventional superconducting states.
Collapse
Affiliation(s)
- Jan Phillips
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
- Instituto de Materiais iMATUS, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
| | - Jose L Lado
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Víctor Pardo
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
- Instituto de Materiais iMATUS, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
| | - Adolfo O Fumega
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
22
|
Yang R, Mei L, Lin Z, Fan Y, Lim J, Guo J, Liu Y, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Intercalation in 2D materials and in situ studies. Nat Rev Chem 2024; 8:410-432. [PMID: 38755296 DOI: 10.1038/s41570-024-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Liang Mei
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinghua Guo
- Advanced Light Source, Energy Storage and Distributed Resources Division, and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
23
|
Chen W, Zhu S, Duan R, Wang C, Wang F, Wu Y, Dai M, Cui J, Chae SH, Li Z, Ma X, Wang Q, Liu Z, Wang QJ. Extraordinary Enhancement of Nonlinear Optical Interaction in NbOBr 2 Microcavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400858. [PMID: 38631028 DOI: 10.1002/adma.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Indexed: 04/19/2024]
Abstract
2D materials are burgeoning as promising candidates for investigating nonlinear optical effects due to high nonlinear susceptibilities, broadband optical response, and tunable nonlinearity. However, most 2D materials suffer from poor nonlinear conversion efficiencies, resulting from reduced light-matter interactions and lack of phase matching at atomic thicknesses. Herein, a new 2D nonlinear material, niobium oxide dibromide (NbOBr2) is reported, featuring strong and anisotropic optical nonlinearities with scalable nonlinear intensity. Furthermore, Fabry-Pérot (F-P) microcavities are constructed by coupling NbOBr2 with air holes in silicon. Remarkable enhancement factors of ≈630 times in second harmonic generation (SHG) and 210 times in third harmonic generation (THG) are achieved on cavity at the resonance wavelength of 1500 nm. Notably, the cavity enhancement effect exhibits strong anisotropic feature tunable with pump wavelength, owing to the robust optical birefringence of NbOBr2. The ratio of the enhancement factor along the b- and c-axis of NbOBr2 reaches 2.43 and 5.27 for SHG and THG at 1500 nm pump, respectively, which leads to an extraordinarily high SHG anisotropic ratio of 17.82 and a 10° rotation of THG polarization. The research presents a feasible and practical strategy for developing high-efficiency and low-power-pumped on-chip nonlinear optical devices with tunable anisotropy.
Collapse
Affiliation(s)
- Wenduo Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chongwu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fakun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mingjin Dai
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jieyuan Cui
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Sang Hoon Chae
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhipeng Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xuezhi Ma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zheng Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qi Jie Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
24
|
Yan L, Bu K, Li Z, Zhang Z, Xia W, Li M, Li N, Guan J, Liu X, Ning J, Zhang D, Guo Y, Wang X, Yang W. Double Superconducting Dome of Quasi Two-Dimensional TaS 2 in Non-Centrosymmetric van der Waals Heterostructure. NANO LETTERS 2024; 24:6002-6009. [PMID: 38739273 DOI: 10.1021/acs.nanolett.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.
Collapse
Affiliation(s)
- Limin Yan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Zhongyang Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wei Xia
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Mingtao Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Jiayi Guan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xuqiang Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Jiahao Ning
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Dongzhou Zhang
- GSECARS, University of Chicago, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Yanfeng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| |
Collapse
|
25
|
Wang Y, Li Z, Luo X, Gao J, Han Y, Jiang J, Tang J, Ju H, Li T, Lv R, Cui S, Yang Y, Sun Y, Zhu J, Gao X, Lu W, Sun Z, Xu H, Xiong Y, Cao L. Dualistic insulator states in 1T-TaS 2 crystals. Nat Commun 2024; 15:3425. [PMID: 38653984 DOI: 10.1038/s41467-024-47728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
While the monolayer sheet is well-established as a Mott-insulator with a finite energy gap, the insulating nature of bulk 1T-TaS2 crystals remains ambiguous due to their varying dimensionalities and alterable interlayer coupling. In this study, we present a unique approach to unlock the intertwined two-dimensional Mott-insulator and three-dimensional band-insulator states in bulk 1T-TaS2 crystals by structuring a laddering stack along the out-of-plane direction. Through modulating the interlayer coupling, the insulating nature can be switched between band-insulator and Mott-insulator mechanisms. Our findings demonstrate the duality of insulating nature in 1T-TaS2 crystals. By manipulating the translational degree of freedom in layered crystals, our discovery presents a promising strategy for exploring fascinating physics, independent of their dimensionality, thereby offering a "three-dimensional" control for the era of slidetronics.
