1
|
Shrestha P, Yang D, Ward A, Shih WM, Wong WP. Mapping Single-Molecule Protein Complexes in 3D with DNA Nanoswitch Calipers. J Am Chem Soc 2023; 145:27916-27921. [PMID: 38096567 PMCID: PMC10755700 DOI: 10.1021/jacs.3c10262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
The ability to accurately map the 3D geometry of single-molecule complexes in trace samples is a challenging goal that would lead to new insights into molecular mechanics and provide an approach for single-molecule structural proteomics. To enable this, we have developed a high-resolution force spectroscopy method capable of measuring multiple distances between labeled sites in natively folded protein complexes. Our approach combines reconfigurable nanoscale devices, we call DNA nanoswitch calipers, with a force-based barcoding system to distinguish each measurement location. We demonstrate our approach by reconstructing the tetrahedral geometry of biotin-binding sites in natively folded streptavidin, with 1.5-2.5 Å agreement with previously reported structures.
Collapse
Affiliation(s)
- Prakash Shrestha
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Darren Yang
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andrew Ward
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - William M. Shih
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wesley P. Wong
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Shrestha P, Yang D, Shih WM, Wong WP. Mapping Single-molecule Protein Complexes in 3D with DNA Nanoswitch Calipers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548386. [PMID: 37502860 PMCID: PMC10369884 DOI: 10.1101/2023.07.10.548386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ability to accurately map the 3D geometry of single-molecule complexes in trace samples would lead to new insights into molecular mechanics and provide an approach for single-molecule structural proteomics. To enable this, we have developed a high-resolution force-spectroscopy method capable of measuring multiple distances between labeled sites in natively folded protein complexes. Our approach combines reconfigurable nanoscale devices we call DNA Nanoswitch Calipers, which we have previously introduced, with a force-based barcoding system to distinguish each measurement location. We demonstrate our approach by reconstructing the tetrahedral geometry of biotin-binding sites in natively folded streptavidin, with 1.5-2.5 Å agreement to previously reported structures.
Collapse
|
3
|
Luo Y, Chang J, Yang D, Bryan JS, MacIsaac M, Pressé S, Wong WP. Resolving Molecular Heterogeneity with Single-Molecule Centrifugation. J Am Chem Soc 2023; 145:3276-3282. [PMID: 36716175 PMCID: PMC9936575 DOI: 10.1021/jacs.2c11450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For many classes of biomolecules, population-level heterogeneity is an essential aspect of biological function─from antibodies produced by the immune system to post-translationally modified proteins that regulate cellular processes. However, heterogeneity is difficult to fully characterize for multiple reasons: (i) single-molecule approaches are needed to avoid information lost by ensemble-level averaging, (ii) sufficient statistics must be gathered on both a per-molecule and per-population level, and (iii) a suitable analysis framework is required to make sense of a potentially limited number of intrinsically noisy measurements. Here, we introduce an approach that overcomes these difficulties by combining three techniques: a DNA nanoswitch construct to repeatedly interrogate the same molecule, a benchtop centrifuge force microscope (CFM) to obtain thousands of statistics in a highly parallel manner, and a Bayesian nonparametric (BNP) inference method to resolve separate subpopulations with distinct kinetics. We apply this approach to characterize commercially available antibodies and find that polyclonal antibody from rabbit serum is well-modeled by a mixture of three subpopulations. Our results show how combining a spatially and temporally multiplexed nanoswitch-CFM assay with BNP analysis can help resolve complex biomolecular interactions in heterogeneous samples.
