1
|
Liang S, Cao B, Deng W, Kong X, Zhao L, Jin Y, Ma X, Wang Y, Li X, Wang Q, Guo W, Du X, Sham PC, Greenshaw AJ, Li T. Functional dysconnectivity of anterior cingulate subregions in schizophrenia and psychotic and nonpsychotic bipolar disorder. Schizophr Res 2023; 254:155-162. [PMID: 36889182 DOI: 10.1016/j.schres.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/20/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
Aberrant resting-state functional connectivity (FC) of anterior cingulate cortex (ACC) has been implicated in the pathophysiology of schizophrenia and bipolar disorder (BP). This study investigated the subregional FC of ACC across schizophrenia and psychotic (PBP) and nonpsychotic BP (NPBP) and the relationship between brain functional alterations and clinical manifestations. A total of 174 first-episode medication-naive patients with schizophrenia (FES), 80 patients with PBP, 77 patients with NPBP and 173 demographically matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Brain-wide FC of ACC subregions was computed for each individual, and compared between the groups. General intelligence was evaluated using the short version of the Wechsler Adult Intelligence Scale. Relationships between FC and various clinical and cognitive variables were estimated using the skipped correlation. The FES, PBP and NPBP groups showed differing connectivity patterns in the left caudal, dorsal and perigenual ACC. Transdiagnostic dysconnectivity was found in the subregional ACC associated with cortical, limbic, striatal and cerebellar regions. Disorder-specific dysconnectivity in FES was identified between the left perigenual ACC and bilateral orbitofrontal cortex, and the left caudal ACC coupling with the default mode network (DMN) and visual processing region was correlated with psychotic symptoms. In the PBP group, FC between the left dorsal ACC and the right caudate was correlated with psychotic symptoms, and FC connected with the DMN was associated with affective symptoms. The current findings confirmed that subregional ACC dysconnectivity could be a key transdiagnostic feature and associated with differing clinical symptomology across schizophrenia and PBP.
Collapse
Affiliation(s)
- Sugai Liang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China; Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Wei Deng
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liansheng Zhao
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Jin
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingcheng Wang
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaojing Li
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Wang
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanjun Guo
- Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu, China
| | - Pak C Sham
- State Key Laboratory of Brain and Cognitive Sciences, Centre for Genomic Sciences, & Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton T6G 2B7, AB, Canada
| | - Tao Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China; Mental Health Centre & West China Brain Research Centre & Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| |
Collapse
|
2
|
Furlong LS, Rossell SL, Caruana GF, Cropley VL, Hughes M, Van Rheenen TE. The activity and connectivity of the facial emotion processing neural circuitry in bipolar disorder: a systematic review. J Affect Disord 2021; 279:518-548. [PMID: 33142156 DOI: 10.1016/j.jad.2020.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Facial emotion processing abnormalities may be a trait feature of bipolar disorder (BD). These social cognitive impairments may be due to alterations in the neural processing of facial affective information in visual ("core"), and limbic and prefrontal ("extended") networks, however, the precise neurobiological mechanism(s) underlying these symptoms are unclear. METHODS We conducted a systematic review to appraise the literature on the activity and connectivity of the facial emotion processing neural circuitry in BD. Two reviewers undertook a search of the electronic databases PubMed, Scopus and PsycINFO, to identify relevant literature published since inception up until September 2019. Study eligibility criteria included; BD participants, neuroimaging, and facial emotion processing tasks. RESULTS Out of an initial yield of 6121 articles, 66 were eligible for inclusion in this review. We identified differences in neural activity and connectivity within and between occipitotemporal, limbic, and prefrontal regions, in response to facial affective stimuli, in BD compared to healthy controls. LIMITATIONS The methodologies used across studies varied considerably. CONCLUSIONS The findings from this review suggest abnormalities in both the activity and connectivity of facial emotion processing neural circuitry in BD. It is recommended that future research aims to further define the connectivity and spatiotemporal course of neural events within and between occipitotemporal, limbic, and prefrontal regions.
Collapse
Affiliation(s)
- Lisa S Furlong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia; St Vincent's Mental Health, St Vincent's Hospital, VIC, Australia
| | - Georgia F Caruana
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Matthew Hughes
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|
3
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Rao S, Han X, Shi M, Siu CO, Waye MMY, Liu G, Wing YK. Associations of the serotonin transporter promoter polymorphism (5-HTTLPR) with bipolar disorder and treatment response: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:214-226. [PMID: 30217771 DOI: 10.1016/j.pnpbp.2018.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Associations of the serotonin transporter promoter polymorphism (5-HTTLPR) with bipolar disorder (BPD) and treatment response in bipolar patients were not conclusive. This study not only assessed the association between the 5-HTTLPR and BPD with accumulating relevant studies, but also in the first time evaluated the effect of the 5-HTTLPR on both anti-depressive and anti-manic treatment responses in bipolar patients. METHODS PubMed, Embase, PsycINFO, Cochrane Library and Cochrane Control Trials databases were systematically searched before February 2017. This meta-analysis followed the PRISMA guidelines. RESULTS A total of 32 population-based studies (5567 cases and 6993 controls) and 9 family-based studies (837 trios) were finally screened out and statistically joined into a single meta-analysis that revealed an association between S allele and an increased risk of BPD (OR = 1.06, p = .038). Pooled analysis of the 32 population-based studies indicated an association of S-carrier genotypes with an increased risk of BPD (OR = 1.10, p = .029). Meanwhile, the association remained significant in Caucasians (OR = 1.15, p = .004), which could provide an enough power (88%) to detect a significant association. Regarding the treatment response studies, 6 studies reporting the relationship of the 5-HTTLPR in anti-depressive remission rate (1034 patients) and 7 studies reporting in response rate (1098 patients) were included for pooled analyses. We observed a significant association of S-carrier genotypes with a reduced anti-depressive remission rate (OR = 0.64, p = .006) but not with anti-depressive response rate. The association between the 5-HTTLPR with anti-manic response rate was not observed in the included 6 studies (676 patients). CONCLUSIONS The present study supported the presence of a marginal but detectable effect of the 5-HTTLPR on susceptibility to BPD. Moreover, the detected association in Caucasian was statistically reliable. Besides, the 5-HTTLPR was identified as a useful predictor for anti-depressive remission but not for anti-depressive or anti-manic response.
