1
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Wang J, Zhao M, Wang M, Fu D, Kang L, Xu Y, Shen L, Jin S, Wang L, Liu J. Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation. Nat Commun 2024; 15:7855. [PMID: 39245680 PMCID: PMC11381526 DOI: 10.1038/s41467-024-52171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Oxidative phosphorylation (OXPHOS) in the mitochondrial inner membrane is a therapeutic target in many diseases. Neural stem cells (NSCs) show progress in improving mitochondrial dysfunction in the central nervous system (CNS). However, translating neural stem cell-based therapies to the clinic is challenged by uncontrollable biological variability or heterogeneity, hindering uniform clinical safety and efficacy evaluations. We propose a systematic top-down design based on membrane self-assembly to develop neural stem cell-derived oxidative phosphorylating artificial organelles (SAOs) for targeting the central nervous system as an alternative to NSCs. We construct human conditionally immortal clone neural stem cells (iNSCs) as parent cells and use a streamlined closed operation system to prepare neural stem cell-derived highly homogenous oxidative phosphorylating artificial organelles. These artificial organelles act as biomimetic organelles to mimic respiration chain function and perform oxidative phosphorylation, thus improving ATP synthesis deficiency and rectifying excessive mitochondrial reactive oxygen species production. Conclusively, we provide a framework for a generalizable manufacturing procedure that opens promising prospects for disease treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Dong Fu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Lin Kang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Yu Xu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Liming Shen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Shilin Jin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian City, Liaoning Province, PR China.
| |
Collapse
|
4
|
Huang Y, Yang G, Yu Z, Tong T, Huang Y, Zhang Q, Hong Y, Jiang J, Zhang G, Yuan Y. Amino-Acid-Encoded Bioinspired Supramolecular Self-Assembly of Multimorphological Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311351. [PMID: 38453673 DOI: 10.1002/smll.202311351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yifan Huang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guokun Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Tong Tong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yan Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yajian Hong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guozhen Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| |
Collapse
|
5
|
Kar H, Goldin L, Frezzato D, Prins LJ. Local Self-Assembly of Dissipative Structures Sustained by Substrate Diffusion. Angew Chem Int Ed Engl 2024; 63:e202404583. [PMID: 38717103 DOI: 10.1002/anie.202404583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 07/16/2024]
Abstract
The coupling between energy-consuming molecular processes and the macroscopic dimension plays an important role in nature and in the development of active matter. Here, we study the temporal evolution of a macroscopic system upon the local activation of a dissipative self-assembly process. Injection of surfactant molecules in a substrate-containing hydrogel results in the local substrate-templated formation of assemblies, which are catalysts for the conversion of substrate into waste. We show that the system develops into a macroscopic (pseudo-)non-equilibrium steady state (NESS) characterized by the local presence of energy-dissipating assemblies and persistent substrate and waste concentration gradients. For elevated substrate concentrations, this state can be maintained for more than 4 days. The studies reveal an interdependence between the dissipative assemblies and the concentration gradients: catalytic activity by the assemblies results in sustained concentration gradients and, vice versa, continuous diffusion of substrate to the assemblies stabilizes their size. The possibility to activate dissipative processes with spatial control and create long lasting non-equilibrium steady states enables dissipative structures to be studied in the space-time domain, which is of relevance for understanding biological systems and for the development of active matter.
Collapse
Affiliation(s)
- Haridas Kar
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Goldin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
6
|
Islam M, Baroi MK, Das BK, Kumari A, Das K, Ahmed S. Chemically fueled dynamic switching between assembly-encoded emissions. MATERIALS HORIZONS 2024; 11:3104-3114. [PMID: 38687299 DOI: 10.1039/d4mh00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-assembly provides access to non-covalently synthesized supramolecular materials with distinct properties from a single building block. However, dynamic switching between functional states still remains challenging, but holds enormous potential in material chemistry to design smart materials. Herein, we demonstrate a chemical fuel-mediated strategy to dynamically switch between two distinctly emissive aggregates, originating from the self-assembly of a naphthalimide-appended peptide building block. A molecularly dissolved building block shows very weak blue emission, whereas, in the assembled state (Agg-1), it shows cyan emission through π stacking-mediated excimer emission. The addition of a chemical fuel, ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), converts the terminal aspartic acid present in the building block to an intra-molecularly cyclized anhydride in situ forming a second aggregated state, Agg-2, by changing the molecular packing, thereby transforming the emission to strong blue. Interestingly, the anhydride gets hydrolyzed gradually to reform Agg-1 and the initial cyan emission is restored. The kinetic stability of the strong blue emissive aggregate, Agg-2, can be regulated by the added concentration of the chemical fuel. Moreover, we expand the scope of this system within an agarose gel matrix, which allows us to gain spatiotemporal control over the properties, thereby producing a self-erasable writing system where the chemical fuel acts as the ink.