Collapse
Affiliation(s)
- Yi Luo
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeffrey Chang
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Darren Yang
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - J. Shepard Bryan
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States,Center
for
Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Molly MacIsaac
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steve Pressé
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States,Center
for
Biological Physics, Arizona State University, Tempe, Arizona 85287, United States,School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Wesley P. Wong
- Program
in Cellular and Molecular Medicine, Boston
Children’s Hospital, Boston, Massachusetts 02115, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States,
| |
Collapse
|
4
|
Vikrant KS, Jayanth GR. Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom. Nat Commun 2022; 13:3334. [PMID: 35680887 PMCID: PMC9184538 DOI: 10.1038/s41467-022-31046-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Precision positioning stages are often central to science and technology at the micrometer and nanometer length scales. Compact, multi-degree-of-freedom stages with large dynamic range are especially desirable, since they help to improve the throughput and versatility in manipulation without introducing spatial constraints. Here, we report compact diamagnetically levitated stages, which employ dual-sided actuation to achieve large-range, six degrees-of-freedom positioning. Dual-sided actuation is demonstrated to enable trapping a magnet array in 3D, with independent control of the trap stiffness about two axes, independent control of forces in 3D and torque about 2 axes. A simplified model is proposed to directly relate these physical quantities to the necessary actuation currents. Experimentally, we demonstrate six degrees-of-freedom positioning with low cross-axis motion, large range and nanometer-scale resolution. In particular, here we show linear motion range of 5 mm with positioning precision better than 1.88 nm, and angular motion range of 1.1 radian with a resolution of 50 micro-radian. With the volume of the stage being between 10-20 cm3, its utility as a compact nano-positioner is showcased by using it to automatically replace the tip of an atomic force microscope probe. Precision positioning stages are often central to science and technology at the micrometer and nanometer length scales. Here, the authors report compact, diamagnetically levitated positioning stages that achieve large-range, six degrees-of-freedom positioning with nanometer-scale precision.
Collapse
Affiliation(s)
- K S Vikrant
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - G R Jayanth
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India. .,Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Shin EJ, Park JW. Nanoaggregates Derived from Amyloid-beta and Alpha-synuclein Characterized by Sequential Quadruple Force Mapping. NANO LETTERS 2021; 21:3789-3797. [PMID: 33845574 DOI: 10.1021/acs.nanolett.1c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overlapping of Alzheimer's disease and Parkinson's disease is associated with the formation of hetero-oligomers derived from amyloid-beta and alpha-synuclein. However, the structural identity of the hetero-oligomer has yet to be elucidated, particularly at high resolution. Here, with atomic force microscopy, the surface structure of hetero-oligomer was examined with four AFM tips tethering one of the selected antibodies recognizing N-terminus or C-terminus of each peptide. All aggregates were found to be hetero-oligomers, and probability of recognizing the termini is higher than that for the homo-oligomers, suggesting that the termini of the former have a greater tendency to be located at the surface or the termini have more freedom to be recognized, probably through loose packing. The methodology in this study provides us with a new approach to elucidate the structure of such aggregates at the single-molecule level, allowing the exploration of other intrinsically disordered proteins frequently found in nature.
Collapse
Affiliation(s)
- Eun Ji Shin
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Casuso I, Redondo-Morata L, Rico F. Biological physics by high-speed atomic force microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190604. [PMID: 33100165 PMCID: PMC7661283 DOI: 10.1098/rsta.2019.0604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Ignacio Casuso
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
| | - Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France
| | - Felix Rico
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
- e-mail:
| |
Collapse
|
7
|
Kim Y, Mandriota N, Goodnight D, Sahin O. Calibration of T-shaped atomic force microscope cantilevers using the thermal noise method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:083703. [PMID: 32872926 PMCID: PMC7413748 DOI: 10.1063/5.0013091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The tip-sample interaction force measurements in atomic force microscopy (AFM) provide information about materials' properties with nanoscale resolution. The T-shaped cantilevers used in Torsional-Harmonic AFM allow measuring the rapidly changing tip-sample interaction forces using the torsional (twisting) deflections of the cantilever due to the off-axis placement of the sharp tip. However, it has been difficult to calibrate these cantilevers using the commonly used thermal noise-based calibration method as the mechanical coupling between flexural and torsional deflections makes it challenging to determine the deflection sensitivities from force-distance curves. Here, we present thermal noise-based calibration of these T-shaped AFM cantilevers by simultaneously analyzing flexural and torsional thermal noise spectra, along with deflection signals during a force-distance curve measurement. The calibration steps remain identical to the conventional thermal noise method, but a computer performs additional calculations to account for mode coupling. We demonstrate the robustness of the calibration method by determining the sensitivity of calibration results to the laser spot position on the cantilever, to the orientation of the cantilever in the cantilever holder, and by repeated measurements. We validated the quantitative force measurements against the known unfolding force of a protein, the I91 domain of titin, which resulted in consistent unfolding force values among six independently calibrated cantilevers.
