1
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Kourelis J, Schuster M, Demir F, Mattinson O, Krauter S, Kahlon PS, O’Grady R, Royston S, Bravo-Cazar AL, Mooney BC, Huesgen PF, Kamoun S, van der Hoorn RAL. Bioengineering secreted proteases converts divergent Rcr3 orthologs and paralogs into extracellular immune co-receptors. THE PLANT CELL 2024; 36:3260-3276. [PMID: 38923940 PMCID: PMC11371160 DOI: 10.1093/plcell/koae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Secreted immune proteases "Required for Cladosporium resistance-3" (Rcr3) and "Phytophthora-inhibited protease-1" (Pip1) of tomato (Solanum lycopersicum) are both inhibited by Avirulence-2 (Avr2) from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signaling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signaling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signaling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Fatih Demir
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Oliver Mattinson
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Sonja Krauter
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Parvinderdeep S Kahlon
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ruby O’Grady
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Samantha Royston
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ana Lucía Bravo-Cazar
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Brian C Mooney
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Pitter F Huesgen
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| |
Collapse
|
3
|
Diplock N, Baudin M, Xiang XD, Liang LY, Dai W, Murphy JM, Lucet IS, Hassan JA, Lewis JD. Molecular dissection of the pseudokinase ZED1 expands effector recognition to the tomato immune receptor ZAR1. PLANT PHYSIOLOGY 2024; 196:651-666. [PMID: 38748589 DOI: 10.1093/plphys/kiae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 09/03/2024]
Abstract
The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.
Collapse
Affiliation(s)
- Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xincheng Derek Xiang
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Lung-Yu Liang
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Weiwen Dai
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, United States Department of Agriculture, Agriculture Research Service, Albany, CA 94710, USA
| |
Collapse
|
4
|
Sang T, Chen CW, Lin Z, Ma Y, Du Y, Lin PY, Hadisurya M, Zhu JK, Lang Z, Tao WA, Hsu CC, Wang P. DIA-Based Phosphoproteomics Identifies Early Phosphorylation Events in Response to EGTA and Mannitol in Arabidopsis. Mol Cell Proteomics 2024; 23:100804. [PMID: 38901673 PMCID: PMC11325057 DOI: 10.1016/j.mcpro.2024.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chin-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Zhen Lin
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ma
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanyan Du
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Pei-Yi Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Department of Chemistry, Purdue University, West Lafayette, Indiana, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Carrère S, Routaboul JM, Savourat P, Bellenot C, López H, Sahoo A, Quiroz Monnens T, Ricou A, Camilleri C, Declerck N, Laufs P, Mercier R, Noël LD. A fully sequenced collection of homozygous EMS mutants for forward and reverse genetic screens in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39073886 DOI: 10.1111/tpj.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Genetic screens are powerful tools for biological research and are one of the reasons for the success of the thale cress Arabidopsis thaliana as a research model. Here, we describe the whole-genome sequencing of 871 Arabidopsis lines from the Homozygous EMS Mutant (HEM) collection as a novel resource for forward and reverse genetics. With an average 576 high-confidence mutations per HEM line, over three independent mutations altering protein sequences are found on average per gene in the collection. Pilot reverse genetics experiments on reproductive, developmental, immune and physiological traits confirmed the efficacy of the tool for identifying both null, knockdown and gain-of-function alleles. The possibility of conducting subtle repeated phenotyping and the immediate availability of the mutations will empower forward genetic approaches. The sequence resource is searchable with the ATHEM web interface (https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/), and the biological material is distributed by the Versailles Arabidopsis Stock Center.