Collapse
Affiliation(s)
- Manirul Islam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aanchal Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Krishnendu Das
- Department of Molecules and Materials & MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| |
Collapse
|
7
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
8
|
Wang H, Wang K, Bai S, Wei L, Gao Y, Zhi K, Guo X, Wang Y. Spatiotemporal control over self-assembly of supramolecular hydrogels through reaction-diffusion. J Colloid Interface Sci 2024; 664:938-945. [PMID: 38503079 DOI: 10.1016/j.jcis.2024.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Supramolecular self-assembly is ubiquitous in living system and is usually controlled to proceed in time and space through sophisticated reaction-diffusion processes, underpinning various vital cellular functions. In this contribution, we demonstrate how spatiotemporal self-assembly of supramolecular hydrogels can be realized through a simple reaction-diffusion-mediated transient transduction of pH signal. In the reaction-diffusion system, a relatively faster diffusion of acid followed by delayed enzymatic production and diffusion of base from the opposite site enables a transient transduction of pH signal in the substrate. By coupling such reaction-diffusion system with pH-sensitive gelators, dynamic supramolecular hydrogels with tunable lifetimes are formed at defined locations. The hydrogel fibers show interesting dynamic growing behaviors under the regulation of transient pH signal, reminiscent of their biological counterpart. We further demonstrate a proof-of-concept application of the developed methodology for dynamic information encoding in a soft substrate. We envision that this work may provide a potent approach to enable transient transduction of various chemical signals for the construction of new colloidal materials with the capability to evolve their structures and functionalities in time and space.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kainan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lai Wei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
11
|
Das A, Ghosh S, Mishra A, Som A, Banakar VB, Agasti SS, George SJ. Enzymatic Reaction-Coupled, Cooperative Supramolecular Polymerization. J Am Chem Soc 2024; 146:14844-14855. [PMID: 38747446 DOI: 10.1021/jacs.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ananya Mishra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Vijay Basavaraj Banakar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
12
|
Sarkar A, Dúzs B, Walther A. Fuel-Driven Enzymatic Reaction Networks to Program Autonomous Thiol/Disulfide Redox Systems. J Am Chem Soc 2024; 146:10281-10285. [PMID: 38569008 DOI: 10.1021/jacs.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fuel-driven dissipative formation of disulfide bonds using competing oxidative activation and reductive deactivation presents a possibly very versatile avenue for autonomous materials design. However, this is challenging to realize because of the direct annihilation of oxidizing fuel and a deactivating reducing agent. We overcome this challenge by introducing a redox-based enzymatic reaction network (ERN), enabling the dissipative disulfide formation for molecularly dissolved thiols in a fully autonomous manner. Moreover, the ERN allows for programming hydrogel lifetimes by utilizing thiol-terminated star polymers (sPEG-SH). The ERN can be customized to operate with aliphatic and aromatic thiols and should thus be broadly applicable to functional thiols.
Collapse
Affiliation(s)
- Aritra Sarkar
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Brigitta Dúzs
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
13
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
14
|
Wang H, Tan S, Su Z, Li M, Hao X, Peng F. Perforin-Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance-Configurable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311073. [PMID: 38199249 DOI: 10.1002/adma.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.
Collapse
Affiliation(s)
- Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Tan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing, 100102, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
15
|
Umesh, Ralhan J, Kumar V, Bhatt H, Nath D, Mavlankar NA, Ghosh HN, Pal A. Thermo-Chemical Cues-Mediated Strategy to Control Peptide Self-Assembly and Charge Transfer Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2754-2763. [PMID: 38275136 DOI: 10.1021/acs.langmuir.3c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Peptide amphiphiles (PAs) are known for their remarkable ability to undergo molecular self-assembly, a process that is highly responsive to the local microenvironment. Herein, we design a pyrene tethered peptide amphiphile Py-VFFAKK, 1 that exhibits pathway-driven self-assembly from metastable nanoparticles to kinetically controlled nanofibers and thermodynamically stable twisted bundles upon modulations in pH, temperature, and chemical cues. The presence of the pyrene moiety ensures donation of the electron to an electron acceptor, namely, 7,7,8,8-tetracyanoquinodimethane (TCNQ), to form a supramolecular charge transfer complex in aqueous solution that was studied in detail with microscopic and spectroscopic techniques. Excitation of the donor species in its excimer state facilitates electron donation to the acceptor moiety, paving away a long-lived charge-separated state that persists for over a nanosecond, as ascertained through transient absorption spectroscopy. Finally, the self-assembled charge transfer complex is explored toward antimicrobial properties with Escherichia coli while maintaining biocompatibility toward L929 mice fibroblast cells.
Collapse
Affiliation(s)
- Umesh
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Jahanvi Ralhan
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Vikas Kumar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Debasish Nath
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Nimisha A Mavlankar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Asish Pal
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
16
|
Shklyaev OE, Balazs AC. Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. NATURE NANOTECHNOLOGY 2024; 19:146-159. [PMID: 38057363 DOI: 10.1038/s41565-023-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 12/08/2023]
Abstract
Biological systems spontaneously convert energy input into the actions necessary to survive. Motivated by the efficacy of these processes, researchers aim to forge materials systems that exhibit the self-sustained and autonomous functionality found in nature. Success in this effort will require synthetic analogues of the following: a metabolism to generate energy, a vasculature to transport energy and materials, a nervous system to transmit 'commands', a musculoskeletal system to translate commands into physical action, regulatory networks to monitor the entire enterprise, and a mechanism to convert 'nutrients' into growing materials. Design rules must interconnect the material's structural and kinetic properties over ranges of length (that can vary from the nano- to mesoscale) and timescales to enable local energy dissipations to power global functionality. Moreover, by harnessing dynamic interactions intrinsic to the material, the system itself can perform the work needed for its own functionality. Here, we assess the advances and challenges in dissipative materials design and at the same time aim to spur developments in next-generation functional, 'living' materials.
