1
|
Sun X, Zhang X, Cao T, Huang S, Dai Y, Xia F. Outer-surface covering of nanochannels with hydrogel for anti-protein-interference on the ion current. Talanta 2024; 285:127367. [PMID: 39673985 DOI: 10.1016/j.talanta.2024.127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Nanopore/nanochannel sensing is a promising analytical method in the fields of chemistry and biology. However, due to the interference of non-analytes in complex samples, directly analyzing un-pretreated samples through nanopores/nanochannels remains a great challenge. Here, we report a type of heterogeneous membrane by covering anodic aluminum oxide (AAO) cylindrical nanochannel porous membrane with graphene oxide/calcium alginate (GCA) hybrid hydrogel to reduce the interference of protein on the current detection signal. The hydrogel layer blocks the protein through steric hindrance, so that it will not block and affect the channel. The results show that when the GCA hydrogel is covered on the outer surface of AAO membrane, the interference of protein on the ion current decreases from 52 % to 5 %. Our work provides a strategy for reducing the interference of non-analytes in complex samples, and demonstrates the anti-interference function of hydrogels on nanopore/nanochannel sensing.
Collapse
Affiliation(s)
- Xueting Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Suqing Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Song X, Man J, Zhang X, Wang J, Zhang Y, Li J, Du J, Chen Y, Li J, Chen Y. Atomistic Insights into the Ionic Response and Mechanism of Antifouling Zwitterionic Polymer Brushes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406233. [PMID: 39520344 DOI: 10.1002/smll.202406233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Zwitterionic polymer brushes are not a practical choice since their ionic response mechanisms are unclear, despite their great potential for surface antifouling modification. Therefore, atomic force microscopy and molecular dynamics simulations investigated the ionic response of the surface electrical properties, hydration properties, and protein adhesion of three types of zwitterionic brushes. The surface of PMPC (poly(2-methacryloyloxyethyl phosphorylcholine)) and PSBMA (poly(sulfobetaine methacrylate)) zwitterionic polymer brushes in salt solution exhibits a significant accumulation of cations, which results in a positive shift in the surface potential. In contrast, the surface of PSBMA polymer brushes demonstrates no notable change in potential. Furthermore, divalent Ca2+ enhances protein adhesion to polymer brushes by Ca2+ bridges. Conversely, monovalent Na+ diminishes the number of salt bridges between PSBMA and PCBMA (poly(carboxybetaine methacrylate)) zwitterionic polymer brushes and proteins via a competitive adsorption mechanism, thereby reducing protein adhesion. A summary of polymer brush material selection and design concepts in a salt solution environment is provided based on the salt response law of protein adhesion resistance of various zwitterionic materials. This work closes a research gap on the response mechanism of zwitterionic polymer brushes' antifouling performance in a salt solution environment, significantly advancing the practical use of these brushes.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Xiangkuan Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Jun Du
- Beijing Tsingke Biotech Co. Ltd, Building 3, Unit W, No. 105 Jinghai 3rd Road, Beijing, 100176, China
| | - Yuanyuan Chen
- Beijing Tsingke Biotech Co. Ltd, Building 3, Unit W, No. 105 Jinghai 3rd Road, Beijing, 100176, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, P. R. China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| |
Collapse
|
3
|
Li Z, Qin B, Liu H, Du S, Liu Y, He L, Xu B, Du L. Mesoporous silica thin film as effective coating for enhancing osteogenesis through selective protein adsorption and blood clotting. Biomed Mater 2024; 19:055040. [PMID: 39094621 DOI: 10.1088/1748-605x/ad6ac2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The role of blood clots in tissue repair has been identified for a long time; however, its participation in the integration between implants and host tissues has attracted attention only in recent years. In this work, a mesoporous silica thin film (MSTF) with either vertical or parallel orientation was deposited on titania nanotubes surface, resulting in superhydrophilic nanoporous surfaces. A proteomic analysis of blood plasma adsorption revealed that the MSTF coating could significantly increase the abundance of acidic proteins and the adsorption of coagulation factors (XII and XI), with the help of cations (Na+, Ca2+) binding. As a result, both the activation of platelets and the formation of blood clots were significantly enhanced on the MSTF surface with more condensed fibrin networks. The two classical growth factors of platelets-derived growth factors-AB and transformed growth factors-βwere enriched in blood clots from the MSTF surface, which accounted for robust osteogenesis bothin vitroandin vivo. This study demonstrates that MSTF may be a promising coating to enhance osteogenesis by modulating blood clot formation.
Collapse
Affiliation(s)
- Zhe Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Bowen Qin
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huan Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Shimin Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yunxian Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Lixing He
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Boya Xu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Liangzhi Du
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- Department of Digital Oral Implantology and Prothodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
4
|
Khalili H, Monti S, Pesquet E, Jaworski A, Lombardo S, Mathew AP. Nanocellulose-Bovine Serum Albumin Interactions in an Aqueous Medium: Investigations Using In Situ Nanocolloidal Probe Microscopy and Reactive Molecular Dynamics Simulations. Biomacromolecules 2024; 25:3703-3714. [PMID: 38806282 PMCID: PMC11170956 DOI: 10.1021/acs.biomac.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
As a versatile nanomaterial derived from renewable sources, nanocellulose has attracted considerable attention for its potential applications in various sectors, especially those focused on water treatment and remediation. Here, we have combined atomic force microscopy (AFM) and reactive molecular dynamics (RMD) simulations to characterize the interactions between cellulose nanofibers modified with carboxylate or phosphate groups and the protein foulant model bovine serum albumin (BSA) at pH 3.92, which is close to the isoelectric point of BSA. Colloidal probes were prepared by modification of the AFM probes with the nanofibers, and the nanofiber coating on the AFM tip was for the first time confirmed through fluorescence labeling and confocal optical sectioning. We have found that the wet-state normalized adhesion force is approximately 17.87 ± 8.58 pN/nm for the carboxylated cellulose nanofibers (TOCNF) and about 11.70 ± 2.97 pN/nm for the phosphorylated ones (PCNF) at the studied pH. Moreover, the adsorbed protein partially unfolded at the cellulose interface due to the secondary structure's loss of intramolecular hydrogen bonds. We demonstrate that nanocellulose colloidal probes can be used as a sensitive tool to reveal interactions with BSA at nano and molecular scales and under in situ conditions. RMD simulations helped to gain a molecular- and atomistic-level understanding of the differences between these findings. In the case of PCNF, partially solvated metal ions, preferentially bound to the phosphates, reduced the direct protein-cellulose connections. This understanding can lead to significant advancements in the development of cellulose-based antifouling surfaces and provide crucial insights for expanding the pH range of use and suggesting appropriate recalibrations.
