1
|
Hashemabadi M, Sasan HA, Hosseinkhani S, Amandadi M, Samareh Gholami A, Sadeghizadeh M. Intelligent guide RNA: dual toehold switches for modulating luciferase in the presence of trigger RNA. Commun Biol 2024; 7:1344. [PMID: 39420075 PMCID: PMC11487279 DOI: 10.1038/s42003-024-06988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The CRISPR system finds extensive application in molecular biology, but its continuous activity can yield adverse effects. Leveraging programmable CRISPR/Cas9 function via nano-device mediation effectively mitigates these drawbacks. The integration of RNA-sensing platforms into CRISPR thus empowers it as a potent tool for processing internal cell data and modulating gene activity. Here, an intelligent guide RNA-a cis-repressed gRNA synthetic circuit enabling efficient recognition of specific trigger RNAs-is developed. This platform carries two toehold switches and includes an inhibited CrRNA sequence. In this system, the presence of cognate trigger RNA promotes precise binding to the first toehold site, initiating a cascade that releases CrRNA to target a reporter gene (luciferase) in this study. Decoupling the CrRNA segment from the trigger RNA enhances the potential of this genetic logic circuit to respond to specific cellular circumstances, offering promise as a synthetic biology platform.
Collapse
Affiliation(s)
- Mohammad Hashemabadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ali Sasan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Samareh Gholami
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Liu Y, Zhai Y, Hu H, Liao Y, Liu H, Liu X, He J, Wang L, Wang H, Li L, Zhou X, Xiao X. Erasable and Field Programmable DNA Circuits Based on Configurable Logic Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400011. [PMID: 38698560 PMCID: PMC11234411 DOI: 10.1002/advs.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/09/2024] [Indexed: 05/05/2024]
Abstract
DNA is commonly employed as a substrate for the building of artificial logic networks due to its excellent biocompatibility and programmability. Till now, DNA logic circuits are rapidly evolving to accomplish advanced operations. Nonetheless, nowadays, most DNA circuits remain to be disposable and lack of field programmability and thereby limits their practicability. Herein, inspired by the Configurable Logic Block (CLB), the CLB-based erasable field-programmable DNA circuit that uses clip strands as its operation-controlling signals is presented. It enables users to realize diverse functions with limited hardware. CLB-based basic logic gates (OR and AND) are first constructed and demonstrated their erasability and field programmability. Furthermore, by adding the appropriate operation-controlling strands, multiple rounds of programming are achieved among five different logic operations on a two-layer circuit. Subsequently, a circuit is successfully built to implement two fundamental binary calculators: half-adder and half-subtractor, proving that the design can imitate silicon-based binary circuits. Finally, a comprehensive CLB-based circuit is built that enables multiple rounds of switch among seven different logic operations including half-adding and half-subtracting. Overall, the CLB-based erasable field-programmable circuit immensely enhances their practicability. It is believed that design can be widely used in DNA logic networks due to its efficiency and convenience.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuxuan Zhai
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hao Hu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuheng Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huan Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiao Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiachen He
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Limei Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Hongxun Wang
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
| | - Longjie Li
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhan430023China
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000China
| | - Xianjin Xiao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
4
|
Yu H, Han X, Wang W, Zhang Y, Xiang L, Bai D, Zhang L, Weng Z, Lv K, Song L, Luo W, Yin N, Zhang Y, Feng T, Wang L, Xie G. Modified Unit-Mediated Strand Displacement Reactions for Direct Detection of Single Nucleotide Variants in Active Double-Stranded DNA. ACS NANO 2024; 18:12401-12411. [PMID: 38701333 DOI: 10.1021/acsnano.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Linguo Xiang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Weng
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Lv
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lin Song
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Bardales AC, Smirnov V, Taylor K, Kolpashchikov DM. DNA Logic Gates Integrated on DNA Substrates in Molecular Computing. Chembiochem 2024; 25:e202400080. [PMID: 38385968 DOI: 10.1002/cbic.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Due to nucleic acid's programmability, it is possible to realize DNA structures with computing functions, and thus a new generation of molecular computers is evolving to solve biological and medical problems. Pioneered by Milan Stojanovic, Boolean DNA logic gates created the foundation for the development of DNA computers. Similar to electronic computers, the field is evolving towards integrating DNA logic gates and circuits by positioning them on substrates to increase circuit density and minimize gate distance and undesired crosstalk. In this minireview, we summarize recent developments in the integration of DNA logic gates into circuits localized on DNA substrates. This approach of all-DNA integrated circuits (DNA ICs) offers the advantages of biocompatibility, increased circuit response, increased circuit density, reduced unit concentration, facilitated circuit isolation, and facilitated cell uptake. DNA ICs can face similar challenges as their equivalent circuits operating in bulk solution (bulk circuits), and new physical challenges inherent in spatial localization. We discuss possible avenues to overcome these obstacles.
Collapse
Affiliation(s)
- Andrea C Bardales
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| | - Viktor Smirnov
- Laboratory of Molecular Robotics and Biosensor Materials, SCAMT Institute, ITMO University, 9 Lomonosova Str., St. Petersburg, Russian Federation
| | - Katherine Taylor
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Physical Sciences Bld. Rm. 255, Orlando, FL 32816-2366, Florida
| |
Collapse
|
6
|
Wu CQ, Wu RY, Zhang QL, Wang LL, Wang Y, Dai C, Zhang CX, Xu L. Harnessing Catalytic RNA Circuits for Construction of Artificial Signaling Pathways in Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202319309. [PMID: 38298112 DOI: 10.1002/anie.202319309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Engineering of genetic networks with artificial signaling pathways (ASPs) can reprogram cellular responses and phenotypes under different circumstances for a variety of diagnostic and therapeutic purposes. However, construction of ASPs between originally independent endogenous genes in mammalian cells is highly challenging. Here we report an amplifiable RNA circuit that can theoretically build regulatory connections between any endogenous genes in mammalian cells. We harness the system of catalytic hairpin assembly with combination of controllable CRISPR-Cas9 function to transduce the signals from distinct messenger RNA expression of trigger genes into manipulation of target genes. Through introduction of these RNA-based genetic circuits, mammalian cells are endowed with autonomous capabilities to sense the changes of RNA expression either induced by ligand stimuli or from various cell types and control the cellular responses and fates via apoptosis-related ASPs. Our design provides a generalized platform for construction of ASPs inside the genetic networks of mammalian cells based on differentiated RNA expression.