Collapse
Affiliation(s)
- Sébastien Carrère
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Jean-Marc Routaboul
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Pauline Savourat
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Caroline Bellenot
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Hernán López
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Amruta Sahoo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | | | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Nathalie Declerck
- CBS, Université Montpellier, CNRS/INSERM, UMR5048/1054, Montpellier, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| |
Collapse
|
6
|
Li L, Liu J, Zhou JM. From molecule to cell: the expanding frontiers of plant immunity. J Genet Genomics 2024; 51:680-690. [PMID: 38417548 DOI: 10.1016/j.jgg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
7
|
Wen Y, Wang F, Wang H, Bi Y, Yan Y, Noman M, Li D, Song F. Melon CmRLCK VII-8 kinase genes CmRLCK27, CmRLCK30 and CmRLCK34 modulate resistance against bacterial and fungal diseases in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14456. [PMID: 39072778 DOI: 10.1111/ppl.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Collapse
Affiliation(s)
- Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fahao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Bi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqing Yan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
Kourelis J. Interplay between cell-surface receptor and intracellular NLR-mediated immune responses. THE NEW PHYTOLOGIST 2023; 240:2218-2226. [PMID: 37605623 DOI: 10.1111/nph.19212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 08/23/2023]
Abstract
The functional link between cell-surface receptors and intracellular NLR immune receptors is a critical aspect of plant immunity. To establish disease, successful pathogens have evolved mechanisms to suppress cell-surface immune signalling. In response, plants have adapted by evolving NLRs that recognize pathogen effectors involved in this suppression, thereby counteracting their immune-suppressing function. This ongoing co-evolutionary struggle has seemingly resulted in intertwined signalling pathways in some plant species, where NLRs form a separate signalling branch downstream of activated cell-surface receptor complexes essential for full immunity. Understanding these interconnected receptor networks could lead to novel strategies for developing durable disease resistance.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
10
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
11
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
12
|
Adachi H, Sakai T, Kourelis J, Pai H, Gonzalez Hernandez JL, Utsumi Y, Seki M, Maqbool A, Kamoun S. Jurassic NLR: Conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. THE PLANT CELL 2023; 35:3662-3685. [PMID: 37467141 PMCID: PMC10533333 DOI: 10.1093/plcell/koad175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jose L Gonzalez Hernandez
- Agronomy, Horticulture and Plant Sciences Department, South Dakota State University, Brookings, SD 57007, USA
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
13
|
Zdrzałek R, Stone C, De la Concepcion JC, Banfield MJ, Bentham AR. Pathways to engineering plant intracellular NLR immune receptors. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102380. [PMID: 37187111 DOI: 10.1016/j.pbi.2023.102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Caroline Stone
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Adam R Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
14
|
Sharma A, Li J, Wente R, Minsavage GV, Gill US, Ortega A, Vallejos CE, Hart JP, Staskawicz BJ, Mazourek MR, Stall RE, Jones JB, Hutton SF. Mapping of the bs5 and bs6 non-race-specific recessive resistances against bacterial spot of pepper. FRONTIERS IN PLANT SCIENCE 2023; 14:1061803. [PMID: 37275256 PMCID: PMC10235544 DOI: 10.3389/fpls.2023.1061803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/22/2023] [Indexed: 06/07/2023]
Abstract
Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jian Li
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rebecca Wente
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Upinder S. Gill
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Arturo Ortega
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - C. Eduardo Vallejos
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - John P. Hart
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Michael R. Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robert E. Stall
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Diplock N, Baudin M, Harden L, Silva CJ, Erickson-Beltran ML, Hassan JA, Lewis JD. Utilising natural diversity of kinases to rationally engineer interactions with the angiosperm immune receptor ZAR1. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37157998 DOI: 10.1111/pce.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A. thaliana ZAR1 (AtZAR1) can interact with most ZRKs, except ZRK7. We found evidence of alternative splicing of ZRK7, resulting in a protein that can interact with AtZAR1. Despite high sequence conservation of ZAR1, interspecific ZAR1-ZRK pairings resulted in the autoactivation of cell death. We showed that ZAR1 interacts with a greater diversity of kinases than previously thought, while still possessing the capacity for specificity in kinase interactions. Finally, using AtZAR1-ZRK interaction data, we rationally increased ZRK10 interaction strength with AtZAR1, demonstrating the feasibility of the rational design of a ZAR1-interacting kinase. Overall, our findings advance our understanding of the rules governing ZAR1 interaction specificity, with promising future directions for expanding ZAR1 immunodiversity.