Collapse
Affiliation(s)
- Yihao Wang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Zhihao Li
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
| | - Xuan Luo
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jingjing Gao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuyan Han
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jialiang Jiang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jin Tang
- Department of Physics, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Huanxin Ju
- PHI Analytical Laboratory, ULVAC-PHI Instruments Co., Ltd., Nanjing, 211110, Jiangsu, P. R. China
| | - Tongrui Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Run Lv
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengtao Cui
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingguo Yang
- State Key Laboratory of Photovoltaic Science and Technology, School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Yuping Sun
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, P. R. China
| | - Wenjian Lu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | - Zhe Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
- Hefei National Laboratory, Hefei, 230028, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Yimin Xiong
- Department of Physics, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, 230601, P. R. China.
- Hefei National Laboratory, Hefei, 230028, P. R. China.
| | - Liang Cao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| |
Collapse
|
26
|
Postiglione WM, Yu G, Chaturvedi V, Zhou H, Heltemes K, Jacobson A, Greven M, Leighton C. Mechanisms of Hysteresis and Reversibility across the Voltage-Driven Perovskite-Brownmillerite Transformation in Electrolyte-Gated Ultrathin La 0.5Sr 0.5CoO 3-δ. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19184-19197. [PMID: 38564510 DOI: 10.1021/acsami.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolyte-gate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3-δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices.
Collapse
Affiliation(s)
- William M Postiglione
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guichuan Yu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vipul Chaturvedi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kei Heltemes
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andrew Jacobson
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Martin Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Matsuoka H, Kajihara S, Nomoto T, Wang Y, Hirayama M, Arita R, Iwasa Y, Nakano M. Band-driven switching of magnetism in a van der Waals magnetic semimetal. SCIENCE ADVANCES 2024; 10:eadk1415. [PMID: 38608018 PMCID: PMC11014443 DOI: 10.1126/sciadv.adk1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Magnetic semimetals form an attractive class of materials because of the nontrivial contributions of itinerant electrons to magnetism. Because of their relatively low-carrier-density nature, a doping level of those materials could be largely tuned by a gating technique. Here, we demonstrate gate-tunable ferromagnetism in an emergent van der Waals magnetic semimetal Cr3Te4 based on an ion-gating technique. Upon doping electrons into the system, the Curie temperature (TC) sharply increases, approaching near to room temperature, and then decreases to some extent. This non-monotonous variation of TC accompanies the switching of the magnetic anisotropy, synchronously followed by the sign changes of the ordinary and anomalous Hall effects. Those results clearly elucidate that the magnetism in Cr3Te4 should be governed by its semimetallic band nature.
Collapse
Affiliation(s)
- Hideki Matsuoka
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Shun Kajihara
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takuya Nomoto
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yue Wang
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Motoaki Hirayama
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masaki Nakano
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
28
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
29
|
Liu C, Zou X, Lv Y, Liu X, Ma C, Li K, Liu Y, Chai Y, Liao L, He J. Controllable van der Waals gaps by water adsorption. NATURE NANOTECHNOLOGY 2024; 19:448-454. [PMID: 38177277 DOI: 10.1038/s41565-023-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
Van der Waals (vdW) gaps with ångström-scale heights can confine molecules or ions to an ultimately small scale, providing an alternative way to tune material properties and explore microscopic phenomena. Modulation of the height of vdW gaps between two-dimensional (2D) materials is challenging due to the vdW interaction. Here we report a general approach to control the vdW gap by preadsorption of water molecules on the material surface. By controlling the saturation vapour pressure of water vapour, we can precisely control the adsorption level of water molecules and vary the height of the vdW gaps of MoS2 homojunctions from 5.5 Å to 53.6 Å. This technique can be further applied to other homo- and heterojunctions, constructing controlled vdW gaps in 2D artificial superlattices and in 2D/3D and 3D/3D heterojunctions. Engineering the vdW gap has great practical potential to modulate the device performance, as evidenced by the vdW-gap-dependent diode characteristics of the MoS2/gap/MoS2 junction. Our work introduces a general strategy of molecular preadsorption that can extend to various precursors, creating more tunability and variability in vdW material systems.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China.
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xingqiang Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Chao Ma
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kenli Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yuan Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China.
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, China.
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
He D, Zheng Y, Ding D, Ma H, Zhang A, Cheng Y, Zhao W, Jin C. Titanium Self-Intercalation Induced Formation of Orthogonal (1 × 1) Edge/Surface Reconstruction in 1T-TiSe 2: Atomic Scale Dynamics and Mechanistic Study. NANO LETTERS 2024; 24:3835-3841. [PMID: 38498307 DOI: 10.1021/acs.nanolett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Edges and surfaces play indispensable roles in affecting the chemical-physical properties of materials, particularly in two-dimensional transition metal dichalcogenides (TMDCs) with reduced dimensionality. Herein, we report a novel edge/surface structure in multilayer 1T-TiSe2, i.e., the orthogonal (1 × 1) reconstruction, induced by the self-intercalation of Ti atoms into interlayer octahedral sites of the host TiSe2 at elevated temperature. Formation dynamics of the reconstructed edge/surface are captured at the atomic level by in situ scanning transmission electron microscopy (STEM) and further validated by density functional theory (DFT), which enables the proposal of the nucleation mechanism and two growth routes (zigzag and armchair). Via STEM-electron energy loss spectroscopy (STEM-EELS), a chemical shift of 0.6 eV in Ti L3,2 is observed in the reconstructed edge/surface, which is attributed to the change of the coordination number and lattice distortion. The present work provides insights to tailor the atomic/electronic structures and properties of 2D TMDC materials.