Collapse
Affiliation(s)
- Shitao Rao
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China; The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China
| | - Xinyu Han
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China; College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Mai Shi
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China
| | - Cynthia O Siu
- COS & Associates Ltd., Central District, Hong Kong, SAR, China
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China
| | - Guangming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, N.T., Hong Kong, SAR, China.
| |
Collapse
|
5
|
Sanches M, Amorim E, Mwangi B, Zunta-Soares GB, Soares JC. Smaller left anterior cingulate cortex in non-bipolar relatives of patients with bipolar disorder. ACTA ACUST UNITED AC 2018; 41:254-256. [PMID: 30540025 PMCID: PMC6794124 DOI: 10.1590/1516-4446-2018-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
Objective: Bipolar disorder (BD) is highly heritable. The present study aimed at identifying brain morphometric features that could represent markers of BD vulnerability in non-bipolar relatives of bipolar patients. Methods: In the present study, structural magnetic resonance imaging brain scans were acquired from a total of 93 subjects, including 31 patients with BD, 31 non-bipolar relatives of BD patients, and 31 healthy controls. Volumetric measurements of the anterior cingulate cortex (ACC), lateral ventricles, amygdala, and hippocampus were completed using the automated software FreeSurfer. Results: Analysis of covariance (with age, gender, and intracranial volume as covariates) indicated smaller left ACC volumes in unaffected relatives as compared to healthy controls and BD patients (p = 0.004 and p = 0.037, respectively). No additional statistically significant differences were detected for other brain structures. Conclusion: Our findings suggest smaller left ACC volume as a viable biomarker candidate for BD.
Collapse
Affiliation(s)
- Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Psychiatry and Behavioral Sciences, University of North Dakota School of Medicine, Bismarck, ND, USA
| | - Edilberto Amorim
- Massachusetts General Hospital & Brigham and Women's Hospital, Boston, MA, USA
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Using optimal combined moderators to define heterogeneity in neural responses to randomized conditions: Application to the effect of sleep loss on fear learning. Neuroimage 2018; 181:718-727. [PMID: 30041060 DOI: 10.1016/j.neuroimage.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Comparing the neural outcomes of two randomized experimental groups is a primary aim of many functional neuroimaging studies. However, between-group effects can be obscured by heterogeneity in neural responses. Optimal Combined Moderator (OCM) approaches have previously been used to clarify heterogeneity in clinical outcomes following treatment randomization. We show that OCMs can also be used to clarify heterogeneity in the effect of a randomized experimental condition on neural responses. In 78 healthy adults aged 18-30 from the Effects of Dose-Dependent Sleep Disruption on Fear and Reward (SFeRe) study, we used demographic, clinical, genetic, and polysomnographic characteristics to develop OCMs for the effect of a randomized sleep restriction (SR) versus normal sleep (NS) condition on blood-oxygen-level dependent responses in the right amygdala (RAmyg) and subgenual anterior cingulate cortex (sgACC) during fear conditioning (FC) and extinction (FE) paradigms. The OCM for the RAmyg during FE was strongest [r (95% CI) = 0.52 (0.42, 0.68)], withstood cross-validation, and divided the sample into two subgroups with opposing experimental effects. Among N = 48 participants ("SR < NS"), those with SR exhibited less RAmyg activation during FE than those with NS [d (95%CI) = -1.10 (-1.86, -0.77)]. Among the remaining N = 30 participants ("SR > NS"), those with SR exhibited greater RAmyg activation during FE following SR than those with NS [d (95%CI) = 0.87 (0.37,1.78)]. SR > NS participants were more likely to be female, white, l/l genotype carriers, and have a psychiatric history. They had less sleep (overall and in REM), lower REM density, and lower spindle activity (12-16 Hz). Applying OCMs to randomized studies with neural outcomes can clarify neural heterogeneity and jumpstart mechanistic research; with further validation they also offer promise for personalized brain-based treatments and interventions.
Collapse
|
7
|
Shared facial emotion processing functional network findings in medication-naïve major depressive disorder and healthy individuals: detection by sICA. BMC Psychiatry 2018; 18:96. [PMID: 29636031 PMCID: PMC5891939 DOI: 10.1186/s12888-018-1631-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The fundamental mechanism underlying emotional processing in major depressive disorder (MDD) remains unclear. To better understand the neural correlates of emotional processing in MDD, we investigated the role of multiple functional networks (FNs) during emotional stimuli processing. METHODS Thirty-two medication-naïve subjects with MDD and 36 healthy controls (HCs) underwent an emotional faces fMRI task that included neutral, happy and fearful expressions. Spatial independent component analysis (sICA) and general linear model (GLM) were conducted to examine the main effect of task condition and group, and two-way interactions of group and task conditions. RESULTS In sICA analysis, MDD patients and HCs together showed significant differences in task-related modulations in five FNs across task conditions. One FN mainly involving the ventral medial prefrontal cortex showed lower activation during fearful relative to happy condition. Two FNs mainly involving the bilateral inferior frontal gyrus and temporal cortex, showed opposing modulation relative to the ventral medial prefrontal cortex FN, i.e., greater activation during fearful relative to happy condition. Two remaining FNs involving the fronto-parietal and occipital cortices, showed reduced activation during both fearful and happy conditions relative to the neutral condition. However, MDD and HCs did not show significant differences in expression-related modulations in any FNs in this sample. CONCLUSIONS SICA revealed differing functional activation patterns than typical GLM-based analyses. The sICA findings demonstrated unique FNs involved in processing happy and fearful facial expressions. Potential differences between MDD and HCs in expression-related FN modulation should be investigated further.
Collapse
|
8
|
Haller SP, Kircanski K, Stoddard J, White LK, Chen G, Sharif-Askary B, Zhang S, Towbin KE, Pine DS, Leibenluft E, Brotman MA. Reliability of neural activation and connectivity during implicit face emotion processing in youth. Dev Cogn Neurosci 2018; 31:67-73. [PMID: 29753993 PMCID: PMC6054466 DOI: 10.1016/j.dcn.2018.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/28/2018] [Accepted: 03/24/2018] [Indexed: 12/01/2022] Open
Abstract
Face emotion imaging paradigms are widely used in both healthy and psychiatric populations. Here, in children and adolescents, we evaluate the test-retest reliability of blood oxygenation-level dependent (BOLD) activation and task-based functional connectivity on a widely used implicit face emotion processing task (i.e., gender labeling). Twenty-five healthy youth (M age = 13.97 year s; 60% female) completed two functional magnetic resonance imaging (fMRI) scan sessions approximately two months apart. Participants identified the gender of faces displaying angry, fearful, happy, and neutral emotions. A Bayesian adaptation of the intraclass correlation (ICC) assessed reliability of evoked BOLD activation and amygdala seed-based functional connectivity on task events vs. baseline as well as contrasts between face emotions. For each face emotion vs. baseline, good reliability of activation was demonstrated across key emotion processing regions including middle, medial, and inferior frontal gyri. However, contrasts between face emotions yielded variable results. Contrasts of angry to neutral or happy faces exhibited good reliability of amygdala connectivity to prefrontal regions. Contrasts of fearful to happy faces exhibited good reliability of activation in the anterior cingulate. Findings inform the reproducibility literature and emphasize the need for continued evaluation of task reliability.