Collapse
Affiliation(s)
- Houssine Khalili
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic
Compounds, via Moruzzi
1, Pisa 56124, Italy
| | - Edouard Pesquet
- Department
of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| | - Aleksander Jaworski
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Salvatore Lombardo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Aji P Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
5
|
Song X, Man J, Qiu Y, Wang J, Li R, Zhang Y, Cui G, Li J, Li J, Chen Y. Study of Hydration Repulsion of Zwitterionic Polymer Brushes Resistant to Protein Adhesion through Molecular Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17145-17162. [PMID: 38534071 DOI: 10.1021/acsami.3c18546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC). The simulations revealed that elevating the grafting density enhances the structural stability, hydration strength, and resistance to protein adhesion exhibited by the polymer brushes. PCBMA manifests a more robust hydration layer, while PMPC demonstrates the slightest interaction with proteins. In a comprehensive evaluation, PSBMA polymer brushes emerged as the best choice with superior stability, enhanced protein repulsion, and minimally induced protein deformation, resulting in effective resistance to nonspecific adhesion. The high-density SBMA polymer brushes significantly reduce the level of protein adhesion in AFM testing. In addition, we have pioneered the quantitative characterization of hydration repulsion in polymer brushes by analyzing the hydration repulsion characteristics at different materials and graft densities. In summary, our study provides a nuanced understanding of the material and structural determinants influencing the capacity of zwitterionic polymer brushes to thwart protein adhesion. Additionally, it presents a quantitative elucidation of hydration repulsion, contributing to the advancement and application of antifouling polymer brushes.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Guanghui Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P. R. China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
6
|
Ghosal M, Rakshit T, Bhattacharya S, Bhattacharyya S, Satpati P, Senapati D. E-Protein Protonation Titration-Induced Single-Particle Chemical Force Spectroscopy for Microscopic Understanding and pI Estimation of Infectious DENV. J Phys Chem B 2024; 128:3133-3144. [PMID: 38512319 DOI: 10.1021/acs.jpcb.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The ionization state of amino acids on the outer surface of a virus regulates its physicochemical properties toward the sorbent surface. Serologically different strains of the dengue virus (DENV) show different extents of infectivity depending upon their interactions with a receptor on the host cell. To understand the structural dependence of E-protein protonation over its sequence dependence, we have followed E-protein titration kinetics both experimentally and theoretically for two differentially infected dengue serotypes, namely, DENV-2 and DENV-4. We have performed E-protein protonation titration-induced single-particle chemical force spectroscopy using an atomic force microscope (AFM) to measure the surface chemistry of DENV in physiological aqueous solutions not only to understand the charge distribution dynamics on the virus surface but also to estimate the isoelectric point (pI) accurately for infectious dengue viruses. Cryo-EM structure-based theoretical pI calculations of the DENV-2 surface protein were shown to be consistent with the evaluated pI value from force spectroscopy measurements. We also highlighted here the role of the microenvironment around the titrable residues (in the 3D-folded structure of the protein) in altering the pKa. This is a comprehensive study to understand how the cumulative charge distribution on the outer surface of a specific serotype of DENV regulates a prominent role of infectivity over minute changes at the genetic level.
Collapse
Affiliation(s)
- Manorama Ghosal
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| | - Tatini Rakshit
- Department of Chemistry, School of Natural Sciences (SNS), Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP 201314, India
| | - Shreya Bhattacharya
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sankar Bhattacharyya
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), Faridabad-Gurugram Expressway, PO Box 4, Faridabad-Gurugram HR-121001, India
| | - Priyadarshi Satpati
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| |
Collapse
|
7
|
Park R, Jeon S, Lee JW, Jeong J, Kwon YW, Kim SH, Jang J, Han DW, Hong SW. Mobile Point-of-Care Device Using Molecularly Imprinted Polymer-Based Chemosensors Targeting Interleukin-1β Biomarker. BIOSENSORS 2023; 13:1013. [PMID: 38131773 PMCID: PMC10741793 DOI: 10.3390/bios13121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Molecularly imprinted polymers (MIPs) have garnered significant attention as a promising material for engineering specific biological receptors with superior chemical complementarity to target molecules. In this study, we present an electrochemical biosensing platform incorporating MIP films for the selective detection of the interleukin-1β (IL-1β) biomarker, particularly suitable for mobile point-of-care testing (POCT) applications. The IL-1β-imprinted biosensors were composed of poly(eriochrome black T (EBT)), including an interlayer of poly(3,4-ethylene dioxythiophene) and a 4-aminothiophenol monolayer, which were electrochemically polymerized simultaneously with template proteins (i.e., IL-1β) on custom flexible screen-printed carbon electrodes (SPCEs). The architecture of the MIP films was designed to enhance the sensor sensitivity and signal stability. This approach involved a straightforward sequential-electropolymerization process and extraction for leaving behind cavities (i.e., rebinding sites), resulting in the efficient production of MIP-based biosensors capable of molecular recognition for selective IL-1β detection. The electrochemical behaviors were comprehensively investigated using cyclic voltammograms and electrochemical impedance spectroscopy responses to assess the imprinting effect on the MIP films formed on the SPCEs. In line with the current trend in in vitro diagnostic medical devices, our simple and effective MIP-based analytical system integrated with mobile POCT devices offers a promising route to the rapid detection of biomarkers, with particular potential for periodontitis screening.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Won Lee
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Young Woo Kwon
- Engineering Research Center for Color Modulation Extrasensory Cognitive Technology, Pusan National University, Busan 46241, Republic of Korea; (Y.W.K.); (S.H.K.)
| | - Sung Hyun Kim
- Engineering Research Center for Color Modulation Extrasensory Cognitive Technology, Pusan National University, Busan 46241, Republic of Korea; (Y.W.K.); (S.H.K.)
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (R.P.); (S.J.); (J.W.L.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
- Engineering Research Center for Color Modulation Extrasensory Cognitive Technology, Pusan National University, Busan 46241, Republic of Korea; (Y.W.K.); (S.H.K.)
| |
Collapse
|
8
|
Wu J, Lu L, Wang R, Pan L, Chen B, Zhu X. Influence of microplastics on the transport of antibiotics in sand filtration investigated by AFM force spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162344. [PMID: 36813196 DOI: 10.1016/j.scitotenv.2023.162344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lun Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Liuyi Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
9
|
Adam G, Ulliac G, Clevy C, Cappelleri DJ. 3D printed vision-based micro-force sensors for microrobotic applications. JOURNAL OF MICRO-BIO ROBOTICS 2023. [DOI: 10.1007/s12213-023-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Mi X, Wang SC, Winters MA, Carta G. Protein adsorption on core-shell resins for flow-through purifications: Effect of protein molecular size, shape, and salt concentration. Biotechnol Prog 2023; 39:e3300. [PMID: 36101005 DOI: 10.1002/btpr.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022]
Abstract
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Sheng-Ching Wang
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Michael A Winters
- Vaccine Process Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
12
|
Atomic force and infrared spectroscopic studies on the role of surface charge for the anti-biofouling properties of polydopamine films. Anal Bioanal Chem 2022; 415:2059-2070. [PMID: 36434170 PMCID: PMC10079710 DOI: 10.1007/s00216-022-04431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
Antibacterial polymer materials have gained interest due to their capability to inhibit or eradicate biofilms with greater efficiency in comparison with their monomeric counterparts. Among the antimicrobial and anti-biofouling polymers, catecholamine-based polymers - and in particular polydopamine - have been studied due to their favorable adhesion properties, which can be tuned by controlling the pH value. In this study, we used atomic force microscopy (AFM)-based spectroscopy to investigate the relation between the adhesion properties and surface charge density and the pH of electrochemically deposited polydopamine films presenting a dissociation constant of polydopamine of 6.3 ± 0.2 and a point of zero charge of 5.37 ± 0.06. Furthermore, using AFM and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), the influence of the surface charge density of polydopamine on bacterial adhesion and biofilm formation was investigated. It was shown that the adhesion of Escherichia coli at positively charged polydopamine is three times higher compared to a negatively charged polymer, and that the formation of biofilms is favored at positively charged polymers.