Collapse
Affiliation(s)
- Daliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yonghui Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Degong Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Aixinye Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Yan Cheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| |
Collapse
|
31
|
Ma L, Wang Y, Liu Y. van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides. Chem Rev 2024; 124:2583-2616. [PMID: 38427801 DOI: 10.1021/acs.chemrev.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for next-generation electronics owing to their atomically thin structures and surfaces devoid of dangling bonds. However, establishing high-quality metal contacts with TMDs presents a critical challenge, primarily attributed to their ultrathin bodies and delicate lattices. These distinctive characteristics render them susceptible to physical damage and chemical reactions when conventional metallization approaches involving "high-energy" processes are implemented. To tackle this challenge, the concept of van der Waals (vdW) contacts has recently been proposed as a "low-energy" alternative. Within the vdW geometry, metal contacts can be physically laminated or gently deposited onto the 2D channel of TMDs, ensuring the formation of atomically clean and electronically sharp contact interfaces while preserving the inherent properties of the 2D TMDs. Consequently, a considerable number of vdW contact devices have been extensively investigated, revealing unprecedented transport physics or exceptional device performance that was previously unachievable. This review presents recent advancements in vdW contacts for TMD transistors, discussing the merits, limitations, and prospects associated with each device geometry. By doing so, our purpose is to offer a comprehensive understanding of the current research landscape and provide insights into future directions within this rapidly evolving field.
Collapse
Affiliation(s)
- Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Tian N, Huang Z, Jang BG, Guo S, Yan YJ, Gao J, Yu Y, Hwang J, Tang C, Wang M, Luo X, Sun YP, Liu Z, Feng DL, Chen X, Mo SK, Kim M, Son YW, Shen D, Ruan W, Zhang Y. Dimensionality-driven metal to Mott insulator transition in two-dimensional 1T-TaSe 2. Natl Sci Rev 2024; 11:nwad144. [PMID: 39678039 PMCID: PMC11640825 DOI: 10.1093/nsr/nwad144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 12/17/2024] Open
Abstract
Two-dimensional materials represent a major frontier for research into exotic many-body quantum phenomena. In the extreme two-dimensional limit, electron-electron interaction often dominates over other electronic energy scales, leading to strongly correlated effects such as quantum spin liquid and unconventional superconductivity. The dominance is conventionally attributed to the lack of electron screening in the third dimension. Here, we discover an intriguing metal to Mott insulator transition in 1T-TaSe2 that defies conventional wisdom. Specifically, we find that dimensionality crossover, instead of reduced screening, drives the transition in atomically thin 1T-TaSe2. A dispersive band crossing the Fermi level is found to be responsible for the bulk metallicity in the material. Reducing the dimensionality, however, effectively quenches the kinetic energy of these initially itinerant electrons, and drives the material into a Mott insulating state. The dimensionality-driven metal to Mott insulator transition resolves the long-standing dichotomy between metallic bulk and insulating surface of 1T-TaSe2. Our work further reveals a new pathway for modulating two-dimensional materials that enables exploring strongly correlated systems across uncharted parameter space.