Collapse
Affiliation(s)
- Simone P Haller
- Emotion and Development Branch, National Institute of Mental Health, USA.
| | | | - Joel Stoddard
- Department of Psychiatry, University of Colorado School of Medicine, USA
| | - Lauren K White
- Children's Hospital of Philadelphia, Lifespan Brain Institute, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, USA
| | | | - Susan Zhang
- Emotion and Development Branch, National Institute of Mental Health, USA
| | - Kenneth E Towbin
- Emotion and Development Branch, National Institute of Mental Health, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, USA
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, USA
| |
Collapse
|
9
|
Vai B, Riberto M, Ghiglino D, Poletti S, Bollettini I, Lorenzi C, Colombo C, Benedetti F. A 5-HT 1Areceptor promoter polymorphism influences fronto-limbic functional connectivity and depression severity in bipolar disorder. Psychiatry Res Neuroimaging 2017; 270:1-7. [PMID: 28985530 DOI: 10.1016/j.pscychresns.2017.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Benedetta Vai
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Martina Riberto
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Davide Ghiglino
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Sara Poletti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Irene Bollettini
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder. J Affect Disord 2017; 222:7-13. [PMID: 28667891 DOI: 10.1016/j.jad.2017.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. METHODS We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. RESULTS While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD.
Collapse
|
11
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
12
|
Johnston JAY, Wang F, Liu J, Blond BN, Wallace A, Liu J, Spencer L, Cox Lippard ET, Purves KL, Landeros-Weisenberger A, Hermes E, Pittman B, Zhang S, King R, Martin A, Oquendo MA, Blumberg HP. Multimodal Neuroimaging of Frontolimbic Structure and Function Associated With Suicide Attempts in Adolescents and Young Adults With Bipolar Disorder. Am J Psychiatry 2017; 174:667-675. [PMID: 28135845 PMCID: PMC5939580 DOI: 10.1176/appi.ajp.2016.15050652] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. METHOD The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. RESULTS Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. CONCLUSIONS Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Collapse
Affiliation(s)
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Benjamin N. Blond
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Amanda Wallace
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Jiacheng Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | | | - Kirstin L. Purves
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Division of Psychology and Language Sciences, University College London, London, UK
| | - Angeli Landeros-Weisenberger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Eric Hermes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Sheng Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Robert King
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Andrés Martin
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Maria A. Oquendo
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Wei S, Geng H, Jiang X, Zhou Q, Chang M, Zhou Y, Xu K, Tang Y, Wang F. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder. Neurosci Lett 2017; 641:51-55. [PMID: 28130184 DOI: 10.1016/j.neulet.2017.01.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. METHODS Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. RESULTS Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (p<0.05, corrected). In addition, rsFC between the amygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (p<0.05, corrected). CONCLUSIONS Our findings suggest that mood state during the first episodes of BD may be related to abnormality in hemispheric lateralization. The abnormalities in amygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode.
Collapse
Affiliation(s)
- Shengnan Wei
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Haiyang Geng
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaowei Jiang
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Qian Zhou
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Miao Chang
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yifang Zhou
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Ke Xu
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yanqing Tang
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Fei Wang
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
14
|
Laidi C, Houenou J. Brain functional effects of psychopharmacological treatments in bipolar disorder. Eur Neuropsychopharmacol 2016; 26:1695-1740. [PMID: 27617780 DOI: 10.1016/j.euroneuro.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/06/2016] [Accepted: 06/18/2016] [Indexed: 12/29/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies have contributed to the understanding of bipolar disorder. However the effect of medication on brain activation remains poorly understood. We conducted an extensive literature review on PubMed and ScienceDirect to investigate the influence of medication in fMRI studies, including both longitudinal and cross-sectional studies, which aimed at assessing this influence. Although we reported all reviewed studies, we gave greater emphasis to studies with the most robust methodology. One hundred and forty studies matched our inclusion criteria and forty-seven studies demonstrated an effect of pharmacological treatment on fMRI blood oxygen level dependent (BOLD) signal in adults and children with bipolar disorder. Out of these studies, nineteen were longitudinal. Most of cross-sectional studies suffered from methodological bias, due to post-hoc analyses performed on a limited number of patients and did not find any effect of medication. However, both longitudinal and cross-sectional studies showing an impact of treatment tend to suggest that medication prescribed to patients with bipolar disorder mostly influenced brain activation in prefrontal regions, when measured by tasks involving emotional regulation and processing as well as non-emotional cognitive tasks. FMRI promises to elucidate potential new biomarkers in bipolar disorder and could be used to evaluate the effect of new therapeutic compounds. Further research is needed to disentangle the effect of medication and the influence of the changes in mood state on brain activation in patients with bipolar disorder.
Collapse
Affiliation(s)
- Charles Laidi
- APHP, Mondor University Hospitals, DHU PePsy, Psychiatry Department, Créteil, France; INSERM, U955, IMRB, Translational Psychiatry, Créteil, France; Faculté de médecine de Créteil, Université Paris Est Créteil (UPEC), France; Fondation FondaMental, Créteil, France; UNIACT Lab, Psychiatry Team, NeuroSpin, I2BM, CEA Saclay, Gif Sur Yvette, Cedex, France.
| | - Josselin Houenou
- APHP, Mondor University Hospitals, DHU PePsy, Psychiatry Department, Créteil, France; INSERM, U955, IMRB, Translational Psychiatry, Créteil, France; Faculté de médecine de Créteil, Université Paris Est Créteil (UPEC), France; Fondation FondaMental, Créteil, France; UNIACT Lab, Psychiatry Team, NeuroSpin, I2BM, CEA Saclay, Gif Sur Yvette, Cedex, France
| |
Collapse
|
15
|
Abstract
Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.
