1
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 PMCID: PMC11725163 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
2
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Xu S, Song S, Jiang H, Wu G, Chen Y. Effects of LAZY family genes on shoot gravitropism in Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112234. [PMID: 39216696 DOI: 10.1016/j.plantsci.2024.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Plant architecture is an important agronomic trait to determine the biomass and sward structure of forage grass. The IGT family plays a pivotal role in plant gravitropism, encompassing both the gravitropic response and the modulation of plant architecture. We have previously shown that LjLAZY3, one of the IGT genes, plays a distinct role in root gravitropism in L. japonicus. However, the function of LAZY proteins on shoot gravitropism in this species is poorly understood. In this study, we identified nine IGT genes in the L. japonicus genome, which have been categorized into four clades based on the phylogenetic relationships of IGT proteins from 18 legumes: LAZY1, NGR (NEGATIVE GRAVITROPIC RESPONSE OF ROOTS), IGT-LIKE, and TAC1. We found that LAZY genes in the first three clades have demonstrated distinct role for modulating plant gravitropism in L. japonicus with specific impacts as follows. Mutation of the LAZY1 gene, LjLAZY1, defected the gravitropic response of hypocotyl without impacting the main stem's branch angle. In contrast, the overexpression of the NGR gene, LjLAZY3, substantially modulated the shoot's gravitropism, leading to narrower lateral branch angles. Additionally, it enhanced the shoots' gravitropic response. The overexpression of another NGR gene, LjLAZY4, specifically reduced the main stem's branch angle and decreased plant stature without affecting the shoot gravitropic response. The phenotype of IGT-LIKE gene LjLAZY2 overexpression is identical to that of LjLAZY4. While overexpression of the IGT-LIKE gene LjLAZY5 did not induce any observable changes in branch angle, plant height, or gravitropic response. Furthermore, the LjLAZYs were selectively interacted with different BRXL and RLD proteins, which should the important factor to determine their different functions in controlling organ architecture in L. japonicus. Our results deepen understanding of the LjLAZY family and its potential for plant architecture improvement in L. japonicus.
Collapse
Affiliation(s)
- Shaoming Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shusi Song
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
4
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
5
|
Lian W, Zhang L, Wang C, Wu S, He S, Lei J, Zhang Y, You L, Zheng L, Luo X, Ye Z, Hu Z, Wang G, Zhu Y, Li C, Liu J. Systematic identification and functional analysis of root meristem growth factors (RGFs) reveals role of PgRGF1 in modulation of root development and ginsenoside production in Panax ginseng. Int J Biol Macromol 2024; 274:133446. [PMID: 38945337 DOI: 10.1016/j.ijbiomac.2024.133446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Panax ginseng C.A. Mey., known for its medicinal and dietary supplement properties, primarily contains pharmacologically active ginsenosides. However, the regulatory mechanisms linking ginseng root development with ginsenoside biosynthesis are still unclear. Root meristem growth factors (RGFs) are crucial for regulating plant root growth. In our study, we identified five ginseng RGF peptide sequences from the ginseng genome and transcriptome libraries. We treated Arabidopsis and ginseng adventitious roots with exogenous Panax ginseng RGFs (PgRGFs) to assess their activities. Our results demonstrate that PgRGF1 influences gravitropic responses and reduces lateral root formation in Arabidopsis. PgRGF1 has been found to restrict the number and length of ginseng adventitious root branches in ginseng. Given the medicinal properties of ginseng, We determined the ginsenoside content and performed transcriptomic analysis of PgRGF1-treated ginseng adventitious roots. Specifically, the total ginsenoside content in ginseng adventitious roots decreased by 19.98 % and 63.71 % following treatments with 1 μM and 10 μM PgRGF1, respectively, compared to the control. The results revealed that PgRGF1 affects the accumulation of ginsenosides by regulating the expression of genes associated with auxin transportation and ginsenoside biosynthesis. These findings suggest that PgRGF1, as a peptide hormone regulator in ginseng, can modulate adventitious root growth and ginsenoside accumulation.
Collapse
Affiliation(s)
- Weipeng Lian
- School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Xinjiang, Shihezi 832000, China
| | - Linfan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenglin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiqi Wu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Shan He
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinlin Lei
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Lei You
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiangyin Luo
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhengxiu Ye
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Ziyao Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Zhu
- School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Xinjiang, Shihezi 832000, China.
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China.
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Kohler AR, Scheil A, Hill JL, Allen JR, Al-Haddad JM, Goeckeritz CZ, Strader LC, Telewski FW, Hollender CA. Defying gravity: WEEP promotes negative gravitropism in peach trees by establishing asymmetric auxin gradients. PLANT PHYSIOLOGY 2024; 195:1229-1255. [PMID: 38366651 PMCID: PMC11142379 DOI: 10.1093/plphys/kiae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.
Collapse
Affiliation(s)
- Andrea R Kohler
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Scheil
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph L Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey R Allen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jameel M Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Kulich I, Schmid J, Teplova A, Qi L, Friml J. Rapid translocation of NGR proteins driving polarization of PIN-activating D6 protein kinase during root gravitropism. eLife 2024; 12:RP91523. [PMID: 38441122 PMCID: PMC10942638 DOI: 10.7554/elife.91523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.
