1
|
Liu Y, Wang XQ, Zhang P, Haghparast A, He WB, Zhang JJ. Research progress of DNA methylation on the regulation of substance use disorders and the mechanisms. Front Cell Neurosci 2025; 19:1566001. [PMID: 40230379 PMCID: PMC11994631 DOI: 10.3389/fncel.2025.1566001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Drug abuse can damage the central nervous system and lead to substance use disorder (SUD). SUD is influenced by both genetic and environmental factors. Genes determine an individual's susceptibility to drug, while the dysregulation of epigenome drives the abnormal transcription processes, promoting the development of SUD. One of the most widely studied epigenetic mechanisms is DNA methylation, which can be inherited stably. In ontogeny, DNA methylation pattern is dynamic. DNA dysmethylation is prevalent in drug-related psychiatric disorders, resulting in local hypermethylation and transcriptional silencing of related genes. In this review, we summarize the role and regulatory mechanisms of DNA methylation in cocaine, opioids, and methamphetamine in terms of drug exposure, addiction memory, withdrawal relapse, intergenerational inheritance, and focus on cell-specific aspects of the studies with a view to suggesting possible therapeutic regimens for targeting methylation in both human and animal research.
Collapse
Affiliation(s)
- Ya Liu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiao-Qian Wang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Peng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Abbas Haghparast
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
2
|
Vernovsky S, Herning A, Wachman EM. The role of genetics in neonatal abstinence syndrome. Semin Perinatol 2025; 49:152006. [PMID: 39613584 DOI: 10.1016/j.semperi.2024.152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Neonatal Abstinence Syndrome (NAS) after in-utero exposure to opioids remains a significant public health concern. NAS is a highly variable condition in which presentation and severity cannot be explained by clinical factors alone. Research in human subjects has identified both genetic and epigenetic associations with prenatal opioid exposure and NAS severity, including single nucleotide polymorphisms, DNA methylation differences, and gene expression modifications. Animal studies have also identified key gene pathways that are likely important contributors to NAS phenotype. The clinical significance of identified genetic associations with NAS are unclear and warrant further study to see how they could impact NAS management.
Collapse
Affiliation(s)
- Sarah Vernovsky
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| | - Ana Herning
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| |
Collapse
|
3
|
Brandt HB, Sinning S, Hasselstrøm JB, Andersen CU. A review of possible biomarkers for opioid tolerance. Forensic Sci Int 2024; 363:112187. [PMID: 39154523 DOI: 10.1016/j.forsciint.2024.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Knowledge of opioid tolerance in a deceased person is important for distinguishing between therapeutic and toxic opioid concentrations for that particular individual when interpreting postmortem toxicological results. However, no biomarkers for opioid tolerance are currently available. This review aimed to study the existing literature on mechanisms or changes in signaling pathways related to chronic opioid use, which could be relevant for further studies to identify biomarkers for opioid tolerance. We performed a systematic literature search using the PRISMA 2020 guidelines using the MeSH terms "opioid tolerance AND biomarkers" in PubMed, Embase, WebofScience, and the Cochrane library. A review of the search results yielded seven studies on animal models or humans, identifying and evaluating thirteen possible biomarkers in terms of specificity for changes induced by opioids and other aspects to be considered as potential biomarkers. We evaluated nine potential biomarkers as unlikely to be specific for opioid tolerance, and one had contradictory results in terms of upregulation or downregulation. However, methylation of the promoter region of the μ-opioid receptor gene, increased activity of soluble puromycin-sensitive aminopeptidase, altered miRNA profile, or other multiple component profiling may be interesting to study further as biomarkers for opioid tolerance in forensic postmortem cases.
Collapse
Affiliation(s)
| | | | | | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.
| |
Collapse
|
4
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
5
|
Hasan M, Meador KJ, Brothers TN, Wang S, Lewkowitz AK, Ward KE, Slaughter JL, Zhang Y, Wen X. Neurodevelopmental outcomes in children prenatally exposed to opioid maintenance treatment: A population-based study. Pharmacotherapy 2024; 44:770-781. [PMID: 39415648 PMCID: PMC11521574 DOI: 10.1002/phar.4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Opioid maintenance treatment (OMT), with methadone or buprenorphine, is a key approach for managing opioid use disorder (OUD) during pregnancy. Despite buprenorphine's superior short-term outcomes, its long-term effects remain understudied. This study aims to evaluate the effects of prenatal OMT exposure on the incidence of childhood neurodevelopmental disorders (NDDs) considering timing effect. METHODS A retrospective cohort study using Rhode Island Medicaid data linked to vital statistics from 2008 to 2018 was conducted. The study included pregnancies having live birth from 2008 to 2016 with continuous Medicaid insurance and OUD diagnosis within 3 months preceding conception until delivery. At least one buprenorphine dispensing or a claim of methadone was required for exposure definition. Exposure was evaluated during early (0-90 days) or late (>90 days) gestation, or at any pregnancy phase. NDDs, including autism, attention-deficit/hyperactivity disorder (ADHD), learning disabilities, speech/language disorders, developmental coordination disorder, intellectual disability, and behavioral disorders, were identified using validated algorithms. Applying Cox proportional-hazard models with propensity score overlap weighting, adjusted hazard ratios (aHR) were calculated, mitigating potential confounders. Children were followed up from birth until NDD diagnosis, disenrollment, or study end. RESULTS Of 416 mother-child dyads with OUD, 40% used methadone and 20% had buprenorphine exposure during pregnancy. NDDs were observed in 36% of children with early methadone exposure compared to 17% in the early buprenorphine exposed group (aHR: 2.75; 95% confidence interval [CI]: 1.42-5.35). Further comparison to late buprenorphine exposure, late methadone exposure was associated with higher NDD risk (aHR: 2.05; 95% CI: 1.09-3.86). Compared to unexposed group, children exposed to methadone during early and late periods showed higher NDD incidences (aHR: 2.33; 95% CI: 1.51-3.60 and aHR: 2.42; 95% CI: 1.54-3.80, respectively). DISCUSSION The study suggests that buprenorphine is a good treatment option for OUD during pregnancy due to minimal long-term neurodevelopmental impacts on children. However, further extensive research is necessary to rule-out potential confounding.
Collapse
Affiliation(s)
- Mennatullah Hasan
- Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kimford J. Meador
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Todd N. Brothers
- Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Shuang Wang
- Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Adam K Lewkowitz
- Maternal Fetal Medicine, Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kristina E. Ward
- Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan L. Slaughter
- Nationwide Children’s Hospital and The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Yichi Zhang
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Xuerong Wen
- Pharmacy Practice, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
6
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
7
|
Jones JD, Martinez S, Gonzalez I, Odom GJ, Comer SD. No evidence of accelerated epigenetic aging among black heroin users: A case vs control analysis. ADDICTION NEUROSCIENCE 2023; 7:100096. [PMID: 37388854 PMCID: PMC10305791 DOI: 10.1016/j.addicn.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study sought to assess the association between illicit opioid use and accelerated epigenetic aging (A.K.A. DNAm Age) among people of African ancestry who use heroin. DNA was obtained from participants with opioid use disorder (OUD) who confirmed heroin as their primary drug of choice. Clinical inventories of drug use included: the Addiction Severity Index (ASI) Drug-Composite Score (range: 0-1), and Drug Abuse Screening Test (DAST-10; range: 0-10). A control group of participants of African ancestry who did not use heroin was recruited and matched to heroin users on sex, age, socioeconomic level, and smoking status. Methylation data were assessed in an epigenetic clock to determined and compare Epigenetic Age to Chronological Age (i.e., age acceleration or deceleration). Data were obtained from 32 controls [mean age 36.3 (±7.5) years] and 64 heroin users [mean age 48.1 (±6.6) years]. The experimental group used heroin for an average of 18.1 (±10.6) years, reported use of 6.4 (±6.1) bags of heroin/day, with a mean DAST-10 score of 7.0 (±2.6) and ASI Score of 0.33 (±0.19). Mean age acceleration for heroin users [+0.56 (± 9.5) years] was significantly (p< 0.05) lower than controls [+5.19 (± 9.1) years]. This study did not find evidence that heroin use causes epigenetic age acceleration.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ingrid Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Sandra D. Comer
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
8
|
Kolli U, Roy S. The role of the gut microbiome and microbial metabolism in mediating opioid-induced changes in the epigenome. Front Microbiol 2023; 14:1233194. [PMID: 37670983 PMCID: PMC10475585 DOI: 10.3389/fmicb.2023.1233194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
The current opioid pandemic is a major public health crisis in the United States, affecting millions of people and imposing significant health and socioeconomic burdens. Preclinical and clinical research over the past few decades has delineated certain molecular mechanisms and identified various genetic, epigenetic, and environmental factors responsible for the pathophysiology and comorbidities associated with opioid use. Opioid use-induced epigenetic modifications have been identified as one of the important factors that mediate genetic changes in brain regions that control reward and drug-seeking behavior and are also implicated in the development of tolerance. Recently, it has been shown that opioid use results in microbial dysbiosis, leading to gut barrier disruption, which drives systemic inflammation, impacting the perception of pain, the development of analgesic tolerance, and behavioral outcomes. In this review, we highlight the potential role of microbiota and microbial metabolites in mediating the epigenetic modifications induced by opioid use.