Collapse
|
13
|
Wu J, Wang R, Zhang Y, Chen B, Zhu X. In situ scrutinize the adsorption of sulfamethoxazole in water using AFM force spectroscopy: Molecular adhesion force determination and fractionation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128128. [PMID: 34968847 DOI: 10.1016/j.jhazmat.2021.128128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The interaction force of a typical antibiotic molecule during adsorption has never been experimentally determined and fractionated, which hindered the evolution of removal strategies. In this study, sulfamethoxazole (SMX) as a typical antibiotic was stably immobilized onto an atomic force microscopy (AFM) tip without affecting original properties. The SMX modified AFM tip visualized the potential adsorption sites on a graphene oxide (GO) nanosheet for the first time by mapping the SMX adhesion force distribution. Moreover, the interaction force of a single SMX molecule to GO was determined at 38.6 pN which was subsequently fractionated into the hydrophobic (17.9 pN) and π-π (160.0 pN) attractions as well as the electrostatic repulsion (- 139.3 pN) at pH: 5.7. As compared with highly-ordered pyrolytic graphite (HOPG), the introduced oxygen containing groups on GO not only reduced the hydrophobic interaction but also generated an opposite electrostatic repulsion force to SMX. This study experimentally and theoretically revealed the adhesion mechanisms of SMX and potentially other sulfonamide antibiotics in molecular level, which may contribute to the study of antibiotic environmental transportation and the development of next-generation antibiotic remediation protocols.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
14
|
Zhang Y, Zhu X, Chen B. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy. J Colloid Interface Sci 2022; 608:255-264. [PMID: 34626972 DOI: 10.1016/j.jcis.2021.09.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
The adhesion force evolution of protein on surfaces with continuously varied hydrophobicity/hydration layer has not been completely clarified yet, limiting the further development of environmental applications such as membrane anti-biofouling and selective adsorption of the functional surfaces. Herein, chemical force spectroscopy using atomic force microscopy (AFM) was utilized to quantify the evolution of the adhesion forces of protein on hydration surfaces in water, where bovine serum albumin (BSA) was immobilized on an AFM tip as the representative protein. The stiffness, roughness and charge properties of the substrate surfaces were kept constant and the hydrophobicity was the only variant to monitor the role of hydrated water layers in protein adhesion. The adhesion force increased non-monotonically as a function of hydrophobicity of substrate surfaces, which was related to the concentration of humic acid, and independent of pH values and ionic strength. The non-monotonic variation occurred in the range of contact angle at 60-80° due to the mutual restriction between solid-liquid interface energy and solid-solid interface energy. Hydrophobic attraction was the dominant force that drove adhesion of BSA to these model substrate surfaces, but the passivation of hydration layers at the interface could weaken the hydrophobic attraction. In contrast to the measurements in water, the adhesion forces decreased as a function of surface hydrophobicity when measured in air, because capillary forces from condensation water dominated adhesion forces. The passivation of hydration layers of protein was revealed by quantitatively determining the evolution of adhesion forces on the hydration surfaces of varying hydrophobicity, which was ignored by traditional adhesion theory.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Ho MH, Huang KY, Tu CC, Tai WC, Chang CH, Chang YC, Chang PC. Functionally graded membrane deposited with PDLLA nanofibers encapsulating doxycycline and enamel matrix derivatives-loaded chitosan nanospheres for alveolar ridge regeneration. Int J Biol Macromol 2022; 203:333-341. [PMID: 35093432 DOI: 10.1016/j.ijbiomac.2022.01.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 11/15/2022]
Abstract
Functionally graded membranes (FGM) with regenerative signals and nanofibrous topography mimicking the native extracellular matrix have been shown to improve the outcome of alveolar ridge regeneration (ARR). This study developed a novel FGM with doxycycline-enamel matrix derivative (EMD) nanofibrous composites deposition to coordinate anti-inflammation and differentiation signals, thus facilitating ARR. Doxycycline-loaded PDLLA nanofibers (PD), EMD-loaded chitosan nanospheres (CE), and CE-embedded PD (CE-PD) were fabricated by electrospinning, deposited on the surfaces of barrier membrane to develop a FGM, and the efficacy was validated by delivering the FGM to regenerate experimental alveolar ridge defects in rats. Results revealed that PD had potent antibacterial capability, and CE-PD allowed sustained release of EMD to promote osteogenesis in vitro. In the alveolar ridge defects, FGM with PD on the outer surface downregulated MMP-8, and wound dehiscence was further reduced with Cbfa1 upregulation in those treated by FGM with CE-PD on the inner surface at 1 week. FGM with CE-PD revealed significantly greater new bone formation and defect fill at 4 weeks. In conclusion, FGM with PD reduced early tissue breakdown and with CE-PD nanofibrous composites accelerated wound healing and facilitated osteogenesis, and thus could be an advantageous strategy for ARR.
Collapse
Affiliation(s)
- Ming-Hua Ho
- Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Yu Huang
- Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Che-Chang Tu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ching-He Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ying-Chieh Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
17
|
Single-Particle Characterization of SARS-CoV-2 Isoelectric Point and Comparison to Variants of Interest. Microorganisms 2021; 9:microorganisms9081606. [PMID: 34442686 PMCID: PMC8401476 DOI: 10.3390/microorganisms9081606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2, the cause of COVID-19, is a new, highly pathogenic coronavirus, which is the third coronavirus to emerge in the past 2 decades and the first to become a global pandemic. The virus has demonstrated itself to be extremely transmissible and deadly. Recent data suggest that a targeted approach is key to mitigating infectivity. Due to the proliferation of cataloged protein and nucleic acid sequences in databases, the function of the nucleic acid, and genetic encoded proteins, we make predictions by simply aligning sequences and exploring their homology. Thus, similar amino acid sequences in a protein usually confer similar biochemical function, even from distal or unrelated organisms. To understand viral transmission and adhesion, it is key to elucidate the structural, surface, and functional properties of each viral protein. This is typically first modeled in highly pathogenic species by exploring folding, hydrophobicity, and isoelectric point (IEP). Recent evidence from viral RNA sequence modeling and protein crystals have been inadequate, which prevent full understanding of the IEP and other viral properties of SARS-CoV-2. We have thus experimentally determined the IEP of SARS-CoV-2. Our findings suggest that for enveloped viruses, such as SARS-CoV-2, estimates of IEP by the amino acid sequence alone may be unreliable. We compared the experimental IEP of SARS-CoV-2 to variants of interest (VOIs) using their amino acid sequence, thus providing a qualitative comparison of the IEP of VOIs.