Collapse
Affiliation(s)
- Ivan Kulich
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Julia Schmid
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Linlin Qi
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
9
|
Bhurtel A, Salifu E, Siddiqua S. Composite biomediated engineering approaches for improving problematic soils: Potentials and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169808. [PMID: 38184265 DOI: 10.1016/j.scitotenv.2023.169808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Several conventional chemical stabilizers are used for soil stabilization, among which cement is widely adopted. However, the high energy consumption and environmental challenges associated with these stabilizers have necessitated the transition toward the adoption/deployment of eco-friendly approaches for soil stabilization. Biomediated techniques are sustainable soil improvement methods adopting less toxic microorganisms, enzymes, or polymers for cementing soil. However, these processes also have several drawbacks, such as slow hardening, environmental impact, high cost, and lack of compatibility with different types of soils. It is hypothesized that these limitations may be overcome by exploring the prospects and opportunities offered by hybrid technological approaches involving the integration of nontraditional stabilizers and microbial-induced biomineralization processes for improving problematic soils. This paper discusses selected previous studies integrating different technologies and their benefits and challenges. The emerging fungi-based bio-mediation techniques and the possibility of forming sustainable fungal-based biocomposites to improve problematic soils are also highlighted.
Collapse
Affiliation(s)
- Akanksha Bhurtel
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Emmanuel Salifu
- School of Sustainable Engineering and the Built Environment, Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ 85287-3005, United States of America.
| | - Sumi Siddiqua
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
10
|
He W, Truong HA, Zhang L, Cao M, Arakawa N, Xiao Y, Zhong K, Hou Y, Busch W. Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Rep 2024; 43:113763. [PMID: 38358890 PMCID: PMC10949360 DOI: 10.1016/j.celrep.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.
Collapse
Affiliation(s)
- Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai An Truong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Neal Arakawa
- Environmental and Complex Analysis Laboratory (ECAL), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaizhen Zhong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Waite JM, Dardick C. IGT/LAZY genes are differentially influenced by light and required for light-induced change to organ angle. BMC Biol 2024; 22:8. [PMID: 38233837 PMCID: PMC10795295 DOI: 10.1186/s12915-024-01813-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC). RESULTS Here, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling. CONCLUSIONS Collectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.
Collapse
Affiliation(s)
- Jessica Marie Waite
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA.
- Present Address: USDA Tree Fruit Research Laboratory, 1104 N Western Avenue, Wenatchee, WA, USA.
| | - Christopher Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA
| |
Collapse
|
12
|
Farkas S, Kleine-Vehn J. Gravitropism: The LAZY way of intracellular hitchhiking. Curr Biol 2023; 33:R1224-R1226. [PMID: 38052169 DOI: 10.1016/j.cub.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Plant gravitropism has fascinated scientists for centuries. A new study provides a major mechanistic update of the so-called starch/statolith hypothesis, revealing how gravity perception is converted into a physiological response.
Collapse
Affiliation(s)
- Sophie Farkas
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany.
| | - Jürgen Kleine-Vehn
- Institute of Biology II, Chair of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany; Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
13
|
Chen J, Yu R, Li N, Deng Z, Zhang X, Zhao Y, Qu C, Yuan Y, Pan Z, Zhou Y, Li K, Wang J, Chen Z, Wang X, Wang X, He SN, Dong J, Deng XW, Chen H. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 2023; 186:4788-4802.e15. [PMID: 37741279 PMCID: PMC10615846 DOI: 10.1016/j.cell.2023.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.
Collapse
Affiliation(s)
- Jiayue Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Na Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yaran Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengfu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yanfang Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhexian Pan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yangyang Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kunlun Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhiren Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiaoyi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolian Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shu-Nan He
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
14
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
15
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
16
|
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa HY, Toyota M, Higaki T, Morita MT. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023; 381:1006-1010. [PMID: 37561884 DOI: 10.1126/science.adh9978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Shogo Mori
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yasuko Hashiguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| |
Collapse
|
17
|
Li J, Wang Z, Song C, Nie Y, Li H, Kong M, Cong H, Wang S, Yin N, Hu L, Bermudez RS, He W. Identification of LsLAZY1 gene in Leymus secalinus and validation of its function in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:783-790. [PMID: 37520815 PMCID: PMC10382429 DOI: 10.1007/s12298-023-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023]
Abstract
Root systems anchor plants to the substrate in addition to transporting water and nutrients, playing a fundamental role in plant survival. The LAZY1 gene mediates gravity signal transduction and participates in root and shoot development and auxin flow in many plants. In this study, a regulator, LsLAZY1, was identified from Leymus secalinus based on previous transcriptome data. The conserved domain and evolutionary relationship were further analyzed comprehensively. The role of LsLAZY1 in root development was investigated by genetic transformation and associated gravity response and phototropism assay. Subcellular localization showed that LsLAZY1 was localized in the nucleus. LsLAZY1 overexpression in Arabidopsis thaliana (Col-0) increased the length of the primary roots (PRs) and the number of lateral roots (LRs) compared to Col-0. Furthermore, 35S:LsLAZY1 transgenic seedlings affected auxin transport and showed a stronger gravitational and phototropic responses. It also promoted auxin accumulation at the root tips. These results indicated that LsLAZY1 affects root development and auxin transport. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01326-4.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, 271000 Shandong China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot City, 026000 China
| | - Yanshun Nie
- Fengtang Ecological Agriculture Technology Research and Development Co. LTD, Tai’an, 271000 Shandong China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Mengmeng Kong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Hanhan Cong
- School of Information Science and Engineering, University of Jinan, Jinan, 250022 China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Ning Yin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
18
|
Hu J, Chen H, Wang H, Zheng H, Cai W, Xu P. A protocol for measuring the response of Arabidopsis roots to gravity and treatment for simulated microgravity. STAR Protoc 2023; 4:102099. [PMID: 36853717 PMCID: PMC9937981 DOI: 10.1016/j.xpro.2023.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/03/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
We present a protocol to quantify the response of both normal and mutant Arabidopsis seedlings to gravity and simulated microgravity under earth-normal gravity conditions. We describe the steps to simulate microgravity using a three-dimensional (3D) clinostat, which changes the rate and direction at random and consistently rotates the axis horizontally and vertically to counteract the standard gravity at the Earth's surface. We then detail the gravity stimulation experiment, followed by the assessment of root responses using ImageJ-based analysis. For complete details on the use and execution of this protocol, please refer to Xu et al. (2022).1.