Collapse
Affiliation(s)
- Ning Tian
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Zhe Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai
Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of
Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Bo Gyu Jang
- Korea Institute for Advanced Study, Seoul
02455, South Korea
| | - Shuaifei Guo
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Ya-Jun Yan
- School of Emerging Technology and Department of Physics, University of
Science and Technology of China, Hefei 230026,
China
| | - Jingjing Gao
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Yijun Yu
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Jinwoong Hwang
- Advanced Light Source, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
| | - Cenyao Tang
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Meixiao Wang
- School of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics,
Shanghai 200031, China
| | - Xuan Luo
- Key Laboratory of Materials Physics, Institute of Solid State Physics,
Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
| | - Yu Ping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics,
Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science,
Chinese Academy of Sciences, Hefei 230031,
China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing
University, Nanjing 210093, China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics,
Shanghai 200031, China
| | - Dong-Lai Feng
- School of Emerging Technology and Department of Physics, University of
Science and Technology of China, Hefei 230026,
China
| | - Xianhui Chen
- Department of Physics, University of Science and Technology of China, and
Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of
Sciences, Hefei 230026, China
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA
| | - Minjae Kim
- Korea Institute for Advanced Study, Seoul
02455, South Korea
| | - Young-Woo Son
- Korea Institute for Advanced Study, Seoul
02455, South Korea
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai
Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of
Sciences, Shanghai 200050, China
- National Synchrotron Radiation Laboratory, University of Science and
Technology of China, Hefei 230029, China
| | - Wei Ruan
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics, New Cornerstone Science
Laboratory, and Department of Physics, Fudan University,
Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai
200232, China
- Shanghai Research Center for Quantum Sciences,
Shanghai 201315, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan
University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan
University, Shanghai 201210, China
| |
Collapse
|
33
|
Chen K, Yan X, Deng J, Bo C, Song M, Kan D, He J, Huo W, Liu JZ. Out-of-plane pressure and electron doping inducing phase and magnetic transitions in GeC/CrS 2/GeC van der Waals heterostructure. NANOSCALE 2024; 16:3693-3700. [PMID: 38288860 DOI: 10.1039/d3nr05610d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Out-of-plane pressure and electron doping can affect interlayer interactions in van der Waals materials, modifying their crystal structure and physical and chemical properties. In this study, we used magnetic monolayer 1T/1T'-CrS2 and high symmetry 2D-honeycomb material GeC to construct a GeC/CrS2/GeC triple layered van der Waals heterostructure (vdWH). Based on density functional theory calculations, we found that applying out-of-plane strain and doping with electrons could induce a 1T'-to-1T phase transition and consequently the ferromagnetic (FM)-to-antiferromagnetic (AFM) transition in the CrS2 layer. Such a phase and magnetic transition arises from the pressure and electron-induced interlayer interaction enhancement. The electron doping can effectively decrease the critical compressive stress from ∼4.3 GPa (charge neutrality) to ∼664 MPa (Q = 9 × 10-3 e- per atom) for the FM-to-AFM transition. These properties could be used to fabricate and program the 2D lateral FM/AFM heterostructures for artificial controlled spin texture and miniaturized spintronic devices.
Collapse
Affiliation(s)
- Kaiyun Chen
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Xue Yan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Junkai Deng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Cunle Bo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengshan Song
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Dongxiao Kan
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Jiabei He
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Wangtu Huo
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Sung SH, Agarwal N, El Baggari I, Kezer P, Goh YM, Schnitzer N, Shen JM, Chiang T, Liu Y, Lu W, Sun Y, Kourkoutis LF, Heron JT, Sun K, Hovden R. Endotaxial stabilization of 2D charge density waves with long-range order. Nat Commun 2024; 15:1403. [PMID: 38360698 PMCID: PMC10869719 DOI: 10.1038/s41467-024-45711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2 are derived and consistent with the predicted emergence of vestigial quantum order.
Collapse
Affiliation(s)
- Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nishkarsh Agarwal
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Patrick Kezer
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yin Min Goh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Jeremy M Shen
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tony Chiang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Liu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wenjian Lu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, PR China
- Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lena F Kourkoutis
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - John T Heron
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Song X, Huang X, Yang H, Jia L, Zhang Q, Huang Y, Wu X, Liu L, Gao HJ, Wang Y. Robust Behavior of Charge Density Wave Quantum Motif Star-of-David in 2D NbSe 2 Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305159. [PMID: 37635109 DOI: 10.1002/smll.202305159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Charge density wave (CDW) is a typical collective phenomenon, and the phase change is generally accompanied by electronic transition with potential device applications. For the continuous miniaturization of devices, it is important to investigate the size effect down to the nanoscale. In this work, single-layer (SL) 1T-NbSe2 islands provide an ideal research platform to investigate the size effect on CDW arrangement and electronic states. The CDW motifs (Star-of-David [SOD]) at the island border are along the edge, and those at the interior tend to arrange in a triangular lattice for islands as small as 5 nm. Interestingly, in some small islands, the SOD clusters rearrange into a square-like lattice, and each SOD cluster remains robust as a quantum motif, both in the sense of geometry and electronic structures. Moreover, the electronic structure at the center of the small islands is downwards shifted compared to the big islands, explained by the spatial extension of the band bending originating from the edge of the islands. These findings reveal the robust behavior of CDW motifs down to the nanoscale and provide new insights into the size-limiting effect on 2D2D CDW ordering and electronic states down to a few nanometer extremes.