Collapse
|
18
|
Liu Z, Zhu Q, Song E, Song Y. Characterization of blood protein adsorption on PM 2.5 and its implications on cellular uptake and cytotoxicity of PM 2.5. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125499. [PMID: 33662789 DOI: 10.1016/j.jhazmat.2021.125499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
In biological fluids, micro- or nano-size particles are prone to adsorb proteins and form a layer. The ambient air fine particulate matter (PM2.5) is inhaled via the lung, penetrates biological barriers and eventually reaches systemic blood circulation. However, there are very few data available regarding the adsorption of proteins on PM2.5. Here, we compared protein corona formed in plasma after bronchoalveolar lavage fluid (BALF) exposure with those formed in plasma alone. Using purified coronal proteins, we explored their adsorption behaviors on PM2.5 and their influence on biological reactivity of PM2.5. Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis revealed that exposure to BALF significantly changed the blood protein profile on PM2.5. Regardless of the presence of BALF, the protein corona on PM2.5 contained an abundance of serum albumin, hemoglobin (Hb) and fibrinogen (Fg) proteins. Using Fg as a corona surrogate, we found that van der Waals interactions, hydrophobic interactions, π-π stacking and electrostatic attractions contributed to the Fg adsorption and led to the conformational changes of Fg. In addition, Fg decoration decreased cellular internalization of PM2.5 and corresponding subsequent oxidative stress responses in a murine RAW264.7 macrophage. These results support the view that the formation of PM2.5 corona should be considered for toxicity assessment of PM2.5.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiushuang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
19
|
Towards a Comprehensive and Robust Micromanipulation System with Force-Sensing and VR Capabilities. MICROMACHINES 2021; 12:mi12070784. [PMID: 34209417 PMCID: PMC8307479 DOI: 10.3390/mi12070784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022]
Abstract
In this modern world, with the increase of complexity of many technologies, especially in the micro and nanoscale, the field of robotic manipulation has tremendously grown. Microrobots and other complex microscale systems are often to laborious to fabricate using standard microfabrication techniques, therefore there is a trend towards fabricating them in parts then assembling them together, mainly using micromanipulation tools. Here, a comprehensive and robust micromanipulation platform is presented, in which four micromanipulators can be used simultaneously to perform complex tasks, providing the user with an intuitive environment. The system utilizes a vision-based force sensor to aid with manipulation tasks and it provides a safe environment for biomanipulation. Lastly, virtual reality (VR) was incorporated into the system, allowing the user to control the probes from a more intuitive standpoint and providing an immersive platform for the future of micromanipulation.
Collapse
|
20
|
Cho DH, Hahm JI. Protein-Polymer Interaction Characteristics Unique to Nanoscale Interfaces: A Perspective on Recent Insights. J Phys Chem B 2021; 125:6040-6057. [PMID: 34101462 DOI: 10.1021/acs.jpcb.1c00684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein interactions at polymer interfaces represent a complex but ubiquitous phenomenon that demands an entirely different focus of investigation than what has been attempted before. With the advancement of nanoscience and nanotechnology, the nature of polymer materials interfacing proteins has evolved to exhibit greater chemical intricacy and smaller physical dimensions. Existing knowledge built from studying the interaction of macroscopic, chemically alike surfaces with an ensemble of protein molecules cannot be simply carried over to nanoscale protein-polymer interactions. In this Perspective, novel protein interaction phenomena driven by the presence of nanoscale polymer interfaces are discussed. Being able to discern discrete protein interaction events via simple visualization was crucial to attaining the much needed, direct experimental evidence of protein-polymer interactions at the single biomolecule level. Spatial and temporal tracking of particular proteins at specific polymer interfaces was made possible by resolving individual proteins simultaneously with those polymer nanodomains responsible for the protein interactions. Therefore, such single biomolecule level approaches taken to examine protein-polymer interaction mark a big departure from the mainstream approaches of collecting indirectly observed, ensemble-averaged protein signals on chemically simple substrates. Spearheading research efforts so far has led to inspiring initial discoveries of protein interaction mechanisms and kinetics that are entirely unique to nanoscale polymer systems. They include protein self-assembly/packing characteristics, protein-polymer interaction mechanisms/kinetics, and various protein functionalities on polymer nanoconstructs. The promising beginning and future of nanoscale protein-polymer research endeavors are presented in this article.
Collapse
Affiliation(s)
- David H Cho
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| | - Jong-In Hahm
- Department of Chemistry, Georgetown University, 37th & O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
21
|
Smith AM, Huynh P, Griffin S, Baughn M, Monka P. Strong, non-specific adhesion using C-lectin heterotrimers in a molluscan defensive secretion. Integr Comp Biol 2021; 61:1440-1449. [PMID: 34048555 DOI: 10.1093/icb/icab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The defensive mucus produced by the slug Arion subfuscus is tough and remarkably sticky. It spreads rapidly and adheres strongly to a wide range of surfaces. The adhesion is equally strong on wettable (glass) and non-wettable (plastic) surfaces. The adhesion appears to depend on a group of proteins that adsorb equally well to a wide range of different natural and artificial surfaces. Prominent among these proteins were those that distinguish the adhesive secretion from the non-adhesive mucus. The adhesive proteins were not washed off by non-ionic detergent, nor was the adhesion of the glue as a whole affected by this treatment. In contrast, high salt concentrations washed the most abundant adhesive proteins off the surfaces, and correspondingly weakened the glue's attachment. The most abundant of the adhesive proteins were C-lectins, which appear to form heterotrimers. These and other lectin-like proteins in slug glue have a high proportion of aromatic amino acids at conserved locations, and are relatively small and often basic. The aromatic and cationic side chains may provide a powerful combination promoting and maintaining surface adhesion.