Collapse
Affiliation(s)
- Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiqiong Zheng
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China.
| | - Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
19
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
20
|
Aizezi Y, Xie Y, Guo H, Jiang K. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081285. [PMID: 36013464 PMCID: PMC9410295 DOI: 10.3390/life12081285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| |
Collapse
|
21
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
22
|
Sun C, Liang W, Yan K, Xu D, Qin T, Fiaz S, Kear P, Bi Z, Liu Y, Liu Z, Zhang J, Bai J. Expression of Potato StDRO1 in Arabidopsis Alters Root Architecture and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:836063. [PMID: 35665176 PMCID: PMC9161210 DOI: 10.3389/fpls.2022.836063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Potato (Solanum tuberosum L) is the third important crop for providing calories to a large human population, and is considered sensitive to moderately sensitive to drought stress conditions. The development of drought-tolerant, elite varieties of potato is a challenging task, which can be achieved through molecular breeding. Recently, the DEEPER ROOTING 1 (DRO1) gene has been identified in rice, which influences plant root system and regulates grain yield under drought stress conditions. The potato StDRO1 protein is mainly localized in the plasma membrane of tobacco leaf cells, and overexpression analysis of StDRO1 in Arabidopsis resulted in an increased lateral root number, but decreased lateral root angle, lateral branch angle, and silique angle. Additionally, the drought treatment analysis indicated that StDRO1 regulated drought tolerance and rescued the defective root architecture and drought-tolerant phenotypes of Atdro1, an Arabidopsis AtDRO1 null mutant. Furthermore, StDRO1 expression was significantly higher in the drought-tolerant potato cultivar "Unica" compared to the drought-sensitive cultivar "Atlantic." The transcriptional response of StDRO1 under drought stress occurred significantly earlier in Unica than in Atlantic. Collectively, the outcome of the present investigation elucidated the role of DRO1 function in the alternation of root architecture, which potentially acts as a key gene in the development of a drought stress-tolerant cultivar. Furthermore, these findings will provide the theoretical basis for molecular breeding of drought-tolerant potato cultivars for the farming community.
Collapse
Affiliation(s)
- Chao Sun
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjun Liang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Derong Xu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Tianyuan Qin
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Furutani M, Morita MT. LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. PLANT PHYSIOLOGY 2021; 187:1087-1095. [PMID: 34734273 PMCID: PMC8566294 DOI: 10.1093/plphys/kiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Gravity signaling components contribute to the control of root gravitropic set-point angle through protein polarization relay within columella.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444-8556, Japan
| |
Collapse
|
24
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
25
|
Huang L, Wang W, Zhang N, Cai Y, Liang Y, Meng X, Yuan Y, Li J, Wu D, Wang Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. THE NEW PHYTOLOGIST 2021; 231:1073-1087. [PMID: 34042184 DOI: 10.1111/nph.17426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive. We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism. The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport. Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.
Collapse
Affiliation(s)
- Linzhou Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yueyue Cai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangbing Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundong Yuan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
26
|
Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, Zhang Y, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. HORTICULTURE RESEARCH 2021; 8:131. [PMID: 34059642 PMCID: PMC8167129 DOI: 10.1038/s41438-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| | - Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
27
|
Waite JM, Dardick C. The roles of the IGT gene family in plant architecture: past, present, and future. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101983. [PMID: 33422965 DOI: 10.1016/j.pbi.2020.101983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 05/03/2023]
Abstract
Genetic improvement of architectural traits offers tremendous opportunities to dramatically improve crop densities, productivity, and ultimately sustainability. Among these, the orientation, or gravitropic set point angle (GSA), of plant organs is critical to optimize crop profiles, light capture, and nutrient acquisition. Mutant GSA phenotypes have been studied in plants since the 1930's but only recently have the underlying genes been identified. Many of these genes have turned out to fall within the IGT (LAZY1/DRO1/TAC1) family, which initially was not previously recognized due to the lack of sequence conservation of homologous genes across species. Here we discuss recent progress on IGT family genes in various plant species over the past century, review possible functional mechanisms, and provide further analysis of their evolution in land plants and their past and future roles in crop domestication.