Collapse
Affiliation(s)
- Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian, 351100, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chu Dai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chen-Xi Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Mohsenin H, Wagner HJ, Rosenblatt M, Kemmer S, Drepper F, Huesgen P, Timmer J, Weber W. Design of a Biohybrid Materials Circuit with Binary Decoder Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308092. [PMID: 38118057 DOI: 10.1002/adma.202308092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Synthetic biology applies concepts from electrical engineering and information processing to endow cells with computational functionality. Transferring the underlying molecular components into materials and wiring them according to topologies inspired by electronic circuit boards has yielded materials systems that perform selected computational operations. However, the limited functionality of available building blocks is restricting the implementation of advanced information-processing circuits into materials. Here, a set of protease-based biohybrid modules the bioactivity of which can either be induced or inhibited is engineered. Guided by a quantitative mathematical model and following a design-build-test-learn (DBTL) cycle, the modules are wired according to circuit topologies inspired by electronic signal decoders, a fundamental motif in information processing. A 2-input/4-output binary decoder for the detection of two small molecules in a material framework that can perform regulated outputs in form of distinct protease activities is designed. The here demonstrated smart material system is strongly modular and can be used for biomolecular information processing for example in advanced biosensing or drug delivery applications.
Collapse
Affiliation(s)
- Hasti Mohsenin
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Hanna J Wagner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Marcus Rosenblatt
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Svenja Kemmer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Pitter Huesgen
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
- Saarland University, Department of Materials Science and Engineering, Campus D2 2, 66123, Saarbrücken, Germany
| |
Collapse
|
8
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Halužan Vasle A, Moškon M. Synthetic biological neural networks: From current implementations to future perspectives. Biosystems 2024; 237:105164. [PMID: 38402944 DOI: 10.1016/j.biosystems.2024.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Artificial neural networks, inspired by the biological networks of the human brain, have become game-changing computing models in modern computer science. Inspired by their wide scope of applications, synthetic biology strives to create their biological counterparts, which we denote synthetic biological neural networks (SYNBIONNs). Their use in the fields of medicine, biosensors, biotechnology, and many more shows great potential and presents exciting possibilities. So far, many different synthetic biological networks have been successfully constructed, however, SYNBIONN implementations have been sparse. The latter are mostly based on neural networks pretrained in silico and being heavily dependent on extensive human input. In this paper, we review current implementations and models of SYNBIONNs. We briefly present the biological platforms that show potential for designing and constructing perceptrons and/or multilayer SYNBIONNs. We explore their future possibilities along with the challenges that must be overcome to successfully implement a scalable in vivo biological neural network capable of online learning.
Collapse
Affiliation(s)
- Ana Halužan Vasle
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Mallette TL, Lidke DS, Lakin MR. Heterochiral modifications enhance robustness and function of DNA in living human cells. Chembiochem 2024; 25:e202300755. [PMID: 38228506 PMCID: PMC10923132 DOI: 10.1002/cbic.202300755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Oligonucleotide therapeutics are becoming increasingly important as more are approved by the FDA, both for treatment and vaccination. Similarly, dynamic DNA nanotechnology is a promising technique that can be used to sense exogenous input molecules or endogenous biomarkers and integrate the results of multiple sensing reactions in situ via a programmed cascade of reactions. The combination of these two technologies could be highly impactful in biomedicine by enabling smart oligonucleotide therapeutics that can autonomously sense and respond to a disease state. A particular challenge, however, is the limited lifetime of standard nucleic acid components in living cells and organisms due to degradation by endogenous nucleases. In this work, we address this challenge by incorporating mirror-image, ʟ-DNA nucleotides to produce heterochiral "gapmers". We use dynamic DNA nanotechnology to show that these modifications keep the oligonucleotide intact in living human cells for longer than an unmodified strand. To this end, we used a sequential transfection protocol for delivering multiple nucleic acids into living human cells while providing enhanced confidence that subsequent interactions are actually occurring within the cells. Taken together, this work advances the state of the art of ʟ-nucleic acid protection of oligonucleotides and DNA circuitry for applications in vivo.
Collapse
Affiliation(s)
- Tracy L Mallette
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Diane S Lidke
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Matthew R Lakin
- Department of Computer Science, Department of Chemical & Biological Engineering, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
11
|
Emanuelson C, Bardhan A, Deiters A. DNA Logic Gates for Small Molecule Activation Circuits in Cells. ACS Synth Biol 2024; 13:538-545. [PMID: 38306634 PMCID: PMC10877608 DOI: 10.1021/acssynbio.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
DNA-based devices such as DNA logic gates self-assemble into supramolecular structures, as dictated by the sequences of the constituent oligonucleotides and their predictable Watson-Crick base pairing interactions. The programmable nature of DNA-based devices permits the design and implementation of DNA circuits that interact in a dynamic and sequential manner capable of spatially arranging disparate DNA species. Here, we report the application of an activatable fluorescence reporter based on a proximity-driven inverse electron demand Diels-Alder (IEDDA) reaction and its robust integration with DNA strand displacement circuits. In response to specific DNA input patterns, sequential strand displacement reactions are initiated and culminate in the hybridization of two modified DNA strands carrying probes capable of undergoing an IEDDA reaction between a vinyl-ether-caged fluorophore and its reactive partner tetrazine, leading to the activation of fluorescence. This approach provides a major advantage for DNA computing in mammalian cells since circuit degradation does not induce fluorescence, in contrast to traditional fluorophore-quencher designs. We demonstrate the robustness and sensitivity of the reporter by testing its ability to serve as a readout for DNA logic circuits of varying complexity inside cells.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Yao Y, Wang Y, Zhu J, Guo Z, Li Z, Li Q, Liu S, Wang Y, Yu J, Huang J. A spatially-controlled DNA triangular prism nanomachine for AND-gated intracellular imaging of ATP in acidic microenvironment. Mikrochim Acta 2023; 190:436. [PMID: 37837554 DOI: 10.1007/s00604-023-06010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
A DNA triangular prism nanomachine (TPN)-based logic device for intracellular AND-gated imaging of adenosine triphosphate (ATP) has been constructed. By using i-motif sequences and ATP-binding aptamers as logic control units, the TPN logic device is qualified to respond to the acidic environment and ATP in cancer cell lysosomes. Once internalized into the lysosome, the specific acidic microenvironment in lysosome causes the i-motif sequence to fold into a tetramer, resulting in compression of DNA tri-prism. Subsequently, the split ATP aptamer located at the tip of the collapsed triangular prism binds stably to ATP, which results in the fluorescent dyes (Cy3 and Cy5) modified at the ends of the split aptamer being in close proximity to each other, allowing Förster Resonance Energy Transfer (FRET) to occur. The FRET signals are excited at a wavelength of 543 nm and can be collected within the emission range of 646-730 nm. This enables the precise imaging of ATP within a cell. We also dynamically operate AND logic gates in living cells by modulating intracellular pH and ATP levels with the help of external drugs. Owing to the AND logic unit on TPN it can simultaneously recognize two targets and give corresponding intelligent logic judgment via imaging signal output. The accuracy of molecular diagnosis of cancer can be improved thus eliminating the false positive signal of single target-based detection. Hence, this space-controlled TPN-based logical sensing platform greatly avoids sensitivity to extracellular targets during the cell entry process, providing a useful tool for high-precision imaging of the cancer cell's endogenous target ATP.