Collapse
Affiliation(s)
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Agulló L, Muriel J, Margarit C, Escorial M, Garcia D, Herrero MJ, Hervás D, Sandoval J, Peiró AM. Sex Differences in Opioid Response Linked to OPRM1 and COMT genes DNA Methylation/Genotypes Changes in Patients with Chronic Pain. J Clin Med 2023; 12:jcm12103449. [PMID: 37240556 DOI: 10.3390/jcm12103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Analgesic-response variability in chronic noncancer pain (CNCP) has been reported due to several biological and environmental factors. This study was undertaken to explore sex differences linked to OPRM1 and COMT DNA methylation changes and genetic variants in analgesic response. A retrospective study with 250 real-world CNCP outpatients was performed in which data from demographic, clinical, and pharmacological variables were collected. DNA methylation levels (CpG island) were evaluated by pyrosequencing, and their interaction with the OPRM1 (A118G) and COMT (G472A) gene polymorphisms was studied. A priori-planned statistical analyses were conducted to compare responses between females and males. Sex-differential OPRM1 DNA methylation was observed to be linked to lower opioid use disorder (OUD) cases for females (p = 0.006). Patients with lower OPRM1 DNA methylation and the presence of the mutant G-allele reduced opioid dose requirements (p = 0.001), equal for both sexes. Moreover, COMT DNA methylation levels were negatively related to pain relief (p = 0.020), quality of life (p = 0.046), and some adverse events (probability > 90%) such as constipation, insomnia, or nervousness. Females were, significantly, 5 years older with high anxiety levels and a different side-effects distribution than males. The analyses demonstrated significant differences between females and males related to OPRM1 signalling efficiency and OUD, with a genetic-epigenetic interaction in opioid requirements. These findings support the importance of sex as a biological variable to be factored into chronic pain-management studies.
Collapse
Affiliation(s)
- Laura Agulló
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Javier Muriel
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
| | - César Margarit
- Pain Unit, Department of Health of Alicante, Dr. Balmis General University Hospital, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Mónica Escorial
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Diana Garcia
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - David Hervás
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Juan Sandoval
- Epigenomics Core Facility, La Fe Health Research Institute, Ave. Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Ana M Peiró
- Pharmacogenetic Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
10
|
Tang H, Zhang Y, Xun Y, Yu J, Lu Y, Zhang R, Dang W, Zhu F, Zhang J. Association between methylation in the promoter region of the GAD2 gene and opioid use disorder. Brain Res 2023; 1812:148407. [PMID: 37182687 DOI: 10.1016/j.brainres.2023.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
DNA methylation is one of the epigenetic mechanisms involved in opioid use disorder. GAD2 is a key catalyticase in gamma amino butyric acid (GABA) synthesis from glutamate, that is implicated in opioid-induced rewarding effect. To reveal the relationship and the underlying mechanism between GAD2 gene methylation and opioid use disorder, we first examined and compared the methylation levels in the promoter region of the GAD2 gene in peripheral blood between 120 patients with opioid use disorder and 110 healthy controls by using a targeted approach. A diagnostic model with methylation biomarkers was established to distinguish opioid use disorder and healthy control groups. Correlations between methylation levels in the promoter region of the GAD2 gene and the duration and dosage of opioid use were then determined. Finally, the transcription factors that potentially bind to the target sequences including the detected CpG sites were predicted with the JASPAR database. Our results demonstrated that hypermethylation in the promoter region of the GAD2 gene was associated with opioid use disorder. A diagnostic model based on 10 methylation biomarkers could distinguish the opioid use disorder and healthy control groups. Several correlations between methylation levels in the GAD2 gene promoter and the duration and dosage of opioid use were observed. Transcription factors TFAP2A, Arnt and Runx1 were predicted to bind to the target sequences including several CpG sites detected in the present study in the GAD2 gene promoter. Our findings highlight and extend the role of DNA methylation in the GAD2 gene in opioid use disorder.
Collapse
Affiliation(s)
- Hua Tang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710061, China
| | - Yudan Zhang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Xun
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiao Yu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ye Lu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Wei Dang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Feng Zhu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianbo Zhang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
12
|
Gornalusse G, Spengler RM, Sandford E, Kim Y, Levy C, Tewari M, Hladik F, Vojtech L. Men who inject opioids exhibit altered tRNA-Gly-GCC isoforms in semen. Mol Hum Reprod 2023; 29:gaad003. [PMID: 36661332 PMCID: PMC9976897 DOI: 10.1093/molehr/gaad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
In addition to their role in protein translation, tRNAs can be cleaved into shorter, biologically active fragments called tRNA fragments (tRFs). Specific tRFs from spermatocytes can propagate metabolic disorders in second generations of mice. Thus, tRFs in germline cells are a mechanism of epigenetic inheritance. It has also been shown that stress and toxins can cause alterations in tRF patterns. We were therefore interested in whether injecting illicit drugs, a major stressor, impacts tRFs in germline cells. We sequenced RNA from spermatocytes and from semen-derived exosomes from people who inject illicit drugs (PWID) and from non-drug using controls, both groups of unknown fertility status. All PWID injected opioids daily, but most also used other illicit drugs. The tRF cleavage products from Gly-GCC tRNA were markedly different between spermatocytes from PWID compared to controls. Over 90% of reads in controls mapped to shorter Gly-GCC tRFs, while in PWID only 45% did. In contrast, only 4.1% of reads in controls mapped to a longer tRFs versus 45.6% in PWID. The long/short tRF ratio was significantly higher in PWID than controls (0.23 versus 0.16, P = 0.0128). We also report differential expression of a group of small nucleolar RNAs (snoRNAs) in semen-derived exosomes, including, among others, ACA14a, U19, and U3-3. Thus, PWID exhibited an altered cleavage pattern of tRNA-Gly-GCC in spermatocytes and an altered cargo of snoRNAs in semen-derived exosomes. Participants were not exclusively using opioids and were not matched with controls in terms of diet, chronic disease, or other stressors, so our finding are not conclusively linked to opioid use. However, all individuals in the PWID group did inject heroin daily. Our study indicates a potential for opioid injection and/or its associated multi-drug use habits and lifestyle changes to influence epigenetic inheritance.