Collapse
Affiliation(s)
- Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Leslie Harden
- United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, USA
| | - Christopher J Silva
- United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, USA
| | - Melissa L Erickson-Beltran
- United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- United States Department of Agriculture, Agriculture Research Service, Plant Gene Expression Center, Albany, California, USA
| |
Collapse
|
16
|
Essenberg M, McNally KL, Bayles MB, Pierce ML, Hall JA, Kuss CR, Shevell JL, Verhalen LM. Gene B5 in Cotton Confers High and Broad Resistance to Bacterial Blight and Conditions High Amounts of Sesquiterpenoid Phytoalexins. PHYTOPATHOLOGY 2023:PHYTO08220310FI. [PMID: 37059968 DOI: 10.1094/phyto-08-22-0310-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial blight resistance gene B5 has received little attention since it was first described in 1950. A near-isogenic line (NIL) of Gossypium hirsutum cotton, AcB5, was generated in an otherwise bacterial-blight-susceptible 'Acala 44' background. The introgressed locus B5 in AcB5 conferred strong and broad-spectrum resistance to bacterial blight. Segregation patterns of test crosses under Oklahoma field conditions indicated that AcB5 is likely homozygous for resistance at two loci with partial dominance gene action. In controlled-environment conditions, two of the four copies of B5 were required for effective resistance. Contrary to expectations of gene-for-gene theory, AcB5 conferred high resistance toward isogenic strains of Xanthomonas citri subsp. malvacearum carrying cloned avirulence genes avrB4, avrb7, avrBIn, avrB101, and avrB102, respectively, and weaker resistance toward the strain carrying cloned avrb6. The hypothesis that each B gene, in the absence of a polygenic complex, triggers sesquiterpenoid phytoalexin production was tested by measurement of cadalene and lacinilene phytoalexins during resistant responses in five NILs carrying different B genes, four other lines carrying multiple resistance genes, as well as susceptible Ac44E. Phytoalexin production was an obvious, but variable, response in all nine resistant lines. AcB5 accumulated an order of magnitude more of all four phytoalexins than any of the other resistant NILs. Its total levels were comparable to those detected in OK1.2, a highly resistant line that possesses several B genes in a polygenic background.
Collapse
Affiliation(s)
- Margaret Essenberg
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Kenneth L McNally
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Melanie B Bayles
- Department of Plant and Soil Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Margaret L Pierce
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Judy A Hall
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Christine R Kuss
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Judith L Shevell
- Department of Biochemistry and Molecular Biology, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| | - Laval M Verhalen
- Department of Plant and Soil Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
17
|
Santillán Martínez MI, Gao D, Appiano M, Derks I, Huibers RP, Spil G, Wang X, Visser RGF, Wolters AMA, Bai Y. ZED1-related kinase 13 is required for resistance against Pseudoidium neolycopersici in Arabidopsis accession Bla-6. FRONTIERS IN PLANT SCIENCE 2023; 14:1111322. [PMID: 37025130 PMCID: PMC10071312 DOI: 10.3389/fpls.2023.1111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
To explore specific components of resistance against the tomato-adapted powdery mildew pathogen Pseudoidium neolycopersici (On) in the model plant Arabidopsis, we performed a disease assay in 123 accessions. When testing the resistance in the F1 from crossings between resistant accessions with susceptible Col-0 or Sha, only the progeny of the cross between accession Bla-6 and Col-0 displayed a completely resistant phenotype. The resistance in Bla-6 is known to be specific for Pseudoidium neolycopersici. QTL analysis and fine-mapping through several rounds of recombinant screenings allowed us to locate a major resistance QTL in an interval on chromosome 1, containing two candidate genes and an intergenic insertion. Via CRISPR/Cas9 targeted mutagenesis, we could show that knocking out the ZED-1 RELATED KINASE 13 (ZRK13) gene compromised the On resistance in Bla-6. Several polymorphisms are observed in the ZRK13 allelic variant of Bla-6 when compared to the Col-0 protein.