Collapse
|
16
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
17
|
Brotman MA, Deveney CM, Thomas LA, Hinton KE, Yi JY, Pine DS, Leibenluft E. Parametric modulation of neural activity during face emotion processing in unaffected youth at familial risk for bipolar disorder. Bipolar Disord 2014; 16:756-63. [PMID: 24617738 PMCID: PMC4162856 DOI: 10.1111/bdi.12193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Both patients with pediatric bipolar disorder (BD) and unaffected youth at familial risk (AR) for the illness show impairments in face emotion labeling. Few studies, however, have examined brain regions engaged in AR youth when processing emotional faces. Moreover, studies have yet to explore neural responsiveness to subtle changes in face emotion in AR youth. METHODS Sixty-four unrelated youth, including 20 patients with BD, 15 unaffected AR youth, and 29 healthy comparisons (HC), completed functional magnetic resonance imaging. Neutral faces were morphed with angry or happy faces in 25% intervals. In specific phases of the task, youth alternatively made explicit (hostility) or implicit (nose width) ratings of the faces. The slope of blood oxygenated level-dependent activity was calculated across neutral to angry and neutral to happy face stimuli. RESULTS Behaviorally, both subjects with BD (p ≤ 0.001) and AR youth (p ≤ 0.05) rated faces as less hostile relative to HC. Consistent with this, in response to increasing anger on the face, patients with BD and AR youth showed decreased modulation in the amygdala and inferior frontal gyrus (IFG; BA 46) compared to HC (all p ≤ 0.05). Amygdala dysfunction was present across both implicit and explicit rating conditions, but IFG modulation deficits were specific to the explicit condition. With increasing happiness, AR youth showed aberrant modulation in the IFG, which was also sensitive to task demands (all p ≤ 0.05). CONCLUSIONS Decreased amygdala and IFG modulation in patients with BD and AR youth may be pathophysiological risk markers for BD, and may underlie the social cognition and face emotion labeling deficits observed in BD and AR youth.
Collapse
Affiliation(s)
- Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Christen M Deveney
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Department of Psychology, Wellesley College, Wellesley, MA
| | - Laura A Thomas
- War Related Illness and Injury Study Center, Veterans Affairs Medical Center, Washington, D.C
| | - Kendra E Hinton
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer Y Yi
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| |
Collapse
|
18
|
Brotman MA, Tseng WL, Olsavsky AK, Fromm SJ, Muhrer EJ, Rutenberg J, Deveney CM, Adleman NE, Zarate CA, Pine DS, Leibenluft E. Fronto-limbic-striatal dysfunction in pediatric and adult patients with bipolar disorder: impact of face emotion and attentional demands. Psychol Med 2014; 44:1639-1651. [PMID: 23930595 PMCID: PMC3922892 DOI: 10.1017/s003329171300202x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Research in bipolar disorder (BD) implicates fronto-limbic-striatal dysfunction during face emotion processing but it is unknown how such dysfunction varies by task demands, face emotion and patient age. METHOD During functional magnetic resonance imaging (fMRI), 181 participants, including 62 BD (36 children and 26 adults) and 119 healthy comparison (HC) subjects (57 children and 62 adults), engaged in constrained and unconstrained processing of emotional (angry, fearful, happy) and non-emotional (neutral) faces. During constrained processing, subjects answered questions focusing their attention on the face; this was processed either implicitly (nose width rating) or explicitly (hostility; subjective fear ratings). Unconstrained processing consisted of passive viewing. RESULTS Pediatric BD rated neutral faces as more hostile than did other groups. In BD patients, family-wise error (FWE)-corrected region of interest (ROI) analyses revealed dysfunction in the amygdala, inferior frontal gyrus (IFG), anterior cingulate cortex (ACC) and putamen. Patients with BD showed amygdala hyperactivation during explicit processing (hostility ratings) of fearful faces and passive viewing of angry and neutral faces but IFG hypoactivation during implicit processing of neutral and happy faces. In the ACC and striatum, the direction of dysfunction varied by task demand: BD demonstrated hyperactivation during unconstrained processing of angry or neutral faces but hypoactivation during constrained processing (implicit or explicit) of angry, neutral or happy faces. CONCLUSIONS Findings suggest amygdala hyperactivation in BD while processing negatively valenced and neutral faces, regardless of attentional condition, and BD IFG hypoactivation during implicit processing. In the cognitive control circuit involving the ACC and putamen, BD neural dysfunction was sensitive to task demands.
Collapse
Affiliation(s)
- M. A. Brotman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - W.-L. Tseng
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - A. K. Olsavsky
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - S. J. Fromm
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - E. J. Muhrer
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - J.G. Rutenberg
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - C. M. Deveney
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - N. E. Adleman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - C. A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - D. S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - E. Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
19
|
Jiang HY, Qiao F, Xu XF, Yang Y, Bai Y, Jiang LL. Meta-analysis confirms a functional polymorphism (5-HTTLPR) in the serotonin transporter gene conferring risk of bipolar disorder in European populations. Neurosci Lett 2013; 549:191-6. [PMID: 23756178 DOI: 10.1016/j.neulet.2013.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/24/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
The serotonin transporter (5-HTT) is a candidate risk gene for bipolar disorder, and a functional polymorphism of 44-bp insertion/deletion (5-HTTLPR) located in the promoter region of this gene has been investigated for the association with the illness extensively among worldwide populations, but overall results were inconsistent and its role in the disorder remains unclear. The present study attempts to find its potential association with bipolar disorder using meta-analyzes that maximize the statistical power. We applied meta-analysis techniques by combining all available case-control studies of 5-HTTLPR and bipolar disorder in samples of European ancestry (with a total of 3778 cases and 4997 controls), and we assessed the evidence for allelic associations, heterogeneity among different studies, influence of each single study, and potential publication bias. The short allele (S allele) of 5-HTTLPR showed a significant association with bipolar disorder in our meta-analysis (odds ratio=1.10, p-value=0.005), suggesting it is likely a risk polymorphism for the illness, and the observed OR is consistent with other susceptibility loci identified through recent large-scale genetic association studies on bipolar disorder, which could be regarded simply as a small but detectable effects.
Collapse
Affiliation(s)
- Hong-Yan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | | | | | | | | | | |
Collapse
|
20
|
Murphy SE, Norbury R, Godlewska BR, Cowen PJ, Mannie ZM, Harmer CJ, Munafò MR. The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry 2013; 18:512-20. [PMID: 22488255 DOI: 10.1038/mp.2012.19] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/29/2011] [Accepted: 01/30/2012] [Indexed: 02/01/2023]
Abstract
The 5-HTTLPR polymorphism has been widely regarded as a potential genetic risk factor for affective disorders. Consistent with this, this polymorphism has been associated with altered amygdala responses at rest and in response to aversive stimuli. However, the strength of this association remains uncertain. We sought to synthesize existing data on the association between the 5-HTTLPR polymorphism and amygdala activation and ascertain the strength of evidence for this association. Meta-analytic techniques were applied to data from relevant published studies and unpublished data sets to obtain an estimate of the likely magnitude of effect of any association. The large number of studies allowed us to apply a formal test of publication bias, as well as explore the impact of various study-level characteristics on the magnitude of the observed effect size. Our meta-analysis indicated that there is a statistically significant but small effect of 5-HTTLPR on left and right amygdala activity. However, there was considerable between-study heterogeneity, which could not be fully accounted for by the study design and sample characteristics that we investigated. In addition, there was evidence of excess statistical significance among published studies. These findings indicate that the association between the 5-HTTLPR and amygdala activation is smaller than originally thought, and that the majority of previous studies have been considerably under powered to reliably demonstrate an effect of this size.