Collapse
Affiliation(s)
- A M Smith
- Ithaca College, Department of Biology, Ithaca, NY
| | - P Huynh
- Ithaca College, Department of Biology, Ithaca, NY
| | - S Griffin
- Ithaca College, Department of Biology, Ithaca, NY
| | - M Baughn
- Ithaca College, Department of Biology, Ithaca, NY
| | - P Monka
- Ithaca College, Department of Biology, Ithaca, NY
| |
Collapse
|
22
|
Ghartey-Kwansah G, Yin Q, Li Z, Gumpper K, Sun Y, Yang R, Wang D, Jones O, Zhou X, Wang L, Bryant J, Ma J, Boampong JN, Xu X. Calcium-dependent Protein Kinases in Malaria Parasite Development and Infection. Cell Transplant 2021; 29:963689719884888. [PMID: 32180432 PMCID: PMC7444236 DOI: 10.1177/0963689719884888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite's ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite's life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Authors contributed equally to this article
| | - Qinan Yin
- Clinical Center of National Institutes of Health, Bethesda, MD, USA.,Authors contributed equally to this article
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Kristyn Gumpper
- Ohio State University School of Medicine, Columbus, OH, USA.,Authors contributed equally to this article
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Dan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| | - Odell Jones
- University of Pennsylvania School of Medicine, Animal Center, Philadelphia, PA, USA
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Ohio State University School of Medicine, Columbus, OH, USA
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH, USA
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University College of Life Sciences, Xi'an, China
| |
Collapse
|
23
|
Zhong Q, Richardson JJ, He A, Zheng T, Lafleur RPM, Li J, Qiu W, Furtado D, Pan S, Xu Z, Wan L, Caruso F. Engineered Coatings via the Assembly of Amino‐Quinone Networks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi‐Zhi Zhong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ai He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Tian Zheng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - René P. M. Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jianhua Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Wen‐Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ling‐Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
24
|
Zhang Y, Zhu X, Li X, Chen B. In situ quantitative determination of the intermolecular attraction between amines and a graphene surface using atomic force microscopy. J Colloid Interface Sci 2021; 581:385-395. [PMID: 32771747 DOI: 10.1016/j.jcis.2020.07.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/13/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The adsorption of pollutants on carbonaceous environmental media has been widely studied via batch sorption experiments and spectroscopic characterization. However, the molecular interactions between pollutants and interfacial sites on carbonaceous materials have only been indirectly investigated. To comprehend the adsorption mechanisms in situ, we applied atomic force microscopy force spectroscopy (AFM-FS) to quantitatively determine the molecular interactions between typical amines (methylamines and N-methylaniline) and the surface of highly oriented pyrolytic graphite (HOPG), which was supported by the single molecule interaction derived from density functional theory and batch adsorption experiments. This method achieved direct and in situ characterization of the molecular interactions in the adsorption process. The molecular interactions between the amines and the adsorption sites on the graphite surface were affected by pH and peaked at pH 7 due to strong cation-π interactions. When the pH was 11, the attractions were weak due to a lack of cation-π interaction, whereas, when the pH was 3, the competitive occupation of hydronium ions on the surface reduced the attraction between the amines and HOPG. Based on AFM-FS, the single molecule force of methylamine and N-methylaniline on the graphite surface was estimated to be 0.224 nN and 0.153 nN, respectively, which was consistent with density functional theory (DFT) calculations. This study broadens our comprehension of cation-π interactions between amines and electron-rich aromatic compounds at the micro/nanoscale.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Xin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
25
|
Effects of in vitro oxidation on myofibrillar protein charge, aggregation, and structural characteristics. Food Chem 2020; 332:127396. [DOI: 10.1016/j.foodchem.2020.127396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
|
26
|
Zhong Q, Richardson JJ, He A, Zheng T, Lafleur RPM, Li J, Qiu W, Furtado D, Pan S, Xu Z, Wan L, Caruso F. Engineered Coatings via the Assembly of Amino‐Quinone Networks. Angew Chem Int Ed Engl 2020; 60:2346-2354. [DOI: 10.1002/anie.202010931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Qi‐Zhi Zhong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ai He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Tian Zheng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - René P. M. Lafleur
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Jianhua Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Wen‐Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ling‐Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
27
|
Jiang K, Wang L, Zhang X, Ma Z, Song Y, Zhang W. Side-Chain Length Dependence of Young’s Modulus and Strength in Crystalline Poly(3-alkylthiophene) Nanofibers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
28
|
Single-particle chemical force microscopy to characterize virus surface chemistry. Biotechniques 2020; 69:363-370. [DOI: 10.2144/btn-2020-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two important viral surface characteristics are the hydrophobicity and surface charge, which determine the viral colloidal behavior and mobility. Chemical force microscopy allows the detection of viral surface chemistry in liquid samples with small amounts of virus sample. This single-particle method requires the functionalization of an atomic force microscope (AFM) probe and covalent bonding of viruses to a surface. A hydrophobic methyl-modified AFM probe was used to study the viral surface hydrophobicity, and an AFM probe terminated with either negatively charged carboxyl acid or positively charged quaternary amine was used to study the viral surface charge. With an understanding of viral surface properties, the way in which viruses interact with the environment can be better predicted.
Collapse
|
29
|
Nattich-Rak M, Pomorska A, Batys P, Adamczyk Z. Adsorption kinetic of myoglobin on mica and silica - Role of electrostatic interactions. Colloids Surf B Biointerfaces 2020; 198:111436. [PMID: 33234411 DOI: 10.1016/j.colsurfb.2020.111436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023]
Abstract
Adsorption kinetics of myoglobin molecules on mica and silica was studied using the atomic force microscopy (AFM), the colloid enhancement and the quartz microbalance (QCM) methods. Measurements were carried out for the NaCl concentration of 0.01 and 0.15 M as a function of pH comprising pH 7.4 stabilized by the PBS buffer. The electrophoretic mobility measurements enabled to derive the molecules zeta potential as a function of pH. The isoelectric point appearing at pH 5, is lower than that predicted from the theoretical calculations of the nominal dissociation charge. The AFM investigations confirmed that myoglobin molecules irreversibly adsorb at pH 3.5 yielding well-defined layers of single molecules. These layers were characterized using the colloid enhancement method involving polymer microparticles for pH range 3-9. The microparticle deposition kinetics was adequately interpreted in terms of a hybrid random sequential adsorption model. It is confirmed that the myoglobin layers exhibit a negligible zeta potential at pH equal to 5 in accordance with the electrophoretic mobility measurements. Analogous adsorption kinetic measurements were performed for the silica substrate using QCM and AFM. It is observed that myoglobin molecules irreversibly adsorb at pH 3.5 forming stable layers of single molecules. On the other hand, its adsorption kinetics at larger pHs was much slower exhibiting a poorly defined maximum coverage. This was attributed to aggregation of the myoglobin solutions due to their vanishing charge. The kinetic QCM runs were adequately interpreted in terms of a theoretical model combining the Smoluchowski aggregation theory with the convective diffusion mass transfer theory.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239, Cracow, Poland.
| | - Agata Pomorska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239, Cracow, Poland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239, Cracow, Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239, Cracow, Poland.