Collapse
Affiliation(s)
- Youngkyu Kim
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Nicola Mandriota
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Davis Goodnight
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
8
|
Kenkel S, Mittal S, Bhargava R. Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun 2020; 11:3225. [PMID: 32591515 PMCID: PMC7320136 DOI: 10.1038/s41467-020-17043-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Atomic force microscopy-infrared (AFM-IR) spectroscopic imaging offers non-perturbative, molecular contrast for nanoscale characterization. The need to mitigate measurement artifacts and enhance sensitivity, however, requires narrowly-defined and strict sample preparation protocols. This limits reliable and facile characterization; for example, when using common substrates such as Silicon or glass. Here, we demonstrate a closed-loop (CL) piezo controller design for responsivity-corrected AFM-IR imaging. Instead of the usual mode of recording cantilever deflection driven by sample expansion, the principle of our approach is to maintain a zero amplitude harmonic cantilever deflection by CL control of a subsample piezo. We show that the piezo voltage used to maintain a null deflection provides a reliable measure of the local IR absorption with significantly reduced noise. A complete analytical description of the CL operation and characterization of the controller for achieving robust performance are presented. Accurate measurement of IR absorption of nanothin PMMA films on glass and Silicon validates the robust capability of CL AFM-IR in routine mapping of nanoscale molecular information.
Collapse
Affiliation(s)
- Seth Kenkel
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.,Department of Mechanical Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Shachi Mittal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA. .,Department of Mechanical Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA. .,Cancer Center at Illinois and the Departments Chemical and Biomolecular Engineering, Bioengineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Zhu R, Sandtner W, Ahiable JEA, Newman AH, Freissmuth M, Sitte HH, Hinterdorfer P. Allosterically Linked Binding Sites in Serotonin Transporter Revealed by Single Molecule Force Spectroscopy. Front Mol Biosci 2020; 7:99. [PMID: 32656227 PMCID: PMC7325972 DOI: 10.3389/fmolb.2020.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 01/24/2023] Open
Abstract
Crystal structures and experiments relying on the tools of molecular pharmacology reported conflicting results on ligand binding sites in neurotransmitter/sodium symporters (NSS). We explored the number and functionality of ligand binding sites of NSS in a physiological setting by designing novel tools for atomic force microscopy (AFM). These allow for directly measuring the interaction forces between the serotonin transporter (SERT) and the antidepressant S-citalopram (S-CIT) on the single molecule level: the AFM cantilever tips were functionalized with S-CIT via a flexible polyethylene glycol (PEG) linker. The tip chemistry was validated by specific force measurements and recognition imaging on CHO cells. Two distinct populations of characteristic binding strengths of S-CIT binding to SERT were revealed in Na+-containing buffer. In contrast, in Li+-containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT. The dissociation rate constant of both binding sites was extracted by varying the dynamics of the force-probing experiments. Competition experiments revealed that the two sites are allosterically coupled and exert reciprocal modulation.
Collapse
Affiliation(s)
- Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Joan E A Ahiable
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
11
|
Dong L, Closson AB, Jin C, Trase I, Chen Z, Zhang JXJ. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications. ADVANCED MATERIALS TECHNOLOGIES 2019; 4:1900177. [PMID: 33829079 PMCID: PMC8022913 DOI: 10.1002/admt.201900177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 05/31/2023]
Abstract
Vibration-based energy-harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration-based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next-generation energy-harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.