Collapse
Affiliation(s)
- S E Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Thomas LA, Kim P, Bones BL, Hinton KE, Milch HS, Reynolds RC, Adleman NE, Marsh AA, Blair RJR, Pine DS, Leibenluft E. Elevated amygdala responses to emotional faces in youths with chronic irritability or bipolar disorder. NEUROIMAGE-CLINICAL 2013; 2:637-645. [PMID: 23977455 PMCID: PMC3746996 DOI: 10.1016/j.nicl.2013.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A major controversy in child psychiatry is whether bipolar disorder (BD) presents in children as severe, non-episodic irritability (operationalized here as severe mood dysregulation, SMD), rather than with manic episodes as in adults. Both classic, episodic BD and SMD are severe mood disorders characterized by deficits in processing emotional stimuli. Neuroimaging techniques can be used to test whether the pathophysiology mediating these deficits are similar across the two phenotypes. Amygdala dysfunction during face emotion processing is well-documented in BD, but little is known about amygdala dysfunction in chronically irritable youth. We compared neural activation in SMD (n = 19), BD (n = 19), and healthy volunteer (HV; n = 15) youths during an implicit face-emotion processing task with angry, fearful and neutral expressions. In the right amygdala, both SMD and BD exhibited greater activity across all expressions than HV. However, SMD and BD differed from each other and HV in posterior cingulate cortex, posterior insula, and inferior parietal lobe. In these regions, only SMD showed deactivation in response to fearful expressions, whereas only BD showed deactivation in response to angry expressions. Thus, during implicit face emotion processing, youth with BD and those with SMD exhibit similar amygdala dysfunction but different abnormalities in regions involved in information monitoring and integration. Youths with severe mood dysregulation (SMD), bipolar disorder (BD), controls. Implicit face-emotion processing fMRI task with angry, fearful, neutral emotions. In R amygdala, SMD and BD had greater activity across all expressions vs controls. In whole brain analysis SMD had decreased, BD increased activity vs. other groups.
Collapse
Affiliation(s)
- Laura A Thomas
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland ; National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang F, Bobrow L, Liu J, Spencer L, Blumberg HP. Corticolimbic functional connectivity in adolescents with bipolar disorder. PLoS One 2012; 7:e50177. [PMID: 23185566 PMCID: PMC3503984 DOI: 10.1371/journal.pone.0050177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Convergent evidence supports regional dysfunction within a corticolimbic neural system that subserves emotional processing and regulation in adolescents and adults with bipolar disorder (BD), with abnormalities prominent within the amygdala and its major anterior paralimbic cortical connection sites including ventral anterior cingulate, orbitofrontal, insular and temporopolar cortices. Recent studies of adults with BD demonstrate abnormalities in the functional connectivity between the amygdala and anterior paralimbic regions suggesting an important role for the connections between these regions in the development of the disorder. This study tests the hypothesis that these functional connectivity abnormalities are present in adolescents with BD. Fifty-seven adolescents, twenty-one with BD and thirty-six healthy comparison (HC) adolescents, participated in functional magnetic resonance imaging while processing emotional face stimuli. The BD and HC groups were compared in the strength of functional connectivity from amygdala to the anterior paralimbic cortical regions, and explored in remaining brain regions. Functional connectivity was decreased in the BD group, compared to the HC group, during processing of emotional faces in ventral anterior cingulate (VACC), orbitofrontal, insular and temporopolar cortices (p<0.005). Orbitofrontal and VACC findings for the happy condition, and additionally right insula for the neutral condition, survived multiple comparison correction. Exploratory analyses did not reveal additional regions of group differences. This study provides evidence for decreased functional connectivity between the amygdala and anterior paralimbic cortices in adolescents with BD. This suggests that amygdala-anterior paralimbic connectivity abnormalities are early features of BD that emerge at least by adolescence in the disorder.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Laurel Bobrow
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Child Study Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
23
|
Rabl U, Scharinger C, Müller M, Pezawas L. Imaging genetics: implications for research on variable antidepressant drug response. Expert Rev Clin Pharmacol 2012; 3:471-89. [PMID: 22111678 DOI: 10.1586/ecp.10.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic variation of SLC6A4, HTR1A, MAOA, COMT and BDNF has been associated with depression, variable antidepressant drug responses as well as impacts on brain regions of emotion processing that are modulated by antidepressants. Pharmacogenetic studies are using psychometric outcome measures of drug response and are hampered by small effect sizes that might be overcome by the use of intermediate endophenotypes of drug response, which are suggested by imaging studies. Such an approach will not only tighten the relationship between genes and drug response, but also yield new insights into the neurobiology of depression and individual drug responses. This article provides a comprehensive overview of pharmacogenetic, imaging genetics and drug response studies, utilizing imaging techniques within the context of antidepressive drug therapy.
Collapse
Affiliation(s)
- Ulrich Rabl
- >Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Blond BN, Fredericks CA, Blumberg HP. Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 2012; 14:340-55. [PMID: 22631619 PMCID: PMC3880745 DOI: 10.1111/j.1399-5618.2012.01015.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In past decades, neuroimaging research in bipolar disorder has demonstrated a convergence of findings in an amygdala-anterior paralimbic cortex neural system. This paper reviews behavioral neurology literature that first suggested a central role for this neural system in the disorder and the neuroimaging evidence that supports it. METHODS Relevant articles are reviewed to provide an amygdala-anterior paralimbic cortex neural system model of bipolar disorder, including articles from the fields of behavioral neurology and neuroanatomy, and neuroimaging. RESULTS The literature is highly supportive of key roles for the amygdala, anterior paralimbic cortices, and connections among these structures in the emotional dysregulation of bipolar disorder. The functions subserved by their more widely distributed connection sites suggest that broader system dysfunction could account for the range of functions-from neurovegetative to cognitive-disrupted in the disorder. Abnormalities in some components of this neural system are apparent by adolescence, while others, such as those in rostral prefrontal regions, appear to progress over adolescence and young adulthood, suggesting a neurodevelopmental model of the disorder. However, some findings conflict, which may reflect the small sample sizes of some studies, and clinical heterogeneity and methodological differences across studies. CONCLUSIONS Consistent with models derived from early behavioral neurology studies, neuroimaging studies support a central role for an amygdala-anterior paralimbic neural system in bipolar disorder, and implicate abnormalities in the development of this system in the disorder. This system will be an important focus of future studies on the developmental pathophysiology, detection, treatment, and prevention of the disorder.