Collapse
Affiliation(s)
- Germán Gornalusse
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ryan M Spengler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeseul Kim
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Muneesh Tewari
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Calderon-Garcia AA, Perez-Fernandez M, Curto-Aguilera D, Rodriguez-Martin I, Sánchez-Barba M, Gonzalez-Nunez V. Exposure to Morphine and Cocaine Modify the Transcriptomic Landscape in Zebrafish Embryos. Neuroscience 2022; 507:14-27. [PMID: 36404518 DOI: 10.1016/j.neuroscience.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Morphine and other opioid analgesics are the drugs of election to treat moderate-to-severe pain, and they elicit their actions by binding to the opioid receptors. Cocaine is a potent inhibitor of dopamine, serotonin, and noradrenaline reuptake, as it blocks DAT, the dopamine transporter, causing an increase in the local concentration of these neurotransmitters in the synaptic cleft. The molecular effects of these drugs have been studied in specific brain areas or nuclei, but the systemic effects in the whole organism have not been comprehensively analyzed. This study aims to analyze the transcriptomic changes elicited by morphine (10 uM) and cocaine (15 uM) in zebrafish embryos. An RNAseq assay was performed with tissues extracts from zebrafish embryos treated from 5 hpf (hours post fertilization) to 72 hpf, and the most representative deregulated genes were experimentally validated by qPCR. We have found changes in the expression of genes related to lipid metabolism, chemokine receptor ligands, visual system, hemoglobins, and metabolic detoxification pathways. Besides, morphine and cocaine modified the global DNA methylation pattern in zebrafish embryos, which would explain the changes in gene expression elicited by these two drugs of abuse.
Collapse
Affiliation(s)
- Andrés Angel Calderon-Garcia
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Maria Perez-Fernandez
- Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain
| | - Daniel Curto-Aguilera
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain
| | - Ivan Rodriguez-Martin
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Mercedes Sánchez-Barba
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Dept. Statistics. Faculty of Medicine, University of Salamanca, Spain
| | - Veronica Gonzalez-Nunez
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain.
| |
Collapse
|
14
|
Characterizing OPRM1 DNA methylation in prescription opioid users with chronic musculoskeletal pain. Pain Rep 2022; 7:e1046. [PMID: 36447952 PMCID: PMC9699511 DOI: 10.1097/pr9.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Many patients with chronic pain use prescription opioids. Epigenetic modification of the μ-opioid receptor 1 (OPRM1) gene, which codes for the target protein of opioids, may influence vulnerability to opioid abuse and response to opioid pharmacotherapy, potentially affecting pain outcomes. Objective Our objective was to investigate associations of clinical and sociodemographic factors with OPRM1 DNA methylation in patients with chronic musculoskeletal pain on long-term prescription opioids. Methods Sociodemographic variables, survey data (Rapid Estimate of Adult Health Literacy in Medicine-Short Form, Functional Comorbidity Index [FCI], PROMIS 43v2.1 Profile, Opioid Risk Tool, and PROMIS Prescription Pain Medication Misuse), and saliva samples were collected. The genomic DNA extracted from saliva samples were bisulfite converted, amplified by polymerase chain reaction, and processed for OPRM1-targeted DNA methylation analysis on a Pyrosequencing instrument (Qiagen Inc, Valencia, CA). General linear models were used to examine the relationships between the predictors and OPRM1 DNA methylation. Results Data from 112 patients were analyzed. The best-fitted multivariable model indicated, compared with their counterparts, patients with > eighth grade reading level, degenerative disk disease, substance abuse comorbidity, and opioid use < 1 year (compared with >5 years), had average methylation levels that were 7.7% (95% confidence interval [CI] 0.95%, 14.4%), 11.7% (95% CI 2.7%, 21.1%), 21.7% (95% CI 10.7%, 32.5%), and 16.1% (95% CI 3.3%, 28.8%) higher than the reference groups, respectively. Methylation levels were 2.2% (95% CI 0.64%, 3.7%) lower for every 1 unit increase in FCI and greater by 0.45% (95% CI 0.08%, 0.82%) for every fatigue T score unit increase. Conclusions OPRM1 methylation levels varied by several patient factors. Further studies are warranted to replicate these findings and determine potential clinical utility.
Collapse
|
15
|
Giordano R, Kjær-Staal Petersen K, Arendt-Nielsen L. The link between epigenetics, pain sensitivity and chronic pain. Scand J Pain 2022; 22:664-666. [PMID: 36149940 DOI: 10.1515/sjpain-2022-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Increasing evidence suggests an association between gene expression and clinical pain. Epigenetic modifications are the main modulators of gene expression or protein translation in response to environmental stimuli and pathophysiological conditions. Preclinical and clinical studies indicate that epigenetic modifications could also impact the development of pain, the transition from acute to chronic pain, and the maintenance hereof.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
16
|
Hypermethylation in the promoter region of the ADRA1A gene is associated with opioid use disorder in Han Chinese. Brain Res 2022; 1793:148050. [PMID: 35964682 DOI: 10.1016/j.brainres.2022.148050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Opioid use disorder is a chronic brain disease influenced by genetic and epigenetic factors, accounting for approximately 50% of the liability. Adrenergic signaling is involved in opioid use disorder. To demonstrate the associations between methylation alterations in the alpha-1-adrenergic receptor (ADRA1A) gene and opioid use disorder, in the present study, we first examined and compared the methylation levels of 97 CpG sites in the promoter region of the ADRA1A gene in the peripheral blood in 120 patients with heroin use disorder and 111 healthy controls. Correlations between methylation levels and duration of heroin/methadone use were then analyzed. Finally, the predicted binding transcription factors (TFs) and their target sequences in the promoter region of the ADRA1A gene, which include the selected CpG sites, were screened in the JASPAR database. Our results demonstrated that hypermethylation in the promoter region of the ADRA1A gene in the blood was associated with opioid use disorder. Correlations between methylation levels of several CpG sites and duration of heroin/methadone use were observed. TFs TFAP2A and RUNX1 were predicted to bind to the target sequences, which include the CpG sites selected in the current study, in the promoter region of the ADRA1A gene. Our findings further extend the associations between methylation alterations in the ADRA1A gene and opioid use disorder potentially through mechanisms of gene expression regulations in the ADRA1A gene.
Collapse
|
17
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
18
|
Epigenome-wide association analyses of active injection drug use. Drug Alcohol Depend 2022; 235:109431. [PMID: 35395503 DOI: 10.1016/j.drugalcdep.2022.109431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Injection drug use (IDU) is prevalent in the US and is associated with substantial risk of blood-borne infections, morbidity, and mortality. However, the spectrum of its biologic effects on DNA methylation in blood is not well characterized. METHODS 401 participants (Mage = 47.9; 68% male; 90% African American) over several timepoints (1054 visits) were drawn from a longitudinal cohort of people who inject drugs. DNA methylation was measured among buffy coat samples from the 1054 visits. Compared to samples collected after ≥ 6 months of abstinence, separate EWAS were conducted for active injecting of any drug, quantitative injection frequency, injecting of heroin and injecting of cocaine. Linear mixed effect models were used and analyses were adjusted for repeated measurements and key technical, biological, and sociodemographic characteristics. RESULTS We found epigenome-wide significant CpG sites associated with active injection (cg10636246, AIM2, p = 2.33 × 10-8) and injection intensity (cg13117953, p = 4.30 × 10-8). We found converging evidence that cg10636246 (AIM2), cg23110600 (PRKCH), cg03546163 (FKBP5), cg04590956 (GMCL1), and cg16317961 (MAPRE2) were among the top 0.1% significantly differentially methylated CpG sites shared across the five EWAS. Top ranked CpGs among the five EWAS were enriched (p < 0.0001) in AIM2 inflammasome complex, T cell migration, insulin regulation and epinephrine synthesis pathways. During periods of active injection, samples had 0.46 years of epigenetic age acceleration relative to the abstinence period, within the same subject (p = 0.03). CONCLUSIONS Findings from this study demonstrate modest, common, and specific effects on DNA methylation during a relatively short time between periods of active drug injection and abstinence.