Collapse
Affiliation(s)
- Jessica Marie Waite
- USDA Tree Fruit Research Laboratory, 1104 N Western Avenue, Wenatchee, WA, USA
| | - Christopher Dardick
- United States Department of Agriculture (USDA) Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, USA.
| |
Collapse
|
28
|
Jiao Z, Du H, Chen S, Huang W, Ge L. LAZY Gene Family in Plant Gravitropism. FRONTIERS IN PLANT SCIENCE 2021; 11:606241. [PMID: 33613583 PMCID: PMC7893674 DOI: 10.3389/fpls.2020.606241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 05/26/2023]
Abstract
Adapting to the omnipresent gravitational field was a fundamental basis driving the flourishing of terrestrial plants on the Earth. Plants have evolved a remarkable capability that not only allows them to live and develop within the Earth's gravity field, but it also enables them to use the gravity vector to guide the growth of roots and shoots, in a process known as gravitropism. Triggered by gravistimulation, plant gravitropism is a highly complex, multistep process that requires many organelles and players to function in an intricate coordinated way. Although this process has been studied for several 100 years, much remains unclear, particularly the early events that trigger the relocation of the auxin efflux carrier PIN-FORMED (PIN) proteins, which presumably leads to the asymmetrical redistribution of auxin. In the past decade, the LAZY gene family has been identified as a crucial player that ensures the proper redistribution of auxin and a normal tropic response for both roots and shoots upon gravistimulation. LAZY proteins appear to be participating in the early steps of gravity signaling, as the mutation of LAZY genes consistently leads to altered auxin redistribution in multiple plant species. The identification and characterization of the LAZY gene family have significantly advanced our understanding of plant gravitropism, and opened new frontiers of investigation into the novel molecular details of the early events of gravitropism. Here we review current knowledge of the LAZY gene family and the mechanism modulated by LAZY proteins for controlling both roots and shoots gravitropism. We also discuss the evolutionary significance and conservation of the LAZY gene family in plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Huan Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proc Natl Acad Sci U S A 2021; 118:2012892118. [PMID: 33443178 DOI: 10.1073/pnas.2012892118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We hereby show that root systems adapt to a spatially discontinuous pattern of water availability even when the gradients of water potential across them are vanishingly small. A paper microfluidic approach allowed us to expose the entire root system of Brassica rapa plants to a square array of water sources, separated by dry areas. Gradients in the concentration of water vapor across the root system were as small as 10-4⋅mM⋅m-1 (∼4 orders of magnitude smaller than in conventional hydrotropism assays). Despite such minuscule gradients (which greatly limit the possible influence of the well-understood gradient-driven hydrotropic response), our results show that 1) individual roots as well as the root system as a whole adapt to the pattern of water availability to maximize access to water, and that 2) this adaptation increases as water sources become more rare. These results suggest that either plant roots are more sensitive to water gradients than humanmade water sensors by 3-5 orders of magnitude, or they might have developed, like other organisms, mechanisms for water foraging that allow them to find water in the absence of an external gradient in water potential.
Collapse
|
30
|
Xu F, Xue S, Deng L, Zhang S, Li Y, Zhao X. The piperazine compound ASP activates an auxin response in Arabidopsis thaliana. BMC Genomics 2020; 21:788. [PMID: 33176686 PMCID: PMC7659159 DOI: 10.1186/s12864-020-07203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Auxins play key roles in the phytohormone network. Early auxin response genes in the AUX/IAA, SAUR, and GH3 families show functional redundancy, which makes it very difficult to study the functions of individual genes based on gene knockout analysis or transgenic technology. As an alternative, chemical genetics provides a powerful approach that can be used to address questions relating to plant hormones. Results By screening a small-molecule chemical library of compounds that can induce abnormal seedling and vein development, we identified and characterized a piperazine compound 1-[(4-bromophenoxy) acetyl]-4-[(4-fluorophenyl) sulfonyl] piperazine (ASP). The Arabidopsis DR5::GFP line was used to assess if the effects mentioned were correlated with the auxin response, and we accordingly verified that ASP altered the auxin-related pathway. Subsequently, we examined the regulatory roles of ASP in hypocotyl and root development, auxin distribution, and changes in gene expression. Following ASP treatment, we detected hypocotyl elongation concomitant with enhanced cell elongation. Furthermore, seedlings showed retarded primary root growth, reduced gravitropism and increased root hair development. These phenotypes were associated with an increased induction of DR5::GUS expression in the root/stem transition zone and root tips. Auxin-related mutants including tir1–1, aux1–7 and axr2–1 showed phenotypes with different root-development pattern from that of the wild type (Col-0), and were insensitive to ASP. Confocal images of propidium iodide (PI)-stained root tip cells showed no detectable damage by ASP. Furthermore, RT-qPCR analyses of two other genes, namely, Ethylene Response Factor (ERF115) and Mediator 18 (MED18), which are related to cell regeneration and damage, indicated that the ASP inhibitory effect on root growth was not attributable to toxicity. RT-qPCR analysis provided further evidence that ASP induced the expression of early auxin-response-related genes. Conclusions ASP altered the auxin response pathway and regulated Arabidopsis growth and development. These results provide a basis for dissecting specific molecular components involved in auxin-regulated developmental processes and offer new opportunities to discover novel molecular players involved in the auxin response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07203-8.
Collapse
Affiliation(s)
- Fengyang Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shuqi Xue
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Limeng Deng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Sufen Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xin Zhao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
31
|
Su SH, Keith MA, Masson PH. Gravity Signaling in Flowering Plant Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1290. [PMID: 33003550 PMCID: PMC7601833 DOI: 10.3390/plants9101290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Roots typically grow downward into the soil where they anchor the plant and take up water and nutrients necessary for plant growth and development. While the primary roots usually grow vertically downward, laterals often follow a gravity set point angle that allows them to explore the surrounding environment. These responses can be modified by developmental and environmental cues. This review discusses the molecular mechanisms that govern root gravitropism in flowering plant roots. In this system, the primary site of gravity sensing within the root cap is physically separated from the site of curvature response at the elongation zone. Gravity sensing involves the sedimentation of starch-filled plastids (statoliths) within the columella cells of the root cap (the statocytes), which triggers a relocalization of plasma membrane-associated PIN auxin efflux facilitators to the lower side of the cell. This process is associated with the recruitment of RLD regulators of vesicular trafficking to the lower membrane by LAZY proteins. PIN relocalization leads to the formation of a lateral gradient of auxin across the root cap. Upon transmission to the elongation zone, this auxin gradient triggers a downward curvature. We review the molecular mechanisms that control this process in primary roots and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture, soil exploration and plant adaptation to stressful environments.
