1
|
Song S, Teng Y, Tang W, Xu Z, He Y, Ruan J, Kojima T, Hu W, Giessibl FJ, Sakaguchi H, Louie SG, Lu J. Janus graphene nanoribbons with localized states on a single zigzag edge. Nature 2025; 637:580-586. [PMID: 39779862 DOI: 10.1038/s41586-024-08296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases1-10. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states1,2. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains11, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit3,12, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics1-3,9,13. Here we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs (JGNRs) with two distinct edge configurations. Guided by Lieb's theorem and topological classification theory14-16, we devised two JGNRs by asymmetrically introducing a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks the structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin-symmetry breaking. Three Z-shaped precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the 'defective' edge. Characterization by scanning probe microscopy and spectroscopy and first-principles density functional theory confirms the successful fabrication of JGNRs with a ferromagnetic ground-state localized along the pristine zigzag edge.
Collapse
Affiliation(s)
- Shaotang Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yu Teng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| | - Weichen Tang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhen Xu
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | - Yuanyuan He
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiawei Ruan
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
- Tianjin Key Laboratory of Molecular Optoelectronics, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany
| | | | - Steven G Louie
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Sun S, You JY, Cai Z, Su J, Yang T, Peng X, Wang Y, Geng D, Gou J, Huang Y, Duan S, Chen L, Wu K, Wee ATS, Feng YP, Zhang JL, Lu J, Feng B, Chen W. 1D Flat Bands in Phosphorene Nanoribbons with Pentagonal Nature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411182. [PMID: 39659109 DOI: 10.1002/adma.202411182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/24/2024] [Indexed: 12/12/2024]
Abstract
Materials with flat bands can serve as a promising platform to investigate strongly interacting phenomena. However, experimental realization of ideal flat bands is mostly limited to artificial lattices or moiré systems. Here, a general way is reported to construct 1D flat bands in phosphorene nanoribbons (PNRs) with a pentagonal nature: penta-hexa-PNRs and penta-dodeca-PNRs, wherein the corresponding 1D flat bands are directly verified by using angle-resolved photoemission spectroscopy. It is confirmed that the observed 1D flat bands originate from the electronic 1D zigzag and Lieb lattices, respectively, as revealed by the combination of bond-resolved scanning tunneling microscopy, scanning tunneling spectroscopy, tight-binding models, and first-principles calculations. The study demonstrates a general way to construct 1D flat bands in 1D solid materials system, which provides a robust platform to explore strongly interacting phases of matter.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jing-Yang You
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Zhihao Cai
- Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yihe Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Daiyu Geng
- Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Yuli Huang
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Sisheng Duan
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Jia Lin Zhang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
3
|
Bassi N, Xu X, Xiang F, Krane N, Pignedoli CA, Narita A, Fasel R, Ruffieux P. Preferential graphitic-nitrogen formation in pyridine-extended graphene nanoribbons. Commun Chem 2024; 7:274. [PMID: 39572756 PMCID: PMC11582605 DOI: 10.1038/s42004-024-01344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
Graphene nanoribbons (GNRs), nanometer-wide strips of graphene, have garnered significant attention due to their tunable electronic and magnetic properties arising from quantum confinement. A promising approach to manipulate their electronic characteristics involves substituting carbon with heteroatoms, such as nitrogen, with different effects predicted depending on their position. In this study, we present the extension of the edges of 7-atom-wide armchair graphene nanoribbons (7-AGNRs) with pyridine rings, achieved on a Au(111) surface via on-surface synthesis. High-resolution structural characterization confirms the targeted structure, showcasing the predominant formation of carbon-nitrogen (C-N) bonds (over 90% of the units) during growth. This favored bond formation pathway is elucidated and confirmed through density functional theory (DFT) simulations. Furthermore, an analysis of the electronic properties reveals metallic behavior due to charge transfer to the Au(111) substrate accompanied by the presence of nitrogen-localized states. Our results underscore the successful formation of C-N bonds on the metal surface, providing insights for designing new GNRs that incorporate substitutional nitrogen atoms to precisely control their electronic properties.
Collapse
Affiliation(s)
- Nicolò Bassi
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Feifei Xiang
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Nils Krane
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Wang D, Haposan T, Fan J, Arramel, Wee ATS. Recent Progress of Imaging Chemical Bonds by Scanning Probe Microscopy: A Review. ACS NANO 2024; 18:30919-30942. [PMID: 39475528 DOI: 10.1021/acsnano.4c10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
In the past decades, the invention of scanning probe microscopy (SPM) as the versatile surface-based characterization of organic molecules has triggered significant interest throughout multidisciplinary fields. In particular, the bond-resolved imaging acquired by SPM techniques has extended its fundamental function of not only unraveling the chemical structure but also allowing us to resolve the structure-property relationship. Here, we present a systematical review on the history of chemical bonds imaged by means of noncontact atomic force microscopy (nc-AFM) and bond-resolved scanning tunneling microscopy (BR-STM) techniques. We first summarize the advancement of real-space imaging of covalent bonds and the investigation of intermolecular noncovalent bonds. Beyond the bond imaging, we also highlight the applications of the bond-resolved SPM techniques such as on-surface synthesis, the determination of the reaction pathway, the identification of molecular configurations and unknown products, and the generation of artificial molecules created via tip manipulation. Lastly, we discuss the current status of SPM techniques and highlight several key technical challenges that must be solved in the coming years. In comparison to the existing reviews, this work invokes researchers from surface science, chemistry, condensed matter physics, and theoretical physics to uncover the bond-resolved SPM technique as an emerging tool in exploiting the molecule/surface system and their future applications.
Collapse
Affiliation(s)
- Dingguan Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Tobias Haposan
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Jinwei Fan
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen Key Laboratory of Semiconductor Heterogeneous Integration Technology, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
5
|
Cui W, Zhang W, Tang K, Chen Y, Cao K, Shi L, Yang G. Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons. SMALL METHODS 2024:e2401168. [PMID: 39487656 DOI: 10.1002/smtd.202401168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Indexed: 11/04/2024]
Abstract
Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Weili Cui
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wendi Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Kunpeng Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yingzhi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kecheng Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Custance O, Ventura-Macias E, Stetsovych O, Romero-Muñiz C, Shimizu TK, Pou P, Abe M, Hayashi H, Ohkubo T, Kawai S, Perez R. Structure and Defect Identification at Self-Assembled Islands of CO 2 Using Scanning Probe Microscopy. ACS NANO 2024; 18:26759-26769. [PMID: 39285838 DOI: 10.1021/acsnano.4c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding how carbon dioxide (CO2) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO2 mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO2 molecules on a gold(111) surface that also contains one-dimensional metal-organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO2 islands, both confined between the PDI-Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO2 molecules in a windmill-like structure that encloses a standing-up CO2 molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.