Collapse
Affiliation(s)
- Oleg E Shklyaev
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Gabrielli L, Goldin L, Chandrabhas S, Dalla Valle A, Prins LJ. Chemical Information Processing by a Responsive Chemical System. J Am Chem Soc 2024; 146:2080-2088. [PMID: 38214581 PMCID: PMC10811666 DOI: 10.1021/jacs.3c11414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Nature has an extraordinary capacity to precisely regulate the chemical reactivity in a highly complex mixture of molecules that is present in the cell. External stimuli lead to transient up- and downregulation of chemical reactions and provide a means for a cell to process information arriving from the environment. The development of synthetic chemical systems with life-like properties requires strategies that allow likewise control over chemical reactivity in a complex environment. Here, we show a synthetic system that mimics the initial steps that take place when a natural signal transduction pathway is activated. Monophosphate nucleosides act as chemical triggers for the self-assembly of nanoreactors that upregulate chemical reactions between reagents present at low micromolar concentrations. Different nucleotides template different assemblies and hence activate different pathways, thus establishing a distinct connection between input and output molecules. Trigger-induced upregulation of chemical reactivity occurs for only a limited amount of time because the chemical triggers are gradually removed from the system by enzymes. It is shown that the same system transiently produces different output molecules depending on the chemical input that is provided.
Collapse
Affiliation(s)
- Luca Gabrielli
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Lorenzo Goldin
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Sushmitha Chandrabhas
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Andrea Dalla Valle
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| | - Leonard J. Prins
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova 35131, Italy
| |
Collapse
|
18
|
Kruse J, Rao A, Sánchez-Iglesias A, Montaño-Priede JL, Iturrospe Ibarra A, Lopez E, Seifert A, Arbe A, Grzelczak M. Temperature-Modulated Reversible Clustering of Gold Nanorods Driven by Small Surface Ligands. Chemistry 2024; 30:e202302793. [PMID: 37815406 DOI: 10.1002/chem.202302793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Temperature-modulated colloidal phase of plasmonic nanoparticles is a convenient playground for resettable soft-actuators or colorimetric sensors. To render reversible clustering under temperature change, bulky ligands are required, especially if anisotropic morphologies are of interest. This study showcases thermoresponsive gold nanorods by employing small surface ligands, bis (p-sulfonatophenyl) phenyl-phosphine dihydrate dipotassium salt (BSPP) and native cationic surfactant. Temperature-dependent analysis in real-time allowed to describe the structural features (interparticle distance and cluster size) as well as thermal parameters, melting and freezing temperatures. These findings suggest that neither covalent Au-S bonds nor bulky ligands are required to obtain a robust thermoresponsive system based on anisotropic gold nanoparticles, paving the way to stimuli-responsive nanoparticles with a wide range of sizes and geometries.
Collapse
Affiliation(s)
- Joscha Kruse
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
| | - Anish Rao
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Ana Sánchez-Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Amaia Iturrospe Ibarra
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Eneko Lopez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
19
|
Dai K, Pol MD, Saile L, Sharma A, Liu B, Thomann R, Trefs JL, Qiu D, Moser S, Wiesler S, Balzer BN, Hugel T, Jessen HJ, Pappas CG. Spontaneous and Selective Peptide Elongation in Water Driven by Aminoacyl Phosphate Esters and Phase Changes. J Am Chem Soc 2023; 145:26086-26094. [PMID: 37992133 DOI: 10.1021/jacs.3c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.
Collapse
Affiliation(s)
- Kun Dai
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Mahesh D Pol
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Lenard Saile
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Arti Sharma
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bin Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Johanna L Trefs
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bizan N Balzer
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thorsten Hugel
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
20
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
21
|
Li S, Zhao Y, Wu S, Zhang X, Yang B, Tian L, Han X. Regulation of species metabolism in synthetic community systems by environmental pH oscillations. Nat Commun 2023; 14:7507. [PMID: 37980410 PMCID: PMC10657449 DOI: 10.1038/s41467-023-43398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Constructing a synthetic community system helps scientist understand the complex interactions among species in a community and its environment. Herein, a two-species community is constructed with species A (artificial cells encapsulating pH-responsive molecules and sucrose) and species B (Saccharomyces cerevisiae), which causes the environment to exhibit pH oscillation behaviour due to the generation and dissipation of CO2. In addition, a three-species community is constructed with species A' (artificial cells containing sucrose and G6P), species B, and species C (artificial cells containing NAD+ and G6PDH). The solution pH oscillation regulates the periodical release of G6P from species A'; G6P then enters species C to promote the metabolic reaction that converts NAD+ to NADH. The location of species A' and B determines the metabolism behaviour in species C in the spatially coded three-species communities with CA'B, CBA', and A'CB patterns. The proposed synthetic community system provides a foundation to construct a more complicated microecosystem.