Collapse
Affiliation(s)
| | | | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA; (S.-H.S.); (M.A.K.)
| |
Collapse
|
32
|
Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci U S A 2020; 117:21242-21250. [PMID: 32817523 PMCID: PMC7474696 DOI: 10.1073/pnas.2005911117] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The root system architecture (RSA) of crops can affect their production, particularly in abiotic stress conditions, such as with drought, waterlogging, and salinity. Salinity is a growing problem worldwide that negatively impacts on crop productivity, and it is believed that yields could be improved if RSAs that enabled plants to avoid saline conditions were identified. Here, we have demonstrated, through the cloning and characterization of qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1), that a shallower root growth angle (RGA) could enhance rice yields in saline paddies. qSOR1 is negatively regulated by auxin, predominantly expressed in root columella cells, and involved in the gravitropic responses of roots. qSOR1 was found to be a homolog of DRO1 (DEEPER ROOTING 1), which is known to control RGA. CRISPR-Cas9 assays revealed that other DRO1 homologs were also involved in RGA. Introgression lines with combinations of gain-of-function and loss-of-function alleles in qSOR1 and DRO1 demonstrated four different RSAs (ultra-shallow, shallow, intermediate, and deep rooting), suggesting that natural alleles of the DRO1 homologs could be utilized to control RSA variations in rice. In saline paddies, near-isogenic lines carrying the qSOR1 loss-of-function allele had soil-surface roots (SOR) that enabled rice to avoid the reducing stresses of saline soils, resulting in increased yields compared to the parental cultivars without SOR. Our findings suggest that DRO1 homologs are valuable targets for RSA breeding and could lead to improved rice production in environments characterized by abiotic stress.
Collapse
|
33
|
Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:18840-18848. [PMID: 32690706 DOI: 10.1073/pnas.2005871117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light and gravity are two key environmental factors that control plant growth and architecture. However, the molecular basis of the coordination of light and gravity signaling in plants remains obscure. Here, we report that two classes of transcription factors, PHYTOCHROME INTERACTING FACTORS (PIFs) and ELONGATED HYPOCOTYL5 (HY5), can directly bind and activate the expression of LAZY4, a positive regulator of gravitropism in both shoots and roots in Arabidopsis In hypocotyls, light promotes degradation of PIFs to reduce LAZY4 expression, which inhibits the negative gravitropism of hypocotyls. LAZY4 overexpression can partially rescue the negative gravitropic phenotype of pifq in the dark without affecting amyloplast development. Our identification of the PIFs-LAZY4 regulatory module suggests the presence of another role for PIF proteins in gravitropism, in addition to a previous report demonstrating that PIFs positively regulate amyloplast development to promote negative gravitropism in hypocotyls. In roots, light promotes accumulation of HY5 proteins to activate expression of LAZY4, which promotes positive gravitropism in roots. Together, our data indicate that light exerts opposite regulation of LAZY4 expression in shoots and roots by mediating the protein levels of PIFs and HY5, respectively, to inhibit the negative gravitropism of shoots and promote positive gravitropism of roots in Arabidopsis.
Collapse
|
34
|
Waidmann S, Kleine‐Vehn J. Asymmetric cytokinin signaling opposes gravitropism in roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:882-886. [PMID: 32233010 PMCID: PMC7383806 DOI: 10.1111/jipb.12929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/24/2020] [Indexed: 05/03/2023]
Abstract
Plants depend on gravity to provide the constant landmark for downward root growth and upward shoot growth. The phytohormone auxin and its cell-to-cell transport machinery are central determinants ensuring gravitropic growth. Statolith sedimentation toward gravity is sensed in specialized cells. This positional cue is translated into the polar distribution of PIN auxin efflux carriers at the plasma membrane, leading to asymmetric auxin distribution and consequently, differential growth and organ bending. While we have started to understand the general principles of how primary organs execute gravitropism, we currently lack basic understanding of how lateral plant organs can defy gravitropic responses. Here we briefly review the establishment of the oblique gravitropic set point angle in lateral roots and particularly discuss the emerging role of asymmetric cytokinin signaling as a central anti-gravitropic signal. Differential cytokinin signaling is co-opted in gravitropic lateral and hydrotropic primary roots to counterbalance gravitropic root growth.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life Sciences (BOKU)Muthgasse 18Vienna1190Austria
| | - Jürgen Kleine‐Vehn
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life Sciences (BOKU)Muthgasse 18Vienna1190Austria
| |
Collapse
|
35
|
Kawamoto N, Kanbe Y, Nakamura M, Mori A, Terao Morita M. Gravity-Sensing Tissues for Gravitropism Are Required for "Anti-Gravitropic" Phenotypes of Lzy Multiple Mutants in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E615. [PMID: 32408582 PMCID: PMC7286026 DOI: 10.3390/plants9050615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
Plant posture is controlled by various environmental cues, such as light, temperature, and gravity. The overall architecture is determined by the growth angles of lateral organs, such as roots and branches. The branch growth angle affected by gravity is known as the gravitropic setpoint angle (GSA), and it has been proposed that the GSA is determined by balancing two opposing growth components: gravitropism and anti-gravitropic offset (AGO). The molecular mechanisms underlying gravitropism have been studied extensively, but little is known about the nature of the AGO. Recent studies reported the importance of LAZY1-LIKE (LZY) family genes in the signaling process for gravitropism, such that loss-of-function mutants of LZY family genes resulted in reversed gravitropism, which we term it here as the "anti-gravitropic" phenotype. We assume that this peculiar phenotype manifests as the AGO due to the loss of gravitropism, we characterized the "anti-gravitropic" phenotype of Arabidopsis lzy multiple mutant genetically and physiologically. Our genetic interaction analyses strongly suggested that gravity-sensing cells are required for the "anti-gravitropic" phenotype in roots and lateral branches. We also show that starch-filled amyloplasts play a significant role in the "anti-gravitropic" phenotype, especially in the root of the lzy multiple mutant.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| | - Yuta Kanbe
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan; (Y.K.); (A.M.)