Collapse
Affiliation(s)
- Xuan Song
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyu Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Liangguang Jia
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Quanzhen Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Wu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
36
|
Maier P, Hourigan NJ, Ruckhofer A, Bremholm M, Tamtögl A. Surface properties of 1T-TaS 2 and contrasting its electron-phonon coupling with TlBiTe 2 from helium atom scattering. Front Chem 2023; 11:1249290. [PMID: 38033467 PMCID: PMC10687202 DOI: 10.3389/fchem.2023.1249290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
We present a detailed helium atom scattering study of the charge-density wave (CDW) system and transition metal dichalcogenide 1T-TaS2. In terms of energy dissipation, we determine the electron-phonon (e-ph) coupling, a quantity that is at the heart of conventional superconductivity and may even "drive" phase transitions such as CDWs. The e-ph coupling of TaS2 in the commensurate CDW phase (λ = 0.59 ± 0.12) is compared with measurements of the topo-logical insulator TlBiTe2 (λ = 0.09 ± 0.01). Furthermore, by means of elastic He diffraction and resonance/interference effects in He scattering, the thermal expansion of the surface lattice, the surface step height, and the three-dimensional atom-surface interaction potential are determined including the electronic corrugation of 1T-TaS2. The linear thermal expansion coefficient is similar to that of other transition-metal dichalcogenides. The He-TaS2 interaction is best described by a corrugated Morse potential with a relatively large well depth and supports a large number of bound states, comparable to the surface of Bi2Se3, and the surface electronic corrugation of 1T-TaS2 is similar to the ones found for semimetal surfaces.
Collapse
Affiliation(s)
- Philipp Maier
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | - Noah. J. Hourigan
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | - Adrian Ruckhofer
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| | - Martin Bremholm
- Department of Chemistry and iNANO, Aarhus University, Aarhus, Denmark
| | - Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria
| |
Collapse
|
37
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
38
|
Park C, Son YW. Condensation of preformed charge density waves in kagome metals. Nat Commun 2023; 14:7309. [PMID: 37951925 PMCID: PMC10640577 DOI: 10.1038/s41467-023-43170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Charge density wave (CDW) is a spontaneous spatial modulation of charges in solids whose general microscopic descriptions are yet to be completed. Kagome metals of AV3Sb5 (A = K, Rb, Cs) provide a chance to realize CDW intertwined with dimensional effects as well as their special lattice. Here, based on a state-of-the-art molecular dynamics simulation, we propose that their phase transition to CDW is a condensation process of incoherently preformed charge orders. Owing to unavoidable degeneracy in stacking charge orders, phases of preformed orders on each layer are shown to fluctuate between a limited number of states with quite slower frequencies than typical phonon vibrations until reaching their freezing temperature. As the size of interfacial alkali atom increases, the fluctuations are shown to counterbalance the condensation of orderings, resulting in a maximized transition temperature for RbV3Sb5. Our results resolve controversial observations on their CDWs, highlighting a crucial role of their interlayer interactions.
Collapse
Affiliation(s)
- Changwon Park
- Korea Institute for Advanced Study, Seoul, 02455, Korea
| | - Young-Woo Son
- Korea Institute for Advanced Study, Seoul, 02455, Korea.
| |
Collapse
|
39
|
Cai X, Chen G, Li R, Jia Y. Two-Dimensional Ferroelectric C 2N/In 2Se 3 Heterobilayer with Tunable Electronic Property and Photovoltaic Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14791-14799. [PMID: 37796482 DOI: 10.1021/acs.langmuir.3c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Two-dimensional ferroelectric monolayer materials with reversible spontaneous polarization provide more regulatory dimensions for their relevant van der Waals heterostructures. Using first-principles calculations, we construct the C2N/In2Se3 bilayer heterostructure and study its physical properties as well as the effects of E-field and strain. The results indicate that the intrinsic polarization of the component In2Se3 monoalyer can significantly adjust the electronic properties of the C2N/In2Se3 heterobilayer. When the polarization of the In2Se3 monolayer points to the interface (up-In2Se3), the C2N/In2Se3 bilayer behaves as the type-I indirect band gap heterostructure, while it transforms to the type-II direct band gap heterostructure after reversing the polarization of the In2Se3 monolayer (dp-In2Se3). Furthermore, the two C2N/In2Se3 heterostructures both have enhanced optical absorption in the visible region than the isolated In2Se3 and C2N monolayers. More importantly, the external electric field and strain can easily regulate the electronic properties of the C2N/In2Se3 heterostructures. The power conversion efficiency (PCE) of the type-II C2N/dp-In2Se3 heterostructure is 8.16%, and the electric field of 0.1 V/Å and the strain of -2% can transform the C2N/up-In2Se3 heterostructure into type-II one, conducive to the high PCE up to 24.03 and 24%, respectively. Our proposed C2N/In2Se3 heterostructure is promising in future luminescent and photovoltaic fields, and our findings also provide a strategy for functionalizing 2D monolayer materials by the intrinsic polarization property of ferroelectric materials.