Collapse
Affiliation(s)
- Yuying Yao
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yeru Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jingru Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zongqiang Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qianru Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
13
|
Wei K, He M, Zhang J, Zhao C, Nie C, Zhang T, Liu Y, Chen T, Jiang J, Chu X. A DNA Logic Circuit Equipped with a Biological Amplifier Loaded into Biomimetic ZIF-8 Nanoparticles Enables Accurate Identification of Specific Cancers In Vivo. Angew Chem Int Ed Engl 2023; 62:e202307025. [PMID: 37615278 DOI: 10.1002/anie.202307025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
14
|
Mayer T, Givelet L, Simmel FC. Micro-compartmentalized strand displacement reactions with a random pool background. Interface Focus 2023; 13:20230011. [PMID: 37577002 PMCID: PMC10415739 DOI: 10.1098/rsfs.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
Toehold-mediated strand displacement (TMSD) is a widely used process in dynamic DNA nanotechnology, which has been applied for the actuation of molecular devices, in biosensor applications, and for DNA-based molecular computation. Similar processes also occur in a biological context, when RNA strands invade secondary structures or duplexes of other RNA or DNA molecules. Complex reaction environments-inside cells or synthetic cells-potentially contain a large number of competing nucleic acid molecules that transiently bind to the components of the strand displacement reaction of interest and thus slow down its kinetics. Here, we investigate the kinetics of TMSD reactions compartmentalized into water-in-oil emulsion droplets-in both the presence and absence of a random sequence background-using a droplet microfluidic 'stopped flow' set-up. The set-up enables one to determine the kinetics within thousands of droplets and easily vary experimental parameters such as the stoichiometry of the TMSD components. While the average kinetics in the droplets coincides precisely with the bulk behaviour, we observe considerable variability among the droplets. This variability is partially explained by the encapsulation procedure itself, but appears to be more pronounced in reactions involving a random pool background.
Collapse
Affiliation(s)
- Thomas Mayer
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Louis Givelet
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Friedrich C. Simmel
- Department of Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| |
Collapse
|
15
|
Arredondo D, Lakin MR. Supervised Learning in a Multilayer, Nonlinear Chemical Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:7734-7745. [PMID: 35133970 DOI: 10.1109/tnnls.2022.3146057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.
Collapse
|
16
|
Wang J, Raito H, Shimada N, Maruyama A. A Cationic Copolymer Enhances Responsiveness and Robustness of DNA Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304091. [PMID: 37340578 DOI: 10.1002/smll.202304091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/12/2012] [Indexed: 06/22/2023]
Abstract
Toehold-mediated DNA circuits are extensively employed to construct diverse DNA nanodevices and signal amplifiers. However, operations of these circuits are slow and highly susceptive to molecular noise such as the interference from bystander DNA strands. Herein, this work investigates the effects of a series of cationic copolymers on DNA catalytic hairpin assembly, a representative toehold-mediated DNA circuit. One copolymer, poly(L -lysine)-graft-dextran, significantly enhances the reaction rate by 30-fold due to its electrostatic interaction with DNA. Moreover, the copolymer considerably alleviates the circuit's dependency on the length and GC content of toehold, thereby enhancing the robustness of circuit operation against molecular noise. The general effectiveness of poly(L -lysine)-graft-dextran is demonstrated through kinetic characterization of a DNA AND logic circuit. Therefore, use of a cationic copolymer is a versatile and efficient approach to enhance the operation rate and robustness of toehold-mediated DNA circuits, paving the way for more flexible design and broader application.
Collapse
Affiliation(s)
- Jun Wang
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Hayashi Raito
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| |
Collapse
|
17
|
Meng X, Cheng Y, Wang F, Sun Z, Chu H, Wang Y. Nano Self-Assembly for Apoptosis Induction and Early Therapeutic Efficacy Monitoring. Anal Chem 2023; 95:14421-14429. [PMID: 37695215 DOI: 10.1021/acs.analchem.3c02860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Real-time monitoring of early antitumor efficacy is one of the key issues in realizing high-efficiency and more precise tumor treatment. As a highly specific event in the early stage of apoptosis, the release of cytochrome c may act as a key biomarker for monitoring cell apoptosis. However, achieving real-time monitoring of the cytochrome c release in vivo remains a challenge. Herein, we report a novel integrated nanosystem named DFeK nanoparticle (DFeK NP) to achieve a favorable collaboration of inducing tumor cell apoptosis and monitoring early therapeutic efficacy, which combined the cytochrome c-activated DNA nanoprobe cApt-App with pro-apoptotic peptide [KLAKLAK]2 and ferrous ions. [KLAKLAK]2 can target the mitochondria to disrupt the mitochondrial membrane together with reactive oxygen species produced by ferrous ions via the Fenton reaction to promote mitochondrial damage. Then, cytochrome c is released from damaged mitochondria to trigger apoptosis, further activating the cApt-App probe from the fluorescence "off" state to the "on" state. The cytochrome c-specific "off-to-on" transition was successfully applied in fluorescence imaging of cytochrome c in vivo and thus achieved real-time early therapeutic efficacy monitoring. Collectively, this work presents a valuable integrated tool for tumor inhibition and therapeutic efficacy evaluation to realize more precise and more effective tumor treatment.
Collapse
Affiliation(s)
- Xiaoyi Meng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
18
|
Liu Y, Zhang X, Zhang X, Liu X, Wang B, Zhang Q, Wei X. Temporal logic circuits implementation using a dual cross-inhibition mechanism based on DNA strand displacement. RSC Adv 2023; 13:27125-27134. [PMID: 37701285 PMCID: PMC10493850 DOI: 10.1039/d3ra03995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Molecular circuits crafted from DNA molecules harness the inherent programmability and biocompatibility of DNA to intelligently steer molecular machines in the execution of microscopic tasks. In comparison to combinational circuits, DNA-based temporal circuits boast supplementary capabilities, allowing them to proficiently handle the omnipresent temporal information within biochemical systems and life sciences. However, the lack of temporal mechanisms and components proficient in comprehending and processing temporal information presents challenges in advancing DNA circuits that excel in complex tasks requiring temporal control and time perception. In this study, we engineered temporal logic circuits through the design and implementation of a dual cross-inhibition mechanism, which enables the acceptance and processing of temporal information, serving as a fundamental building block for constructing temporal circuits. By incorporating the dual cross-inhibition mechanism, the temporal logic gates are endowed with cascading capabilities, significantly enhancing the inhibitory effect compared to a cross-inhibitor. Furthermore, we have introduced the annihilation mechanism into the circuit to further augment the inhibition effect. As a result, the circuit demonstrates sensitive time response characteristics, leading to a fundamental improvement in circuit performance. This architecture provides a means to efficiently process temporal signals in DNA strand displacement circuits. We anticipate that our findings will contribute to the design of complex temporal logic circuits and the advancement of molecular programming.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
19
|
Fern J, Shi R, Liu Y, Xiong Y, Gracias DH, Schulman R. Swelling characteristics of DNA polymerization gels. SOFT MATTER 2023; 19:6525-6534. [PMID: 37589045 DOI: 10.1039/d3sm00321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.