Collapse
Affiliation(s)
- Oscar Custance
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Emiliano Ventura-Macias
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Oleksandr Stetsovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, Prague 16200, Czech Republic
| | - Carlos Romero-Muñiz
- Departamento de Física de la Materia Condensada, Universidad de Sevilla, P.O. Box 1065, Seville 41080, Spain
| | - Tomoko K Shimizu
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pablo Pou
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hayashi
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tadakatsu Ohkubo
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Shigeki Kawai
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ruben Perez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
7
|
Pan WC, Arumugam K, Yen YH, Tani F, Goto K, Okamoto H, Tang SJ, Hoffmann G. Roto-Cyclization of 4-Bromopicene in On-Surface Synthesis. Chem Asian J 2024:e202400620. [PMID: 39105250 DOI: 10.1002/asia.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Progress toward single-molecule electronics relies on a thorough understanding of local physico-chemical processes and development of synthetic routines for controlled hetero-coupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface-dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | | | - Yu-Hsiung Yen
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | - Kenta Goto
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | | | - Shu-Jung Tang
- Department of Physics, National Tsing Hua University, Taiwan
| | - Germar Hoffmann
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| |
Collapse
|
8
|
Sakaguchi H, Kojima T, Cheng Y, Nobusue S, Fukami K. Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst. Nat Commun 2024; 15:5972. [PMID: 39075056 PMCID: PMC11286955 DOI: 10.1038/s41467-024-50086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
On-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) has attracted much attention. However, producing such GNRs on a large scale through on-surface synthesis under ultra-high vacuum on thermally activated metal surfaces has been challenging. This is mainly due to the decomposition of functional groups at temperatures of 300 to 500 °C and limited monolayer GNR growth based on the metal catalysis. To overcome these obstacles, we developed an on-surface electrochemical technique that utilizes redox reactions of asymmetric precursors at an electric double layer where a strong electric field is confined to the liquid-solid interface. We successfully demonstrate layer-by-layer growth of strong electron-donating GNRs on electrodes at temperatures <80 °C without decomposing functional groups. We show that high-voltage facilitates previously unknown heterochiral di-cationic polymerization. Electrochemically produced GNRs exhibiting one of the strongest electron-donating properties known, enable extraordinary silicon-etching catalytic activity, exceeding those of noble metals, with superior photoconductive properties. Our technique advances the possibility of producing various edge-functional GNRs.
Collapse
Affiliation(s)
- Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan.
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Yingbo Cheng
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Sun K, Ishikawa A, Itaya R, Toichi Y, Yamakado T, Osuka A, Tanaka T, Sakamoto K, Kawai S. On-Surface Synthesis of Polyene-Linked Porphyrin Cooligomer. ACS NANO 2024; 18:13551-13559. [PMID: 38757371 DOI: 10.1021/acsnano.3c12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Atsushi Ishikawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryota Itaya
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Toichi
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takayuki Tanaka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyuki Sakamoto
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
10
|
Dong W, Li X, Lu S, Li J, Wang Y, Zhong M, Dong X, Xu Z, Shen Q, Gao S, Wu K, Peng LM, Hou S, Zhang Z, Zhang Y, Wang Y. Unzipping Carbon Nanotubes to Sub-5-nm Graphene Nanoribbons on Cu(111) by Surface Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308430. [PMID: 38126626 DOI: 10.1002/smll.202308430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.
Collapse
Affiliation(s)
- Wenjie Dong
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Xin Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Shuai Lu
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Yansong Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Mingjun Zhong
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Xu Dong
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, 511442, China
| | - Zhen Xu
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, 511442, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Song Gao
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, 511442, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lian-Mao Peng
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Shimin Hou
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Zhiyong Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Yajie Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Zhu X, Li K, Liu J, Wang Z, Ding Z, Su Y, Yang B, Yan K, Li G, Yu P. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings. J Am Chem Soc 2024; 146:7152-7158. [PMID: 38421279 DOI: 10.1021/jacs.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cove-edged zigzag graphene nanoribbons are predicted to show metallic, topological, or trivial semiconducting band structures, which are precisely determined by their cove offset positions at both edges as well as the ribbon width. However, due to the challenge of introducing coves into zigzag-edged graphene nanoribbons, only a few cove-edged graphene nanoribbons with trivial semiconducting bandgaps have been realized experimentally. Here, we report that the topological band structure can be realized in cove-edged graphene nanoribbons by embedding periodic pentagon rings on the cove edges through on-surface synthesis. Upon noncontact atomic force microscopy and scanning tunneling spectroscopy measurements, the chemical and electronic structures of cove-edged graphene nanoribbons with periodic pentagon rings have been characterized for different lengths. Combined with theoretical calculations, we find that upon inducing periodic pentagon rings the cove-edged graphene nanoribbons exhibit nontrivial topological structures. Our results provide insights for the design and understanding of the topological character in cove-edged graphene nanoribbons.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Kezhen Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhihao Ding
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yunlong Su
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
12
|
Li G, Wang H, Loes M, Saxena A, Yin J, Sarker M, Choi S, Aluru N, Lyding JW, Sinitskii A, Dong G. Hybrid Edge Results in Narrowed Band Gap: Bottom-up Liquid-Phase Synthesis of Bent N = 6/8 Armchair Graphene Nanoribbons. ACS NANO 2024; 18:4297-4307. [PMID: 38253346 DOI: 10.1021/acsnano.3c09825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Scalable fabrication of graphene nanoribbons with narrow band gaps has been a nontrivial challenge. Here, we have developed a simple approach to access narrow band gaps using hybrid edge structures. Bottom-up liquid-phase synthesis of bent N = 6/8 armchair graphene nanoribbons (AGNRs) has been achieved in high efficiency through copolymerization between an o-terphenyl monomer and a naphthalene-based monomer, followed by Scholl oxidation. An unexpected 1,2-aryl migration has been discovered, which is responsible for introducing kinked structures into the GNR backbones. The N = 6/8 AGNRs have been fully characterized to support the proposed structure and show a narrow band gap and a relatively high electrical conductivity. In addition, their application in efficient gas sensing has also been demonstrated.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Hanfei Wang
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Michael Loes
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiangliang Yin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mamun Sarker
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Narayana Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph W Lyding
- Department of Electrical and Computer Engineering, Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Alexander Sinitskii
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Piquero-Zulaica I, Corral-Rascón E, Diaz de Cerio X, Riss A, Yang B, Garcia-Lekue A, Kher-Elden MA, Abd El-Fattah ZM, Nobusue S, Kojima T, Seufert K, Sakaguchi H, Auwärter W, Barth JV. Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures. Nat Commun 2024; 15:1062. [PMID: 38316774 PMCID: PMC10844643 DOI: 10.1038/s41467-024-45138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.
Collapse
Affiliation(s)
- Ignacio Piquero-Zulaica
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany.
| | - Eduardo Corral-Rascón
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Xabier Diaz de Cerio
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018, Donostia-San Sebastian, Spain
| | - Alexander Riss
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany.
| | - Biao Yang
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018, Donostia-San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Mohammad A Kher-Elden
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, E-11884, Cairo, Egypt
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan
| | - Knud Seufert
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Kyoto, Japan.
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| | - Johannes V Barth
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, D-85748, Garching, Germany
| |
Collapse
|
14
|
Nagahara T, Camargo FVA, Xu F, Ganzer L, Russo M, Zhang P, Perri A, de la Cruz Valbuena G, Heisler IA, D’Andrea C, Polli D, Müllen K, Feng X, Mai Y, Cerullo G. Electronic Structure of Isolated Graphene Nanoribbons in Solution Revealed by Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2024; 24:797-804. [PMID: 38189787 PMCID: PMC10811683 DOI: 10.1021/acs.nanolett.3c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.