Collapse
Affiliation(s)
- Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yingming Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuqi Wu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
22
|
Bal S, Ghosh C, Parvin P, Das D. Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. NANO LETTERS 2023; 23:9988-9994. [PMID: 37831889 DOI: 10.1021/acs.nanolett.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We report a short peptide that accessed dynamic catalytic polymers to demonstrate four-stage (sol-gel-weak gel-strong gel) temporal self-regulation of its mechanical properties. The peptide exploited its intrinsic catalytic capabilities of manipulating C-C bonds (retro-aldolase-like) that resulted in a nonlinear variation in the catalytic rate. The seven-residue sequence exploited two lysines for binding and cleaving the thermodynamically activated substrate that subsequently led to the self-regulation of the mechanical strengths of the polymerized states as a function of time and reaction progress. Interestingly, the polymerization events were modulated by the different catalytic potentials of the two terminal lysines to cleave the substrate, covalently trap the electrophilic products, and subsequently control the mechanical properties of the system.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Payel Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
23
|
Wang H, Cheng Z, Yuan L, Ren L, Pan C, Epstein IR, Gao Q. Role of Fast and Slow Inhibitors in Oscillatory Rhythm Design. J Am Chem Soc 2023; 145:23152-23159. [PMID: 37844139 DOI: 10.1021/jacs.3c07076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In biological or abiotic systems, rhythms occur, owing to the coupling between positive and negative feedback loops in a reaction network. Using the Semenov-Whitesides oscillatory network for thioester hydrolysis as a prototype, we experimentally and theoretically analyzed the role of fast and slow inhibitors in oscillatory reaction networks. In the presence of positive feedback, a single fast inhibitor generates a time delay, resulting in two saddle-node bifurcations and bistability in a continuously stirred tank reactor. A slow inhibitor produces a node-focus bifurcation, resulting in damped oscillations. With both fast and slow inhibitors present, the node-focus bifurcation repeatedly modulates the saddle-node bifurcations, producing stable periodic oscillations. These fast and slow inhibitions result in a pair of time delays between steeply ascending and descending dynamics, which originate from the positive and negative feedbacks, respectively. This pattern can be identified in many chemical relaxation oscillators and oscillatory models, e.g., the bromate-sulfite pH oscillatory system, the Belousov-Zhabotinsky reaction, the trypsin oscillatory system, and the Boissonade-De Kepper model. This study provides a novel understanding of chemical and biochemical rhythms and suggests an approach to designing such behavior.
Collapse
Affiliation(s)
- Hongzhang Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Zhenfang Cheng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| |
Collapse
|
24
|
Wang H, Fu X, Gu G, Bai S, Li R, Zhong W, Guo X, Eelkema R, van Esch JH, Cao Z, Wang Y. Dynamic Growth of Macroscopically Structured Supramolecular Hydrogels through Orchestrated Reaction-Diffusion. Angew Chem Int Ed Engl 2023; 62:e202310162. [PMID: 37671694 DOI: 10.1002/anie.202310162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2 CO3 ) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xiaoming Fu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Guanyao Gu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore, 119077, Singapore
| | - Weimin Zhong
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jan H van Esch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Zhixing Cao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, P. R. China
| |
Collapse
|
25
|
Bistervels MH, Antalicz B, Kamp M, Schoenmaker H, Noorduin WL. Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating. Nat Commun 2023; 14:6350. [PMID: 37816757 PMCID: PMC10564937 DOI: 10.1038/s41467-023-42126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
Spatiotemporal control over crystal nucleation and growth is of fundamental interest for understanding how organisms assemble high-performance biominerals, and holds relevance for manufacturing of functional materials. Many methods have been developed towards static or global control, however gaining simultaneously dynamic and local control over crystallization remains challenging. Here, we show spatiotemporal control over crystallization of retrograde (inverse) soluble compounds induced by locally heating water using near-infrared (NIR) laser light. We modulate the NIR light intensity to start, steer, and stop crystallization of calcium carbonate and laser-write with micrometer precision. Tailoring the crystallization conditions overcomes the inherently stochastic crystallization behavior and enables positioning single crystals of vaterite, calcite, and aragonite. We demonstrate straightforward extension of these principles toward other biorelevant compounds by patterning barium-, strontium-, and calcium carbonate, as well as strontium sulfate and calcium phosphate. Since many important compounds exhibit retrograde solubility behavior, NIR-induced heating may enable light-controlled crystallization with precise spatiotemporal control.
Collapse
Affiliation(s)
| | | | - Marko Kamp
- AMOLF, 1098 XG, Amsterdam, The Netherlands
| | | | - Willem L Noorduin
- AMOLF, 1098 XG, Amsterdam, The Netherlands.
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands.
| |
Collapse
|
26
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Roy S, Pillai PP. What Triggers the Dynamic Self-Assembly of Molecules and Materials? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12967-12974. [PMID: 37672384 DOI: 10.1021/acs.langmuir.3c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Dynamic self-assembly has emerged as one of the reliable approaches to create complex materials with more life-like functions. In a typical dynamic self-assembly process, the external triggers activate the building blocks to initiate the assembly step to form transiently stable higher-order structures. These external triggers provide a constant supply of energy to maintain the transiently stable self-assembled states. The withdrawal or consumption of the trigger deactivates the building block in the aggregates, thereby initiating the disassembly step. A precise control over the interplay between the deterministic and nondeterministic forces is the key to achieving a dynamic self-assembly process. This demands the appropriate choice of building blocks as well as triggers, which has led to the development of a wide range of triggers in dynamic self-assembly. Through this Perspective, we intend to highlight the functional diversities, prospects, and challenges associated with different classes of "triggers" by bringing them under one platform. Such treatment will help us to identify the missing features and deduce a guideline for the development of ideal triggers. A few of the desirable features that a trigger should possess, along with probable ways to achieve them, are discussed, as well. In summary, the Perspective covers many intriguing aspects of triggers that can be helpful for researchers to achieve precise spatiotemporal control over various interparticle interactions, which is essential to obtaining the desired outcome from a dynamic self-assembly process.