Collapse
Affiliation(s)
- Lin Dong
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Andrew B Closson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Ian Trase
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
12
|
Yoon J, Kim Y, Park JW. Binary Structure of Amyloid Beta Oligomers Revealed by Dual Recognition Mapping. Anal Chem 2019; 91:8422-8428. [PMID: 31140786 DOI: 10.1021/acs.analchem.9b01316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amyloid beta (Aβ) oligomers are widely considered to be the causative agent of Alzheimer's disease (AD), a progressive neurodegenerative disorder. Determining the structure of oligomers is, therefore, important for understanding the disease and developing therapeutic agents; however, elucidating the structure has been proven difficult due to heterogeneity, noncrystallinity, and variability. Herein, we investigated homo- and hetero-oligomers of Aβ40 and Aβ42 using atomic force microscopy (AFM) and revealed characteristics of the molecular structure. By examining the surface of individual oligomers with sequential N- and C-terminus specific antibody-tethered tips, we simultaneously mapped the N- and C-terminus distributions and the elastic modulus. Interestingly, both the N- and C-termini of Aβ peptides were recognized on the oligomer surface, and the termini detected pixel regions exhibited a lower elastic modulus than silent pixel regions. These two types of regions were randomly distributed on the oligomer surface.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Youngkyu Kim
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Joon Won Park
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| |
Collapse
|
13
|
Ozkan AD, Topal AE, Dikecoglu FB, Guler MO, Dana A, Tekinay AB. Probe microscopy methods and applications in imaging of biological materials. Semin Cell Dev Biol 2018; 73:153-164. [DOI: 10.1016/j.semcdb.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023]
|
14
|
Bae YI, Hwang I, Kim I, Kim K, Park JW. Force Measurement for the Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn 2+ Studied with Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11884-11892. [PMID: 28946747 DOI: 10.1021/acs.langmuir.7b02168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Force spectroscopy with atomic force microscopy (AFM) revealed that cucurbit[7]uril (CB[7]) strongly binds to a mica surface in the presence of cations. Indeed, Zn2+ was observed to facilitate the self-assembly of CB[7] on the mica surface, whereas monocations, such as Na+, were less effective. The progression of the process and the cation-mediated self-assembled monolayer were characterized using AFM, and the observed height of the layer agrees well with the calculated CB[7] value (9.1 Å). We utilized force-based AFM to further study the interaction of CB[7] with guest molecules. To this end, CB[7] was immobilized on a glass substrate, and aminomethylferrocene (am-Fc) was conjugated onto an AFM tip. The single-molecule interaction between CB[7] and am-Fc was monitored by collecting the unbinding force curves. The force histogram showed single ruptures and a unimodal distribution, and the most probable unbinding force value was 101 pN in deionized water and 86 pN in phosphate-buffered saline buffer. The results indicate that the unbinding force was larger than that of streptavidin-biotin measured under the same conditions, whereas the dissociation constant was smaller by 1 order of magnitude (0.012 s-1 vs 0.13 s-1). Furthermore, a high-resolution adhesion force map showed a part of the CB[7] cavities on the surface.
Collapse
Affiliation(s)
- Young-In Bae
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ilha Hwang
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikjin Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Kimoon Kim
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), and §Division of Advanced Materials Science, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
15
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 494] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Kim Y, Kim W, Park JW. Principles and Applications of Force Spectroscopy Using Atomic Force Microscopy. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.11022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngkyu Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Woong Kim
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| | - Joon Won Park
- Department of Chemistry; Pohang University of Science and Technology; Pohang 37673 Korea
| |
Collapse
|
17
|
Koo H, Park I, Lee Y, Kim HJ, Jung JH, Lee JH, Kim Y, Kim JH, Park JW. Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy. J Am Chem Soc 2016; 138:11664-71. [PMID: 27529574 DOI: 10.1021/jacs.6b05048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM). A hybrid binding domain (HBD)-tethered tip enabled mature miRNAs, but not premature miRNAs, to be located individually on an adhesion force map. By scanning several sections of a micrometer-sized DNA spot, we were able to quantify the copy number of miR-134 in a single neuron and demonstrate that the expression was increased upon cell activation. Moreover, we visualized individual miR-134s on fixed neurons after membrane removal and observed 2-4 miR-134s in the area of 1.0 × 1.0 μm(2) of soma. The number increased to 8-14 in stimulated neurons, and this change matches the ensemble-averaged increase in copy number. These findings indicate that miRNAs can be reliably quantified at the single cell level with AFM and that their distribution can be mapped at nanometric lateral resolution without modification or amplification. Furthermore, the analysis of miRNAs, mRNAs, and proteins in the same sample or region by scanning sequentially with different AFM tips would let us accurately understand the post-transcriptional regulation of biological processes.