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Sun Q, Xu Z, Huang W, Li D, Zeng Q, Chen L, Li B, Zhang E. Integrated metabolome and transcriptome analysis reveals salicylic acid and flavonoid pathways' key roles in cabbage's defense responses to Xanthomonas campestris pv. campestris. FRONTIERS IN PLANT SCIENCE 2022; 13:1005764. [PMID: 36388482 PMCID: PMC9659849 DOI: 10.3389/fpls.2022.1005764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a vascular bacteria pathogen causing black rot in cabbage. Here, the resistance mechanisms of cabbage against Xcc infection were explored by integrated metabolome and transcriptome analysis. Pathogen perception, hormone metabolisms, sugar metabolisms, and phenylpropanoid metabolisms in cabbage were systemically re-programmed at both transcriptional and metabolic levels after Xcc infection. Notably, the salicylic acid (SA) metabolism pathway was highly enriched in resistant lines following Xcc infection, indicating that the SA metabolism pathway may positively regulate the resistance of Xcc. Moreover, we also validated our hypothesis by showing that the flavonoid pathway metabolites chlorogenic acid and caffeic acid could effectively inhibit the growth of Xcc. These findings provide valuable insights and resource datasets for further exploring Xcc-cabbage interactions and help uncover molecular breeding targets for black rot-resistant varieties in cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Li
- *Correspondence: Baohua Li, ; Enhui Zhang,
| | | |
Collapse
|
19
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Zheng X, Zhou Z, Gong Z, Hu M, Ahn YJ, Zhang X, Zhao Y, Gong G, Zhang J, Zuo J, Han GZ, Hoon SK, Zhou JM. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. J Genet Genomics 2022; 49:823-832. [PMID: 35760352 DOI: 10.1016/j.jgg.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we found that the nucleotide-binding leucine-rich repeat receptor (NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana (Nb) recognizes HopZ5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the ZAR1 resistosome. Surprisingly, Arabidopsis ZAR1 and RPM1, another NLR known to recognize HopZ5, confer disease resistance to HopZ5 in a strain-specific manner. Thus, ZAR1, but not RPM1, is solely required for resistance to P. s. maculicola ES4326 (Psm) carrying hopZ5, whereas RPM1 is primarily required for resistance to P. s. tomato DC3000 (Pst) carrying hopZ5. Furthermore, the ZAR1-mediated resistance to Psm hopZ5 in Arabidopsis is insensitive to SOBER1, which encodes a deacetylase known to suppress the RPM1-mediated resistance to Pst hopZ5. In addition, hopZ5 enhances P. syringae virulence in the absence of ZAR1 or RPM1, and that SOBER1 abolishes such virulence function. Together the study suggests that ZAR1 may be used for improving Psa resistance in Actinidia and uncovers previously unknown complexity of effector-triggered immunity and effector-triggered virulence.
Collapse
Affiliation(s)
- Xiaojuan Zheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Gong
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoshu Gong
- Plant Protection Department and Major Crop Disease Laboratory, College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, P. R. China
| | - Guan-Zhu Han
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Sohn Kee Hoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, P. R. China.
| |
Collapse
|
23
|
Metaeffector interactions modulate the type III effector-triggered immunity load of Pseudomonas syringae. PLoS Pathog 2022; 18:e1010541. [PMID: 35576228 PMCID: PMC9135338 DOI: 10.1371/journal.ppat.1010541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae’s T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.
Collapse
|
24
|
DeFalco TA. Inventing the wheel: new insights into resistosome evolution. THE PLANT CELL 2022; 34:1425-1426. [PMID: 35201350 PMCID: PMC9048878 DOI: 10.1093/plcell/koac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Thomas A DeFalco
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
25
|
Gong Z, Qi J, Hu M, Bi G, Zhou JM, Han GZ. The origin and evolution of a plant resistosome. THE PLANT CELL 2022; 34:1600-1620. [PMID: 35166827 PMCID: PMC9048963 DOI: 10.1093/plcell/koac053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/08/2022] [Indexed: 05/25/2023]
Abstract
The nucleotide-binding, leucine-rich receptor (NLR) protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), an immune receptor, interacts with HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) and AVRPPHB SUSCEPTIBLE 1-like proteins to form a pentameric resistosome, triggering immune responses. Here, we show that ZAR1 emerged through gene duplication and that ZRKs were derived from the cell surface immune receptors wall-associated protein kinases (WAKs) through the loss of the extracellular domain before the split of eudicots and monocots during the Jurassic period. Many angiosperm ZAR1 orthologs, but not ZAR1 paralogs, are capable of oligomerization in the presence of AtZRKs and triggering cell death, suggesting that the functional ZAR1 resistosome might have originated during the early evolution of angiosperms. Surprisingly, inter-specific pairing of ZAR1 and AtZRKs sometimes results in the formation of a resistosome in the absence of pathogen stimulation, suggesting within-species compatibility between ZAR1 and ZRKs as a result of co-evolution. Numerous concerted losses of ZAR1 and ZRKs occurred in angiosperms, further supporting the ancient co-evolution between ZAR1 and ZRKs. Our findings provide insights into the origin of new plant immune surveillance networks.