Collapse
Affiliation(s)
- Tetsuhiko Nagahara
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Department
of Chemistry and Materials Technology, Kyoto
Institute of Technology, 606-8585 Kyoto, Japan
| | | | - Fugui Xu
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Lucia Ganzer
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Mattia Russo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Pengfei Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Antonio Perri
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | | | - Ismael A. Heisler
- Departamento
de Física, Universidade Federal do
Paraná, Caixa
Postal 19044, 81531-990 Curitiba, Paraná, Brazil
| | - Cosimo D’Andrea
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Dario Polli
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Technische
Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Yiyong Mai
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- IFN-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
15
|
Padniuk I, Stoica O, Zuzak R, Blieck R, Krawiec M, Godlewski S, Echavarren AM. On surface synthesis of an eleven-ring sulfur-doped nonacene. Chem Commun (Camb) 2024; 60:858-861. [PMID: 38131529 DOI: 10.1039/d3cc05486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dithienoacenes with a heptacene core, heptaceno[2,3-b:11,12-b']bis[1]benzothiophene, have been synthesized through the combination of solution and surface assisted chemistry. The atomic composition, structural arrangement and electronic properties of the molecules on the Au(111) surface have been deeply explored by non-contact atomic force microscopy (nc-AFM), bond-resolved scanning tunnelling microscopy (BR-STM) and scanning tunneling spectroscopy (STS) corroborated by density functional theory (DFT) calculations. Our combined experiments reveal modifications induced by sulfur substitution.
Collapse
Affiliation(s)
- Irena Padniuk
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza St 11, PL30348, Cracow, Poland
| | - Otilia Stoica
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
| | - Remi Blieck
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| | - Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, Lublin 20-031, Poland.
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow PL 30-348, Poland.
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, Tarragona 43007, Spain.
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
16
|
Wang L, Peng X, Su J, Wang J, Gallardo A, Yang H, Chen Q, Lyu P, Jelínek P, Liu J, Wong MW, Lu J. Highly Selective On-Surface Ring-Opening of Aromatic Azulene Moiety. J Am Chem Soc 2024; 146:1563-1571. [PMID: 38141030 DOI: 10.1021/jacs.3c11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| |
Collapse
|
17
|
Jacobse P, Daugherty MC, Čerņevičs K, Wang Z, McCurdy RD, Yazyev OV, Fischer FR, Crommie MF. Five-Membered Rings Create Off-Zero Modes in Nanographene. ACS NANO 2023; 17:24901-24909. [PMID: 38051766 PMCID: PMC10753889 DOI: 10.1021/acsnano.3c06006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
The low-energy electronic structure of nanographenes can be tuned through zero-energy π-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and hybridization interactions. Manipulation of the energy of such states, however, has not yet received significant attention. We find that attaching a five-membered ring to a zigzag edge hosting a zero-mode perturbs the energy of that mode and turns it into an off-zero mode: a localized state with a distinctive electron-accepting character. Whereas the end states of typical 7-atom-wide armchair graphene nanoribbons (7-AGNRs) lose their electrons when physisorbed on Au(111) (due to its high work function), converting them into off-zero modes by introducing cyclopentadienyl five-membered rings allows them to retain their single-electron occupation. This approach enables the magnetic properties of 7-AGNR end states to be explored using scanning tunneling microscopy (STM) on a gold substrate. We find a gradual decrease of the magnetic coupling between off-zero mode end states as a function of GNR length, and evolution from a more closed-shell to a more open-shell ground state.
Collapse
Affiliation(s)
- Peter
H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael C. Daugherty
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kristia̅ns Čerņevičs
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ziyi Wang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ryan D. McCurdy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Oleg V. Yazyev
- Institute
of Physics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Felix R. Fischer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute
of Digital Materials for the Planet, Division of Computing, Data Science,
and Society, University of California, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Kinikar A, Xu X, Giovannantonio MD, Gröning O, Eimre K, Pignedoli CA, Müllen K, Narita A, Ruffieux P, Fasel R. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306311. [PMID: 37795919 DOI: 10.1002/adma.202306311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge-extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance-a 3-zigzag-rows-wide ZGNR-with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge-extended 3-ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge-extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure-dependent electronic properties.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Xiushang Xu
- Okinawa Institute of Science and Technology Graduate University, Organic and Carbon Nanomaterials Unit, 1919-1 Tancha, Onnason, Kunigamigun, Okinawa, 904-0495, Japan
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Oliver Gröning
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Carlo A Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Johannes Gutenberg University Mainz, Institute of Physical Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Akimitsu Narita
- Okinawa Institute of Science and Technology Graduate University, Organic and Carbon Nanomaterials Unit, 1919-1 Tancha, Onnason, Kunigamigun, Okinawa, 904-0495, Japan
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, 8600, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| |
Collapse
|
19
|
Nhung Nguyen TT, Power SR, Karakachian H, Starke U, Tegenkamp C. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. ACS NANO 2023; 17:20345-20352. [PMID: 37788294 DOI: 10.1021/acsnano.3c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The integration of graphene into devices necessitates large-scale growth and precise nanostructuring. Epitaxial growth of graphene on SiC surfaces offers a solution by enabling both simultaneous and targeted realization of quantum structures. We investigated the impact of local variations in the width and edge termination of armchair graphene nanoribbons (AGNRs) on quantum confinement effects using scanning tunneling microscopy and spectroscopy (STM, STS), along with density-functional tight-binding (DFTB) calculations. AGNRs were grown as an ensemble on refaceted sidewalls of SiC mesas with adjacent AGNRs separated by SiC(0001) terraces hosting a buffer layer seamlessly connected to the AGNRs. Energy band gaps measured by STS at the centers of ribbons of different widths align with theoretical expectations, indicating that hybridization of π-electrons with the SiC substrate mimics sharp electronic edges. However, regardless of the ribbon width, band gaps near the edges of AGNRs are significantly reduced. DFTB calculations successfully replicate this effect by considering the role of edge passivation, while strain or electric fields do not account for the observed effect. Unlike idealized nanoribbons with uniform hydrogen passivation, AGNRs on SiC sidewalls generate additional energy bands with non-pz character and nonuniform distribution across the nanoribbon. In AGNRs terminated with Si, these additional states occur at the conduction band edge and rapidly decay into the bulk of the ribbon. This agrees with our experimental findings, demonstrating that edge passivation is crucial in determining the local electronic properties of epitaxial nanoribbons.