Collapse
Affiliation(s)
- Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yixin Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yan Xiong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Wang WJ, Lin J, Wu CQ, Luo AL, Xing X, Xu L. Establishing artificial gene connections through RNA displacement-assembly-controlled CRISPR/Cas9 function. Nucleic Acids Res 2023; 51:7691-7703. [PMID: 37395400 PMCID: PMC10415155 DOI: 10.1093/nar/gkad558] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023] Open
Abstract
Construction of synthetic circuits that can reprogram genetic networks and signal pathways is a long-term goal for manipulation of biosystems. However, it is still highly challenging to build artificial genetic communications among endogenous RNA species due to their sequence independence and structural diversities. Here we report an RNA-based synthetic circuit that can establish regulatory linkages between expression of endogenous genes in both Escherichiacoli and mammalian cells. This design employs a displacement-assembly approach to modulate the activity of guide RNA for function control of CRISPR/Cas9. Our experiments demonstrate the great effectiveness of this RNA circuit for building artificial connections between expression of originally unrelated genes. Both exogenous and naturally occurring RNAs, including small/microRNAs and long mRNAs, are capable of controlling expression of another endogenous gene through this approach. Moreover, an artificial signal pathway inside mammalian cells is also successfully established to control cell apoptosis through our designed synthetic circuit. This study provides a general strategy for constructing synthetic RNA circuits, which can introduce artificial connections into the genetic networks of mammalian cells and alter the cellular phenotypes.
Collapse
Affiliation(s)
- Wei-Jia Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ai-Ling Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University Institution, Guangzhou 510632, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Lakin MR. Design and Simulation of a Multilayer Chemical Neural Network That Learns via Backpropagation. ARTIFICIAL LIFE 2023; 29:308-335. [PMID: 37141578 DOI: 10.1162/artl_a_00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The design and implementation of adaptive chemical reaction networks, capable of adjusting their behavior over time in response to experience, is a key goal for the fields of molecular computing and DNA nanotechnology. Mainstream machine learning research offers powerful tools for implementing learning behavior that could one day be realized in a wet chemistry system. Here we develop an abstract chemical reaction network model that implements the backpropagation learning algorithm for a feedforward neural network whose nodes employ the nonlinear "leaky rectified linear unit" transfer function. Our network directly implements the mathematics behind this well-studied learning algorithm, and we demonstrate its capabilities by training the system to learn a linearly inseparable decision surface, specifically, the XOR logic function. We show that this simulation quantitatively follows the definition of the underlying algorithm. To implement this system, we also report ProBioSim, a simulator that enables arbitrary training protocols for simulated chemical reaction networks to be straightforwardly defined using constructs from the host programming language. This work thus provides new insight into the capabilities of learning chemical reaction networks and also develops new computational tools to simulate their behavior, which could be applied in the design and implementations of adaptive artificial life.
Collapse
Affiliation(s)
- Matthew R Lakin
- University of New Mexico, Department of Computer Science, Department of Chemical and Biological Engineering, Center for Biomedical Engineering.
| |
Collapse
|
22
|
Chai Q, Chen J, Zeng S, Zhu T, Chen J, Qi C, Mao G, Liu Y. Closed Cyclic DNA Machine for Sensitive Logic Operation and APE1 Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207736. [PMID: 36916696 DOI: 10.1002/smll.202207736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
DNA self-assembly has been developed as a kind of robust signal amplification strategy, but most of reported assembly pathways are programmed to amplify signal in one direction. Herein, based on mutual-activated cascade cycle of hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), a closed cycle circuit (CCC) based DNA machine is developed for sensitive logic operation and molecular recognition. Benefiting from the synergistically accelerated signal amplification, the closed cyclic DNA machine enabled the logic computing with strong and significant output signals even at weak input signals. The typical logic operations such as OR, YES, AND, INHIBIT, NOR, and NAND gate, are conveniently and clearly executed with this DNA machine through rational design of the input and computing elements. Moreover, by integrating the target recognition module with the CCC module, the proposed DNA machine is further employed in the homogeneous detection of apurinic/apyrimidinic endonuclease 1 (APE1). The precise recognition and exponential signal amplification facilitated the highly selective and sensitive detection of APE1 with limit of detection (LOD) of 7.8 × 10-5 U mL-1 . Besides, the normal cells and tumor cells are distinguished unambiguously by this method according to the detected concentration difference of cellular APE1, which indicates the robustness and practicability of this method.
Collapse
Affiliation(s)
- Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Shasha Zeng
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Jintao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Chunjiao Qi
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, 435002, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yucheng Liu
- Core Facility of Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
23
|
Schaffter SW, Wintenberg ME, Murphy TM, Strychalski EA. Design Approaches to Expand the Toolkit for Building Cotranscriptionally Encoded RNA Strand Displacement Circuits. ACS Synth Biol 2023; 12:1546-1561. [PMID: 37134273 DOI: 10.1021/acssynbio.3c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cotranscriptionally encoded RNA strand displacement (ctRSD) circuits are an emerging tool for programmable molecular computation, with potential applications spanning in vitro diagnostics to continuous computation inside living cells. In ctRSD circuits, RNA strand displacement components are continuously produced together via transcription. These RNA components can be rationally programmed through base pairing interactions to execute logic and signaling cascades. However, the small number of ctRSD components characterized to date limits circuit size and capabilities. Here, we characterize over 200 ctRSD gate sequences, exploring different input, output, and toehold sequences and changes to other design parameters, including domain lengths, ribozyme sequences, and the order in which gate strands are transcribed. This characterization provides a library of sequence domains for engineering ctRSD components, i.e., a toolkit, enabling circuits with up to 4-fold more inputs than previously possible. We also identify specific failure modes and systematically develop design approaches that reduce the likelihood of failure across different gate sequences. Lastly, we show the ctRSD gate design is robust to changes in transcriptional encoding, opening a broad design space for applications in more complex environments. Together, these results deliver an expanded toolkit and design approaches for building ctRSD circuits that will dramatically extend capabilities and potential applications.