Collapse
Affiliation(s)
- Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411 008, India
| |
Collapse
|
28
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
29
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
30
|
Li Z, Zeman CJ, Valandro S, Bantang JPO, Schanze KS. Phosphates Induced H-Type or J-Type Aggregation of Cationic Porphyrins with Varied Side Chains. Molecules 2023; 28:4115. [PMID: 37241856 PMCID: PMC10223173 DOI: 10.3390/molecules28104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Non-covalent interactions have been extensively used to fabricate nanoscale architectures in supramolecular chemistry. However, the biomimetic self-assembly of diverse nanostructures in aqueous solution with reversibility induced by different important biomolecules remains a challenge. Here, we report the synthesis and aqueous self-assembly of two chiral cationic porphyrins substituted with different types of side chains (branched or linear). Helical H-aggregates are induced by pyrophosphate (PPi) as indicated by circular dichroism (CD) measurement, while J-aggregates are formed with adenosine triphosphate (ATP) for the two porphyrins. By modifying the peripheral side chains from linear to a branched structure, more pronounced H- or J-type aggregation was promoted through the interactions between cationic porphyrins and the biological phosphate ions. Moreover, the phosphate-induced self-assembly of the cationic porphyrins is reversible in the presence of the enzyme alkaline phosphatase (ALP) and repeated addition of phosphates.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA; (Z.L.); (C.J.Z.IV); (S.V.); (J.P.O.B.)
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Charles J. Zeman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA; (Z.L.); (C.J.Z.IV); (S.V.); (J.P.O.B.)
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Silvano Valandro
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA; (Z.L.); (C.J.Z.IV); (S.V.); (J.P.O.B.)
| | - Jose Paolo O. Bantang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA; (Z.L.); (C.J.Z.IV); (S.V.); (J.P.O.B.)
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA; (Z.L.); (C.J.Z.IV); (S.V.); (J.P.O.B.)
| |
Collapse
|
31
|
Winkens M, Vilcan A, de Visser PJ, de Graaf FV, Korevaar PA. Orbiting Self-Organization of Filament-Tethered Surface-Active Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206800. [PMID: 36799188 DOI: 10.1002/smll.202206800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Indexed: 05/18/2023]
Abstract
Dissipative chemical systems hold the potential to enable life-like behavior in synthetic matter, such as self-organization, motility, and dynamic switching between different states. Here, out-of-equilibrium self-organization is demonstrated by interconnected source and drain droplets at an air-water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self-assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life-like systems.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Alexandru Vilcan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Freek V de Graaf
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
32
|
Penocchio E, Ragazzon G. Kinetic Barrier Diagrams to Visualize and Engineer Molecular Nonequilibrium Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206188. [PMID: 36703505 DOI: 10.1002/smll.202206188] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Molecular nonequilibrium systems hold great promises for the nanotechnology of the future. Yet, their development is slowed by the absence of an informative representation. Indeed, while potential energy surfaces comprise in principle all the information, they hide the dynamic interplay of multiple reaction pathways underlying nonequilibrium systems, i.e., the degree of kinetic asymmetry. To offer an insightful visual representation of kinetic asymmetry, we extended an approach pertaining to catalytic networks, the energy span model, by focusing on system dynamics - rather than thermodynamics. Our approach encompasses both chemically and photochemically driven systems, ranging from unimolecular motors to simple self-assembly schemes. The obtained diagrams give immediate access to information needed to guide experiments, such as states' population, rate of machine operation, maximum work output, and effects of design changes. The proposed kinetic barrier diagrams offer a unifying graphical tool for disparate nonequilibrium phenomena.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingégnierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
33
|
Lauzon D, Vallée-Bélisle A. Functional advantages of building nanosystems using multiple molecular components. Nat Chem 2023; 15:458-467. [PMID: 36759713 DOI: 10.1038/s41557-022-01127-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023]
Abstract
Over half of all the natural nanomachines in living organisms are multimeric and likely exploit the self-assembly of their components to provide functional benefits. However, the advantages and disadvantages of building nanosystems using multiple molecular components remain relatively unexplored at the thermodynamic, kinetic and functional levels. In this study we used theory and a simple DNA-based model that forms the same nanostructures with different numbers of components to advance our knowledge in this area. Despite its lower assembly rate, we found that a system built with three components may undergo a more cooperative assembly transition from less preorganized components, which facilitates the emergence of functionalities. Using simple variations of its components, we also found that trimeric nanosystems display a much higher level of programmability than their dimeric counterparts because they can assemble with various levels of cooperativity, self-inhibition and time-dependent properties. We show here how two simple strategies (for example, cutting and adding components) can be employed to efficiently programme the regulatory function of a more complex, artificially selected, RNA-cleaving catalytic nanosystem.