Collapse
Affiliation(s)
- Thi Thuy Nhung Nguyen
- Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Stephen R Power
- School of Physical Sciences, Dublin City University, Glasnevin, 9 Dublin, Ireland
| | - Hrag Karakachian
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ulrich Starke
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christoph Tegenkamp
- Institut für Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| |
Collapse
|
20
|
Zhang JJ, Liu K, Xiao Y, Yu X, Huang L, Gao HJ, Ma J, Feng X. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310880. [PMID: 37594477 DOI: 10.1002/anie.202310880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments (9-AGNR/cGNR). The synthesis involves a controlled Suzuki-Miyaura catalyst-transfer polymerization (SCTP) between 2-(6'-bromo-4,4''-ditetradecyl-[1,1':2',1''-terphenyl]-3'-yl) boronic ester (M1) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester (M2), followed by the Scholl reaction of the obtained block copolymer (poly-M1/M2) with controlled Mn (18 kDa) and narrow Đ (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yao Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiuling Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Li Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
21
|
Dai ZN, Sheng W, Zhou XY, Zhan J, Xu Y. A novel broken-gap chemical-bonded SiC/Ti 2CO 2 heterojunction with band to band tunneling: first-principles investigation. Phys Chem Chem Phys 2023; 25:23954-23962. [PMID: 37642559 DOI: 10.1039/d3cp03273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A broken-gap heterojunction is a bright approach for designing tunneling field-effect transistors (TFETs) due to its distinct quantum tunneling mechanisms. In this study, we investigate the electronic structure and transport characteristics of a SiC/Ti2CO2 heterojunction, as well as the impacts of electric field and strain on the electronic properties via density functional theory. We determine that the interfacial atoms of the heterojunction are covalently bonded, forming a type-III heterojunction with a broken-gap. There exists band-to-band tunneling (BTBT) from the valence band (VB) of SiC to the conduction band (CB) of Ti2CO2. The creation of the heterojunction also enhances the carrier mobility arising from the large elastic modulus and the decrease of deformation potential. The current-voltage (I-V) characteristics of the device demonstrate a pronounced negative differential resistance (NDR) effect, along with a current that is about ten times greater than that of the vdW type-III heterojunction. Moreover, the tunneling window of SiC/Ti2CO2 is only slightly altered when subjected to an external electric field and vertical strain, demonstrating the remarkable stability of its type-III band alignments. Our results indicate that the SiC/Ti2CO2 heterojunction is useful to construct high-performance TFETs, and also introduces new ideas to design TFETs by using type-III covalent-bond heterojunctions.
Collapse
Affiliation(s)
- Zhuo-Ni Dai
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Wei Sheng
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Xiao-Ying Zhou
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Jie Zhan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| | - Ying Xu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, Hunan, China
| |
Collapse
|
22
|
Wang J, Li P, Wang C, Liu N, Xing D. Molecularly or atomically precise nanostructures for bio-applications: how far have we come? MATERIALS HORIZONS 2023; 10:3304-3324. [PMID: 37365977 DOI: 10.1039/d3mh00574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A huge variety of nanostructures are promising for biomedical applications, but only a few have been practically applied. Among the various reasons, the limited structural preciseness is a critical one, as it increases the difficulty in product quality control, accurate dosing, and ensuring the repeatability of material performance. Constructing nanoparticles with molecule-like preciseness is becoming a new research field. In this review, we focus on the artificial nanomaterials that can currently be molecularly or atomically precise, including DNA nanostructures, some metallic nanoclusters, dendrimer nanoparticles and carbon nanostructures, describing their syntheses, bio-applications and limitations, in view of up-to-date studies. A perspective on their potential for clinical translation is also given. This review is expected to provide a particular rationale for the future design of nanomedicines.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
23
|
Tepliakov NV, Ma R, Lischner J, Kaxiras E, Mostofi AA, Pizzochero M. Dirac Half-Semimetallicity and Antiferromagnetism in Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions. NANO LETTERS 2023; 23:6698-6704. [PMID: 37459271 DOI: 10.1021/acs.nanolett.3c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Half-metals have been envisioned as active components in spintronic devices by virtue of their completely spin-polarized electrical currents. Actual materials hosting half-metallic phases, however, remain scarce. Here, we predict that recently fabricated heterojunctions of zigzag nanoribbons embedded in two-dimensional hexagonal boron nitride are half-semimetallic, featuring fully spin-polarized Dirac points at the Fermi level. The half-semimetallicity originates from the transfer of charges from hexagonal boron nitride to the embedded graphene nanoribbon. These charges give rise to opposite energy shifts of the states residing at the two edges, while preserving their intrinsic antiferromagnetic exchange coupling. Upon doping, an antiferromagnetic-to-ferrimagnetic phase transition occurs in these heterojunctions, with the sign of the excess charge controlling the spatial localization of the net magnetic moments. Our findings demonstrate that such heterojunctions realize tunable one-dimensional conducting channels of spin-polarized Dirac fermions seamlessly integrated into a two-dimensional insulator, thus holding promise for the development of carbon-based spintronics.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ruize Ma
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Johannes Lischner
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Liu F, Hu Y, Qu Z, Ma X, Li Z, Zhu R, Yan Y, Wen B, Ma Q, Liu M, Zhao S, Fan Z, Zeng J, Liu M, Jin Z, Lin Z. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy. Proc Natl Acad Sci U S A 2023; 120:e2303262120. [PMID: 37339215 PMCID: PMC10293823 DOI: 10.1073/pnas.2303262120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.
Collapse
Affiliation(s)
- Fan Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Yi Hu
- Ministry of Education Key Laboratory of Mesoscopic Chemistry, Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Xin Ma
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zaifeng Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266061, China
| | - Rui Zhu
- Analyzing and Test Center, Jiangsu Normal University, Xuzhou, Jiangsu221116, China
| | - Yan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Bihan Wen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Qianwen Ma
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Minjie Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Jie Zeng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
| | - Mingkai Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zhong Jin
- Ministry of Education Key Laboratory of Mesoscopic Chemistry, Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| |
Collapse
|
25
|
Chen P, Fan D, Selloni A, Carter EA, Arnold CB, Zhang Y, Gross AS, Chelikowsky JR, Yao N. Observation of electron orbital signatures of single atoms within metal-phthalocyanines using atomic force microscopy. Nat Commun 2023; 14:1460. [PMID: 36928085 PMCID: PMC10020477 DOI: 10.1038/s41467-023-37023-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Resolving the electronic structure of a single atom within a molecule is of fundamental importance for understanding and predicting chemical and physical properties of functional molecules such as molecular catalysts. However, the observation of the orbital signature of an individual atom is challenging. We report here the direct identification of two adjacent transition-metal atoms, Fe and Co, within phthalocyanine molecules using high-resolution noncontact atomic force microscopy (HR-AFM). HR-AFM imaging reveals that the Co atom is brighter and presents four distinct lobes on the horizontal plane whereas the Fe atom displays a "square" morphology. Pico-force spectroscopy measurements show a larger repulsion force of about 5 pN on the tip exerted by Co in comparison to Fe. Our combined experimental and theoretical results demonstrate that both the distinguishable features in AFM images and the variation in the measured forces arise from Co's higher electron orbital occupation above the molecular plane. The ability to directly observe orbital signatures using HR-AFM should provide a promising approach to characterizing the electronic structure of an individual atom in a molecular species and to understand mechanisms of certain chemical reactions.
Collapse
Affiliation(s)
- Pengcheng Chen
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA
| | - Dingxin Fan
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA.,McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712-1589, USA
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, NJ, 08544-0001, USA
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544-5263, USA.,Princeton Plasma Physics Laboratory, Princeton, NJ, 08540-6655, USA
| | - Craig B Arnold
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA.,Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544-5263, USA
| | - Yunlong Zhang
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801-3096, USA
| | - Adam S Gross
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801-3096, USA
| | - James R Chelikowsky
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712-1589, USA. .,Department of Physics, University of Texas at Austin, Austin, TX, 78712-1192, USA. .,Center for Computational Materials, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712-1229, USA.
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA.
| |
Collapse
|
26
|
Ma Y, Sugawara K, Ishigaki Y, Sun K, Suzuki T, Kawai S. Strain-Sensitive On-Surface Ladderization by Non-Dehydrogenative Heterocyclization. Chemistry 2023; 29:e202203622. [PMID: 36539358 DOI: 10.1002/chem.202203622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
On-surface cyclodehydrogenation recently became an important reaction to planarize π-conjugated molecules and oligomers. However, the high-activation barrier to cleave the C-H bond often requires high-temperature annealing, consequently restricting structures of precursor molecules and/or leading to random fusion at their edges. Here, we present a synthesis of pyrrolopyrrole-bridged ladder oligomers from 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane molecules on Ag(111) with bond-resolved scanning tunnelling microscopy. This non-dehydrogenative cyclization between pyrazine and ethynylene/cumulene groups has a low-activation barrier for forming intermediary dimeric oligomer containing dipyrazinopyrrolopyrrolopyrazine units, thus giving new insight into the strain-sensitive in ladder-oligomer formation.