Collapse
Affiliation(s)
- Hyunseo Koo
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikbum Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Yoonhee Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Hyun Jin Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Jung Hoon Jung
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joo Han Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Youngkyu Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joung-Hun Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
18
|
Perrino AP, Garcia R. How soft is a single protein? The stress-strain curve of antibody pentamers with 5 pN and 50 pm resolutions. NANOSCALE 2016; 8:9151-8. [PMID: 26732032 DOI: 10.1039/c5nr07957h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding the mechanical functionalities of complex biological systems requires the measurement of the mechanical compliance of their smallest components. Here, we develop a force microscopy method to quantify the softness of a single antibody pentamer by measuring the stress-strain curve with force and deformation resolutions, respectively, of 5 pN and 50 pm. The curve shows three distinctive regions. For ultrasmall compressive forces (5-75 pN), the protein's central region shows that the strain and stress are proportional (elastic regime). This region has an average Young's modulus of 2.5 MPa. For forces between 80 and 220 pN, the stress is roughly proportional to the strain with a Young's modulus of 9 MPa. Higher forces lead to irreversible deformations (plastic regime). Full elastic recovery could reach deformations amounting to 40% of the protein height. The existence of two different elastic regions is explained in terms of the structure of the antibody central region. The stress-strain curve explains the capability of the antibody to sustain multiple collisions without any loss of biological functionality.
Collapse
Affiliation(s)
- Alma P Perrino
- Instituto de Ciencia de Materiales de Madrid (CSIC), c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid (CSIC), c/ Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Kim W, Kim N, Park JW, Kim ZH. Nanostar probes for tip-enhanced spectroscopy. NANOSCALE 2016; 8:987-994. [PMID: 26662059 DOI: 10.1039/c5nr06657c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ∼70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au(3+) with ascorbic acid in the presence of Ag(+). Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited the necessary enhancement for TEF, and the tip-on and tip-off ratios varied between 5 and 100. This large tip-to-tip variability may arise from the uncontrolled orientation of the apexes of the spike with respect to the sample surface, which calls for further fabrication improvement. The result overall supports a new fabrication approach for the probe that is effective for tip-enhanced spectroscopy.
Collapse
Affiliation(s)
- Woong Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea.
| | - Nara Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea.
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, 790-784, Korea.
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea.
| |
Collapse
|
20
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
21
|
Kim W, Kim N, Lee E, Kim D, Hwan Kim Z, Won Park J. A tunable Au core–Ag shell nanoparticle tip for tip-enhanced spectroscopy. Analyst 2016; 141:5066-70. [DOI: 10.1039/c6an00035e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single Au nanoparticle (NP) with a diameter of 5 nm was transferred to the end of a Si-tip through a picking process, and an Ag shell with a controlled thickness was formed on the Au core.
Collapse
Affiliation(s)
- Woong Kim
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Nara Kim
- Department of Chemistry
- Seoul National University
- Seoul 151-742
- Korea
| | - Eunbyoul Lee
- Department of Chemistry
- Korea University
- Seoul 136-701
- Korea
| | - Duckhoe Kim
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry
- Seoul National University
- Seoul 151-742
- Korea
| | - Joon Won Park
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| |
Collapse
|
22
|
Jembrek MJ, Šimić G, Hof PR, Šegota S. Atomic force microscopy as an advanced tool in neuroscience. Transl Neurosci 2015; 6:117-130. [PMID: 28123795 PMCID: PMC4936619 DOI: 10.1515/tnsci-2015-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022] Open
Abstract
This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Suzana Šegota
- Division for Marine and Environmental Research, Ruđer Bošković Institute, POB 180, Zagreb, Croatia
| |
Collapse
|
23
|
|