Collapse
Affiliation(s)
- Zhen Gong
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guan-Zhu Han
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
26
|
Breit-McNally C, Desveaux D, Guttman DS. The Arabidopsis effector-triggered immunity landscape is conserved in oilseed crops. Sci Rep 2022; 12:6534. [PMID: 35444223 PMCID: PMC9021255 DOI: 10.1038/s41598-022-10410-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
The bacterial phytopathogen Pseudomonas syringae causes disease on a wide array of plants, including the model plant Arabidopsis thaliana and its agronomically important relatives in the Brassicaceae family. To cause disease, P. syringae delivers effector proteins into plant cells through a type III secretion system. In response, plant nucleotide-binding leucine-rich repeat proteins recognize specific effectors and mount effector-triggered immunity (ETI). While ETI is pervasive across A. thaliana, with at least 19 families of P. syringae effectors recognized in this model species, the ETI landscapes of crop species have yet to be systematically studied. Here, we investigated the conservation of the A. thaliana ETI landscape in two closely related oilseed crops, Brassica napus (canola) and Camelina sativa (false flax). We show that the level of immune conservation is inversely related to the degree of evolutionary divergence from A. thaliana, with the more closely related C. sativa losing ETI responses to only one of the 19 P. syringae effectors tested, while the more distantly related B. napus loses ETI responses to four effectors. In contrast to the qualitative conservation of immune response, the quantitative rank order is not as well-maintained across the three species and diverges increasingly with evolutionary distance from A. thaliana. Overall, our results indicate that the A. thaliana ETI profile is qualitatively conserved in oilseed crops, but quantitatively distinct.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| | - David S Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
28
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
29
|
The small molecule Zaractin activates ZAR1-mediated immunity in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2116570118. [PMID: 34799454 DOI: 10.1073/pnas.2116570118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogenic effector proteins use a variety of enzymatic activities to manipulate host cellular proteins and favor the infection process. However, these perturbations can be sensed by nucleotide-binding leucine-rich-repeat (NLR) proteins to activate effector-triggered immunity (ETI). Here we have identified a small molecule (Zaractin) that mimics the immune eliciting activity of the Pseudomonas syringae type III secreted effector (T3SE) HopF1r and show that both HopF1r and Zaractin activate the same NLR-mediated immune pathway in Arabidopsis Our results demonstrate that the ETI-inducing action of pathogenic effectors can be harnessed to identify synthetic activators of the eukaryotic immune system.
Collapse
|
30
|
Wang H, Trusch F, Turnbull D, Aguilera-Galvez C, Breen S, Naqvi S, Jones JDG, Hein I, Tian Z, Vleeshouwers V, Gilroy E, Birch PRJ. Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. THE NEW PHYTOLOGIST 2021; 232:1368-1381. [PMID: 34339518 DOI: 10.1111/nph.17660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.
Collapse
Affiliation(s)
- Haixia Wang
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Franziska Trusch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Carolina Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Susan Breen
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
- School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Shaista Naqvi
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Ingo Hein
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Vivianne Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Eleanor Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| |
Collapse
|
31
|
Bi G, Zhou JM. Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:239-263. [PMID: 33957051 DOI: 10.1146/annurev-phyto-020620-095952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the largest class of immune receptors in plants. They play a key role in the plant surveillance system by monitoring pathogen effectors that are delivered into the plant cell. Recent structural biology and biochemical analyses have uncovered how NLRs are activated to form oligomeric resistosomes upon the recognition of pathogen effectors. In the resistosome, the signaling domain of the NLR is brought to the center of a ringed structure to initiate immune signaling and regulated cell death (RCD). The N terminus of the coiled-coil (CC) domain of the NLR protein HOPZ-ACTIVATED RESISTANCE 1 likely forms a pore in the plasma membrane to trigger RCD in a way analogous to animal pore-forming proteins that trigger necroptosis or pyroptosis. NLRs that carry TOLL-INTERLEUKIN1-RECEPTOR as a signaling domain may also employ pore-forming resistosomes for RCD execution. In addition, increasing evidence supports intimate connections between NLRs and surface receptors in immune signaling. These new findings are rapidly advancing our understanding of the plant immune system.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Duggan C, Moratto E, Savage Z, Hamilton E, Adachi H, Wu CH, Leary AY, Tumtas Y, Rothery SM, Maqbool A, Nohut S, Martin TR, Kamoun S, Bozkurt TO. Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition. Proc Natl Acad Sci U S A 2021; 118:e2104997118. [PMID: 34417294 PMCID: PMC8403872 DOI: 10.1073/pnas.2104997118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.