Collapse
Affiliation(s)
- D Lauzon
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - A Vallée-Bélisle
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
35
|
Shandilya E, Maiti S. Self-Regulatory Micro- and Macroscale Patterning of ATP-Mediated Nanobioconjugate. ACS NANO 2023; 17:5108-5120. [PMID: 36827433 DOI: 10.1021/acsnano.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Directional interactions and the assembly of a nanobioconjugate in clusters at a specific location are important for patterning and microarrays in biomedical research. Herein, we report that self-assembly and spatial control in surface patterning of the surfactant-functionalized nanoparticles can be governed in micro- and macroscale environments by two factors, synergistic enzyme-substrate-nanoparticle affinity and the phoretic effect. First, we show that aggregation of cationic gold nanoparticles (GNP) can be modulated by multivalent anionic nanoparticle binding of an adenosine-based nucleotide and enzyme, alkaline phosphatase. We further demonstrate two different types of their autonomous aggregation pattern: (i) by introducing an enzyme gradient that modulates the synergistic nonequilibrium interactivity of the nanoparticle, nucleotide, and enzyme both in microfluidic conditions and at the macroscale; and (ii) the surface deposition pattern from evaporating droplets via the coffee ring effect. Here, temporal control over the width and site of the patterning area inside the microfluidic channel under catalytic and noncatalytic conditions has also been demonstrated. Finally, we show a change in capillary phoresis parameters responsible for the coffee ring due to introduction of ATP-loaded GNP in the blood serum, showing applicability in low-cost disease diagnostics. Overall, an enzyme-actuated surface nanobiopatterning method has been demonstrated that has potential application in controlled micro- and macroscale area patterning with a diverse cascade catalytic surface and spatiotemporal multisensory-based application.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
36
|
Marchetti A, Gori A, Ferretti AM, Esteban DA, Bals S, Pigliacelli C, Metrangolo P. Templated Out-of-Equilibrium Self-Assembly of Branched Au Nanoshells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206712. [PMID: 36650930 DOI: 10.1002/smll.202206712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but achieving finite 3D structures with a controlled morphology through this assembly mode is still rare. Here, a spherical peptide-gold superstructure (PAuSS) is used as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D-branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantles upon SDS concentration gradient equilibration over time in the sample solution, leading to NPs disassembly and regression to PAuSS. Notably, BAuNS assembly and disassembly promotes temporary interparticle plasmonic coupling, leading to reversible and tunable changes of their plasmonic properties, a highly desirable behavior in the development of optoelectronic nanodevices.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, Milano, 20131, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, National Research Council of Italy, Via M. Bianco 9, 20131 and Via G. Fantoli 16/15, Milano, 20138, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche, National Research Council of Italy, Via M. Bianco 9, 20131 and Via G. Fantoli 16/15, Milano, 20138, Italy
| | - Daniel Arenas Esteban
- Department of Physics, Electron microscopy for Materials research (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Sara Bals
- Department of Physics, Electron microscopy for Materials research (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, Milano, 20131, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
37
|
Transition from continuous to microglobular shaped peptide assemblies through a Liesegang-like enzyme-assisted mechanism. J Colloid Interface Sci 2023; 633:876-885. [PMID: 36495809 DOI: 10.1016/j.jcis.2022.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/20/2022]
Abstract
Enzyme-assisted self-assembly confined within host materials leads to Liesegang-like spatial structuration when precursor peptides are diffusing through an enzyme-functionalized hydrogel. It is shown here that playing on peptide and enzyme concentrations results in a transition from continuous self-assembled peptide areas to individual microglobules. Their morphology, location, size and buildup mechanism are described. Additionally, it is also found that the enzymes adsorb onto the peptide self-assemblies leading to co-localization of peptide self-assembled microglobules and enzymes. Finally, we find that large microglobules grow at the expense of smaller ones present in their vicinity in a kind of Ostwald ripening process, illustrating the dynamic nature of the peptide self-assembly process within host hydrogels.
Collapse
|
38
|
Barpuzary D, Hurst PJ, Patterson JP, Guan Z. Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. J Am Chem Soc 2023; 145:3727-3735. [PMID: 36746118 DOI: 10.1021/jacs.2c13140] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The importance and prevalence of energy-fueled active materials in living systems have inspired the design of synthetic active materials using various fuels. However, several major limitations of current designs remain to be addressed, such as the accumulation of chemical wastes during the process, unsustainable active behavior, and the lack of precise spatiotemporal control. Here, we demonstrate a fully electrically fueled (e-fueled) active self-assembly material that can overcome the aforementioned limitations. Using an electrochemical setup with dual electrocatalysts, the anodic oxidation of one electrocatalyst (ferrocyanide, [Fe(CN)6]4-) creates a positive fuel to activate the self-assembly, while simultaneously, the cathodic reduction of the other electrocatalyst (methyl viologen, [MV]2+) generates a negative fuel triggering fiber disassembly. Due to the fully catalytic nature for the reaction networks, this fully e-fueled active material system does not generate any chemical waste, can sustain active behavior for an extended period when the electrical potential is maintained, and provides spatiotemporal control.