Collapse
Affiliation(s)
- Yujing Ma
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Kazuma Sugawara
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kewei Sun
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Shigeki Kawai
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
27
|
Niu W, Sopp S, Lodi A, Gee A, Kong F, Pei T, Gehring P, Nägele J, Lau CS, Ma J, Liu J, Narita A, Mol J, Burghard M, Müllen K, Mai Y, Feng X, Bogani L. Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons. NATURE MATERIALS 2023; 22:180-185. [PMID: 36732344 PMCID: PMC10208969 DOI: 10.1038/s41563-022-01460-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/08/2022] [Indexed: 05/27/2023]
Abstract
Only single-electron transistors with a certain level of cleanliness, where all states can be properly accessed, can be used for quantum experiments. To reveal their exceptional properties, carbon nanomaterials need to be stripped down to a single element: graphene has been exfoliated into a single sheet, and carbon nanotubes can reveal their vibrational, spin and quantum coherence properties only after being suspended across trenches1-3. Molecular graphene nanoribbons4-6 now provide carbon nanostructures with single-atom precision but suffer from poor solubility, similar to carbon nanotubes. Here we demonstrate the massive enhancement of the solubility of graphene nanoribbons by edge functionalization, to yield ultra-clean transport devices with sharp single-electron features. Strong electron-vibron coupling leads to a prominent Franck-Condon blockade, and the atomic definition of the edges allows identifying the associated transverse bending mode. These results demonstrate how molecular graphene can yield exceptionally clean electronic devices directly from solution. The sharpness of the electronic features opens a path to the exploitation of spin and vibrational properties in atomically precise graphene nanostructures.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Simen Sopp
- Department of Materials, University of Oxford, Oxford, UK
| | | | - Alex Gee
- Department of Materials, University of Oxford, Oxford, UK
| | - Fanmiao Kong
- Department of Materials, University of Oxford, Oxford, UK
| | - Tian Pei
- Department of Materials, University of Oxford, Oxford, UK
| | - Pascal Gehring
- Department of Materials, University of Oxford, Oxford, UK
| | - Jonathan Nägele
- Max Planck Institut für Festkörperforschung, Stuttgart, Germany
| | - Chit Siong Lau
- Department of Materials, University of Oxford, Oxford, UK
- Institute of Materials Research and Engineering, Singapore, Singapore
| | - Ji Ma
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Jan Mol
- Department of Materials, University of Oxford, Oxford, UK
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - Marko Burghard
- Max Planck Institut für Festkörperforschung, Stuttgart, Germany
| | - Klaus Müllen
- Max Planck Institut für Polymerforschung, Mainz, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle, Germany.
| | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Nath S, Puthukkudi A, Mohapatra J, Bommakanti S, Chandrasekhar N, Biswal BP. Carbon-Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromol Rapid Commun 2023; 44:e2200950. [PMID: 36625406 DOI: 10.1002/marc.202200950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Organic frameworks with carbon-carbon (CC) linkage are an important class of materials owing to their outstanding chemical stability and extended π-electron delocalization resulting in unique optoelectronic properties. In the first part of this review article, the design principles for the bottom-up synthesis of 2D and 3D sp/sp2 CC linked organic frameworks are summarized. Representative reaction methodologies, such as Knoevenagel condensation, Aldol condensation, Horner-Wadsworth-Emmons reaction, Wittig reaction, and coupling reactions (Ullmann, Suzuki, Heck, Yamamoto, etc.) are included. This is discussed in the context of their reaction mechanism, reaction dynamics, and whether and why resulting in an amorphous or crystalline product. This is followed by a discussion of different state-of-the art bottom-up synthesis methodologies, like solvothermal, interfacial, and solid-state synthesis. In the second part, the structure-property relationships in CC linked organic frameworks with representative examples of organocatalysis, photo(electro)catalysis, energy storage and conversion, magnetism, and molecular storage and separation are analyzed. The importance of linkage type, building blocks, topology, and crystallinity of the framework material in connection with the structure-property relationship is highlighted. Finally, brief concluding remarks are presented based on the key development of bottom-up synthetic methods and provide perspectives for future development in this field.
Collapse
Affiliation(s)
- Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Naisa Chandrasekhar
- Centre for Advancing Electronics Dresden (cfaed), Department of Chemistry and Food Chemistry, Dresden University of Technology, Momenstrasse 4, 01069, Dresden, Germany
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
29
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Ohtomo M, Hayashi H, Shiotari A, Kawamura M, Hayashi R, Jippo H, Yamaguchi J, Ohfuchi M, Aratani N, Sugimoto Y, Yamada H, Sato S. On-surface synthesis of hydroxy-functionalized graphene nanoribbons through deprotection of methylenedioxy groups. NANOSCALE ADVANCES 2022; 4:4871-4879. [PMID: 36381511 PMCID: PMC9642360 DOI: 10.1039/d2na00031h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate on-surface deprotection of methylenedioxy groups which yielded graphene nanoribbons (GNRs) with edges functionalized by hydroxy groups. While anthracene trimer precursors functionalized with hydroxy groups did not yield GNRs, it was found that hydroxy groups are first protected as methylenedioxy groups and then deprotected during the cyclo-dehydrogenation process to form GNRs with hydroxy groups. The X-ray photoemission spectroscopy and non-contact atomic force microscopy studies revealed that ∼20% of the methylenedioxy turned into hydroxy groups, while the others were hydrogen-terminated. The first-principles density functional theory (DFT) study on the cyclo-dehydrogenation process was performed to investigate the deprotection mechanism, which indicates that hydrogen atoms emerging during the cyclo-dehydrogenation process trigger the deprotection of methylenedioxy groups. The scanning tunneling spectroscopy study and DFT revealed a significant charge transfer from hydroxy to the Au substrate, causing an interface dipole and the HOMO being closer to the Fermi level when compared with hydrogen-terminated GNR/Au(111). This result demonstrates on-surface deprotection and indicates a possible new route to obtain GNRs with desired edge functionalization, which can be a critical component for high-performance devices.