Collapse
Affiliation(s)
- Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Molly E Wintenberg
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Terence M Murphy
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
24
|
Paulino NMG, Foo M, de Greef TFA, Kim J, Bates DG. A Theoretical Framework for Implementable Nucleic Acids Feedback Systems. Bioengineering (Basel) 2023; 10:466. [PMID: 37106653 PMCID: PMC10136085 DOI: 10.3390/bioengineering10040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chemical reaction networks can be utilised as basic components for nucleic acid feedback control systems' design for Synthetic Biology application. DNA hybridisation and programmed strand-displacement reactions are effective primitives for implementation. However, the experimental validation and scale-up of nucleic acid control systems are still considerably falling behind their theoretical designs. To aid with the progress heading into experimental implementations, we provide here chemical reaction networks that represent two fundamental classes of linear controllers: integral and static negative state feedback. We reduced the complexity of the networks by finding designs with fewer reactions and chemical species, to take account of the limits of current experimental capabilities and mitigate issues pertaining to crosstalk and leakage, along with toehold sequence design. The supplied control circuits are quintessential candidates for the first experimental validations of nucleic acid controllers, since they have a number of parameters, species, and reactions small enough for viable experimentation with current technical capabilities, but still represent challenging feedback control systems. They are also well suited to further theoretical analysis to verify results on the stability, performance, and robustness of this important new class of control systems.
Collapse
Affiliation(s)
| | - Mathias Foo
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Tom F. A. de Greef
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Republic of Korea
| | - Declan G. Bates
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
25
|
Liu Q, Huang Y, Li L, Li Z, Li M. Endogenous Enzyme-Operated Spherical Nucleic Acids for Cell-Selective Protein Capture and Localization Regulation. Angew Chem Int Ed Engl 2023; 62:e202214958. [PMID: 36788111 DOI: 10.1002/anie.202214958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Precise regulation of protein activity and localization in cancer cells is crucial to dissect the function of the protein-involved cellular network in tumorigenesis, but there is a lack of suitable methodology. Here we report the design of enzyme-operated spherical nucleic acids (E-SNAs) for manipulation of the nucleocytoplasmic translocation of proteins with cancer-cell selectivity. The E-SNAs are constructed by programmable engineering of aptamer-based modules bearing enzyme-responsive units in predesigned sites and further combination with SNA nanotechnology. We demonstrate that E-SNAs are able to regulate cytoplasmic-to-nuclear shuttling of RelA protein efficiently and specifically in tumor cells, while they remain inactive in normal cells due to insufficient enzyme expression. We further confirmed the generality of this strategy by investigating the enzyme-modulated inhibition/activation of thrombin activity by varying the aptamer-based design.
Collapse
Affiliation(s)
- Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Wang T, Hellmer H, Simmel FC. Genetic switches based on nucleic acid strand displacement. Curr Opin Biotechnol 2023; 79:102867. [PMID: 36535150 DOI: 10.1016/j.copbio.2022.102867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Toehold-mediated strand displacement (TMSD) is an isothermal switching process that enables the sequence-programmable and reversible conversion of DNA or RNA strands between single- and double-stranded conformations or other secondary structures. TMSD processes have already found widespread application in DNA nanotechnology, where they are used to drive DNA-based molecular devices or for the realization of synthetic biochemical computing circuits. Recently, researchers have started to employ TMSD also for the control of RNA-based gene regulatory processes in vivo, in particular in the context of synthetic riboregulators and conditional guide RNAs for CRISPR/Cas. Here, we provide a review over recent developments in this emerging field and discuss the opportunities and challenges for such systems in in vivo applications.
Collapse
Affiliation(s)
- Tianhe Wang
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Henning Hellmer
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Friedrich C Simmel
- Physics of Synthetic Biological Systems - E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany.
| |
Collapse
|
27
|
Mayer T, Oesinghaus L, Simmel FC. Toehold-Mediated Strand Displacement in Random Sequence Pools. J Am Chem Soc 2023; 145:634-644. [PMID: 36571481 DOI: 10.1021/jacs.2c11208] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toehold-mediated strand displacement (TMSD) has been used extensively for molecular sensing and computing in DNA-based molecular circuits. As these circuits grow in complexity, sequence similarity between components can lead to cross-talk, causing leak, altered kinetics, or even circuit failure. For small non-biological circuits, such unwanted interactions can be designed against. In environments containing a huge number of sequences, taking all possible interactions into account becomes infeasible. Therefore, a general understanding of the impact of sequence backgrounds on TMSD reactions is of great interest. Here, we investigate the impact of random DNA sequences on TMSD circuits. We begin by studying individual interfering strands and use the obtained data to build machine learning models that estimate kinetics. We then investigate the influence of pools of random strands and find that the kinetics are determined by only a small subpopulation of strongly interacting strands. Consequently, their behavior can be mimicked by a small collection of such strands. The equilibration of the circuit with the background sequences strongly influences this behavior, leading to up to 1 order of magnitude difference in reaction speed. Finally, we compare two established and one novel technique that speed up TMSD reactions in random sequence pools: a three-letter alphabet, protection of toeholds by intramolecular secondary structure, or by an additional blocking strand. While all of these techniques were useful, only the latter can be used without sequence constraints. We expect that our insights will be useful for the construction of TMSD circuits that are robust to molecular noise.
Collapse
Affiliation(s)
- Thomas Mayer
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Lukas Oesinghaus
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Friedrich C Simmel
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| |
Collapse
|
28
|
Zhu L, Luo J, Ren K. Nucleic acid-based artificial nanocarriers for gene therapy. J Mater Chem B 2023; 11:261-279. [PMID: 36524395 DOI: 10.1039/d2tb01179d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid nanotechnology is a powerful tool in the fields of biosensing and nanomedicine owing to their high editability and easy synthesis and modification. Artificial nucleic acid nanostructures have become an emerging research hotspot as gene carriers with low cytotoxicity and immunogenicity for therapeutic approaches. In this review, recent progress in the design and functional mechanisms of nucleic acid-based artificial nano-vectors especially for exogenous siRNA and antisense oligonucleotide delivery is summarized. Different types of DNA nanocarriers, including DNA junctions, tetrahedrons, origami, hydrogels and scaffolds, are introduced. The enhanced targeting strategies to improve the delivery efficacy are demonstrated. Furthermore, RNA based gene nanocarrier systems by self-assembly of short strands, rolling circle transcription, chemical crosslinking and using RNA motifs and DNA-RNA hybrids are demonstrated. Finally, the outlook and potential challenges are highlighted. The nucleic acid-based artificial nanocarriers offer a promising and precise tool for gene delivery and therapy.
Collapse
Affiliation(s)
- Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
29
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Liu J, Li M, Zuo X. DNA Nanotechnology-Empowered Live Cell Measurements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204711. [PMID: 36124715 DOI: 10.1002/smll.202204711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The systematic analysis and precise manipulation of a variety of biomolecules should lead to unprecedented findings in fundamental biology. However, conventional technology cannot meet the current requirements. Despite this, there has been progress as DNA nanotechnology has evolved to generate DNA nanostructures and circuits over the past four decades. Many potential applications of DNA nanotechnology for live cell measurements have begun to emerge owing to the biocompatibility, nanometer addressability, and stimulus responsiveness of DNA. In this review, the DNA nanotechnology-empowered live cell measurements which are currently available are summarized. The stability of the DNA nanostructures, in a cellular microenvironment, which is crucial for accomplishing precise live cell measurements, is first summarized. Thereafter, measurements in the extracellular and intracellular microenvironment, in live cells, are introduced. Finally, the challenges that are innate to, and the further developments that are possible in this nascent field are discussed.