Collapse
Affiliation(s)
- Dipankar Barpuzary
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Paul J Hurst
- Department of Chemistry, University of California Irvine, Irvine, California92697, United States
| | - Joseph P Patterson
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States
| | - Zhibin Guan
- Center for Complex and Active Materials, University of California Irvine, Irvine, California92697, United States.,Department of Chemistry, University of California Irvine, Irvine, California92697, United States.,Department of Materials Science and Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California92697, United States.,Department of Biomedical Engineering, University of California Irvine, Irvine, California92697, United States
| |
Collapse
|
39
|
Hassan Z, Bräse S. Stacking Cyclophanes into Chiral Microvessels. Angew Chem Int Ed Engl 2023; 62:e202214996. [PMID: 36727268 DOI: 10.1002/anie.202214996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
Engineering novel micro-/nanoscale systems and devices based on supramolecular assembly has tremendous potential from diverse applications perspective. However, controlling the size, shape, spatial arrangements, and hierarchical transcription by a dimensional organizing principle (1D-3D arrangement) without the help of templates remains a challenging task. In this vein, a recent study by Oki and colleagues reporting the stacking of chiral cyclophanes via intermolecular non-covalent interactions for crafting synchronous microcrystalline 3D chiral vessels with controlled conformational arrangements represents a truly remarkable illustration of molecular engineering. The microvessels bear stereocontrolled skeletal morphology, recognize stereoisomers and serve as containers to accommodate microcrystals, polymer particles, and fluorescent dyes. The full application scope of this fascinating research is far beyond non-covalent interactions, supramolecular self-assembly, and crystal engineering.
Collapse
Affiliation(s)
- Zahid Hassan
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
40
|
Ragazzon G, Malferrari M, Arduini A, Secchi A, Rapino S, Silvi S, Credi A. Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy. Angew Chem Int Ed Engl 2023; 62:e202214265. [PMID: 36422473 PMCID: PMC10107654 DOI: 10.1002/anie.202214265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.
Collapse
Affiliation(s)
- Giulio Ragazzon
- Institut de Science et d'Ingégnierie Supramoléculaires (ISIS) UMR 7006, University of Strasbourg, CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Marco Malferrari
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
41
|
Cao Y, Gabrielli L, Frezzato D, Prins LJ. Persistent ATP-Concentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angew Chem Int Ed Engl 2023; 62:e202215421. [PMID: 36420591 DOI: 10.1002/anie.202215421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
We show the formation of macroscopic ATP-concentrations in an agarose gel and demonstrate that these gradients can be sustained in time at the expense of the consumption of a chemical fuel. The approach relies on the spatially controlled activation of ATP-producing and ATP-consuming reactions through the local injection of enzymes in the matrix. The reaction-diffusion system is maintained in a stationary non-equilibrium state as long as chemical fuel, phosphocreatine, is present. The reaction-diffusion system is coupled to a supramolecular system composed of monolayer protected gold nanoparticles and a fluorescent probe. As a result of this coupling, fluorescence signals emerge spontaneously in response to the ATP-concentration gradients. We show that the approach permits the rational formation of complex fluorescence patterns that change over time as a function of the evolution of the ATP-concentrations present in the system.
Collapse
Affiliation(s)
- Yingjuan Cao
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
42
|
Das K, Kar H, Chen R, Fortunati I, Ferrante C, Scrimin P, Gabrielli L, Prins LJ. Formation of Catalytic Hotspots in ATP-Templated Assemblies. J Am Chem Soc 2022; 145:898-904. [PMID: 36576874 PMCID: PMC9853849 DOI: 10.1021/jacs.2c09343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The self-assembly of surfactant-based structures that rely for their formation on the combination of a thermodynamically controlled and a dissipative pathway is described. Adenosine triphosphate (ATP) acts as a high-affinity template and triggers assembly formation at low surfactant concentrations. The presence of these assemblies creates the conditions for the activation of a dissipative self-assembly process by a weak-affinity substrate. The substrate-induced recruitment of additional surfactants leads to the spontaneous formation of catalytic hotspots in the ATP-stabilized assemblies that cleave the substrate. As a result of the two self-assembly processes, catalysis can be observed at a surfactant concentration at which low catalytic activity is observed in the absence of ATP.
Collapse
|
43
|
Zhang H, Zeng H, Eklund A, Guo H, Priimagi A, Ikkala O. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. NATURE NANOTECHNOLOGY 2022; 17:1303-1310. [PMID: 36443600 PMCID: PMC9747616 DOI: 10.1038/s41565-022-01241-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
Driving systems out of equilibrium under feedback control is characteristic for living systems, where homeostasis and dissipative signal transduction facilitate complex responses. This feature not only inspires dissipative dynamic functionalities in synthetic systems but also poses great challenges in designing novel pathways. Here we report feedback-controlled systems comprising two coupled hydrogels driven by constant light, where the system can be tuned to undergo stable homeostatic self-oscillations or damped steady states of temperature. We demonstrate that stable temperature oscillations can be utilized for dynamic colours and cargo transport, whereas damped steady states enable signal transduction pathways. Here mechanical triggers cause temperature changes that lead to responses such as bending motions inspired by the single-touch mechanoresponse in Mimosa pudica and the frequency-gated snapping motion inspired by the plant arithmetic in the Venus flytrap. The proposed concepts suggest generalizable feedback pathways for dissipative dynamic materials and interactive soft robotics.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Amanda Eklund
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, Finland.