Collapse
Affiliation(s)
- Xiaolin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Guoxing Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Rui Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Material Science and Engineering, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
40
|
Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S, Yang H. Phase Engineering of 2D Materials. Chem Rev 2023; 123:11230-11268. [PMID: 37589590 DOI: 10.1021/acs.chemrev.3c00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juhi Pandey
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungyeon Lee
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
41
|
Lei L, Dai J, Dong H, Geng Y, Cao F, Wang C, Xu R, Pang F, Liu ZX, Li F, Cheng Z, Wang G, Ji W. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe 2 monolayers. Nat Commun 2023; 14:6320. [PMID: 37813844 PMCID: PMC10562484 DOI: 10.1038/s41467-023-42044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Polymorphic structures of transition metal dichalcogenides (TMDs) host exotic electronic states, like charge density wave and superconductivity. However, the number of these structures is limited by crystal symmetries, which poses a challenge to achieving tailored lattices and properties both theoretically and experimentally. Here, we report a coloring-triangle (CT) latticed MoTe2 monolayer, termed CT-MoTe2, constructed by controllably introducing uniform and ordered mirror-twin-boundaries into a pristine monolayer via molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) together with theoretical calculations reveal that the monolayer has an electronic Janus lattice, i.e., an energy-dependent atomic-lattice and a Te pseudo-sublattice, and shares the identical geometry with the Mo5Te8 layer. Dirac-like and flat electronic bands inherently existing in the CT lattice are identified by two broad and two prominent peaks in STS spectra, respectively, and verified with density-functional-theory calculations. Two types of intrinsic domain boundaries were observed, one of which maintains the electronic-Janus-lattice feature, implying potential applications as an energy-tunable electron-tunneling barrier in future functional devices.
Collapse
Affiliation(s)
- Le Lei
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Jiaqi Dai
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Haoyu Dong
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Yanyan Geng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Feiyue Cao
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Cong Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Rui Xu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Fei Pang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Zheng-Xin Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Fangsen Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihai Cheng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China.
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China.
| | - Guang Wang
- Department of Physics, College of Sciences, National University of Defense Technology, Changsha, 410073, China.
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, China.
- Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
42
|
Yu S, Shi W, Li Q, Xu F, Gu L, Wang X. Reconfigurable spin tunnel diodes by doping engineering VS 2 monolayers. Phys Chem Chem Phys 2023; 25:26211-26218. [PMID: 37740328 DOI: 10.1039/d3cp01226c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
We propose a reconfigurable spin tunnel diode based on a small spin-gapped semiconductor (non-doped VS2 monolayer) and semi-metallic magnets (doped VS2 monolayer) separated by a thin insulating tunneling barrier (h-BN). By using first-principles calculations assisted by the nonequilibrium Green's function method, we have carried out a comprehensive study of spin-dependent current and spin transport properties while varying the bias. The device exhibited a magnetization-controlled diode-like behavior with forward-allowed current under antiparallel magnetizations and reverse-forbidden current under parallel magnetizations at the two electrodes. The threshold voltage is tunable by the hole doping density of VS2 monolayers. The doping effect on VS2 monolayers indicates that the magnetic moments, the Heisenberg exchange parameters and Curie temperatures can be monotonically reduced by a larger hole doping density. Our study on VS2 heterostructures has presented a simple and practical device strategy with very promising applications in spintronics.
Collapse
Affiliation(s)
- Sheng Yu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Wenwu Shi
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Qiliang Li
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Feixiang Xu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), South China University of Technology, Guangzhou, China
| | - Li Gu
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| |
Collapse
|
43
|
Husremović S, Goodge BH, Erodici MP, Inzani K, Mier A, Ribet SM, Bustillo KC, Taniguchi T, Watanabe K, Ophus C, Griffin SM, Bediako DK. Encoding multistate charge order and chirality in endotaxial heterostructures. Nat Commun 2023; 14:6031. [PMID: 37758701 PMCID: PMC10533556 DOI: 10.1038/s41467-023-41780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2 due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2 devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS2/1T-TaS2 heterostructures in which the number of endotaxial metallic H-TaS2 monolayers dictates the number of resistance transitions in 1T-TaS2 lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.
Collapse
Affiliation(s)
- Samra Husremović
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Berit H Goodge
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Matthew P Erodici
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Katherine Inzani
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alberto Mier
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Stephanie M Ribet
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sinéad M Griffin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
44
|
Lee SH, Cho D. Charge density wave surface reconstruction in a van der Waals layered material. Nat Commun 2023; 14:5735. [PMID: 37714842 PMCID: PMC10504333 DOI: 10.1038/s41467-023-41500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Surface reconstruction plays a vital role in determining the surface electronic structure and chemistry of semiconductors and metal oxides. However, it has been commonly believed that surface reconstruction does not occur in van der Waals layered materials, as they do not undergo significant bond breaking during surface formation. In this study, we present evidence that charge density wave (CDW) order in these materials can, in fact, cause CDW surface reconstruction through interlayer coupling. Using density functional theory calculations on the 1T-TaS2 surface, we reveal that CDW reconstruction, involving concerted small atomic displacements in the subsurface layer, results in a significant modification of the surface electronic structure, transforming it from a Mott insulator to a band insulator. This new form of surface reconstruction explains several previously unexplained observations on the 1T-TaS2 surface and has important implications for interpreting surface phenomena in CDW-ordered layered materials.