Collapse
Affiliation(s)
- Benjamin N Blond
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Carolyn A Fredericks
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Department of Diagnostic Radiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,The Child Study Center, Yale School of Medicine, New Haven, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
25
|
Liu J, Blond BN, van Dyck LI, Spencer L, Wang F, Blumberg HP. Trait and state corticostriatal dysfunction in bipolar disorder during emotional face processing. Bipolar Disord 2012; 14:432-41. [PMID: 22524493 PMCID: PMC3361579 DOI: 10.1111/j.1399-5618.2012.01018.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Convergent evidence supports limbic, anterior paralimbic, and prefrontal cortex (PFC) abnormalities in emotional processing in bipolar disorder (BD) and suggests that some abnormalities are mood-state dependent and others persist into euthymia. However, few studies have assessed elevated, depressed, and euthymic mood states while individuals processed emotional stimuli of varying valence to investigate trait- and state-related neural system responses. Here, regional brain responses to positive, negative, and neutral emotional stimuli were assessed in individuals with BD during elevated, depressed, and euthymic mood states. METHODS One hundred and thirty-four subjects participated in functional magnetic resonance imaging scanning while processing faces depicting happy, fearful, and neutral expressions: 76 with BD (18 in elevated mood states, 19 depressed, 39 euthymic) and 58 healthy comparison (HC) individuals. Analyses were performed for BD trait- and mood state-related features. RESULTS Ventral anterior cingulate cortex (VACC), orbitofrontal cortex (OFC), and ventral striatum responses to happy and neutral faces were decreased in the BD group, compared to the HC group, and were not influenced by mood state. Elevated mood states were associated with decreased right rostral PFC activation to fearful and neutral faces, and depression was associated with increased left OFC activation to fearful faces. CONCLUSIONS The findings suggest that abnormal VACC, OFC, and ventral striatum responses to happy and neutral stimuli are trait features of BD. Acute mood states may be associated with additional lateralized abnormalities of diminished right rostral PFC responses to fearful and neutral stimuli in elevated states and increased left OFC responses to fearful stimuli in depressed states.
Collapse
Affiliation(s)
- Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven
| | | | | | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven,Department of Diagnostic Radiology, Yale School of Medicine, New Haven,The Child Study Center, Yale School of Medicine, New Haven,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
26
|
Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 2012; 14:375-410. [PMID: 22631621 DOI: 10.1111/j.1399-5618.2012.01023.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neuroimaging is an important tool for better understanding the neurobiological underpinnings of bipolar disorder (BD). However, potential study participants are often receiving psychotropic medications which can possibly confound imaging data. To better interpret the results of neuroimaging studies in BD, it is important to understand the impact of medications on structural magnetic resonance imaging (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI). METHODS To better understand the impact of medications on imaging data, we conducted a literature review and searched MEDLINE for papers that included the key words bipolar disorder and fMRI, sMRI, or DTI. The search was limited to papers that assessed medication effects and had not been included in a previous review by Phillips et al. (Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry 2008; 165: 313-320). This search yielded 74 sMRI studies, 46 fMRI studies, and 15 DTI studies. RESULTS Medication appeared to influence many sMRI studies, but had limited impact on fMRI and DTI findings. From the structural studies, the most robust finding (20/45 studies) was that lithium was associated with increased volumes in areas important for mood regulation, while antipsychotic agents and anticonvulsants were generally not. Regarding secondary analysis of the medication effects of fMRI and DTI studies, few showed significant effects of medication, although rigorous analyses were typically not possible when the majority of subjects were medicated. Medication effects were more frequently observed in longitudinal studies designed to assess the impact of particular medications on the blood oxygen level-dependent (BOLD) signal. With a few exceptions, the observed effects were normalizing, meaning that the medicated individuals with BD were more similar than their unmedicated counterparts to healthy subjects. CONCLUSIONS The effects of psychotropic medications, when present, are predominantly normalizing and thus do not seem to provide an alternative explanation for differences in volume, white matter tracts, or BOLD signal between BD participants and healthy subjects. However, the normalizing effects of medication could obfuscate differences between BD and healthy subjects, and thus might lead to type II errors.
Collapse
Affiliation(s)
- Danella M Hafeman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
27
|
Prefrontal cortical response to emotional faces in individuals with major depressive disorder in remission. Psychiatry Res 2012; 202:30-7. [PMID: 22595508 PMCID: PMC3995357 DOI: 10.1016/j.pscychresns.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Abnormalities in the response of the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to negative emotional stimuli have been reported in acutely depressed patients. However, there is a paucity of studies conducted in unmedicated individuals with major depressive disorder in remission (rMDD) to assess whether these are trait abnormalities. To address this issue, 19 medication-free rMDD individuals and 20 healthy comparison (HC) participants were scanned using functional magnetic resonance imaging while performing an implicit emotion processing task in which they labeled the gender of faces depicting negative (fearful), positive (happy) and neutral facial expressions. The rMDD and HC groups were compared using a region-of-interest approach for two contrasts: fear vs. neutral and happy vs. neutral. Relative to HC, rMDD showed reduced activation in left OFC and DLPFC to fearful (vs. neutral) faces. Right DLPFC activation to fearful (vs. neutral) faces in the rMDD group showed a significant positive correlation with duration of euthymia. The findings support deficits in left OFC and DLPFC responses to negative emotional stimuli during euthymic periods of MDD, which may reflect trait markers of the illness or a 'scar' due to previous depression. Recovery may also be associated with compensatory increases in right DLPFC functioning.
Collapse
|
28
|
Hulvershorn LA, Karne H, Gunn AD, Hartwick SL, Wang Y, Hummer TA, Anand A. Neural activation during facial emotion processing in unmedicated bipolar depression, euthymia, and mania. Biol Psychiatry 2012; 71:603-10. [PMID: 22206876 PMCID: PMC3703667 DOI: 10.1016/j.biopsych.2011.10.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/10/2011] [Accepted: 10/29/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies incorporating direct comparisons across all phases of bipolar (BP) disorder are needed to elucidate the pathophysiology of bipolar disorder. However, functional neuroimaging studies that differentiate bipolar mood states from each other and from healthy subjects are few and have yielded inconsistent findings. METHODS One hundred five unmedicated adults were recruited: 30 with current bipolar depression (BPD), 30 with current bipolar hypomania or mania (BPM), 15 bipolar euthymic (BPE), and 30 healthy control subjects (HC). All subjects were diagnosed with DSM-IV BP (type I or II) using a structured clinical interview. Groups were age- and gender-ratio matched. In 3T functional magnetic resonance imaging experiments, subjects completed a negative facial emotion matching task. RESULTS Bipolar euthymic and BPD groups exhibited increased amygdala activation compared with HCs in response to the negative faces; however, in the BPM group, this increase was not seen. Conversely, both BPE and BPM groups had increased activation in the insula relative to HCs, but in the BPD group, this effect was not seen. All three BP groups exhibited increased activation of the putamen compared with HCs. In the cortical areas, the BPM group exhibited decreased left lateral orbitofrontal cortex activation compared with both BPEs and HCs, increased dorsal anterior cingulate cortex activation compared with the BPD group, and increased dorsolateral prefrontal cortical activation compared with all other groups. CONCLUSIONS Both state- and trait-related abnormalities in corticolimbic activation were seen in response to the negative facial emotion processing in a large sample of unmedicated adults across BP mood states.