Collapse
|
19
|
Effect of Prenatal Opioid Exposure on the Human Placental Methylome. Biomedicines 2022; 10:biomedicines10051150. [PMID: 35625888 PMCID: PMC9138340 DOI: 10.3390/biomedicines10051150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal exposure to addictive drugs can lead to placental epigenetic modifications, but a methylome-wide evaluation of placental DNA methylation changes after prenatal opioid exposure has not yet been performed. Placental tissue samples were collected at delivery from 19 opioid-exposed and 20 unexposed control full-term pregnancies. Placental DNA methylomes were profiled using the Illumina Infinium HumanMethylationEPIC BeadChip. Differentially methylated CpG sites associated with opioid exposure were identified with a linear model using the ‘limma’ R package. To identify differentially methylated regions (DMRs) spanning multiple CpG sites, the ‘DMRcate’ R package was used. The functions of genes mapped by differentially methylated CpG sites and DMRs were further annotated using Enrichr. Differentially methylated CpGs (n = 684, unadjusted p < 0.005 and |∆β| ≥ 0.05) were mapped to 258 genes (including PLD1, MGAM, and ALCS2). Differentially methylated regions (n = 199) were located in 174 genes (including KCNMA1). Enrichment analysis of the top differentially methylated CpG sites and regions indicated disrupted epigenetic regulation of genes involved in synaptic structure, chemical synaptic transmission, and nervous system development. Our findings imply that placental epigenetic changes due to prenatal opioid exposure could result in placental dysfunction, leading to abnormal fetal brain development and the symptoms of opioid withdrawal in neonates.
Collapse
|
20
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
21
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
22
|
Mahnke AH, Roberts MH, Leeman L, Ma X, Bakhireva LN, Miranda RC. Prenatal opioid-exposed infant extracellular miRNA signature obtained at birth predicts severity of neonatal opioid withdrawal syndrome. Sci Rep 2022; 12:5941. [PMID: 35396369 PMCID: PMC8993911 DOI: 10.1038/s41598-022-09793-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Prenatal opioid exposure (POE) is commonly associated with neonatal opioid withdrawal syndrome (NOWS), which is characterized by a broad variability in symptoms and severity. Currently there are no diagnostic tools to reliably predict which infants will develop severe NOWS, while risk stratification would allow for proactive decisions about appropriate clinical monitoring and interventions. The aim of this prospective cohort study was to assess if extracellular microRNAs (miRNAs) in umbilical cord plasma of infants with POE could predict NOWS severity. Participants (n = 58) consisted of pregnant women receiving medications for opioid use disorder and their infants. NOWS severity was operationalized as the need for pharmacologic treatment and prolonged hospitalization (≥ 14 days). Cord blood miRNAs were assessed using semi-quantitative qRT-PCR arrays. Receiver operating characteristic curves and area under the curve (AUC) were estimated. The expression of three miRNAs (miR-128-3p, miR-30c-5p, miR-421) predicted need for pharmacologic treatment (AUC: 0.85) and prolonged hospitalization (AUC: 0.90). Predictive validity improved after two miRNAs (let-7d-5p, miR-584-5p) were added to the need for pharmacologic treatment model (AUC: 0.94) and another two miRNAs (let-7b-5p, miR-10-5p) to the prolonged hospitalization model (AUC: 0.99). Infant cord blood extracellular miRNAs can proactively identify opioid-exposed neonates at high-risk for developing severe NOWS.
Collapse
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA.
| | - Melissa H Roberts
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Lawrence Leeman
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA.,Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA
| | - Xingya Ma
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.,Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA.,Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87106, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| |
Collapse
|
23
|
Longtain RB, Graham DP, Harding MJ, De La Garza R, Nielsen DA. Methylation of the serotonin transporter gene moderates the depressive subjective effect of cocaine. Behav Brain Res 2022; 418:113675. [PMID: 34798166 PMCID: PMC8671356 DOI: 10.1016/j.bbr.2021.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Genetic variation in the serotonin transporter (SLC6A4) has been shown to moderate the acute subjective effects of cocaine. Methylation of the SLC6A4 gene is associated with decreased transcription of the serotonin transporter, leading to increased serotonin in the synapse. In this study, methylation of the SLC6A4 gene was investigated in the moderation of the subjective effects of cocaine. Non-treatment-seeking cocaine-dependent individuals (N = 53) were intravenously administered cocaine (40 mg) and saline in a randomized order. The subjective effects of cocaine were self-reported using a visual analog scale starting prior to the administration of cocaine (-15 min) or saline and up to 20 min after infusion. Participants were evaluated for methylation of the SLC6A4 promoter region and 5-HTTLPR genotype. A series of ANCOVAs for SLC6A4 methylation (high/low) were run for each of ten subjective and three cardiovascular effects controlling for age, sex [utilizing the sex-determining region Y protein (SRY)], and population structure (determined from ancestry informative markers and STRUCTURE software). Participants with SLC6A4 hypermethylation reported greater subjective response to cocaine for 'depressed' relative to participants with SLC6A4 hypomethylation (experiment-wise p = 0.002). These findings indicate that SLC6A4 methylation moderates the 'depressed' subjective effect of cocaine in non-treatment-seeking cocaine-dependent participants.
Collapse
Affiliation(s)
- Riley B. Longtain
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey V.A. Medical Center, Houston, TX, USA
| | - David P. Graham
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey V.A. Medical Center, Houston, TX, USA,South Central Mental Illness, Research, Education and Clinical Center (MIRECC), Houston, TX, USA,Corresponding author: David P. Graham, Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd (153-TBI), Building 100, STE 2B-126A, Houston, TX 77030, USA, Tel: 713 791 1414 × 24215,
| | - Mark J. Harding
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey V.A. Medical Center, Houston, TX, USA
| | | | - David A. Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey V.A. Medical Center, Houston, TX, USA
| |
Collapse
|
24
|
Caputi FF, Carboni L, Rullo L, Alessandrini I, Balzani E, Melotti RM, Romualdi P, Candeletti S, Fanelli A. An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Front Pharmacol 2021; 12:733577. [PMID: 34621169 PMCID: PMC8491974 DOI: 10.3389/fphar.2021.733577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Alessandrini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Rita Maria Melotti
- Department of Surgical and Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Fanelli
- Anesthesiology and Pain Therapy Unit, AOSP S.Orsola Hospital, Bologna, Italy
| |
Collapse
|
25
|
Liu L, Yang X, Zhao F, Gao C, Zhang N, Bao J, Li K, Zhang X, Lu X, Ruan Y, Zhong S. Hypermethylation of the OPRM1 and ALDH2 promoter regions in Chinese Han males with alcohol use disorder in Yunnan Province. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:694-703. [PMID: 34582308 DOI: 10.1080/00952990.2021.1973486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is one of the most serious public health problems worldwide. The OPRM1 and ALDH2 genes are important factors in the reward and alcohol metabolism pathways, and their DNA methylation patterns are closely related to AUD and are population-specific. Chinese Han people are the most populous ethnic group in the world, and this group experiences severe AUD. No epigenetic study on OPRM1 and ALDH2 has been performed in Chinese Han patients with AUD. OBJECTIVES To investigate whether methylation patterns of OPRM1 and ALDH2 are associated with susceptibility to AUD in Chinese Han males. METHODS DNA methylation of the OPRM1 and ALDH2 promoters was studied in Chinese Han males with AUD in Yunnan Province (N = 50 controls, N = 90 individuals with AUD) using the bisulfite pyrosequencing method. RESULTS In the AUD group, compared with the control group, OPRM1 was hypermethylated(p < .01) but there was no significant difference in the methylation level of ALDH2 (p > .05). 9 CpG sites of OPRM1 (p < .05) and 2 CpG sites of ALDH2 (p > .01) were hypermethylated. Smoking promoted AUD-mediated hypermethylation of OPRM1, in which 3 CpG sites showed significant hypermethylation (p < .01). Age had no significant effect on the DNA methylation levels of these two genes. CONCLUSIONS Our study demonstrates that DNA hypermethylation of the OPRM1 and ALDH2 promoter regions is associated with an increased risk of AUD, which may help to explain the pathogenesis and progression of AUD.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic biology identification laboratory, Judicial Identification Center of Kunming Medical University, Kunming, China
| | - Xiaopei Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Department of basic medicine, Chuxiong Medical and Pharmaceutical College, Chuxiong, China
| | - Fei Zhao
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic Lab 1, Jiangxi Shenzhou Judicial Identification Center, Nanchang, China
| | - Changqing Gao
- Children's mental department, The Mental Hospital of Yunnan Province, Kunming, China.,Children's mental department, Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Ning Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jianjun Bao
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xulan Zhang
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Xiaoxiao Lu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ye Ruan
- Alcohol and Drug Dependence Treatment Department, The Mental Hospital of Yunnan Province, Kunming, China.,Alcohol and Drug Dependence Treatment Department, Mental Health Center Affiliated With Kunming Medical University, Kunming, China