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| | - Akiko Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan; (Y.K.); (A.M.)
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444–8556, Japan; (N.K.); (M.N.)
| |
Collapse
|
36
|
Waite JM, Collum TD, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. PLANT MOLECULAR BIOLOGY 2020; 103:197-210. [PMID: 32130643 PMCID: PMC7170825 DOI: 10.1007/s11103-020-00984-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
DEEPER ROOTING 1 (DRO1) contributes to the downward gravitropic growth trajectory of roots upstream of lateral auxin transport in monocots and dicots. Loss of DRO1 function leads to horizontally oriented lateral roots and altered gravitropic set point angle, while loss of all three DRO family members results in upward, vertical root growth. Here, we attempt to dissect the roles of AtDRO1 by analyzing expression, protein localization, auxin gradient formation, and auxin responsiveness in the atdro1 mutant. Current evidence suggests AtDRO1 is predominantly a membrane-localized protein. Here we show that VENUS-tagged AtDRO1 driven by the native AtDRO1 promoter complemented an atdro1 Arabidopsis mutant and the protein was localized in root tips and detectable in nuclei. atdro1 primary and lateral roots showed impairment in establishing an auxin gradient upon gravistimulation as visualized with DII-VENUS, a sensor for auxin signaling and proxy for relative auxin distribution. Additionally, PIN3 domain localization was not significantly altered upon gravistimulation in atdro1 primary and lateral roots. RNA-sequencing revealed differential expression of known root development-related genes in atdro1 mutants. atdro1 lateral roots were able to respond to exogenous auxin and AtDRO1 gene expression levels in root tips were unaffected by the addition of auxin. Collectively, the data suggest that nuclear localization may be important for AtDRO1 function and suggests a more nuanced role for DRO1 in regulating auxin-mediated changes in lateral branch angle. KEY MESSAGE: DEEPER ROOTING 1 (DRO1) when expressed from its native promoter is predominately localized in Arabidopsis root tips, detectable in nuclei, and impacts auxin gradient formation.
Collapse
Affiliation(s)
- Jessica M Waite
- Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Tamara D Collum
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| | - Chris Dardick
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA.
| |
Collapse
|
37
|
Opposing influences of TAC1 and LAZY1 on Lateral Shoot Orientation in Arabidopsis. Sci Rep 2020; 10:6051. [PMID: 32269265 PMCID: PMC7142156 DOI: 10.1038/s41598-020-62962-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
TAC1 and LAZY1 are members of a gene family that regulates lateral shoot orientation in plants. TAC1 promotes outward orientations in response to light, while LAZY1 promotes upward shoot orientations in response to gravity via altered auxin transport. We performed genetic, molecular, and biochemical assays to investigate possible interactions between these genes. In Arabidopsis they were expressed in similar tissues and double mutants revealed the wide-angled lazy1 branch phenotype, indicating it is epistatic to the tac1 shoot phenotype. Surprisingly, the lack of TAC1 did not influence gravitropic shoot curvature responses. Combined, these results suggest TAC1 might negatively regulate LAZY1 to promote outward shoot orientations. However, additional results revealed that TAC1- and LAZY1 influence on shoot orientation is more complex than a simple direct negative regulatory pathway. Transcriptomes of Arabidopsis tac1 and lazy1 mutants compared to wild type under normal and gravistimulated conditions revealed few overlapping differentially expressed genes. Overexpression of each gene did not result in major branch angle differences. Shoot tip hormone levels were similar between tac1, lazy1, and Col, apart from exceptionally elevated levels of salicylic acid in lazy1. The data presented here provide a foundation for future study of TAC1 and LAZY1 regulation of shoot architecture.