Collapse
Affiliation(s)
- Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Zhao X, Na N, Ouyang J. CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging. Chem Sci 2022; 13:11433-11441. [PMID: 36320584 PMCID: PMC9533423 DOI: 10.1039/d2sc03329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 02/12/2024] Open
Abstract
The biological state at the subcellular level is highly relevant to many diseases, and the monitoring of organelles such as mitochondria is crucial based on this. However, most DNA and protein based nanoprobes used for the detection of mitochondrial RNAs (mitomiRs) lack spatial selectivity, which leads to inefficiencies in probe delivery and signal turn-on. Herein, we constructed a novel DNA nanoprobe named protein delivery nano-corona (PDNC) to improve the delivery efficiency of Cas protein, for spatially selective imaging of mitomiRs in living cells switched on by a CRISPR/Cas system. Combined with a single-molecule counting method, this strategy enables highly sensitive detection of low-abundance mitomiR. Therefore, the strategy in this work opens up new opportunities for cell identification, early clinical diagnosis, and research in biological behaviour at the subcellular level.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
32
|
Schaffter SW, Chen KL, O'Brien J, Noble M, Murugan A, Schulman R. Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks. Nat Chem 2022; 14:1224-1232. [PMID: 35927329 DOI: 10.1038/s41557-022-01001-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
Engineered far-from-equilibrium synthetic chemical networks that pulse or switch states in response to environmental signals could precisely regulate the kinetics of chemical synthesis or self-assembly. Currently, such networks must be extensively tuned to compensate for the different activities of and unintended reactions between a network's various chemical components. Modular elements with standardized performance could be used to rapidly construct networks with designed functions. Here we develop standardized excitable chemical regulatory elements, termed genelets, and use them to construct complex in vitro transcriptional networks. We develop a protocol for identifying >15 interchangeable genelet elements with uniform performance and minimal crosstalk. These elements can be combined to engineer feedforward and feedback modules whose dynamics match those predicted by a simple kinetic model. Modules can then be rationally integrated and organized into networks that produce tunable temporal pulses and act as multistate switchable memories. Standardized genelet elements, and the workflow to identify more, should make engineering complex far-from-equilibrium chemical dynamics routine.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuan-Lin Chen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson O'Brien
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Madeline Noble
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Rebecca Schulman
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. .,Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Mallette TL, Lakin MR. Protecting Heterochiral DNA Nanostructures against Exonuclease-Mediated Degradation. ACS Synth Biol 2022; 11:2222-2228. [PMID: 35749687 DOI: 10.1021/acssynbio.2c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterochiral DNA nanotechnology employs nucleic acids of both chiralities to construct nanoscale devices for applications in the intracellular environment. Interacting directly with cellular nucleic acids can be done most easily using D-DNA of the naturally occurring right-handed chirality; however, D-DNA is more vulnerable to degradation than enantiometric left-handed L-DNA. Here we report a novel combination of D-DNA and L-DNA nucleotides in triblock heterochiral copolymers, where the L-DNA domains act as protective caps on D-DNA domains. We demonstrate that the D-DNA components of strand displacement-based molecular circuits constructed using this technique resist exonuclease-mediated degradation during extended incubations in serum-supplemented media more readily than similar devices without the L-DNA caps. We show that this protection can be applied to both double-stranded and single-stranded circuit components. Our work enhances the state of the art for robust heterochiral circuit design and could lead to practical applications such as in vivo biomedical diagnostics.
Collapse
Affiliation(s)
- Tracy L Mallette
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Matthew R Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
34
|
Abstract
![]()
Hebbian theory seeks
to explain how the neurons in the brain adapt
to stimuli to enable learning. An interesting feature of Hebbian learning
is that it is an unsupervised method and, as such, does not require
feedback, making it suitable in contexts where systems have to learn
autonomously. This paper explores how molecular systems can be designed
to show such protointelligent behaviors and proposes the first chemical
reaction network (CRN) that can exhibit autonomous Hebbian learning
across arbitrarily many input channels. The system emulates a spiking
neuron, and we demonstrate that it can learn statistical biases of
incoming inputs. The basic CRN is a minimal, thermodynamically plausible
set of microreversible chemical equations that can be analyzed with
respect to their energy requirements. However, to explore how such
chemical systems might be engineered de novo, we also propose an extended
version based on enzyme-driven compartmentalized reactions. Finally,
we show how a purely DNA system, built upon the paradigm of DNA strand
displacement, can realize neuronal dynamics. Our analysis provides
a compelling blueprint for exploring autonomous learning in biological
settings, bringing us closer to realizing real synthetic biological
intelligence.
Collapse
Affiliation(s)
- Jakub Fil
- APT Group, School of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Neil Dalchau
- Microsoft Research, Cambridge CB1 2FB, United Kingdom
| | - Dominique Chu
- CEMS, School of Computing, University of Kent, Canterbury CT2 7NF, United Kingdom
| |
Collapse
|
35
|
van der Linden AJ, Pieters PA, Bartelds MW, Nathalia BL, Yin P, Huck WTS, Kim J, de Greef TFA. DNA Input Classification by a Riboregulator-Based Cell-Free Perceptron. ACS Synth Biol 2022; 11:1510-1520. [PMID: 35381174 PMCID: PMC9016768 DOI: 10.1021/acssynbio.1c00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to recognize molecular patterns is essential for the continued survival of biological organisms, allowing them to sense and respond to their immediate environment. The design of synthetic gene-based classifiers has been explored previously; however, prior strategies have focused primarily on DNA strand-displacement reactions. Here, we present a synthetic in vitro transcription and translation (TXTL)-based perceptron consisting of a weighted sum operation (WSO) coupled to a downstream thresholding function. We demonstrate the application of toehold switch riboregulators to construct a TXTL-based WSO circuit that converts DNA inputs into a GFP output, the concentration of which correlates to the input pattern and the corresponding weights. We exploit the modular nature of the WSO circuit by changing the output protein to the Escherichia coli σ28-factor, facilitating the coupling of the WSO output to a downstream reporter network. The subsequent introduction of a σ28 inhibitor enabled thresholding of the WSO output such that the expression of the downstream reporter protein occurs only when the produced σ28 exceeds this threshold. In this manner, we demonstrate a genetically implemented perceptron capable of binary classification, i.e., the expression of a single output protein only when the desired minimum number of inputs is exceeded.
Collapse
Affiliation(s)
- Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A. Pieters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mart W. Bartelds
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Bryan L. Nathalia
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
36
|
Cellular Computational Logic Using Toehold Switches. Int J Mol Sci 2022; 23:ijms23084265. [PMID: 35457085 PMCID: PMC9033136 DOI: 10.3390/ijms23084265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells.