| | - Shurong Zhong
- School of Forensic Medicine, Kunming Medical University, Kunming, China.,Forensic biology identification laboratory, Judicial Identification Center of Kunming Medical University, Kunming, China
| |
Collapse
|
26
|
De Sa Nogueira D, Bourdy R, Filliol D, Romieu P, Befort K. Hippocampal mu opioid receptors are modulated following cocaine self-administration in rat. Eur J Neurosci 2021; 53:3341-3349. [PMID: 33811699 DOI: 10.1111/ejn.15217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Cocaine addiction is a complex pathology induced by long-term brain changes. Understanding the neurochemical changes underlying the reinforcing effects of this drug of abuse is critical for reducing the societal burden of drug addiction. The mu opioid receptor plays a major role in drug reward. This receptor is modulated by chronic cocaine treatment in specific brain structures, but few studies investigated neurochemical adaptations induced by voluntary cocaine intake. In this study, we investigated whether intravenous cocaine-self administration (0.33 mg/kg/injection, fixed-ratio 1 [FR1], 10 days) in rats induces transcriptional and functional changes of the mu opioid receptor in reward-related brain regions. Epigenetic processes with histone modifications were examined for two activating marks, H3K4Me3, and H3K27Ac. We found an increase of mu opioid receptor gene expression along with a potentiation of its functionality in hippocampus of cocaine self-administering animals compared to saline controls. Chromatin immunoprecipitation followed by qPCR revealed no modifications of the histone mark H3K4Me3 and H3K27Ac levels at mu opioid receptor promoter. Our study highlights the hippocampus as an important target to further investigate neuroadaptive processes leading to cocaine addiction.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA UMR7364), Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Shu C, Sosnowski DW, Tao R, Deep-Soboslay A, Kleinman JE, Hyde TM, Jaffe AE, Sabunciyan S, Maher BS. Epigenome-wide study of brain DNA methylation following acute opioid intoxication. Drug Alcohol Depend 2021; 221:108658. [PMID: 33667780 PMCID: PMC8026744 DOI: 10.1016/j.drugalcdep.2021.108658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Opioid abuse poses significant risk to individuals in the United States and epigenetic changes are a leading potential biomarker of opioid abuse. Current evidence, however, is mostly limited to candidate gene analysis in whole blood. To clarify the association between opioid abuse and DNA methylation, we conducted an epigenome-wide analysis of DNA methylation in brain samples of individuals who died from acute opioid intoxication and group-matched controls. METHODS Tissue samples were extracted from the dorsolateral prefrontal cortex of 153 deceased individuals (Mage = 35.42; 62 % male; 77 % European ancestry). The study included 72 opioid samples, 53 psychiatric controls, and 28 normal controls. The epigenome-wide analysis was implemented using the Illumina MethylationEPIC BeadChip; analyses adjusted for sociodemographic characteristics, negative control principal components, ancestry principal components, cellular composition, and surrogate variables. Horvath's epigenetic age and Levine's PhenoAge were calculated, and gene set enrichment analyses were performed. RESULTS Although no CpG sites survived false-discovery rate correction for multiple testing, 13 sites surpassed a relaxed significance threshold (p < 1.0 × 10-5). One of these sites was located within Netrin-1, a gene implicated in kappa opioid receptor activity. There was an association between opioid use and accelerated PhenoAge (b = 2.24, se = 1.11, p = .045). Gene set enrichment analyses revealed enrichment of differential methylation in GO and KEGG pathways broadly related to substance use. CONCLUSIONS Netrin-1 may be associated with opioid overdose, and future research with larger samples across stages of opioid use will elucidate the complex genomics of opioid abuse.
Collapse
Affiliation(s)
- Chang Shu
- Department of Pediatrics, Columbia University Irving Medical Center, United States; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States
| | - David W Sosnowski
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States.
| | - Ran Tao
- Lieber Institute for Brain Development, United States
| | | | - Joel E Kleinman
- Lieber Institute for Brain Development, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, United States
| | - Thomas M Hyde
- Lieber Institute for Brain Development, United States
| | - Andrew E Jaffe
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States; Lieber Institute for Brain Development, United States
| | | | - Brion S Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States
| |
Collapse
|
28
|
Cuitavi J, Hipólito L, Canals M. The Life Cycle of the Mu-Opioid Receptor. Trends Biochem Sci 2021; 46:315-328. [PMID: 33127216 DOI: 10.1016/j.tibs.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic target, including its biogenesis, trafficking to and from the plasma membrane, and how the regulation of these processes impacts its function and is related to pathophysiological conditions.
Collapse
Affiliation(s)
- Javier Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of València, Burjassot, Spain
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, the Midlands, UK.
| |
Collapse
|
29
|
Wachman EM, Wang A, Isley BC, Boateng J, Beierle JA, Hansbury A, Shrestha H, Bryant C, Zhang H. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. EXPLORATION OF MEDICINE 2021; 1:124-135. [PMID: 33763662 PMCID: PMC7985727 DOI: 10.37349/emed.2020.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims: Epigenetic variation of DNA methylation of the mu-opioid receptor gene (OPRM1) has been identified in the blood and saliva of individuals with opioid use disorder (OUD) and infants with neonatal opioid withdrawal syndrome (NOWS). It is unknown whether epigenetic variation in OPRM1 exists within placental tissue in women with OUD and whether it is associated with NOWS outcomes. In this pilot study, the authors aimed to 1) examine the association between placental OPRM1 DNA methylation levels and NOWS outcomes, and 2) compare OPRM1 methylation levels in opioid-exposed versus non-exposed control placentas. Methods: Placental tissue was collected from eligible opioid (n = 64) and control (n = 29) women after delivery. Placental DNA was isolated and methylation levels at six cytosine-phosphate-guanine (CpG) sites within the OPRM1 promoter were quantified. Methylation levels were evaluated for associations with infant NOWS outcome measures: need for pharmacologic treatment, length of hospital stay (LOS), morphine treatment days, and treatment with two medications. Regression models were created and adjusted for clinical co-variates. Methylation levels between opioid and controls placentas were also compared. Results: The primary opioid exposures were methadone and buprenorphine. Forty-nine (76.6%) of the opioid-exposed infants required pharmacologic treatment, 10 (15.6%) two medications, and average LOS for all opioid-exposed infants was 16.5 (standard deviation 9.7) days. There were no significant associations between OPRM1 DNA methylation levels in the six CpG sites and any NOWS outcome measures. No significant differences were found in methylation levels between the opioid and control samples. Conclusions: No significant associations were found between OPRM1 placental DNA methylation levels and NOWS severity in this pilot cohort. In addition, no significant differences were seen in OPRM1 methylation in opioid versus control placentas. Future association studies examining methylation levels on a genome-wide level are warranted.
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Alice Wang
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Breanna C Isley
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Jeffery Boateng
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron Hansbury
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Hira Shrestha
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Camron Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
30
|
Fragou D, Chao MR, Hu CW, Nikolaou K, Kovatsi L. Global DNA methylation levels in white blood cells of patients with chronic heroin use disorder. A prospective study. Toxicol Rep 2021; 8:337-342. [PMID: 33643851 PMCID: PMC7892979 DOI: 10.1016/j.toxrep.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid abstinence for 21 days does not affect global DNA methylation levels in white blood cells. All participants in the study completed a 21-day “dry” detoxification program. Findings do not rule out the possibility of site-specific methylation changes.
Background Increasing scientific evidence shows the significant role of epigenetic mechanisms in drug use disorder, abstinence and relapse. Studies on human subjects are limited compared to those on animals, for various reasons such as poly-substance abuse, high drop-out rate and technical difficulties. Objectives Our goal was to evaluate whether a monitored abstinence period of 21 days could induce changes in global DNA methylation in chronic heroin users. Method In the current study, we present data on global DNA methylation on a set of 18 male patients with chronic heroin use disorder, carefully selected based on inclusion and exclusion criteria, who were hospitalized and closely monitored during a 21-day detoxification program, one of the few where no opioid agonist is administered. The participants were sampled twice, once upon enrolment to the program and once upon completion. Results According to our results, no difference in global DNA methylation was detected between samples collected upon enrolment and samples collected upon completion of the program. Conclusion The findings of this study do not rule out the possibility that the 21-day abstinence period was not long enough to observe changes in global DNA methylation, or that abstinence induced site-specific methylation changes (but not global changes), that certainly merit further evaluation.