Collapse
Affiliation(s)
- Leslie A Hulvershorn
- Mood and Emotion Disorders Across the Lifespan Center, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Blumberg HP. Euthymia, depression, and mania: what do we know about the switch? Biol Psychiatry 2012; 71:570-1. [PMID: 22424111 PMCID: PMC3874046 DOI: 10.1016/j.biopsych.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Hilary P. Blumberg
- Mood Disorders Research Program, Department of Psychiatry, Yale School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511
| |
Collapse
|
30
|
Liu J, Chaplin TM, Wang F, Sinha R, Mayes LC, Blumberg HP. Stress reactivity and corticolimbic response to emotional faces in adolescents. J Am Acad Child Adolesc Psychiatry 2012; 51:304-12. [PMID: 22365466 PMCID: PMC3292764 DOI: 10.1016/j.jaac.2011.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Adolescence is a critical period in the development of lifelong patterns of responding to stress. Understanding underpinnings of variations in stress reactivity in adolescents is important, as adolescents with altered stress reactivity are vulnerable to negative risk-taking behaviors including substance use, and have increased lifelong risk for psychopathology. Although both endocrinological and corticolimbic neural system mechanisms are implicated in the development of stress reactivity patterns, the roles of these systems and interactions between the systems in reactivity to social stimuli in adolescents are not clear. We investigated the relationship between cortisol response to a laboratory-based social stressor and regional brain responses to emotional face stimuli in adolescents. METHOD Changes in cortisol levels following the Trier Social Stress Test-Child version (TSST-C) were measured in 23 disadvantaged and chronically stressed adolescents who also participated in functional magnetic resonance imaging during processing of emotional faces and structural magnetic resonance imaging. The relationships between changes in cortisol following the TSST-C with regional brain activation during face processing, as well as with regional brain morphology, were assessed. RESULTS Cortisol change on the TSST-C showed a significant inverse relationship with left hippocampus response to fearful faces (p < .05, corrected); significant associations with volume were not observed. CONCLUSIONS Increased cortisol response to the Trier social stressor was associated with diminished response of the left hippocampus to faces depicting fear. This suggests that HPA-corticolimbic system mechanisms may underlie vulnerability to maladaptive responses to stress in adolescents that may contribute to development of stress-related disorders.
Collapse
Affiliation(s)
- Jie Liu
- Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
31
|
Firk C, Siep N, Markus CR. Serotonin transporter genotype modulates cognitive reappraisal of negative emotions: a functional magnetic resonance imaging study. Soc Cogn Affect Neurosci 2012; 8:247-58. [PMID: 22345383 DOI: 10.1093/scan/nsr091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A functional polymorphism within the serotonin transporter gene (5-HTTLPR) has been reported to modulate emotionality and risk for affective disorders. The short (S) allele has less functional efficacy than the long (L) allele and has been associated with enhanced emotional reactivity. One possible contributing factor to the high emotionality in S carriers may be inefficient use of cognitive strategies such as reappraisal to regulate emotional responses. The aim of the present study was to test whether the 5-HTTLPR genotype modulates the neural correlates of emotion regulation. To determine neural differences between S and L allele carriers during reappraisal of negative emotions, 15 homozygous S (S'/S') and 15 homozygous L (L'/L') carriers underwent functional magnetic resonance imaging (fMRI), while performing an instructed emotion regulation task including downregulation, upregulation and passive viewing of negative emotional pictures. Compared to L'/L' allele carriers, subjects who carry the S'/S' allele responded with lower posterior insula and prefrontal brain activation during passive perception of negative emotional information but showed greater prefrontal activation and anterior insula activation during down- and upregulation of negative emotional responses. The current results support and extend previous findings of enhanced emotionality in S carriers by providing additional evidence of 5-HTTLPR modulation of volitional emotion regulation.
Collapse
Affiliation(s)
- Christine Firk
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neurosciences, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
32
|
Haddley K, Bubb VJ, Breen G, Parades-Esquivel UM, Quinn JP. Behavioural genetics of the serotonin transporter. Curr Top Behav Neurosci 2012; 12:503-535. [PMID: 22261701 DOI: 10.1007/7854_2011_186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The serotonin transporter is a key regulator of the bioavailability of serotonin and therefore any modulation in the expression or action of the transporter would be expected to have consequences on behaviour. The transporter has therefore become a target for pharmaceutical intervention in behavioural and mood disorders. The search for polymorphic variants in the transporter that would associate with neurological disorders has been extensive but has become focused on two domains which are both termed variable number tandem repeat (VNTR)polymorphisms. Both of these VNTRs are in non-coding DNA and therefore proposed to be mechanistically involved in a disorder through their ability to modulate transcriptional or post-transcriptional regulation of the transporter. The most extensively studied is in the promoter and is a bi-allelic insertion/deletion found in the 50 promoter region of the gene 1.2 kb upstream of the transcriptional start site. This VNTR, termed, 5-HTTLPR was initially identified as two variants containing either, 14 (short/deletion) or 16 (long/insertion) copies of a 22 bp repeat. A second widely studied VNTR found in the non-coding region of the transporter is located within intron 2 and comprises 9, 10 or 12 copies of a16–17 bp repeat termed, STin2.9, STin2.10 and STin2.12, respectively. These VNTR polymorphisms have been associated with a range of behavioural and psychiatric disorders including depression, OCD, anxiety and schizophrenia, however often the lack of reproducibility in different cohorts has led to debate on the actual association of the polymorphisms with this extensive range of neurological conditions. Here we review these two polymorphic VNTRs in depth and relate that to pharmaceutical response, their ability to regulate differential transporter expression, their core involvement in gene-environment interaction and their genetic association with specific disorders.