Collapse
Affiliation(s)
- Cian Duggan
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Eleonora Moratto
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Zachary Savage
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Eranthika Hamilton
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Alexandre Y Leary
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Yasin Tumtas
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Stephen M Rothery
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Seda Nohut
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Toby Ross Martin
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Tolga Osman Bozkurt
- Department of Life Sciences, Imperial College, SW7 2AZ London, United Kingdom;
| |
Collapse
|
33
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Schultink A, Steinbrenner AD. A playbook for developing disease-resistant crops through immune receptor identification and transfer. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102089. [PMID: 34333377 DOI: 10.1016/j.pbi.2021.102089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Plants are resistant to most pathogens because of an immune system that perceives invading microbes and activates defense. A large repertoire of innate immune receptors mediates specific direct or indirect recognition of pathogen-derived molecules. Disease is often a consequence of insufficient immune surveillance, and the transfer of immune receptor genes from resistant plants to susceptible crop varieties is an effective strategy for combating disease outbreaks. We discuss approaches for identifying intracellular and cell surface immune receptors, with particular focus on recently developed and emerging methodologies. We also review considerations for the transfer of immune receptor genes into crop species, including additional host factors that may be required for immune receptor function. Together, these concepts lay out a broadly applicable playbook for developing crop varieties with durable disease resistance.
Collapse
|
35
|
Kaur B, Bhatia D, Mavi GS. Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J Genet 2021. [DOI: 10.1007/s12041-021-01300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
37
|
Frailie TB, Innes RW. Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr Opin Biotechnol 2021; 70:151-157. [PMID: 34030033 DOI: 10.1016/j.copbio.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Crop diseases caused by viruses, bacteria, fungi, oomycetes and nematodes constitute major costs for farmers in terms of control measures and yield losses. Enhancing resistance to these pathogens via genetic modification or genome editing represents an economically and environmentally attractive path forward. Recent advances in our understanding of how plants detect pathogens and activate immune responses is now enabling enhancement of disease resistance traits. In particular, the recent determination of structures of both cell surface and intracellular immune receptors in plants in their activated states is providing new insights into how recognition complexes can be modified to expand recognition specificities to confer resistance to otherwise virulent pathogens. By expanding the repertoire of both cell surface and intracellular recognition systems, and combining them, it is expected that resistance to numerous diseases will be enhanced and will be more durable.
Collapse
Affiliation(s)
- Tyler B Frailie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
38
|
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J, He K, Chen YH, Zhou JM. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 2021; 184:3528-3541.e12. [PMID: 33984278 DOI: 10.1016/j.cell.2021.05.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding, leucine-rich repeat receptors (NLRs) are major immune receptors in plants and animals. Upon activation, the Arabidopsis NLR protein ZAR1 forms a pentameric resistosome in vitro and triggers immune responses and cell death in plants. In this study, we employed single-molecule imaging to show that the activated ZAR1 protein can form pentameric complexes in the plasma membrane. The ZAR1 resistosome displayed ion channel activity in Xenopus oocytes in a manner dependent on a conserved acidic residue Glu11 situated in the channel pore. Pre-assembled ZAR1 resistosome was readily incorporated into planar lipid-bilayers and displayed calcium-permeable cation-selective channel activity. Furthermore, we show that activation of ZAR1 in the plant cell led to Glu11-dependent Ca2+ influx, perturbation of subcellular structures, production of reactive oxygen species, and cell death. The results thus support that the ZAR1 resistosome acts as a calcium-permeable cation channel to trigger immunity and cell death.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yanan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijia Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Max-Planck Institute for Plant Breeding Research, Cologne, Germany; Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
40
|
Liu M, Li Y, Zhu Y, Sun Y, Wang G. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. MOLECULAR PLANT PATHOLOGY 2021; 22:564-579. [PMID: 33675291 PMCID: PMC8035639 DOI: 10.1111/mpp.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21 ). ZmNANMT, but not ZmCOMT, interacts with CCD21 , and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.