Collapse
|
37
|
Schaffter SW, Strychalski EA. Cotranscriptionally encoded RNA strand displacement circuits. SCIENCE ADVANCES 2022; 8:eabl4354. [PMID: 35319994 PMCID: PMC8942360 DOI: 10.1126/sciadv.abl4354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/01/2022] [Indexed: 05/21/2023]
Abstract
Engineered molecular circuits that process information in biological systems could address emerging human health and biomanufacturing needs. However, such circuits can be difficult to rationally design and scale. DNA-based strand displacement reactions have demonstrated the largest and most computationally powerful molecular circuits to date but are limited in biological systems due to the difficulty in genetically encoding components. Here, we develop scalable cotranscriptionally encoded RNA strand displacement (ctRSD) circuits that are rationally programmed via base pairing interactions. ctRSD circuits address the limitations of DNA-based strand displacement circuits by isothermally producing circuit components via transcription. We demonstrate circuit programmability in vitro by implementing logic and amplification elements, as well as multilayer cascades. Furthermore, we show that circuit kinetics are accurately predicted by a simple model of coupled transcription and strand displacement, enabling model-driven design. We envision ctRSD circuits will enable the rational design of powerful molecular circuits that operate in biological systems, including living cells.
Collapse
|
38
|
Multi-arm RNA junctions encoding molecular logic unconstrained by input sequence for versatile cell-free diagnostics. Nat Biomed Eng 2022; 6:298-309. [PMID: 35288660 PMCID: PMC8940621 DOI: 10.1038/s41551-022-00857-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Applications of RNA-based molecular logic have been hampered by sequence constraints imposed on the input and output of the circuits. Here we show that the sequence constraints can be substantially reduced by appropriately encoded multi-arm junctions of single-stranded RNA structures. To conditionally activate RNA translation, we integrated multi-arm junctions, self-assembled upstream of a regulated gene and designed to unfold sequentially in response to different RNA inputs, with motifs of loop-initiated RNA activators that function independently of the sequence of the input RNAs and that reduce interference with the output gene. We used the integrated RNA system and sequence-independent input RNAs to execute two-input and three-input OR and AND logic in Escherichia coli, and designed paper-based cell-free colourimetric assays that accurately identified two human immunodeficiency virus (HIV) subtypes (by executing OR logic) in amplified synthetic HIV RNA as well as severe acute respiratory syndrome coronavirus-2 (via two-input AND logic) in amplified RNA from saliva samples. The sequence-independent molecular logic enabled by the integration of multi-arm junction RNAs with motifs for loop-initiated RNA activators may be broadly applicable in biotechnology.
Collapse
|
39
|
A high-integrated DNA biocomputing platform for MicroRNA sensing in living cells. Biosens Bioelectron 2022; 207:114183. [PMID: 35303538 DOI: 10.1016/j.bios.2022.114183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
DNA logic computing has captured increasing interest due to its ability to assemble programmable DNA computing elements for disease diagnosis, gene regulation, and targeted therapy. In this work, we developed an aptamer-equipped high-integrated DNA biocomputing platform (HIDBP-A) with a dual-recognition function that enabled cancer cell targeting. Dual microRNAs were the input signals and can perform AND logic operations. Compared to the free DNA biocomputing platform (FDBP), the integration of all computing elements into the same DNA tetrahedron greatly improved logic computing speed and efficiency owing to the confinement effect reflected by the high local concentration of computing elements. As a proof of concept, the utilization of microRNA as the input signal was beneficial for improving the scalability and flexibility of the sequence design of the logic nano-platform. Given that the different microRNAs were over-expressed in cancer cells, this new HIDBP-A has great promise in accurate diagnosis and logic-controlled disease treatment.
Collapse
|
40
|
Han SP, Scherer L, Gethers M, Salvador AM, Salah MBH, Mancusi R, Sagar S, Hu R, DeRogatis J, Kuo YH, Marcucci G, Das S, Rossi JJ, Goddard WA. Programmable siRNA pro-drugs that activate RNAi activity in response to specific cellular RNA biomarkers. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:797-809. [PMID: 35116191 PMCID: PMC8789579 DOI: 10.1016/j.omtn.2021.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022]
Abstract
Since Paul Ehrlich's introduction of the "magic bullet" concept in 1908, drug developers have been seeking new ways to target drug activity to diseased cells while limiting effects on normal tissues. In recent years, it has been proposed that coupling riboswitches capable of detecting RNA biomarkers to small interfering RNAs (siRNAs) to create siRNA pro-drugs could selectively activate RNA interference (RNAi) activity in specific cells. However, this concept has not been achieved previously. We report here that we have accomplished this goal, validating a simple and programmable new design that functions reliably in mammalian cells. We show that these conditionally activated siRNAs (Cond-siRNAs) can switch RNAi activity against different targets between clearly distinguished OFF and ON states in response to different cellular RNA biomarkers. Notably, in a rat cardiomyocyte cell line (H9C2), one version of our construct demonstrated biologically meaningful inhibition of a heart-disease-related target gene protein phosphatase 3 catalytic subunit alpha (PPP3CA) in response to increased expression of the pathological marker atrial natriuretic peptide (NPPA) messenger RNA (mRNA). Our results demonstrate the ability of synthetic riboswitches to regulate gene expression in mammalian cells, opening a new path for development of programmable siRNA pro-drugs.
Collapse
Affiliation(s)
- Si-ping Han
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Lisa Scherer
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Matt Gethers
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ane M. Salvador
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marwa Ben Haj Salah
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Rebecca Mancusi
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Sahil Sagar
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Robin Hu
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Julia DeRogatis
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John J. Rossi
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022; 61:e202115561. [PMID: 34989066 DOI: 10.1002/anie.202115561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 02/04/2023]
Abstract
Sensitive sensing is critical when developing new calculation systems with weak input signals (ISs). In this work, a "weak-inputs-strong-outputs" strategy was proposed to guide the construction of sensitive logic nanodevices by coupling an input-induced reversible DNA computing platform with a hybridization chain reaction-based signal amplifier. By rational design of the sequence of computing elements (CEs) so as to avoid cross-talking between ISs and signal amplifier, the newly formed logic nanodevices have good sensitivity to the weak ISs even at low concentrations of CEs, and are able to perform YES, OR, NAND, NOR, INHIBIT, INHIBIT-OR and number classifier operation, showing that the DNA calculation proceeds in dilute solution medium that greatly improves the calculation proficiency of logic nanodevices without the confinement of the lithography process in nanotechnology.