| |
Collapse
|
30
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
31
|
Guo Y, Jia HR, Zhang X, Zhang X, Sun Q, Wang SZ, Zhao J, Wu FG. A Glucose/Oxygen-Exhausting Nanoreactor for Starvation- and Hypoxia-Activated Sustainable and Cascade Chemo-Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000897. [PMID: 32537936 DOI: 10.1002/smll.202000897] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Fenton reaction-mediated chemodynamic therapy (CDT) can kill cancer cells via the conversion of H2 O2 to highly toxic HO•. However, problems such as insufficient H2 O2 levels in the tumor tissue and low Fenton reaction efficiency severely limit the performance of CDT. Here, the prodrug tirapazamine (TPZ)-loaded human serum albumin (HSA)-glucose oxidase (GOx) mixture is prepared and modified with a metal-polyphenol network composed of ferric ions (Fe3+ ) and tannic acid (TA), to obtain a self-amplified nanoreactor termed HSA-GOx-TPZ-Fe3+ -TA (HGTFT) for sustainable and cascade cancer therapy with exogenous H2 O2 production and TA-accelerated Fe3+ /Fe2+ conversion. The HGTFT nanoreactor can efficiently convert oxygen into HO• for CDT, consume glucose for starvation therapy, and provide a hypoxic environment for TPZ radical-mediated chemotherapy. Besides, it is revealed that the nanoreactor can significantly elevate the intracellular reactive oxygen species content and hypoxia level, decrease the intracellular glutathione content, and release metal ions in the tumors for metal ion interference therapy (also termed "ion-interference therapy" or "metal ion therapy"). Further, the nanoreactor can also increase the tumor's hypoxia level and efficiently inhibit tumor growth. It is believed that this tumor microenvironment-regulable nanoreactor with sustainable and cascade anticancer performance and excellent biosafety represents an advance in nanomedicine.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Shao-Zhe Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Jing Zhao
- Institute of Neurobiology, School of Medicine, Southeast University, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
32
|
Hu H, Shi B, Breslin CM, Gignac L, Peng Y. A Sub-Micron Spherical Atomic Force Microscopic Tip for Surface Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7861-7867. [PMID: 32513005 DOI: 10.1021/acs.langmuir.0c00923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a novel methodology for fabricating a sub-micron spherical atomic force microscope (AFM) tip controllably-a silicon sub-micron sphere atop microcantilevers, which is desired for precise nanoscale tribology measurements, biological studies, and colloid science. Silicon sub-micron spheres are fabricated through swelling of single-crystal silicon with proper high-energy helium ion dosing, a traditionally undesired phenomenon known in helium ion microscopy. Silicon sub-micron spheres with diameters from 100 nm to 1 μm are demonstrated, and the placement of silicon sub-micron spheres can be as accurate as 10 nm or even below. This AFM tip demonstrates robust measurements during friction tests on graphene/silicon oxide substrates for more than 10 000 cycles. This AFM tip overcomes a critical challenge of reducing the size of spherical AFM tips from the micrometer scale to the sub-micron scale and is promising in cross-scale mechanics studies, nanotribology, colloid science, and biology.
Collapse
Affiliation(s)
- Huan Hu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China
- School of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Shi
- College of Mechanical Engineering, Donghua University, Shanghai 201600, China
| | | | - Lynne Gignac
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Yitian Peng
- College of Mechanical Engineering, Donghua University, Shanghai 201600, China
| |
Collapse
|
33
|
Wang Z, Zhang H, Hao A, Zhao Y, Xing P. Modular Molecular Self-Assembly for Diversified Chiroptical Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002036. [PMID: 32578382 DOI: 10.1002/smll.202002036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Bottom-up multicomponent molecular self-assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self-assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self-assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N-terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high-water-content hydrogel formation constituted by super-helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.
Collapse
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
34
|
Tardy BL, Richardson JJ, Greca LG, Guo J, Ejima H, Rojas OJ. Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906886. [PMID: 32064702 DOI: 10.1002/adma.201906886] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/16/2019] [Indexed: 05/24/2023]
Abstract
Adhesion occurs by covalent bonding, as in reactive structural adhesives, or through noncovalent interactions, which are nearly ubiquitous in nature. A classic example of the latter is gecko feet, where hierarchical features enhance friction across the contact area. Biomimicry of such structured adhesion is regularly achieved by top-down lithography, which allows for direction-dependent detachment. However, bottom-up approaches remain elusive given the scarcity of building blocks that yield strong, cohesive, self-assembly across multiple length scales. Herein, an exception is introduced, namely, aqueous dispersions of cellulose nanocrystals (CNCs) that form superstructured, adherent layers between solid surfaces upon confined evaporation-induced self-assembly (C-EISA). The inherently strong CNCs (EA > 140 GPa) align into rigid, nematically ordered lamellae across multiple length scales as a result of the stresses associated with confined evaporation. This long-range order produces remarkable anisotropic adhesive strength when comparing in-plane (≈7 MPa) and out-of-plane (≤0.08 MPa) directions. These adhesive attributes, resulting from self-assembly, substantially outperform previous biomimetic adhesives obtained by top-down microfabrication (dry adhesives, friction driven), and represent a unique fluid (aqueous)-based system with significant anisotropy of adhesion. By using C-EISA, new emergent properties will be closely tied with the nature of colloids and their hierarchical assemblies.
Collapse
Affiliation(s)
- Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| | - Joseph J Richardson
- Department of Materials Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| | - Junling Guo
- School of Biomass Science and Engineering, Sichuan University, Chengdu, 610017, China
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
- Department of Applied Physics, School of Science, Aalto University, Espoo, 02150, Finland
- Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
35
|
Pjeta R, Lindner H, Kremser L, Salvenmoser W, Sobral D, Ladurner P, Santos R. Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:E946. [PMID: 32023883 PMCID: PMC7037938 DOI: 10.3390/ijms21030946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
Echinoderms, such as the rock-boring sea urchin Paracentrotus lividus, attach temporarily to surfaces during locomotion using their tube feet. They can attach firmly to any substrate and release from it within seconds through the secretion of unknown molecules. The composition of the adhesive, as well as the releasing secretion, remains largely unknown. This study re-analyzed a differential proteome dataset from Lebesgue et al. by mapping mass spectrometry-derived peptides to a P. lividus de novo transcriptome generated in this study. This resulted in a drastic increase in mapped proteins in comparison to the previous publication. The data were subsequently combined with a differential RNAseq approach to identify potential adhesion candidate genes. A gene expression analysis of 59 transcripts using whole mount in situ hybridization led to the identification of 16 transcripts potentially involved in bioadhesion. In the future these data could be useful for the production of synthetic reversible adhesives for industrial and medical purposes.
Collapse
Affiliation(s)
- Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria; (H.L.); (L.K.)
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria; (H.L.); (L.K.)