Collapse
Affiliation(s)
- Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Greece
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kakia Nikolaou
- Addiction Department IANOS, General Hospital of Thessaloniki 'G. Papanikolaou'-Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
31
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
32
|
Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Zhang K, Jin Z, Ramakrishna S, Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abac4d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Ghadiri AM, Rabiee N, Bagherzadeh M, Kiani M, Fatahi Y, Di Bartolomeo A, Dinarvand R, Webster TJ. Green synthesis of CuO- and Cu 2O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. NANOTECHNOLOGY 2020; 31:425101. [PMID: 32604076 DOI: 10.1088/1361-6528/aba142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study, for the first time, reports the synthesis of CuO- and Cu2O nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction. The potential antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria were investigated. It was shown that the antibacterial properties were independent of the NP morphology as well as of the texture of the synthesis media. As a result, the presently synthesized nanoparticles showed very good photocatalytic and catalytic activities in comparison with the literature. From a biological perspective, they showed lower cytotoxicity in comparison with the literature, and also showed higher antioxidant and antibacterial activities. Thus, these present green CuO and Cu2O nanoparticles deserve further attention to improve numerous medical applications.
Collapse
|
34
|
Sandoval-Sierra JV, Salgado García FI, Brooks JH, Derefinko KJ, Mozhui K. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin Epigenetics 2020; 12:76. [PMID: 32493461 PMCID: PMC7268244 DOI: 10.1186/s13148-020-00868-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background A long-term opioid use has been associated with hypermethylation of the opioid receptor mu 1 (OPRM1) promoter. Very little is currently known about the early epigenetic response to therapeutic opioids. Here, we examine whether we can detect DNA methylation changes associated with a few days’ use of prescribed opioids. Genome-wide DNA methylation was assayed in a cohort of 33 opioid-naïve participants who underwent standard dental surgery followed by opioid self-administration. Saliva samples were collected before surgery (visit 1), and at two postsurgery visits at 2.7 ± 1.5 days (visit 2), and 39 ± 10 days (visit 3) after the discontinuation of opioid analgesics. Results The perioperative methylome underwent significant changes over the three visits that were primarily due to postoperative inflammatory response and cell heterogeneity. To specifically examine the effect of opioids, we started with a candidate gene approach and evaluated 10 CpGs located in the OPRM1 promoter. There was a significant cross-sectional variability in opioid use, and for participants who self-administered the prescribed drugs, the total dosage ranged from 5–210 morphine milligram equivalent (MME). Participants were categorized by cumulative dosage into three groups: < 25 MME, 25–90 MME, and ≥ 90 MME. Using mixed-effects modeling, 4 CpGs had significant positive associations with opioid dose at two-tailed p value < 0.05, and overall, 9 of the 10 OPRM1 promoter CpGs showed the predicted higher methylation in the higher dose groups relative to the lowest dose group. After adjustment for age, cellular heterogeneity, and past tobacco use, the promoter mean methylation also had positive associations with cumulative MME (regression coefficient = 0.0002, one-tailed p value = 0.02) and duration of opioid use (regression coefficient = 0.003, one-tailed p value = 0.001), but this effect was significant only for visit 3. A preliminary epigenome-wide association study identified a significant CpG in the promoter of the RAS-related signaling gene, RASL10A, that may be predictive of opioid dosage. Conclusion The present study provides evidence that the hypermethylation of the OPRM1 promoter is in response to opioid use and that epigenetic differences in OPRM1 and other sites are associated with a short-term use of therapeutic opioids.
Collapse
Affiliation(s)
- Jose Vladimir Sandoval-Sierra
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Francisco I Salgado García
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeffrey H Brooks
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Karen J Derefinko
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
35
|
An analysis of the effect of mu-opioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. THE PHARMACOGENOMICS JOURNAL 2020; 20:672-680. [PMID: 32029903 PMCID: PMC7415483 DOI: 10.1038/s41397-020-0158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
This study explored the effect of OPRM1 promoter region DNA methylation on the outcome of treatment with the opioid antagonist naltrexone (NTX) for alcohol dependence (AD). Ninety-three patients with DSM-IV AD [41 African Americans (AAs) and 52 European Americans (EAs)] received double-blind treatment with NTX or placebo for at least three months. Relapse to heavy drinking was assessed during the first 13 weeks of the trial. Peripheral blood methylation levels of 33 CpG units in the OPRM1 promoter region were quantified using Sequenom EpiTYPER technology. Bayesian logistic regression was used to analyze the effects of NTX treatment, CpG methylation, CpG methylation×NTX treatment, and age on AD relapse. The Random Forest machine learning algorithm was applied to select AD relapse predictors. No significant effect of individual OPRM1 promoter CpG units on AD relapse was observed in either AAs or EAs. Age was significantly associated with AD relapse in EAs, among whom older subjects had a lower relapse rate. Random forest analyses revealed that the prediction rate for AD relapse reached 66.0% with five top variables (age and four CpG units; ranked by their importance to AD relapse) in the prediction model. These findings suggest that methylation levels of individual OPRM1 promoter CpG units do not contribute significantly to inter-individual variation in NTX response. However, the age of subjects in combination with a cluster of specific OPRM1 promoter CpG units may affect NTX treatment outcome. Additional studies of OPRM1 DNA methylation changes during and after NTX treatment of AD are needed.
Collapse
|
36
|
Balyan R, Hahn D, Huang H, Chidambaran V. Pharmacokinetic and pharmacodynamic considerations in developing a response to the opioid epidemic. Expert Opin Drug Metab Toxicol 2020; 16:125-141. [PMID: 31976778 PMCID: PMC7199505 DOI: 10.1080/17425255.2020.1721458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Opioids continue to be used widely for pain management. Widespread availability of prescription opioids has led to opioid abuse and addiction. Besides steps to reduce inappropriate prescribing, exploiting opioid pharmacology to make their use safer is important.Areas covered: This article discusses the pathology and factors underlying opioid abuse. Pharmacokinetic and pharmacodynamic properties affecting abuse liability of commonly abused opioids have been highlighted. These properties inform the development of ideal abuse deterrent products. Mechanisms and cost-effectiveness of available abuse deterrent products have been reviewed in addition to the pharmacology of medications used to treat addiction.Expert opinion: The opioid crisis presents unique challenges to managing pain effectively given the limited repertoire of strong analgesics. The 5-point strategy to combat the opioid crisis calls for better preventive, treatment, and recovery services, better data, better pain management, better availability of overdose-reversing drugs and better research. There is an urgent need to decrease the cost of abuse deterrent opioids which deters their cost-effectiveness. In addition, discovery of novel analgesics, further insight into central and peripheral pain mechanisms, understanding genomic risk profiles for efficient targeted efforts, and education will be key to winning this fight against the opioid crisis.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - David Hahn
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Henry Huang
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, USA
| |
Collapse
|
37
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
38
|
Kader F, Ghai M, Olaniran AO. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 2019; 134:1-20. [PMID: 31713682 DOI: 10.1007/s00414-019-02181-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.