| |
Collapse
|
44
|
Zhang S, Zhang Y, Wu H, Li Z, Shi P, Qu H, Sun Y, Wang X, Cao X, Yang L, Tian Z. Construction of transient supramolecular polymers controlled by mass transfer in biphasic systems. Chem Sci 2022; 13:13930-13937. [PMID: 36544718 PMCID: PMC9710222 DOI: 10.1039/d2sc04548f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
Inspired by life assembly systems, the construction of transient assembly systems with spatiotemporal control is crucial for developing intelligent materials. A widely adopted strategy is to couple the self-assembly with chemical reaction networks. However, orchestrating the kinetics of multiple reactions and assembly/disassembly processes without crosstalk in homogeneous solutions is not an easy task. To address this challenge, we propose a generic strategy by separating components into different phases, therefore, the evolution process of the system could be easily regulated by controlling the transport of components through different phases. Interference of multiple components that are troublesome in homogeneous systems could be diminished. Meanwhile, limited experimental parameters are involved in tuning the mass transfer instead of the complex kinetic matching and harsh reaction selectivity requirements. As a proof of concept, a transient metallo-supramolecular polymer (MSP) with dynamic luminescent color was constructed in an oil-water biphasic system by controlling the diffusion of the deactivator (water molecules) from the water phase into the oil phase. The lifetime of transient MSP could be precisely regulated not only by the content of chemical fuel, but also factors that affect the efficiency of mass transfer in between phases, such as the volume of the water phase, the stirring rate, and the temperature. We believe this strategy can be further extended to multi-compartment systems with passive diffusion or active transport of components, towards life-like complex assembly systems.
Collapse
Affiliation(s)
- Shilin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Yulian Zhang
- College of Materials, Xiamen UniversityXiamen 361005P. R. China
| | - Huiting Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Peichen Shi
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Yibin Sun
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen UniversityXiamen 361005P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen 361005P. R. China
| |
Collapse
|
45
|
Law J, Chen H, Wang Y, Yu J, Sun Y. Gravity-resisting colloidal collectives. SCIENCE ADVANCES 2022; 8:eade3161. [PMID: 36399567 PMCID: PMC9674281 DOI: 10.1126/sciadv.ade3161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 06/01/2023]
Abstract
Self-assembly of dynamic colloidal structures along the vertical direction has been challenging because of gravity and the complexity in controlling agent-agent interactions. Here, we present a strategy that enables the self-growing of gravity-resisting colloidal collectives. By designing a unique dual-axis oscillating magnetic field, time-varying interparticle interactions are induced to assemble magnetic particles against gravity into vertical collectives, with the structures continuing to grow until reaching dynamic equilibrium. The collectives have swarm behavior and are capable of height reconfiguration and adaptive locomotion, such as moving along a tilted substrate and under nonzero fluidic flow condition, gap and obstacle crossing, and stair climbing.
Collapse
Affiliation(s)
- Junhui Law
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Becchi M, Capelli R, Perego C, Pavan GM, Micheletti C. Density-tunable pathway complexity in a minimalistic self-assembly model. SOFT MATTER 2022; 18:8106-8116. [PMID: 36239129 DOI: 10.1039/d2sm00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An open challenge in self-assembly is learning how to design systems that can be conditionally guided towards different target structures depending on externally-controlled conditions. Using a theoretical and numerical approach, here we discuss a minimalistic self-assembly model that can be steered towards different types of ordered constructs at the equilibrium by solely tuning a facile selection parameter, namely the density of building blocks. Metadynamics and Langevin dynamics simulations allow us to explore the behavior of the system in and out of equilibrium conditions. We show that the density-driven tunability is encoded in the pathway complexity of the system, and specifically in the competition between two different main self-assembly routes. A comprehensive set of simulations provides insight into key factors allowing to make one self-assembling pathway prevailing on the other (or vice versa), determining the selection of the final self-assembled products. We formulate and validate a practical criterion for checking whether a specific molecular design is predisposed for such density-driven tunability of the products, thus offering a new, broader perspective to realize and harness this facile extrinsic control of conditional self-assembly.
Collapse
Affiliation(s)
- Matteo Becchi
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Biosciences, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati - SISSA, via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
47
|
Yang JF, Berrueta TA, Brooks AM, Liu AT, Zhang G, Gonzalez-Medrano D, Yang S, Koman VB, Chvykov P, LeMar LN, Miskin MZ, Murphey TD, Strano MS. Emergent microrobotic oscillators via asymmetry-induced order. Nat Commun 2022; 13:5734. [PMID: 36229440 PMCID: PMC9561614 DOI: 10.1038/s41467-022-33396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Spontaneous oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, converting static energy inputs into slowly oscillating power is key to the autonomy of organisms across scales. However, the fabrication of slow micrometre-scale oscillators remains a major roadblock towards fully-autonomous microrobots. Here, we study a low-frequency oscillator that emerges from a collective of active microparticles at the air-liquid interface of a hydrogen peroxide drop. Their interactions transduce ambient chemical energy into periodic mechanical motion and on-board electrical currents. Surprisingly, these oscillations persist at larger ensemble sizes only when a particle with modified reactivity is added to intentionally break permutation symmetry. We explain such emergent order through the discovery of a thermodynamic mechanism for asymmetry-induced order. The on-board power harvested from the stabilised oscillations enables the use of electronic components, which we demonstrate by cyclically and synchronously driving a microrobotic arm. This work highlights a new strategy for achieving low-frequency oscillations at the microscale, paving the way for future microrobotic autonomy.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas A Berrueta
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL, USA
| | - Allan M Brooks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Gonzalez-Medrano
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pavel Chvykov
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lexy N LeMar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc Z Miskin
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd D Murphey
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
48
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
50
|
Life brought to artificial cells. Nature 2022; 609:900-901. [DOI: 10.1038/d41586-022-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|