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Applied Physics, Kyung Hee University, Yongin, Republic of Korea.
| | - Doohee Cho
- Department of Physics, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Ramos SLLM, Carvalho BR, Monteiro Lobato RL, Ribeiro-Soares J, Fantini C, Ribeiro HB, Molino L, Plumadore R, Heinz T, Luican-Mayer A, Pimenta MA. Selective Electron-Phonon Coupling in Dimerized 1T-TaS 2 Revealed by Resonance Raman Spectroscopy. ACS NANO 2023; 17:15883-15892. [PMID: 37556765 DOI: 10.1021/acsnano.3c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The layered transition-metal dichalcogenide material 1T-TaS2 possesses successive phase transitions upon cooling, resulting in strong electron-electron correlation effects and the formation of charge density waves (CDWs). Recently, a dimerized double-layer stacking configuration was shown to form a Peierls-like instability in the electronic structure. To date, no direct evidence for this double-layer stacking configuration using optical techniques has been reported, in particular through Raman spectroscopy. Here, we employ a multiple excitation and polarized Raman spectroscopy to resolve the behavior of phonons and electron-phonon interactions in the commensurate CDW lattice phase of dimerized 1T-TaS2. We observe a distinct behavior from what is predicted for a single layer and probe a richer number of phonon modes that are compatible with the formation of double-layer units (layer dimerization). The multiple-excitation results show a selective coupling of each Raman-active phonon with specific electronic transitions hidden in the optical spectra of 1T-TaS2, suggesting that selectivity in the electron-phonon coupling must also play a role in the CDW order of 1T-TaS2.
Collapse
Affiliation(s)
- Sergio L L M Ramos
- Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Bruno R Carvalho
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - Jenaina Ribeiro-Soares
- Departamento de Física, Universidade Federal de Lavras, Campus Universitário, PO Box 3037, Lavras, Minas Gerais 37200-000, Brazil
| | - Cristiano Fantini
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Henrique B Ribeiro
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Laurent Molino
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Ryan Plumadore
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Tony Heinz
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Adina Luican-Mayer
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Marcos A Pimenta
- Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| |
Collapse
|
46
|
Liu G, Qiu T, He K, Liu Y, Lin D, Ma Z, Huang Z, Tang W, Xu J, Watanabe K, Taniguchi T, Gao L, Wen J, Liu JM, Yan B, Xi X. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS 2 crystals. NATURE NANOTECHNOLOGY 2023; 18:854-860. [PMID: 37169899 DOI: 10.1038/s41565-023-01403-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Hysteretic switching of domain states is a salient characteristic of all ferroic materials and the foundation for their multifunctional applications. Ferro-rotational order is emerging as a type of ferroic order that features structural rotations, but control over state switching remains elusive due to its invariance under both time reversal and spatial inversion. Here we demonstrate electrical switching of ferro-rotational domain states in the charge-density-wave phases of nanometre-thick 1T-TaS2 crystals. Cooling from the high-symmetry phase to the ferro-rotational phase under an external electric field induces domain state switching and domain wall formation, which is realized in a simple two-terminal configuration using a volt-scale bias. Although the electric field does not couple with the order due to symmetry mismatch, it drives domain wall propagation to give rise to reversible, durable and non-volatile isothermal state switching at room temperature. These results offer a route to the manipulation of ferro-rotational order and its nanoelectronic applications.