Collapse
|
38
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
39
|
Furutani M, Hirano Y, Nishimura T, Nakamura M, Taniguchi M, Suzuki K, Oshida R, Kondo C, Sun S, Kato K, Fukao Y, Hakoshima T, Morita MT. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat Commun 2020; 11:76. [PMID: 31900388 PMCID: PMC6941992 DOI: 10.1038/s41467-019-13729-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular β-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshinori Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Masatoshi Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kanako Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryuichiro Oshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chiemi Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Song Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kagayaki Kato
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Hakoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan.
| |
Collapse
|
40
|
Chen Y, Xu S, Tian L, Liu L, Huang M, Xu X, Song G, Wu P, Sato S, Jiang H, Wu G. LAZY3 plays a pivotal role in positive root gravitropism in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:168-177. [PMID: 31559427 PMCID: PMC6913700 DOI: 10.1093/jxb/erz429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/12/2019] [Indexed: 05/14/2023]
Abstract
LAZY1 family genes play important roles in both shoot and root gravitropism in plants. Here we report a Lotus japonicus mutant that displays negative gravitropic response in primary and lateral roots. Map-based cloning identified the mutant gene LAZY3 as a functional ortholog of the LAZY1 gene. Mutation of the LAZY3 gene reduced rootward polar auxin transport (PAT) in the primary root, which was also insensitive to the PAT inhibitor N-1-naphthylphthalamic acid. Moreover, immunolocalization of enhanced green fluorescent protein-tagged LAZY3 in L. japonicus exhibited polar localization of LAZY3 on the plasma membrane in root stele cells. We therefore suggest that the polar localization of LAZY3 in stele cells might be required for PAT in L. japonicus root. LAZY3 transcripts displayed asymmetric distribution at the root tip within hours of gravistimulation, while overexpression of LAZY3 under a constitutive promoter in lazy3 plants rescued the gravitropic response in roots. These data indicate that root gravitropism depends on the presence of LAZY3 but not on its asymmetric expression in root tips. Expression of other LAZY genes in a lazy3 background did not rescue the growth direction of roots, suggesting that the LAZY3 gene plays a distinct role in root gravitropism in L. japonicus.
Collapse
Affiliation(s)
- Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shaoming Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leru Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingchao Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinlan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guanying Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Corresponding author. or
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Corresponding author. or
| |
Collapse
|
41
|
Nakamura M, Nishimura T, Morita MT. Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:54-60. [PMID: 31446250 DOI: 10.1016/j.pbi.2019.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/09/2019] [Indexed: 05/25/2023]
Abstract
Gravitropism is the directional control of plant organ growth in response to gravity. Specialized gravity-sensing cells contain amyloplasts that can change their position according to the direction of gravity. Gravity signaling, which is elicited by the relocation of amyloplasts, is a key process that redirects auxin transport from gravity-sensing cells to the lower flank of gravity-responsive organs. Despite the long history of research on plant gravitropism, a molecular detail of gravity signaling remained unexplained. Recent studies have characterized the Arabidopsis LAZY1 family genes to be key factors of gravity signaling. Furthermore, studies regarding Arabidopsis AGCVIII kinases have demonstrated the requirement of auxin transporter PIN-FORMED3 (PIN3) phosphorylation in plant gravitropism.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan.
| |
Collapse
|
42
|
Zhu Q, Gallemí M, Pospíšil J, Žádníková P, Strnad M, Benková E. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development 2019; 146:dev.175919. [PMID: 31391194 DOI: 10.1242/dev.175919] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Qiang Zhu
- Basic Forestry & Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.,Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Marçal Gallemí
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Jiří Pospíšil
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic
| | - Petra Žádníková
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
43
|
Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. MOLECULAR PLANT 2019; 12:1143-1156. [PMID: 31200078 DOI: 10.1016/j.molp.2019.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 05/03/2023]
Abstract
Rice tiller angle is a key agronomic trait that contributes to ideal plant architecture and grain production. LAZY1 (LA1) was previously shown to control tiller angle via affecting shoot gravitropism, but the underlying molecular mechanism remains largely unknown. In this study, we identified an LA1-interacting protein named Brevis Radix Like 4 (OsBRXL4). We showed that the interaction between OsBRXL4 and LA1 occurs at the plasma membrane and that their interaction determines nuclear localization of LA1. We found that nuclear localization of LA1 is essential for its function, which is different from AtLA1, its Arabidopsis ortholog. Overexpression of OsBRXL4 leads to a prostrate growth phenotype, whereas OsBRXLs RNAi plants, in which the expression levels of OsBRXL1, OsBRXL4, and OsBRXL5 were decreased, display a compact phenotype. Further genetic analysis also supported that OsBRXL4 controls rice tiller angle by affecting nuclear localization of LA1. Consistently, we demonstrated that OsBRXL4 regulates the shoot gravitropism through affecting polar auxin transport as did LA1. Taken together, our study not only identifies OsBRXL4 as a regulatory component of rice tiller angle but also provides new insights into genetic regulation of rice plant architecture.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yundong Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agriculture University, Nanjing 210095, China
| | - Jie Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ningpei Han
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lekai Hua
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
44
|
Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 2019; 146:146/15/dev168088. [PMID: 31371525 DOI: 10.1242/dev.168088] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytohormone auxin influences virtually all aspects of plant growth and development. Auxin transport across membranes is facilitated by, among other proteins, members of the PIN-FORMED (PIN) and the structurally similar PIN-LIKES (PILS) families, which together govern directional cell-to-cell transport and intracellular accumulation of auxin. Canonical PIN proteins, which exhibit a polar localization in the plasma membrane, determine many patterning and directional growth responses. Conversely, the less-studied non-canonical PINs and PILS proteins, which mostly localize to the endoplasmic reticulum, attenuate cellular auxin responses. Here, and in the accompanying poster, we provide a brief summary of current knowledge of the structure, evolution, function and regulation of these auxin transport facilitators.