Collapse
Affiliation(s)
- Manabu Ohtomo
- Fujitsu Research, Fujitsu Limited 10-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0197 Japan
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Mayu Kawamura
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Ryunosuke Hayashi
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Hideyuki Jippo
- Fujitsu Research, Fujitsu Limited 10-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0197 Japan
| | - Junichi Yamaguchi
- Fujitsu Research, Fujitsu Limited 10-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0197 Japan
| | - Mari Ohfuchi
- Fujitsu Research, Fujitsu Limited 10-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0197 Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
| | - Shintaro Sato
- Fujitsu Research, Fujitsu Limited 10-1 Morinosato-Wakamiya Atsugi Kanagawa 243-0197 Japan
| |
Collapse
|
31
|
Yin J, Jacobse PH, Pyle D, Wang Z, Crommie MF, Dong G. Programmable Fabrication of Monodisperse Graphene Nanoribbons via Deterministic Iterative Synthesis. J Am Chem Soc 2022; 144:16012-16019. [PMID: 36017775 DOI: 10.1021/jacs.2c05670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
While enormous progress has been achieved in synthesizing atomically precise graphene nanoribbons (GNRs), the preparation of GNRs with a fully predetermined length and monomer sequence remains an unmet challenge. Here, we report a fabrication method that provides access to structurally diverse and monodisperse "designer" GNRs through utilization of an iterative synthesis strategy, in which a single monomer is incorporated into an oligomer chain during each chemical cycle. Surface-assisted cyclodehydrogenation is subsequently employed to generate the final nanoribbons, and bond-resolved scanning tunneling microscopy is utilized to characterize them.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Peter H Jacobse
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ziyi Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
32
|
Houtsma RSK, Enache M, Havenith RWA, Stöhr M. Length-dependent symmetry in narrow chevron-like graphene nanoribbons. NANOSCALE ADVANCES 2022; 4:3531-3536. [PMID: 36134350 PMCID: PMC9400478 DOI: 10.1039/d2na00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
We report the structural and electronic properties of narrow chevron-like graphene nanoribbons (GNRs), which depending on their length are either mirror or inversion symmetric. Additionally, GNRs of different length can form molecular heterojunctions based on an unusual binding motif.
Collapse
Affiliation(s)
- R S Koen Houtsma
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Mihaela Enache
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Remco W A Havenith
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen 9747AG Groningen The Netherlands
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University Krijgslaan 281 (S3) B-9000 Gent Belgium
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| |
Collapse
|
33
|
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Low dimensional materials have attracted great research interest from both theoretical and experimental point of view. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNTs) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise different edge geometries namely zigzag and armchair among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them are highlighted such as external perturbations and chemical modifications. Few applications of graphene nanoribbon have and chemical modifications. Few applications of graphene nanoribbon have also been briefly discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Surender Pratap
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Vipin Kumar
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
34
|
Zhang Y, Lu J, Li Y, Li B, Ruan Z, Zhang H, Hao Z, Sun S, Xiong W, Gao L, Chen L, Cai J. On‐Surface Synthesis of a Nitrogen‐Doped Graphene Nanoribbon with Multiple Substitutional Sites. Angew Chem Int Ed Engl 2022; 61:e202204736. [DOI: 10.1002/anie.202204736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yong Zhang
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Jianchen Lu
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Baijin Li
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Zilin Ruan
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Hui Zhang
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Zhenliang Hao
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Shijie Sun
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Wei Xiong
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Lei Gao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jinming Cai
- Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
35
|
Wang D, Wang Z, Liu W, Zhong S, Feng YP, Loh KP, Wee ATS. Real-Space Investigation of the Multiple Halogen Bonds by Ultrahigh-Resolution Scanning Probe Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202368. [PMID: 35719029 DOI: 10.1002/smll.202202368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The chemical bond is of central interest in chemistry, and it is of significance to study the nature of intermolecular bonds in real-space. Herein, non-contact atomic force microscopy (nc-AFM) and low-temperature scanning tunneling microscopy (LT-STM) are employed to acquire real-space atomic information of molecular clusters, i.e., monomer, dimer, trimer, tetramer, formed on Au(111). The formation of the various molecular clusters is due to the diversity of halogen bonds. DFT calculation also suggests the formation of three distinct halogen bonds among the molecular clusters, which originates from the noncovalent interactions of Br-atoms with the positive potential H-atoms, neutral potential Br-atoms, and negative potential N-atoms, respectively. This work demonstrates the real-space investigation of the multiple halogen bonds by nc-AFM/LT-STM, indicating the potential use of this technique to study other intermolecular bonds and to understand complex supramolecular assemblies at the atomic/sub-molecular level.
Collapse
Affiliation(s)
- Dingguan Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Zishen Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Wei Liu
- School of Physics, Southeast University, 2 Southeast University Road, Nanjing, China
| | - Siying Zhong
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| |
Collapse
|
36
|
|
37
|
Tenorio M, Moreno C, Febrer P, Castro-Esteban J, Ordejón P, Peña D, Pruneda M, Mugarza A. Atomically Sharp Lateral Superlattice Heterojunctions Built-In Nitrogen-Doped Nanoporous Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110099. [PMID: 35334133 DOI: 10.1002/adma.202110099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nanometer scale lateral heterostructures with atomically sharp band discontinuities can be conceived as the 2D analogues of vertical Van der Waals heterostructures, where pristine properties of each component coexist with interfacial phenomena that result in a variety of exotic quantum phenomena. However, despite considerable advances in the fabrication of lateral heterostructures, controlling their covalent interfaces and band discontinuities with atomic precision, scaling down components and producing periodic, lattice-coherent superlattices still represent major challenges. Here, a synthetic strategy to fabricate nanometer scale, coherent lateral superlattice heterojunctions with atomically sharp band discontinuity is reported. By merging interdigitated arrays of different types of graphene nanoribbons by means of a novel on-surface reaction, superlattices of 1D, and chemically heterogeneous nanoporous junctions are obtained. The latter host subnanometer quantum dipoles and tunneling in-gap states, altogether expected to promote interfacial phenomena such as interribbon excitons or selective photocatalysis.
Collapse
Affiliation(s)
- Maria Tenorio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Cesar Moreno
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Santander, 39005, Spain
| | - Pol Febrer
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jesús Castro-Esteban
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Pablo Ordejón
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Pruneda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
38
|
Zhang Y, Lu J, Li Y, Li B, Ruan Z, Zhang H, Hao Z, Sun S, Xiong W, Gao L, Chen L, Cai J. On‐surface Synthesis of Nitrogen‐doped Graphene Nanoribbon with Multiple Substitutional Sites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Zhang
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Jianchen Lu
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Yang Li
- Jilin University College of Chemistry CHINA
| | - Baijin Li
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Zilin Ruan
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Hui Zhang
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Zhenliang Hao
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Shijie Sun
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Wei Xiong
- Kunming University of Science and Technology - Xinying Campus Faculty of Materials Science and Engineering CHINA
| | - Lei Gao
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| | - Long Chen
- Jilin University College of Chemistry No.2699 Qianjin Street 130012 Changchun CHINA
| | - Jinming Cai
- Kunming University of Science and Technology Faculty of Materials Science and Engineering CHINA
| |
Collapse
|
39
|
Izydorczyk I, Stoica O, Krawiec M, Blieck R, Zuzak R, Stępień M, Echavarren AM, Godlewski S. On-surface synthesis of a phenylene analogue of nonacene. Chem Commun (Camb) 2022; 58:4063-4066. [PMID: 35262162 DOI: 10.1039/d2cc00479h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclobuta[1,2-b:3,4-b']ditetracene - an analogue of nonacene with a cyclobutadiene unit embedded in the central part has been synthesized by the combination of solution and on-surface chemistry. The atomic structure and electronic properties of the product on Au(111) have been determined by high resolution scanning tunnelling microscopy/spectroscopy corroborated by density functional theory calculations. Structural and magnetic parameters derived from theoretical calculations reveal that π conjugation is dominated by radialene-type contribution, with an admixture of cyclobutadiene-like antiaromaticity.
Collapse
Affiliation(s)
- Irena Izydorczyk
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348 Krakow, Poland.
| | - Otilia Stoica
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, 43007 Tarragona, Spain
| | - Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland.
| | - Rémi Blieck
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain.
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348 Krakow, Poland.