Collapse
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
42
|
Xiang Z, Zhao J, Qu J, Song J, Li L. A Multivariate‐Gated DNA Nanodevice for Spatioselective Imaging of Pro‐metastatic Targets in Extracellular Microenvironment. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhichu Xiang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering China Key Laboratory of Optoelectronic Devices and Systems Shenzhen University Shenzhen 518060 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering China Key Laboratory of Optoelectronic Devices and Systems Shenzhen University Shenzhen 518060 China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering China Key Laboratory of Optoelectronic Devices and Systems Shenzhen University Shenzhen 518060 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
43
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Yi Lv
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Chun Hong Li
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Fei Fan Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Yuan Fang Li
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Shu Jun Zhen
- Southwest University College of Chemistry and Chemical Engineering Tiansheng Road, BeiBei 400715 Chongqing CHINA
| | - Cheng Zhi Huang
- Southwest University College of Pharmaceutical Sciences CHINA
| |
Collapse
|
44
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
45
|
Gao S, Wu R, Zhang Q. A novel strategy for programmable DNA tile self-assembly with a DNAzyme-mediated DNA cross circuit. NEW J CHEM 2022. [DOI: 10.1039/d1nj06012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed strategy promotes the controllability and modularization of trigger elements, realizes programmable molecular self-assembly, and has broad applications for the construction of DNA nanodevices.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
46
|
Lin J, Wang WJ, Wang Y, Liu Y, Xu L. Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function. J Am Chem Soc 2021; 143:19834-19843. [PMID: 34788038 DOI: 10.1021/jacs.1c09041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Construction of synthetic circuits that can artificially establish endogenous gene connections is essential to introduce new phenotypes for cellular behaviors. Given the diversity of endogenous genes, it lacks a general and easy-to-design toolbox to manipulate the genetic network. Here we present a type of self-assembly-induced RNA circuit that can directly build regulatory connections between endogenous genes. Inspired from the natural assembling process of guide RNA in the CRISPR/Cas9 complex, this design employs an independent trigger RNA strand to induce the formation of a ternary guide RNA assembly for functional control of CRISPR/Cas9. With this general principle, expressional regulations of endogenous genes can be controlled by totally independent endogenous small RNAs and mRNAs in E. coli via activatable CRISPR/Cas9 function. Moreover, the cellular phenotype of E. coli is successfully programmed with introduction of new gene connections. In addition, the functionality of this design is also verified in the mammalian system. This self-assembly-based RNA circuit exhibits a great flexibility and simplicity of design and provides a unique approach to build endogenous gene connections, which paves a broad way toward manipulation of cellular genetic networks.
Collapse
Affiliation(s)
- Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei-Jia Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
47
|
Xu S, Liu Y, Zhou S, Zhang Q, Kasabov NK. DNA Matrix Operation Based on the Mechanism of the DNAzyme Binding to Auxiliary Strands to Cleave the Substrate. Biomolecules 2021; 11:1797. [PMID: 34944442 PMCID: PMC8698824 DOI: 10.3390/biom11121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Numerical computation is a focus of DNA computing, and matrix operations are among the most basic and frequently used operations in numerical computation. As an important computing tool, matrix operations are often used to deal with intensive computing tasks. During calculation, the speed and accuracy of matrix operations directly affect the performance of the entire computing system. Therefore, it is important to find a way to perform matrix calculations that can ensure the speed of calculations and improve the accuracy. This paper proposes a DNA matrix operation method based on the mechanism of the DNAzyme binding to auxiliary strands to cleave the substrate. In this mechanism, the DNAzyme binding substrate requires the connection of two auxiliary strands. Without any of the two auxiliary strands, the DNAzyme does not cleave the substrate. Based on this mechanism, the multiplication operation of two matrices is realized; the two types of auxiliary strands are used as elements of the two matrices, to participate in the operation, and then are combined with the DNAzyme to cut the substrate and output the result of the matrix operation. This research provides a new method of matrix operations and provides ideas for more complex computing systems.
Collapse
Affiliation(s)
- Shaoxia Xu
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China;
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Nikola K. Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand;
- Intelligent Systems Research Center, Ulster University, Londonderry BT52 1SA, UK
| |
Collapse
|
48
|
Groeer S, Schumann K, Loescher S, Walther A. Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies. SCIENCE ADVANCES 2021; 7:eabj5827. [PMID: 34818037 PMCID: PMC8612681 DOI: 10.1126/sciadv.abj5827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Structures in living systems cross-regulate via exchange of molecular information to assemble or disassemble on demand and in a coordinated, signal-triggered fashion. DNA strand displacement (DSD) reaction networks allow rational design of signaling and feedback loops, but combining DSD with structural nanotechnology to achieve self-reconfiguring hierarchical system states is still in its infancy. We introduce modular DSD networks with increasing amounts of regulatory functions, such as negative feedback, signal amplification, and signal thresholding, to cross-regulate the transient polymerization/depolymerization of two self-sorting DNA origami nanofibrils and nanotubes. This is achieved by concatenation of the DSD network with molecular information relays embedded on the origami tips. The two origamis exchange information and display programmable transient states observable by TEM and fluorescence spectroscopy. The programmability on the DSD and the origami level is a viable starting point toward more complex lifelike behavior of colloidal multicomponent systems featuring advanced signal processing functions.
Collapse
Affiliation(s)
- Saskia Groeer
- ABMS Lab–Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Katja Schumann
- ABMS Lab–Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
| | - Sebastian Loescher
- ABMS Lab–Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- ABMS Lab–Active, Adaptive and Autonomous Bioinspired Materials, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 50447 Mainz, Germany
- Corresponding author.
| |
Collapse
|
49
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
50
|
Xiang Z, Zhao J, Qu J, Song J, Li L. A Multivariate-Gated DNA Nanodevice for Spatioselective Imaging of Pro-metastatic Targets in Extracellular Microenvironment. Angew Chem Int Ed Engl 2021; 61:e202111836. [PMID: 34779093 DOI: 10.1002/anie.202111836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Probing pro-metastatic biomarkers is of significant importance to evaluate the risk of tumor metastasis, but spatially selective imaging of such targets in extracellular microenvironment is particularly challenging. By introducing the bilinguality of PNA/peptide hybrid that can speak both peptide substrate and nucleobase-pairing languages to combine with aptamer technology, we designed a smart DNA nanodevice programmed to respond sequentially to dual pro-metastatic targets, MMP2/9 and ATP, in extracellular tumor microenvironment (TME). The DNA nanodevice is established based on the combination of an ATP-responsive aptamer sensor and a MMP2/9-hydrolyzable PNA/peptide copolymer with a cell membrane-anchoring aptamer module. Taking 4T1 xenograft as a highly aggressive tumor model, the robustness of the DNA nanodevice in spatioselective imaging of MMP2/9 and ATP in TME is demonstrated. We envision that this design will enable the simultaneous visualization of multiple pro-metastatic biomarkers, which allows to gain insights into their pathological roles in tumor metastasis.
Collapse
Affiliation(s)
- Zhichu Xiang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, China Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, China Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, China Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen, 518060, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|