Collapse
Affiliation(s)
- Michael Sauer
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
45
|
Ge L, Chen R. Negative gravitropic response of roots directs auxin flow to control root gravitropism. PLANT, CELL & ENVIRONMENT 2019; 42:2372-2383. [PMID: 30968964 DOI: 10.1111/pce.13559] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 04/05/2019] [Indexed: 05/03/2023]
Abstract
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.
Collapse
Affiliation(s)
- Liangfa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| |
Collapse
|
46
|
Nakamura M, Nishimura T, Morita MT. Gravity sensing and signal conversion in plant gravitropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3495-3506. [PMID: 30976802 DOI: 10.1093/jxb/erz158] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/08/2019] [Indexed: 05/17/2023]
Abstract
Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they reposition themselves by sedimentation to the bottom of the cell when the plant organ is re-orientated. This triggers the next step of gravity signalling, when the physical signal generated by the sedimentation of the amyloplasts is converted into a biochemical signal, which redirects auxin transport towards the lower flank of the plant organ. This review focuses on recent advances in our knowledge of the regulatory mechanisms that underlie amyloplast sedimentation and the system by which this is perceived, and on recent progress in characterising the factors that play significant roles in gravity signalling by which the sedimentation is linked to the regulation of directional auxin transport. Finally, we discuss the contribution of gravity signalling factors to the mechanisms that control the gravitropic set-point angle.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
47
|
Motte H, Vanneste S, Beeckman T. Molecular and Environmental Regulation of Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:465-488. [PMID: 30822115 DOI: 10.1146/annurev-arplant-050718-100423] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| |
Collapse
|
48
|
Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One 2019; 14:e0214145. [PMID: 30947257 PMCID: PMC6448822 DOI: 10.1371/journal.pone.0214145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait for obtainment of higher yield in cereals. But molecular basis of this root architecture trait remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy” and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as TaANDRO1-like, TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantitative RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stronger expression of TaBDRO1-like than barley (HvDRO1-like), but TaBDRO1-like was the least expressing among three paralogs. The underlying cause of this expression divergence seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaBDRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homoeologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and other cis-regulatory elements during expression divergence. Since root architecture is an important target trait for wheat crop improvement, therefore DRO1-like genes have potential applications in plant breeding for enhancement of plant productivity by the use of modern genome editing approaches.
Collapse
|
49
|
Hill JL, Hollender CA. Branching out: new insights into the genetic regulation of shoot architecture in trees. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:73-80. [PMID: 30339931 DOI: 10.1016/j.pbi.2018.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 05/03/2023]
Abstract
Directional growth in all plants involves both phototropic and gravitropic responses. Accordingly, mechanisms controlling shoot architecture throughout the plant kingdom are likely similar. However, as forms vary between species due in part to gene copy number and functional divergence, some aspects of how plants predetermine and regulate architecture can differ. This is especially true when comparing annual herbaceous species (e.g. model plants) to woody perennials such as trees. In the past decade, inexpensive genomic sequencing and technological advances enabled gene discovery and functional analyses in trees. This led to the identification of genes associated with tree shoot architecture control. Here, we present recent discoveries on the regulation of shoot architectures for which causative genes have been identified, including dwarf, weeping, columnar, and pillar growth habits. We also discuss potential applications of these findings.
Collapse
Affiliation(s)
- Joseph L Hill
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
50
|
Wang K, Yang Z, Qing D, Ren F, Liu S, Zheng Q, Liu J, Zhang W, Dai C, Wu M, Chehab EW, Braam J, Li N. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc Natl Acad Sci U S A 2018; 115:E10265-E10274. [PMID: 30291188 PMCID: PMC6205429 DOI: 10.1073/pnas.1814006115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental mechanical forces, such as wind and touch, trigger gene-expression regulation and developmental changes, called "thigmomorphogenesis," in plants, demonstrating the ability of plants to perceive such stimuli. In Arabidopsis, a major thigmomorphogenetic response is delayed bolting, i.e., emergence of the flowering stem. The signaling components responsible for mechanotransduction of the touch response are largely unknown. Here, we performed a high-throughput SILIA (stable isotope labeling in Arabidopsis)-based quantitative phosphoproteomics analysis to profile changes in protein phosphorylation resulting from 40 seconds of force stimulation in Arabidopsis thaliana Of the 24 touch-responsive phosphopeptides identified, many were derived from kinases, phosphatases, cytoskeleton proteins, membrane proteins, and ion transporters. In addition, the previously uncharacterized protein TOUCH-REGULATED PHOSPHOPROTEIN1 (TREPH1) became rapidly phosphorylated in touch-stimulated plants, as confirmed by immunoblots. TREPH1 fractionates as a soluble protein and is shown to be required for the touch-induced delay of bolting and gene-expression changes. Furthermore, a nonphosphorylatable site-specific isoform of TREPH1 (S625A) failed to restore touch-induced flowering delay of treph1-1, indicating the necessity of S625 for TREPH1 function and providing evidence consistent with the possible functional relevance of the touch-regulated TREPH1 phosphorylation. Taken together, these findings identify a phosphoprotein player in Arabidopsis thigmomorphogenesis regulation and provide evidence that TREPH1 and its touch-induced phosphorylation may play a role in touch-induced bolting delay, a major component of thigmomorphogenesis.
Collapse
Affiliation(s)
- Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Dongjin Qing
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qingsong Zheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jun Liu
- ASPEC Technologies Limited, 100101 Beijing, China
| | | | - Chen Dai
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Madeline Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - E Wassim Chehab
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| |
Collapse
|