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain. .,Departament de Química Organica i Analítica, Universitat Rovira i Virgili, C/Marcell·lí Domingo s/n, 43007 Tarragona, Spain
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348 Krakow, Poland.
| |
Collapse
|
40
|
Pizzochero M, Kaxiras E. Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge. NANO LETTERS 2022; 22:1922-1928. [PMID: 35167308 DOI: 10.1021/acs.nanolett.1c04362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the unconventional π-magnetism at the zigzag edges of graphene holds promise for a wide array of applications, whether and to what degree it plays a role in their chemistry remains poorly understood. Here, we investigate the addition of a hydrogen atom─the simplest yet the most experimentally relevant adsorbate─to zigzag graphene nanoribbons (ZGNRs). We show that the π-magnetism governs the chemistry of ZGNRs, giving rise to a site-dependent reactivity of the carbon atoms and driving the hydrogenation process to the nanoribbon edges. Conversely, the chemisorbed hydrogen atom governs the π-magnetism of ZGNRs, acting as a spin-1/2 paramagnetic center in the otherwise antiferromagnetic ground state and spin-polarizing the charge carriers at the band extrema. Our findings establish a comprehensive picture of the peculiar interplay between chemistry and magnetism that emerges at the zigzag edges of graphene.
Collapse
Affiliation(s)
- Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Dobner C, Li G, Sarker M, Sinitskii A, Enders A. Diffusion-controlled on-surface synthesis of graphene nanoribbon heterojunctions. RSC Adv 2022; 12:6615-6618. [PMID: 35424640 PMCID: PMC8981978 DOI: 10.1039/d2ra01008a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
We report a new diffusion-controlled on-surface synthesis approach for graphene nanoribbons (GNR) consisting of two types of precursor molecules, which exploits distinct differences in the surface mobilities of the precursors. This approach is a step towards a more controlled fabrication of complex GNR heterostructures and should be applicable to the on-surface synthesis of a variety of GNR heterojunctions.
Collapse
Affiliation(s)
- Christoph Dobner
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Gang Li
- Department of Chemistry, University of Nebraska - Lincoln Lincoln NE 68588 USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska - Lincoln Lincoln NE 68588 USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska - Lincoln Lincoln NE 68588 USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska - Lincoln Lincoln NE 68588 USA
| | - Axel Enders
- Physikalisches Institut, Universität Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
42
|
Márquez IR, Ruíz del Árbol N, Urgel JI, Villalobos F, Fasel R, López MF, Cuerva JM, Martín-Gago JA, Campaña AG, Sánchez-Sánchez C. On-Surface Thermal Stability of a Graphenic Structure Incorporating a Tropone Moiety. NANOMATERIALS 2022; 12:nano12030488. [PMID: 35159831 PMCID: PMC8837919 DOI: 10.3390/nano12030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
On-surface synthesis, complementary to wet chemistry, has been demonstrated to be a valid approach for the synthesis of tailored graphenic nanostructures with atomic precision. Among the different existing strategies used to tune the optoelectronic and magnetic properties of these nanostructures, the introduction of non-hexagonal rings inducing out-of-plane distortions is a promising pathway that has been scarcely explored on surfaces. Here, we demonstrate that non-hexagonal rings, in the form of tropone (cycloheptatrienone) moieties, are thermally transformed into phenyl or cyclopentadienone moieties upon an unprecedented surface-mediated retro–Buchner-type reaction involving a decarbonylation or an intramolecular rearrangement of the CO unit, respectively.
Collapse
Affiliation(s)
- Irene R. Márquez
- Departamento Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. Fuentenueva, 18071 Granada, Spain; (I.R.M.); (F.V.); (J.M.C.)
| | - Nerea Ruíz del Árbol
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (N.R.d.Á.); (M.F.L.); (J.A.M.-G.)
| | - José I. Urgel
- Nanotech@surfaces Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (J.I.U.); (R.F.)
| | - Federico Villalobos
- Departamento Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. Fuentenueva, 18071 Granada, Spain; (I.R.M.); (F.V.); (J.M.C.)
| | - Roman Fasel
- Nanotech@surfaces Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (J.I.U.); (R.F.)
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - María F. López
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (N.R.d.Á.); (M.F.L.); (J.A.M.-G.)
| | - Juan M. Cuerva
- Departamento Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. Fuentenueva, 18071 Granada, Spain; (I.R.M.); (F.V.); (J.M.C.)
| | - José A. Martín-Gago
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (N.R.d.Á.); (M.F.L.); (J.A.M.-G.)
| | - Araceli G. Campaña
- Departamento Química Orgánica, Universidad de Granada (UGR), Unidad de Excelencia de Química UEQ, C. U. Fuentenueva, 18071 Granada, Spain; (I.R.M.); (F.V.); (J.M.C.)
- Correspondence: (A.G.C.); (C.S.-S.)
| | - Carlos Sánchez-Sánchez
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (N.R.d.Á.); (M.F.L.); (J.A.M.-G.)
- Correspondence: (A.G.C.); (C.S.-S.)
| |
Collapse
|
43
|
Rizzo D, Jiang J, Joshi D, Veber G, Bronner C, Durr RA, Jacobse PH, Cao T, Kalayjian A, Rodriguez H, Butler P, Chen T, Louie SG, Fischer FR, Crommie MF. Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons. ACS NANO 2021; 15:20633-20642. [PMID: 34842409 PMCID: PMC8717637 DOI: 10.1021/acsnano.1c09503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bottom-up graphene nanoribbons (GNRs) have recently been shown to host nontrivial topological phases. Here, we report the fabrication and characterization of deterministic GNR quantum dots whose orbital character is defined by zero-mode states arising from nontrivial topological interfaces. Topological control was achieved through the synthesis and on-surface assembly of three distinct molecular precursors designed to exhibit structurally derived topological electronic states. Using a combination of low-temperature scanning tunneling microscopy and spectroscopy, we have characterized two GNR topological quantum dot arrangements synthesized under ultrahigh vacuum conditions. Our results are supported by density-functional theory and tight-binding calculations, revealing that the magnitude and sign of orbital hopping between topological zero-mode states can be tuned based on the bonding geometry of the interconnecting region. These results demonstrate the utility of topological zero modes as components for designer quantum dots and advanced electronic devices.
Collapse
Affiliation(s)
- Daniel
J. Rizzo
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Dharati Joshi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gregory Veber
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher Bronner
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Rebecca A. Durr
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ting Cao
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Alin Kalayjian
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Henry Rodriguez
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Paul Butler
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ting Chen
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy
NanoSciences Institute at the University of California Berkeley and
the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy
NanoSciences Institute at the University of California Berkeley and
the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Jacobse PH, Jin Z, Jiang J, Peurifoy S, Yue Z, Wang Z, Rizzo DJ, Louie SG, Nuckolls C, Crommie MF. Pseudo-atomic orbital behavior in graphene nanoribbons with four-membered rings. SCIENCE ADVANCES 2021; 7:eabl5892. [PMID: 34936436 PMCID: PMC8694588 DOI: 10.1126/sciadv.abl5892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The incorporation of nonhexagonal rings into graphene nanoribbons (GNRs) is an effective strategy for engineering localized electronic states, bandgaps, and magnetic properties. Here, we demonstrate the successful synthesis of nanoribbons having four-membered ring (cyclobutadienoid) linkages by using an on-surface synthesis approach involving direct contact transfer of coronene-type precursors followed by thermally assisted [2 + 2] cycloaddition. The resulting coronene-cyclobutadienoid nanoribbons feature a narrow 600-meV bandgap and novel electronic frontier states that can be interpreted as linear chains of effective px and py pseudo-atomic orbitals. We show that these states give rise to exceptional physical properties, such as a rigid indirect energy gap. This provides a previously unexplored strategy for constructing narrow gap GNRs via modification of precursor molecules whose function is to modulate the coupling between adjacent four-membered ring states.