Collapse
Affiliation(s)
- Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
- The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ya‐Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yu‐Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Guan‐Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
41
|
Chakraborty J. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. JOURNAL OF PLANT RESEARCH 2021; 134:599-611. [PMID: 33730245 DOI: 10.1007/s10265-021-01274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterial acetyltransferase effectors belonging to the Yersinia outer protein J (YopJ) group inhibit multiple immune signaling pathways in human and plants. The present study determines in-silico acetyl-coenzyme A (AcCoA) binding and Arabidopsis immune regulator RPM1-interacting protein4 (RIN4) peptide interactions to YopJ effector hypersensitivity and pathogenesis-dependent outer proteinZ3 (HopZ3) from Pseudomonas syringae. Phylogenetic analysis revealed that HopZ3 was clustered by acetyltransferase effectors from plant bacterial pathogens. Structural juxtaposition shows HopZ3 comprises topology matched closer with HopZ1a than PopP2 effectors, respectively. AcCoA binds HopZ3 at two sites i.e., substrate binding pocket and catalytic site. AcCoA interactions to substrate binding pocket was transient and dissipated upon in-silico mutation of Ser 279 residue whereas, attachment to catalytic site was found to be stable in the presence of inositol hexaphosphate (IP6) as a co-factor. Interface atoms used for measuring hydrogen bond distances, bound or accessible surface area, and root-mean-square fluctuation (RMSF) values, suggests that the HopZ3 complex stabilizes after binding to AcCoA ligand and RIN4 peptide. The few non-conserved polymorphic residues that have been displayed on HopZ3 surface presumably confer intracellular recognitions within hosts. Collectively, homology modeling and interactive docking experiments were used to substantiate Arabidopsis immune 'guardee' interactions to HopZ3.
Collapse
|
42
|
Pérez-Torres CA, Ibarra-Laclette E, Hernández-Domínguez EE, Rodríguez-Haas B, Pérez-Lira AJ, Villafán E, Alonso-Sánchez A, García-Ávila CDJ, Ramírez-Pool JA, Sánchez-Rangel D. Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. PeerJ 2021; 9:e11215. [PMID: 33954045 PMCID: PMC8052963 DOI: 10.7717/peerj.11215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023] Open
Abstract
Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.
Collapse
Affiliation(s)
- Claudia-Anahí Pérez-Torres
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | | | | | - Alan-Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México
| | - José-Abrahán Ramírez-Pool
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México.,Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana Sánchez-Rangel
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| |
Collapse
|
43
|
Sun L, Zhang J. Regulatory role of receptor-like cytoplasmic kinases in early immune signaling events in plants. FEMS Microbiol Rev 2021; 44:845-856. [PMID: 32717059 DOI: 10.1093/femsre/fuaa035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor-like cytoplasmic kinases (RLCKs) play crucial roles in regulating plant development and immunity. Conserved pathogen-associated molecular patterns (PAMPs) derived from microbes are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Microbial effectors, whose initial function is to promote virulence, are recognized by plant intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) to initiate effector-triggered immunity (ETI). Both PTI and ETI trigger early immune signaling events including the production of reactive oxygen species, induction of calcium influx and activation of mitogen-activated protein kinases. Research progress has revealed the important roles of RLCKs in the regulation of early PTI signaling. Accordingly, RLCKs are often targeted by microbial effectors that are evolved to evade PTI via diverse modulations. In some cases, modulation of RLCKs by microbial effectors triggers the activation of NLRs. This review covers the mechanisms by which RLCKs engage diverse substrates to regulate early PTI signaling and the regulatory roles of RLCKs in triggering NLR activation. Accumulating evidence suggests evolutionary links and close connections between PAMP- and effector-triggered early immune signaling that are mediated by RLCKs. As key immune regulators, RLCKs can be considered targets with broad prospects for the improvement of plant resistance via genetic engineering.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
44
|
Wang J, Han M, Liu Y. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:283-296. [PMID: 33205883 DOI: 10.1111/jipb.13032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Plant nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide-binding, leucine-rich repeat receptors are classified into coiled-coil (CC)-containing and Toll/interleukin-1 receptor (TIR)-containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.