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
| | - Daniel Sobral
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia–Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria; (R.P.); (W.S.)
| | - Romana Santos
- Centro de Ciências do Mar e do Ambiente, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
36
|
Jiang K, Xu D, Ma Z, Yang P, Song Y, Zhang W. Quantifying the Mechanical Anisotropy in Poly(3-hexylthiophene) Nanofibers. ACS Macro Lett 2020; 9:108-114. [PMID: 35638666 DOI: 10.1021/acsmacrolett.9b00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropic structure owing to the π-π and layer stacking of highly coplanar conjugated backbones, the structure-nanomechanical property relationship is missing. Here, we investigated the axial mechanical anisotropy of the P3HT nanofiber by using thermal shape-fluctuation analysis and a three-point bending test based on atomic force microscopy. Our results show that Young's modulus in the layer-stacking direction (EL) is 1-2 orders of magnitude greater than that in the π-conjugated backbone direction (EB). We attribute this mechanical anisotropy to the π-stacking of the P3HT backbone, but the layer stacking will decrease EL, which weakens the mechanical anisotropy. Moreover, we demonstrated that the P3HT nanofiber shows a loading-rate-independent Young's modulus and deformation-dependent resilience in the layer-stacking direction.
Collapse
Affiliation(s)
- Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Daren Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Peng Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
37
|
Mi X, Bromley EK, Joshi PU, Long F, Heldt CL. Virus Isoelectric Point Determination Using Single-Particle Chemical Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:370-378. [PMID: 31845814 DOI: 10.1021/acs.langmuir.9b03070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Virus colloidal behavior is governed by the interaction of the viral surface and the surrounding environment. One method to characterize the virus surface charge is the isoelectric point (pI). Traditional determination of virus pI has focused on the bulk characterization of a viral solution. However, virus capsids are extremely heterogeneous, and a single-particle method may give more information on the range of surface charge observed across a population. One method to measure the virus pI is chemical force microscopy (CFM). CFM is a single-particle technique that measures the adhesion force of a functionalized atomic force microscope (AFM) probe and, in this case, a virus covalently bound to a surface. Non-enveloped porcine parvovirus (PPV) and enveloped bovine viral diarrhea virus (BVDV) were used to demonstrate the use of CFM for viral particles with different surface properties. We have validated the CFM to determine the pI of PPV to be 4.8-5.1, which has a known pI value of 5.0 in the literature, and to predict the unknown pI of BVDV to be 4.3-4.5. Bulk measurements, ζ-potential, and aqueous two-phase system (ATPS) cross-partitioning methods were also used to validate the new CFM method for the virus pI. Most methods were in good agreement. CFM can detect the surface charge of viral capsids at a single-particle level and enable the comparison of surface charge between different types of viruses.
Collapse
|
38
|
|
39
|
Batys P, Nattich-Rak M, Adamczyk Z. Myoglobin molecule charging in electrolyte solutions. Phys Chem Chem Phys 2020; 22:26764-26775. [DOI: 10.1039/d0cp03771k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The compensated charge of myoglobin molecule in electrolyte solution is considerably smaller than the nominal charge.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- Niezapominajek 8
- PL-30239 Krakow
- Poland
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- Niezapominajek 8
- PL-30239 Krakow
- Poland
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- Niezapominajek 8
- PL-30239 Krakow
- Poland
| |
Collapse
|
40
|
Li S, Xu L, Hao C, Sun M, Wu X, Kuang H, Xu C. Porous Cu
x
Co
y
S Supraparticles for In Vivo Telomerase Imaging and Reactive Oxygen Species Generation. Angew Chem Int Ed Engl 2019; 58:19067-19072. [DOI: 10.1002/anie.201911770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Si Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
41
|
Mertz D, Harlepp S, Goetz J, Bégin D, Schlatter G, Bégin‐Colin S, Hébraud A. Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Jacky Goetz
- INSERM UMR_S1109, Tumor Biomechanics, StrasbourgUniversité de Strasbourg Fédération de Médecine Translationnelle de Strasbourg (FMTS) 67000 Strasbourg France
| | - Dominique Bégin
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Guy Schlatter
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Sylvie Bégin‐Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR‐7504 CNRS‐Université de Strasbourg 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2 France
| | - Anne Hébraud
- Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé (ICPEES)UMR‐7515 CNRS‐Université de Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|
42
|
Xue Z, Wang P, Peng A, Wang T. Architectural Design of Self-Assembled Hollow Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801441. [PMID: 30256464 DOI: 10.1002/adma.201801441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Colloidal nanoparticle assemblies are widely designed and fabricated via various building blocks to enhance their intrinsic properties and potential applications. Self-assembled hollow superstructures have been a focal point in nanotechnology for several decades and are likely to remain so for the foreseeable future. The novel properties of self-assembled hollow superstructures stem from their effective spatial utilization. As such, a comprehensive appreciation of the interactive forces at play among individual building blocks is a prerequisite for designing and managing the self-assembly process, toward the fabrication of optimal hollow nanoproducts. Herein, the emerging approaches to the fabrication of self-assembled hollow superstructures, including hard-templated, soft-templated, self-templated, and template-free methods, are classified and discussed. The corresponding reinforcement mechanisms, such as strong ligand interaction strategies and extra-capping strategies, are discussed in detail. Finally, possible future directions for the construction of multifunctional hollow superstructures with highly efficient catalytic reaction systems and an integration platform for bioapplications are discussed.
Collapse
Affiliation(s)
- Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilong Wang
- Institute of Quality Standards & Testing Technology for Agriculture Products, China Agricultural Academy of Science, Beijing, 100081, P. R. China
| | - Aidong Peng
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
43
|
Guo S, Quintana R, Cirelli M, Toa ZSD, Arjunan Vasantha V, Kooij ES, Jańczewski D, Vancso GJ. Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8085-8094. [PMID: 31099575 PMCID: PMC6587155 DOI: 10.1021/acs.langmuir.9b00918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The exceptional hydration of sulfobetaine polymer brushes and their resistance toward nonspecific protein absorption allows for the construction of thin films with excellent antibiofouling properties. In this work, swollen sulfobetaine brushes, prepared by surface-initiated atom transfer radical polymerization of two monomers, differentiated by the nature of the polymerizable group, are studied and compared by a liquid-cell atomic force microscopy technique and spectroscopic ellipsometry. Colloidal AFM-based force spectroscopy is employed to estimate brush grafting density and characterize nanomechanical properties in salt water. When the ionic strength-induced swelling behaviors of the two systems are compared, the differences observed on the antipolyelectrolyte response can be correlated with the stiffness variation on brush compression, likely to be promoted by solvation differences. The higher solvation of amide groups is proposed to be responsible for the lower adhesion force of the barnacle cyprid's temporary adhesive proteins. The adhesion results provide further insights into the antibiofouling activity against barnacle cyprid settlement attributed to polysulfobetaine brushes.