Collapse
Affiliation(s)
- Farzeen Kader
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, Republic of South Africa
| |
Collapse
|
39
|
Parikh A, Gopalakrishnan M, Azeem A, Booth A, El-Metwally D. Racial association and pharmacotherapy in neonatal opioid withdrawal syndrome. J Perinatol 2019; 39:1370-1376. [PMID: 31388115 DOI: 10.1038/s41372-019-0440-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine if racial differences are associated with Neonatal Opioid Withdrawal Syndrome (NOWS) severity. STUDY DESIGN A 10-year (2008-2017) retrospective cohort of infants ≥35 weeks gestation with prenatal exposure to opioids was included. The primary measure was the need for pharmacotherapy. Multivariable logistic regression and propensity score analysis were performed. RESULTS Among 345 infants with NOWS, 111 (32%) were black infants with 70% of them requiring pharmacotherapy as compared with 84% of white infants. Upon adjusting for significant covariates (methadone, benzodiazepine use, and gestational age), black infants were 57% less likely than whites to require pharmacotherapy (Odds ratio: 0.43, 95%CI: 0.22-0.80, p = 0.009). Similar results were observed with propensity score analysis. CONCLUSIONS Significant racial disparity observed may be secondary to genetic variations in opioid pharmacogenomics and/or extrinsic factors. Large-scale studies are warranted to include race in predictive models for early pharmacological intervention.
Collapse
Affiliation(s)
- Abhinav Parikh
- University of Maryland Medical Center, Baltimore, MD, USA.
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Ahad Azeem
- Long Island Jewish Forrest Hill Hospital, Forrest Hill, NY, 11375, USA
| | | | | |
Collapse
|
40
|
Abstract
Neonatal abstinence syndrome (NAS) due to in-utero opioid exposure is a growing epidemic with significant variability in clinical presentation and severity. Currently, NAS severity cannot be predicted based on clinical factors alone. To date, small studies have identified genetic variants in opioid receptor and stress response genes that are associated with differences in NAS pharmacologic treatment rates and length of hospitalization. In addition, epigenetic variation in the mu opioid receptor (OPRM1) gene has been associated with differences in NAS hospitalization outcomes. Examination of maternal genetic and epigenetic profiles may assist in prediction of NAS severity. Large-scale genomic studies are needed to elucidate the genetic architecture of and epigenetic modification related to NAS in order to develop more tailored personalized treatments for NAS.
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA; Grayken Center for Addiction Medicine, Boston Medical Center, Boston, MA, USA.
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA.
| |
Collapse
|
41
|
Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide Study of Epigenetic Biomarkers of Opioid Dependence in European- American Women. Sci Rep 2019; 9:4660. [PMID: 30874594 PMCID: PMC6420601 DOI: 10.1038/s41598-019-41110-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
There is currently an epidemic of opioid use, overdose, and dependence in the United States. Although opioid dependence (OD) is more prevalent in men, opioid relapse and fatal opioid overdoses have recently increased at a higher rate among women. Epigenetic mechanisms have been implicated in the etiology of OD, though most studies to date have used candidate gene approaches. We conducted the first epigenome-wide association study (EWAS) of OD in a sample of 220 European-American (EA) women (140 OD cases, 80 opioid-exposed controls). DNA was derived from whole blood samples and EWAS was implemented using the Illumina Infinium HumanMethylationEPIC array. To identify differentially methylated CpG sites, we performed an association analysis adjusting for age, estimates of cell proportions, smoking status, and the first three principal components to correct for population stratification. After correction for multiple testing, association analysis identified three genome-wide significant differentially methylated CpG sites mapping to the PARG, RERE, and CFAP77 genes. These genes are involved in chromatin remodeling, DNA binding, cell survival, and cell projection. Previous genome-wide association studies have identified RERE risk variants in association with psychiatric disorders and educational attainment. DNA methylation age in the peripheral blood did not differ between OD subjects and opioid-exposed controls. Our findings implicate epigenetic mechanisms in OD and, if replicated, identify possible novel peripheral biomarkers of OD that could inform the prevention and treatment of the disorder.
Collapse
Affiliation(s)
- Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Zhongshan Cheng
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Huiping Zhang
- Departments of Psychiatry and Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
42
|
Abstract
The opioid epidemic is at the epicenter of the drug crisis, resulting in an inconceivable number of overdose deaths and exorbitant associated medical costs that have crippled many communities across the socioeconomic spectrum in the United States. Classic medications for the treatment of opioid use disorder predominantly target the opioid system and thus have been underutilized, in part due to their own potential for abuse and heavy regulatory burden for patients and clinicians. Opioid antagonists are now evolving in their use, not only to prevent acute overdoses but as extended-use treatment options. Strategies that target specific genetic and epigenetic factors, along with novel nonopioid medications, hold promise as future therapeutic interventions for opioid abuse. Success in increasing the treatment options in the clinical toolbox will, hopefully, help to end the historical pattern of recurring opioid epidemics. [AJP at 175: Remembering Our Past As We Envision Our Future Drug Addiction in Relation to Problems of Adolescence Zimmering and colleagues wrote in the midst of an opiate epidemic among young people that "only the human being, or rather certain types of human beings, will return to the enslaving, self-destructive habit." (Am J Psychiatry 1952; 109:272-278 )].
Collapse
Affiliation(s)
- Yasmin L. Hurd
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine, Addiction Institute, Mount Sinai Behavioral Health System, New York
| | - Charles P. O’Brien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Imperio CG, McFalls AJ, Hadad N, Blanco-Berdugo L, Masser DR, Colechio EM, Coffey AA, Bixler GV, Stanford DR, Vrana KE, Grigson PS, Freeman WM. Exposure to environmental enrichment attenuates addiction-like behavior and alters molecular effects of heroin self-administration in rats. Neuropharmacology 2018; 139:26-40. [PMID: 29964093 PMCID: PMC6067959 DOI: 10.1016/j.neuropharm.2018.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
Environmental factors profoundly affect the addictive potential of drugs of abuse and may also modulate the neuro-anatomical/neuro-chemical impacts of uncontrolled drug use and relapse propensity. This study examined the impact of environmental enrichment on heroin self-administration, addiction-related behaviors, and molecular processes proposed to underlie these behaviors. Male Sprague-Dawley rats in standard and enriched housing conditions intravenously self-administered similar amounts of heroin over 14 days. However, environmental enrichment attenuated progressive ratio, extinction, and reinstatement session responding after 14 days of enforced abstinence. Molecular mechanisms, namely DNA methylation and gene expression, are proposed to underlie abstinence-persistent behaviors. A global reduction in methylation is reported to coincide with addiction, but no differences in total genomic methylation or repeat element methylation were observed in CpG or non-CpG (CH) contexts across the mesolimbic circuitry as assessed by multiple methods including whole genome bisulfite sequencing. Immediate early gene expression associated with drug seeking, taking, and abstinence also were examined. EGR1 and EGR2 were suppressed in mesolimbic regions with heroin-taking and environmental enrichment. Site-specific methylation analysis of EGR1 and EGR2 promoter regions using bisulfite amplicon sequencing (BSAS) revealed hypo-methylation in the EGR2 promoter region and EGR1 intragenic CpG sites with heroin-taking and environmental enrichment that was associated with decreased mRNA expression. Taken together, these findings illuminate the impact of drug taking and environment on the epigenome in a locus and gene-specific manner and highlight the need for positive, alternative rewards in the treatment and prevention of drug addiction.
Collapse
Affiliation(s)
- Caesar G. Imperio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Ashley J. McFalls
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Niran Hadad
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Dustin R. Masser
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Elizabeth M. Colechio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Alissa A. Coffey
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Georgina V. Bixler
- Genome Sciences Facility, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kent. E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Patricia S. Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Willard M. Freeman
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
44
|
Ji H, Liu G, Xu X, Liu H, Xu L, Hu H, Chen Y, Hong Q, Wang Q, Shen W, Li L, Xie X, Zhou W, Duan S. Hypermethylation of the κ1 opioid receptor promoter in Chinese heroin and methamphetamine addicts. Exp Ther Med 2018; 16:2392-2398. [PMID: 30210591 PMCID: PMC6122531 DOI: 10.3892/etm.2018.6514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Heroin and methamphetamine (METH) addiction continues to be a major social, economic and therapeutic problem worldwide. The opioid pathway may mediate the effects of addictive drugs. However, the potential correlation between the κ1 opioid receptor (OPRK1) and drug addiction has not yet been characterized. The aim of the present study was to investigate the potential association between methylation of the OPRK1 promoter and substance abuse. Bisulfite pyrosequencing technology was used to determine the levels of OPRK1 promoter methylation in 60 drug abusers (30 heroin and 30 METH addicts) and 52 controls, observed to exhibit no significant differences in age or gender. The results indicated that levels of OPRK1 promoter methylation were significantly higher in drug addicts when compared with controls (P=2.43×10−4). Significant correlations between OPRK1 promoter methylation and the length and frequency of drug use were also observed in male heroin addicts (length: r=0.661, P=0.007; frequency: r=−0.684, P=0.005). In addition, a luciferase reporter gene assay indicated that the OPRK1 promoter fragment was able to regulate gene expression (fold change between two groups >32.12, P≤0.0001). In conclusion, results of the present study indicate that methylation of the OPRK1 promoter contributes to the pathophysiology of drug addiction.