Collapse
Affiliation(s)
- Junzhu Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
45
|
Baudin M, Martin EC, Sass C, Hassan JA, Bendix C, Sauceda R, Diplock N, Specht CD, Petrescu AJ, Lewis JD. A natural diversity screen in Arabidopsis thaliana reveals determinants for HopZ1a recognition in the ZAR1-ZED1 immune complex. PLANT, CELL & ENVIRONMENT 2021; 44:629-644. [PMID: 33103794 DOI: 10.1111/pce.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs). ZAR1 was first identified for its role in recognizing P. syringae effector HopZ1a, through its interaction with the RLCK ZED1. To identify additional determinants of HopZ1a recognition, we performed a computational screen for ecotypes from the 1001 Genomes project that were likely to lack HopZ1a recognition, and tested ~300 ecotypes. We identified ecotypes containing polymorphisms in ZAR1 and ZED1. Using our previously established Nicotiana benthamiana transient assay and Arabidopsis ecotypes, we tested for the effect of naturally occurring polymorphisms on ZAR1 interactions and the immune response. We identified key residues in the NB or LRR domain of ZAR1 that impact the interaction with ZED1. We demonstrate that natural diversity combined with functional assays can help define the molecular determinants and interactions necessary to regulate immune induction in response to pathogens.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Chodon Sass
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Claire Bendix
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Rolin Sauceda
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California, USA
| |
Collapse
|
46
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
47
|
Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS, Paulus JK, van der Hoorn RAL. Evolution of a guarded decoy protease and its receptor in solanaceous plants. Nat Commun 2020; 11:4393. [PMID: 32879321 PMCID: PMC7468133 DOI: 10.1038/s41467-020-18069-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Shivani Malik
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Oliver Mattinson
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Sonja Krauter
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Parvinderdeep S Kahlon
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Judith K Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK.
| |
Collapse
|
48
|
Sun Y, Zhu YX, Balint-Kurti PJ, Wang GF. Fine-Tuning Immunity: Players and Regulators for Plant NLRs. TRENDS IN PLANT SCIENCE 2020; 25:695-713. [PMID: 32526174 DOI: 10.1016/j.tplants.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated innate immune system to defend against pathogen infection, and intracellular nucleotide-binding, leucine-rich repeat (NLR or NB-LRR) immune receptors are one of the main components of this system. NLR activity is fine-tuned by intra- and intermolecular interactions. We survey what is known about the conservation and diversity of NLR-interacting proteins, and divide them into seven major categories. We discuss the molecular mechanisms by which NLR activities are regulated and how understanding this regulation has potential to facilitate the engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yu-Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Peter J Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; US Department of Agriculture Agricultural Research Service, Plant Science Research Unit, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
49
|
Wang J, Chai J. Molecular actions of NLR immune receptors in plants and animals. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1303-1316. [DOI: 10.1007/s11427-019-1687-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
|
50
|
Hu M, Qi J, Bi G, Zhou JM. Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 In Vivo. MOLECULAR PLANT 2020; 13:793-801. [PMID: 32194243 DOI: 10.1016/j.molp.2020.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
Plants utilize nucleotide-binding, leucine-rich repeat receptors (NLRs) to detect pathogen effectors, leading to effector-triggered immunity. The NLR ZAR1 indirectly recognizes the Xanthomonas campestris pv. campestris effector AvrAC and Pseudomonas syringae effector HopZ1a by associating with closely related receptor-like cytoplasmic kinase subfamily XII-2 (RLCK XII-2) members RKS1 and ZED1, respectively. ZAR1, RKS1, and the AvrAC-modified decoy PBL2UMP form a pentameric resistosome in vitro, and the ability of resistosome formation is required for AvrAC-triggered cell death and disease resistance. However, it remains unknown whether the effectors induce ZAR1 oligomerization in the plant cell. In this study, we show that both AvrAC and HopZ1a can induce oligomerization of ZAR1 in Arabidopsis protoplasts. Residues mediating ZAR1-ZED1 interaction are indispensable for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. In addition, ZAR1 residues required for the assembly of ZAR1 resistosome in vitro are also essential for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. Our study provides evidence that pathogen effectors induce ZAR1 resistosome formation in the plant cell and that the resistosome formation triggers disease resistance.
Collapse
Affiliation(s)
- Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|