Collapse
Affiliation(s)
- Shifeng Guo
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
- CAS
Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Robert Quintana
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
- Materials
Research and Technology Department, Luxembourg
Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg
| | - Marco Cirelli
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zi Siang Desmond Toa
- Institute
of Materials Research and Engineering A*STAR (Agency for Science,
Technology and Research), Innovis, #08-03, 2 Fusionpolis Way, Singapore 138634
| | - Vivek Arjunan Vasantha
- Institute
of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong
Island, Singapore 627833
| | - E. Stefan Kooij
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dominik Jańczewski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - G. Julius Vancso
- Institute
of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong
Island, Singapore 627833
- Materials Science and Technology of Polymers, MESA+
Institute for
Nanotechnology, Faculty Engineering Technology, Production Technology, and Physics of Interfaces
and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
44
|
Zhu W, Guo J, Amini S, Ju Y, Agola JO, Zimpel A, Shang J, Noureddine A, Caruso F, Wuttke S, Croissant JG, Brinker CJ. SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticle-Based Exoskeletons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900545. [PMID: 31032545 DOI: 10.1002/adma.201900545] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Creating a synthetic exoskeleton from abiotic materials to protect delicate mammalian cells and impart them with new functionalities could revolutionize fields like cell-based sensing and create diverse new cellular phenotypes. Herein, the concept of "SupraCells," which are living mammalian cells encapsulated and protected within functional modular nanoparticle-based exoskeletons, is introduced. Exoskeletons are generated within seconds through immediate interparticle and cell/particle complexation that abolishes the macropinocytotic and endocytotic nanoparticle internalization pathways that occur without complexation. SupraCell formation is shown to be generalizable to wide classes of nanoparticles and various types of cells. It induces a spore-like state, wherein cells do not replicate or spread on surfaces but are endowed with extremophile properties, for example, resistance to osmotic stress, reactive oxygen species, pH, and UV exposure, along with abiotic properties like magnetism, conductivity, and multifluorescence. Upon decomplexation cells return to their normal replicative states. SupraCells represent a new class of living hybrid materials with a broad range of functionalities.
Collapse
Affiliation(s)
- Wei Zhu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, P. R. China
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jacob Ongudi Agola
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 11, 81377, Munich, Germany
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Achraf Noureddine
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 11, 81377, Munich, Germany
| | - Jonas G Croissant
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
45
|
Song G, Li J, Yuan Y, Yao L, Gu J, Liu Q, Zhang W, Su Y, Zhang D. Large-Area 3D Hierarchical Superstructures Assembled from Colloidal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805308. [PMID: 30938487 DOI: 10.1002/smll.201805308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Assembling nanosized building blocks into macroscopic 3D complex structures is challenging. Here, nanosized metal and semiconductor building blocks with a variety of sizes and shapes (spheres, stars, and rods) are successfully assembled into a broad range of hierarchical (nanometer to micrometer) assemblies of functional materials in centimeter size using butterfly wings as templates. This is achieved by the introduction of steric hindrance to the assembly process, which compensates for attraction from the environmentally sensitive hydrogen bonds and prevents the aggregation of nanosized building blocks. Of these materials, Au nanostar assemblies show a superior enhancement in surface-enhanced Raman scattering (SERS) performance (rhodamine 6G, 1506 cm-1 ) under 532, 633, and 780 nm excitation-this is 3.1-4.4, 3.6-3.9, and 2.9-47.3 folds surpassing Au nanosphere assemblies and commercial SERS substrates (Q-SERS), respectively. This method provides a versatile route for the assembly of various nanosized building blocks into different 3D superstructures and for the construction of hybrid nanomaterials and nanocomposites.
Collapse
Affiliation(s)
- Guofen Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yuan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lulu Yao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yishi Su
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
46
|
Alford A, Rich M, Kozlovskaya V, Chen J, Sherwood J, Bolding M, Warram J, Bao Y, Kharlampieva E. Ultrasound‐Triggered Delivery of Anticancer Therapeutics from MRI‐Visible Multilayer Microcapsules. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aaron Alford
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Megan Rich
- Department of Neurobiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Veronika Kozlovskaya
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jun Chen
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Mark Bolding
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jason Warram
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Yuping Bao
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Eugenia Kharlampieva
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| |
Collapse
|
47
|
Mattos BD, Greca LG, Tardy BL, Magalhães WLE, Rojas OJ. Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801256. [PMID: 29882301 DOI: 10.1002/smll.201801256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/28/2018] [Indexed: 05/21/2023]
Abstract
In parallel with important technological advances, nanoparticles have brought numerous environmental and toxicological challenges due to their high mobility and nonspecific surface activity. The hazards associated with nanoparticles can be significantly reduced while simultaneously keeping their inherent benefits by superstructuring. In this study, a low-temperature and versatile methodology is employed to structure nanoparticles into controlled morphologies from biogenic silica, used as a main building block, together with cellulose nanofibrils, which promote cohesion. The resultant superstructures are evaluated for cargo loading/unloading of a model, green biomolecule (thymol), and for photo-accessibility and mobility in soil. The bio-based superstructures resist extremely high mechanical loading without catastrophic failure, even after severe chemical and heat treatments. Additionally, the process allows pre and in situ loading, and reutilization, achieving remarkable dynamic payloads as high as 90 mg g-1 . The proposed new and facile methodology is expected to offer a wide range of opportunities for the application of superstructures in sensitive and natural environments.
Collapse
Affiliation(s)
- Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Finland
| |
Collapse
|
48
|
Hu X, Torati SR, Yoon J, Lim B, Kim K, Kim C. Magnetically Characterized Molecular Lubrication between Biofunctionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16177-16182. [PMID: 29667400 DOI: 10.1021/acsami.8b00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate an efficient approach for quantifying frictional forces (sub-piconewton) at nano-bio interfaces by controlled magnetic forces, which is based on simultaneous measurements of critical frequencies for streptavidin-coupled magnetic particles. The maximum phase angle, being corresponded with the critical frequency, is formulated in terms of magnetic, frictional, and viscous forces of the particles on DNA- and SiO2-functionalized micromagnet arrays. The streptavidin/DNA interface shows lower friction as an enhanced lubrication than the streptavidin/SiO2 interface, which is indicated by the lower transition field of quasi-static motion, the larger ratio of dynamic particles, and also the higher velocity of the particles. The friction coefficients at the streptavidin/DNA and streptavidin/SiO2 interfaces are evaluated numerically as 0.07 and 0.11, respectively, regardless of the vertical force and the velocity. The proposed method would open up new possibilities to study mechanical interactions at biological surfaces.
Collapse
Affiliation(s)
- Xinghao Hu
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
| | - Sri Ramulu Torati
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
- School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , India
| | - Jonghwan Yoon
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
| | - Byeonghwa Lim
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
| | - Kunwoo Kim
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
| | - CheolGi Kim
- Department of Emerging Materials Science , DGIST , Daegu 42988 , Republic of Korea
| |
Collapse
|
49
|
Ion-assisted fabrication of neutral protein crosslinked sodium alginate nanogels. Carbohydr Polym 2018; 186:45-53. [DOI: 10.1016/j.carbpol.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/23/2022]
|
50
|
Wang X, Pu J, An B, Li Y, Shang Y, Ning Z, Liu Y, Ba F, Zhang J, Zhong C. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705968. [PMID: 29516606 DOI: 10.1002/adma.201705968] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/25/2017] [Indexed: 05/24/2023]
Abstract
Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Bolin An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingfeng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuequn Shang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang Ba
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiaming Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chao Zhong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|