Collapse
Affiliation(s)
- Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guili Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xuting Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Lei Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yingmin Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Qinwen Wang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wenwen Shen
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Longhui Li
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaohu Xie
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo, Zhejiang 315010, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
45
|
Gilardi F, Augsburger M, Thomas A. Will Widespread Synthetic Opioid Consumption Induce Epigenetic Consequences in Future Generations? Front Pharmacol 2018; 9:702. [PMID: 30018553 PMCID: PMC6037745 DOI: 10.3389/fphar.2018.00702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
A growing number of evidence demonstrates that ancestral exposure to xenobiotics (pollutants, drugs of abuse, etc.) can perturb the physiology and behavior of descendants. Both maternal and paternal transmission of phenotype across generations has been proved, demonstrating that parental drug history may have significant implications for subsequent generations. In the last years, the burden of novel synthetic opioid (NSO) consumption, due to increased medical prescription of pain medications and to easier accessibility of these substances on illegal market, is raising new questions first in term of public health, but also about the consequences of the parental use of these drugs on future generations. Besides being associated to the neonatal abstinence syndrome, in utero exposure to opioids has an impact on neuronal development with long-term repercussions that are potentially transmitted to subsequent generations. In addition, recent reports suggest that opioid use even before conception influences the reactivity to opioids of the progeny and the following generations, likely through epigenetic mechanisms. This review describes the current knowledge about the transgenerational effects of opioid consumption. We summarize the preclinical and clinical findings showing the implications for the subsequent generations of parental exposure to opioids earlier in life. Limitations of the existing data on NSOs and new perspectives of the research are also discussed, as well as clinical and forensic consequences.
Collapse
Affiliation(s)
- Federica Gilardi
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland
| | - Aurelien Thomas
- Forensic Toxicology and Chemistry Unit, University Center of Legal Medicine, Lausanne University Hospital - Geneva University Hospitals, Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Nielsen DA, Spellicy CJ, Harding MJ, Graham DP. Apolipoprotein E DNA methylation and posttraumatic stress disorder are associated with plasma ApoE level: A preliminary study. Behav Brain Res 2018; 356:415-422. [PMID: 29807071 DOI: 10.1016/j.bbr.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Mild traumatic brain injury (mTBI) occurred in 15-30% of Veterans returning from Iraq and Afghanistan. We examined whether DNA methylation of the apolipoprotein E (APOE) gene promoter region or plasma ApoE protein levels are altered in mTBI. APOE promoter region DNA methylation, APOE genotype, and plasma ApoE concentration were determined in 87 Veterans with or without mTBI who were recruited from 2010-2014. Plasma ApoE concentration was found to be associated with Posttraumatic Stress Disorder (PTSD) symptom severity ratings by hierarchical linear regression (p = .013) and ANCOVA (p = .007). Hierarchical linear regression revealed that plasma ApoE concentration was associated with APOE-ε4 genotype status (p=.022). Higher ApoE plasma levels were found in ε3/ε3 Veterans than in APOE-ε4 carriers (p = .031). Furthermore, plasma ApoE concentration was associated experiment-wise with DNA methylation at CpG sites -877 (p = .021), and -775 (p = .014). The interaction between APOE-ε4 genotype and having a PTSD diagnosis was associated with DNA methylation at CpG site -675 (p = .009).
Collapse
Affiliation(s)
- David A Nielsen
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.
| | - Catherine J Spellicy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Harding
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David P Graham
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States; Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
47
|
Lax E, Szyf M. The Role of DNA Methylation in Drug Addiction: Implications for Diagnostic and Therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:93-104. [PMID: 29933958 DOI: 10.1016/bs.pmbts.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug addiction is a devastating health problem that is a very heavy burden on the individual affected and the society in general. Recent research defines addiction as a neurobehavioral disorder. Underpinning biological mechanisms of drug addiction are abnormal neuronal and brain activity following acute and repeated drug exposure. Abnormal gene expression is found in reward and decision-making brain regions of addicts and in animal models and is possibly responsible for changes in brain function. DNA methylation is an epigenetic modification that regulates gene expression. Global and site-specific changes in DNA methylation are observed in addiction. Here, we discuss recent findings on the involvement of DNA methylation in drug addiction from animal and human studies. We also propose future directions for utilizing DNA methylation-based approaches for diagnosis, therapeutics, and evaluation of response to therapy in drug addiction.
Collapse
Affiliation(s)
- Elad Lax
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada.
| |
Collapse
|
48
|
Opioid Exposure is Associated with Aberrant DNA Methylation of OPRM1 Promoter Region in a Chinese Han Population. Biochem Genet 2018; 56:451-458. [DOI: 10.1007/s10528-018-9852-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/01/2018] [Indexed: 12/30/2022]
|
49
|
Belzeaux R, Lalanne L, Kieffer BL, Lutz PE. Focusing on the Opioid System for Addiction Biomarker Discovery. Trends Mol Med 2018; 24:206-220. [PMID: 29396147 DOI: 10.1016/j.molmed.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
Abstract
Substance use disorders (SUD) and behavioral addictions are devastating conditions that impose a severe burden on all societies, and represent difficult challenges for clinicians. Therefore, biomarkers are urgently needed to help predict vulnerability, clinical course, and response to treatment. Here, we elaborate on the potential for addiction biomarker discovery of the opioid system, particularly within the emerging framework aiming to probe opioid function in peripheral tissues. Mu, delta, and kappa opioid receptors all critically regulate neurobiological and behavioral processes that define addiction, and are also targeted by major pharmacotherapies used in the management of patients with SUD. We propose that opioid biomarkers may have the potential to improve and guide diagnosis and therapeutic decisions in the addiction field.
Collapse
Affiliation(s)
- Raoul Belzeaux
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; INT-UMR7289,CNRS Aix-Marseille Université, Marseille, France; These authors contributed equally to this article
| | - Laurence Lalanne
- Department of Psychiatry and Addictology, University Hospital of Strasbourg and Medical School of Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, University Hospital of Strasbourg and Medical School of Strasbourg, Strasbourg, France; INSERM 1114, Department of Psychiatry and Addictology, University Hospital of Strasbourg, Strasbourg, France; These authors contributed equally to this article
| | - Brigitte L Kieffer
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Current address: Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
50
|
Bough KJ, Pollock JD. Defining Substance Use Disorders: The Need for Peripheral Biomarkers. Trends Mol Med 2018; 24:109-120. [PMID: 29396146 DOI: 10.1016/j.molmed.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Abstract
Addiction is a brain disease, and current diagnostic criteria for substance use disorders (SUDs) are qualitative. Nevertheless, scientific advances are beginning to characterize neurobiological domains. Combining multiple units of measure may provide an opportunity to deconstruct the heterogeneities of a SUD and define endophenotypes by using peripheral biospecimens. There are several recent examples of potential biomarker types that can be examined, together with their categorical applications for SUDs. We propose that, in conjunction with rapidly advancing statistical and mathematical modeling techniques, there is now a unique opportunity for the discovery of composite biomarkers within specific domains of addiction; these may lay the foundation for future biomarker qualification, with important implications for drug development and medical care.
Collapse
Affiliation(s)
- Kristopher J Bough
- National Institutes of Health (NIH), National Institute on Drug Abuse (NIDA), Rockville, MD 20852, USA.
| | - Jonathan D Pollock
- National Institutes of Health (NIH), National Institute on Drug Abuse (NIDA), Rockville, MD 20852, USA
| |
Collapse
|