Collapse
Affiliation(s)
- Gan Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Tianyu Qiu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Kuanyu He
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Yizhou Liu
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Dongjing Lin
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Zhen Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
- Institute for Advanced Materials, Hubei Normal University, Huangshi, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Zhentao Huang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Wenna Tang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Jie Xu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Libo Gao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jinsheng Wen
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jun-Ming Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Sung SH, Schnitzer N, Dabak-Wakankar A, El Baggari I, Kourkoutis LF, Hovden R. Moiré Magnification of Charge Density Wave Dislocations using 4D-STEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:260-261. [PMID: 37613236 DOI: 10.1093/micmic/ozad067.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Noah Schnitzer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Abha Dabak-Wakankar
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Ismail El Baggari
- Rowland Institute at Harvard University, Cambridge, MA, United States
| | - Lena F Kourkoutis
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Zhang SS, Rajendran A, Chae SH, Zhang S, Pan TC, Hone JC, Dean CR, Basov DN. Nano-infrared imaging of metal insulator transition in few-layer 1T-TaS 2. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2841-2847. [PMID: 39635486 PMCID: PMC11501826 DOI: 10.1515/nanoph-2022-0750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 12/07/2024]
Abstract
Among the family of transition metal dichalcogenides, 1T-TaS2 stands out for several peculiar physical properties including a rich charge density wave phase diagram, quantum spin liquid candidacy and low temperature Mott insulator phase. As 1T-TaS2 is thinned down to the few-layer limit, interesting physics emerges in this quasi 2D material. Here, using scanning near-field optical microscopy, we perform a spatial- and temperature-dependent study on the phase transitions of a few-layer thick microcrystal of 1T-TaS2. We investigate encapsulated air-sensitive 1T-TaS2 prepared under inert conditions down to cryogenic temperatures. We find an abrupt metal-to-insulator transition in this few-layer limit. Our results provide new insight in contrast to previous transport studies on thin 1T-TaS2 where the resistivity jump became undetectable, and to spatially resolved studies on non-encapsulated samples which found a gradual, spatially inhomogeneous transition. A statistical analysis suggests bimodal high and low temperature phases, and that the characteristic phase transition hysteresis is preserved down to a few-layer limit.
Collapse
Affiliation(s)
| | - Anjaly Rajendran
- Department of Electrical Engineering, Columbia University, New York, NY10027, USA
| | - Sang Hoon Chae
- Department of Mechanical Engineering, Columbia University, New York, NY10027, USA
- School of Electrical and Electronic Engineering, School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, NY10027, USA
| | - Tsai-Chun Pan
- Department of Physics, Columbia University, New York, NY10027, USA
| | - James C. Hone
- Department of Mechanical Engineering, Columbia University, New York, NY10027, USA
| | - Cory R. Dean
- Department of Physics, Columbia University, New York, NY10027, USA
| | - D. N. Basov
- Department of Physics, Columbia University, New York, NY10027, USA
| |
Collapse
|
49
|
Pan X, Yang T, Bai H, Peng J, Li L, Jing F, Qiu H, Liu H, Hu Z. Controllable Synthesis and Charge Density Wave Phase Transitions of Two-Dimensional 1T-TaS 2 Crystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111806. [PMID: 37299709 DOI: 10.3390/nano13111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
1T-TaS2 has attracted much attention recently due to its abundant charge density wave phases. In this work, high-quality two-dimensional 1T-TaS2 crystals were successfully synthesized by a chemical vapor deposition method with controllable layer numbers, confirmed by the structural characterization. Based on the as-grown samples, their thickness-dependency nearly commensurate charge density wave/commensurate charge density wave phase transitions was revealed by the combination of the temperature-dependent resistance measurements and Raman spectra. The phase transition temperature increased with increasing thickness, but no apparent phase transition was found on the 2~3 nm thick crystals from temperature-dependent Raman spectra. The transition hysteresis loops due to temperature-dependent resistance changes of 1T-TaS2 can be used for memory devices and oscillators, making 1T-TaS2 a promising material for various electronic applications.
Collapse
Affiliation(s)
- Xiaoguang Pan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tianwen Yang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hangxin Bai
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiangbo Peng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lujie Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fangli Jing
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hailong Qiu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongjun Liu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
50
|
Guo Y, Qiu D, Shao M, Song J, Wang Y, Xu M, Yang C, Li P, Liu H, Xiong J. Modulations in Superconductors: Probes of Underlying Physics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209457. [PMID: 36504310 DOI: 10.1002/adma.202209457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Indexed: 06/02/2023]
Abstract
The importance of modulations is elevated to an unprecedented level, due to the delicate conditions required to bring out exotic phenomena in quantum materials, such as topological materials, magnetic materials, and superconductors. Recently, state-of-the-art modulation techniques in material science, such as electric-double-layer transistor, piezoelectric-based strain apparatus, angle twisting, and nanofabrication, have been utilized in superconductors. They not only efficiently increase the tuning capability to the broader ranges but also extend the tuning dimensionality to unprecedented degrees of freedom, including quantum fluctuations of competing phases, electronic correlation, and phase coherence essential to global superconductivity. Here, for a comprehensive review, these techniques together with the established modulation methods, such as elemental substitution, annealing, and polarization-induced gating, are contextualized. Depending on the mechanism of each method, the modulations are categorized into stoichiometric manipulation, electrostatic gating, mechanical modulation, and geometrical design. Their recent advances are highlighted by applications in newly discovered superconductors, e.g., nickelates, Kagome metals, and magic-angle graphene. Overall, the review is to provide systematic modulations in emergent superconductors and serve as the coordinate for future investigations, which can stimulate researchers in superconductivity and other fields to perform various modulations toward a thorough understanding of quantum materials.
Collapse
Affiliation(s)
- Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingxin Shao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jingyan Song
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiwen Liu
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|