Collapse
Affiliation(s)
- Peter H. Jacobse
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Samuel Peurifoy
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ziqin Yue
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Daniel J. Rizzo
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Steven G. Louie
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Michael F. Crommie
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Gao Y, Chen J, Chen G, Fan C, Liu X. Recent Progress in the Transfer of Graphene Films and Nanostructures. SMALL METHODS 2021; 5:e2100771. [PMID: 34928026 DOI: 10.1002/smtd.202100771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The one-atom-thick graphene has excellent electronic, optical, thermal, and mechanical properties. Currently, chemical vapor deposition (CVD) graphene has received a great deal of attention because it provides access to large-area and uniform films with high-quality. This allows the fabrication of graphene based-electronics, sensors, photonics, and optoelectronics for practical applications. Zero bandgap, however, limits the application of a graphene film as electronic transistor. The most commonly used bottom-up approaches have achieved efficient tuning of the electronic bandgap by customizing well-defined graphene nanostructures. The postgrowth transfer of graphene films/nanostructures to a certain substrate is crucial in utilizing graphene in applicable devices. In this review, the basic growth mechanism of CVD graphene is first introduced. Then, recent advances in various transfer methods of as-grown graphene to target substrates are presented. The fabrication and transfer methods of graphene nanostructures are also provided, and then the transfer-related applications are summarized. At last, the challenging issues and the potential transfer-free approaches are discussed.
Collapse
Affiliation(s)
- Yanjing Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
46
|
Peng W, Wang H, Lu H, Yin L, Wang Y, Grandidier B, Yang D, Pi X. Recent Progress on the Scanning Tunneling Microscopy and Spectroscopy Study of Semiconductor Heterojunctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100655. [PMID: 34337855 DOI: 10.1002/smll.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The band alignment, interface states, interface coupling, and carrier transport of semiconductor heterojunctions (SHs) need to be well understood for the design and fabrication of various important semiconductor structures and devices. Scanning tunneling microscopy (STM) with high spatial resolution and scanning tunneling spectroscopy (STS) with high energy resolution are significantly contributing to the understanding on the important properties of SHs. In this work, the recent progress on the use of STM and STS to study lateral, vertical and bulk SHs is reviewed. The spatial structures of SHs with atomically flat surface have been examined with STM. The electronic band structures (e. g., the band offset, interface state, and space charge region) of SHs are measured with STS. Combined with the spatial structures and the tunneling spectra features, the mechanism for the carrier transport in the SH may be proposed.
Collapse
Affiliation(s)
- Wenbing Peng
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Haolin Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hui Lu
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Lei Yin
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yue Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bruno Grandidier
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, Lille, 59000, France
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
47
|
Pizzochero M, Tepliakov NV, Mostofi AA, Kaxiras E. Electrically Induced Dirac Fermions in Graphene Nanoribbons. NANO LETTERS 2021; 21:9332-9338. [PMID: 34714095 DOI: 10.1021/acs.nanolett.1c03596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical codopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac semimetallic phases in otherwise semiconducting graphene-like nanoribbons.
Collapse
Affiliation(s)
- Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nikita V Tepliakov
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Center for Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Arash A Mostofi
- Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Efthimios Kaxiras
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
48
|
Preis T, Vrbica S, Eroms J, Repp J, van Ruitenbeek JM. Current-Induced One-Dimensional Diffusion of Co Adatoms on Graphene Nanoribbons. NANO LETTERS 2021; 21:8794-8799. [PMID: 34652923 PMCID: PMC8554795 DOI: 10.1021/acs.nanolett.1c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
One-dimensional diffusion of Co adatoms on graphene nanoribbons has been induced and investigated by means of scanning tunnelling microscopy (STM). To this end, the nanoribbons and the Co adatoms have been imaged before and after injecting current pulses into the nanoribbons, with the STM tip in direct contact with the ribbon. We observe current-induced motion of the Co atoms along the nanoribbons, which is approximately described by a distribution expected for a thermally activated one-dimensional random walk. This indicates that the nanoribbons reach temperatures far beyond 100 K, which is well above the temperature of the underlying Au substrate. This model system can be developed further for the study of electromigration at the single-atom level.
Collapse
Affiliation(s)
- Tobias Preis
- Institute
of Experimental and Applied Physics, University
of Regensburg, 93040 Regensburg, Germany
| | - Sasha Vrbica
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Jonathan Eroms
- Institute
of Experimental and Applied Physics, University
of Regensburg, 93040 Regensburg, Germany
| | - Jascha Repp
- Institute
of Experimental and Applied Physics, University
of Regensburg, 93040 Regensburg, Germany
| | - Jan M. van Ruitenbeek
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
49
|
Peng X, Mahalingam H, Dong S, Mutombo P, Su J, Telychko M, Song S, Lyu P, Ng PW, Wu J, Jelínek P, Chi C, Rodin A, Lu J. Visualizing designer quantum states in stable macrocycle quantum corrals. Nat Commun 2021; 12:5895. [PMID: 34625542 PMCID: PMC8501084 DOI: 10.1038/s41467-021-26198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Creating atomically precise quantum architectures with high digital fidelity and desired quantum states is an important goal in a new era of quantum technology. The strategy of creating these quantum nanostructures mainly relies on atom-by-atom, molecule-by-molecule manipulation or molecular assembly through non-covalent interactions, which thus lack sufficient chemical robustness required for on-chip quantum device operation at elevated temperature. Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topology-controlled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.
Collapse
Affiliation(s)
- Xinnan Peng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | | | - Shaoqiang Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic
| | - Jie Su
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pei Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, 78371, Czech Republic.
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| | - Aleksandr Rodin
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
50
|
Tahir U, Shim YB, Kamran MA, Kim DI, Jeong MY. Nanofabrication Techniques: Challenges and Future Prospects. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:4981-5013. [PMID: 33875085 DOI: 10.1166/jnn.2021.19327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofabrication of functional micro/nano-features is becoming increasingly relevant in various electronic, photonic, energy, and biological devices globally. The development of these devices with special characteristics originates from the integration of low-cost and high-quality micro/nano-features into 3D-designs. Great progress has been achieved in recent years for the fabrication of micro/nanostructured based devices by using different imprinting techniques. The key problems are designing techniques/approaches with adequate resolution and consistency with specific materials. By considering optical device fabrication on the large-scale as a context, we discussed the considerations involved in product fabrication processes compatibility, the feature's functionality, and capability of bottom-up and top-down processes. This review summarizes the recent developments in these areas with an emphasis on established techniques for the micro/nano-fabrication of 3-dimensional structured devices on large-scale. Moreover, numerous potential applications and innovative products based on the large-scale are also demonstrated. Finally, prospects, challenges, and future directions for device fabrication are addressed precisely.
Collapse
Affiliation(s)
- Usama Tahir
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Young Bo Shim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Muhammad Ahmad Kamran
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Doo-In Kim
- Department of Opto-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|