Collapse
|
33
|
Wang F, McIntosh AM, He Y, Gelernter J, Blumberg HP. The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 2011; 13:696-700. [PMID: 22085483 PMCID: PMC3233238 DOI: 10.1111/j.1399-5618.2011.00963.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES A single nucleotide polymorphism at the CACNA1C gene (rs1006737) has been reported in genome-wide association studies to be associated with bipolar disorder (BD) with genome-wide significance. However, the neural system effects of CACNA1C that mediate the association are not known. In this study, we assessed associations between rs1006737 variation and both morphology and functional connectivity within a corticolimbic frontotemporal neural system implicated in BD. METHODS A total of 55 European Americans were divided into two groups: a GG group homozygous for the 'G' allele (n = 30) and carriers of the high risk A allele ('A-carrier' group, AA/AG genotypes; n = 25). The subjects participated in both high-resolution structural magnetic resonance imaging (MRI) scans and functional MRI scans during emotional face-processing. Voxel-based morphometry and functional connectivity analyses were performed. RESULTS Compared to the GG group, the A-carrier group showed significantly increased gray matter volume and reduced functional connectivity within a corticolimbic frontotemporal neural system (p < 0.05, corrected). CONCLUSION The findings support effects of the rs1006737 variation on the frontotemporal neural system implicated in BD, both in gray matter morphology and in functional connectivity. This suggests that influence of CACNA1C variation on corticolimbic structure and function may be a mechanism contributing to the neural circuitry of BD.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA,Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA,Department of Psychiatry, VA CT Healthcare System, West Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA,Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA,Department of Psychiatry, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
34
|
O'Nions EJP, Dolan RJ, Roiser JP. Serotonin transporter genotype modulates subgenual response to fearful faces using an incidental task. J Cogn Neurosci 2011; 23:3681-93. [PMID: 21568644 PMCID: PMC3435845 DOI: 10.1162/jocn_a_00055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study assessed the impact of serotonin transporter genotype (5-HTTLPR) on regional responses to emotional faces in the amygdala and subgenual cingulate cortex (sgACC), while subjects performed a gender discrimination task. Although we found no evidence for greater amygdala reactivity or reduced amygdala-sgACC coupling in short variant 5-HTTLPR homozygotes (s/s), we observed an interaction between genotype and emotion in sgACC. Only long variant homozygotes (la/la) exhibited subgenual deactivation to fearful versus neutral faces, whereas the effect in s/s subjects was in the other direction. This absence of subgenual deactivation in s/s subjects parallels a recent finding in depressed subjects [Grimm, S., Boesiger, P., Beck, J., Schuepbach, D., Bermpohl, F., Walter, M., et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology, 34, 932-943, 2009]. Taken together, the findings suggest that subgenual cingulate activity may play an important role in regulating the impact of aversive stimuli, potentially conferring greater resilience to the effects of aversive stimuli in la/la subjects. Using dynamic causal modeling of functional magnetic resonance imaging data, we explored the effects of genotype on effective connectivity and emotion-specific changes in coupling across a network of regions implicated in social processing. Viewing fearful faces enhanced bidirectional excitatory coupling between the amygdala and the fusiform gyrus, and increased the inhibitory influence of the amygdala over the sgACC, although this modulation of coupling did not differ between the genotype groups. The findings are discussed in relation to the role of sgACC and serotonin in moderating responses to aversive stimuli [Dayan, P., & Huys, Q. J., Serotonin, inhibition, and negative mood. PLoS Comput Biol, 4, e4, 2008; Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., et al. Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am J Psychiatry, 156, 675-682, 1999].
Collapse
|
35
|
Carson SH. Creativity and psychopathology: a shared vulnerability model. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2011; 56:144-53. [PMID: 21443821 DOI: 10.1177/070674371105600304] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Creativity is considered a positive personal trait. However, highly creative people have demonstrated elevated risk for certain forms of psychopathology, including mood disorders, schizophrenia spectrum disorders, and alcoholism. A model of shared vulnerability explains the relation between creativity and psychopathology. This model, supported by recent findings from neuroscience and molecular genetics, suggests that the biological determinants conferring risk for psychopathology interact with protective cognitive factors to enhance creative ideation. Elements of shared vulnerability include cognitive disinhibition (which allows more stimuli into conscious awareness), an attentional style driven by novelty salience, and neural hyperconnectivity that may increase associations among disparate stimuli. These vulnerabilities interact with superior meta-cognitive protective factors, such as high IQ, increased working memory capacity, and enhanced cognitive flexibility, to enlarge the range and depth of stimuli available in conscious awareness to be manipulated and combined to form novel and original ideas.
Collapse
Affiliation(s)
- Shelley H Carson
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
36
|
Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 2011; 13:1-15. [PMID: 21320248 DOI: 10.1111/j.1399-5618.2011.00893.x] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Functional magnetic resonance imaging (fMRI) has been widely used to identify state and trait markers of brain abnormalities associated with bipolar disorder (BD). However, the primary literature is composed of small-to-medium-sized studies, using diverse activation paradigms on variously characterized patient groups, which can be difficult to synthesize into a coherent account. This review aimed to synthesize current evidence from fMRI studies in midlife adults with BD and to investigate whether there is support for the theoretical models of the disorder. METHODS We used voxel-based quantitative meta-analytic methods to combine primary data on anatomical coordinates of activation from 65 fMRI studies comparing normal volunteers (n = 1,074) and patients with BD (n = 1,040). RESULTS Compared to normal volunteers, patients with BD underactivated the inferior frontal cortex (IFG) and putamen and overactivated limbic areas, including medial temporal structures (parahippocampal gyrus, hippocampus, and amygdala) and basal ganglia. Dividing studies into those using emotional and cognitive paradigms demonstrated that the IFG abnormalities were manifest during both cognitive and emotional processing, while increased limbic activation was mainly related to emotional processing. In further separate comparisons between healthy volunteers and patient subgroups in each clinical state, the IFG was underactive in manic but not in euthymic and depressed states. Limbic structures were not overactive in association with mood states, with the exception of increased amygdala activation in euthymic states when including region-of-interest studies. CONCLUSIONS In summary, our results showed abnormal frontal-limbic activation in BD. There was attenuated activation of the IFG or ventrolateral prefrontal cortex, which was consistent across emotional and cognitive tasks and particularly related to the state of mania, and enhanced limbic activation, which was elicited by emotional and not cognitive tasks, and not clearly related to mood states.
Collapse
Affiliation(s)
- Chi-Hua Chen
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge GlaxoSmithKline Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|
37
|
Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. Neuroimage 2010; 53:810-21. [PMID: 20156570 PMCID: PMC4502568 DOI: 10.1016/j.neuroimage.2010.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/17/2010] [Accepted: 02/09/2010] [Indexed: 12/15/2022] Open
Abstract
Mood disorders are highly heritable and have been linked to brain regions of emotion processing. Over the past few years, an enormous amount of imaging genetics studies has demonstrated the impact of risk genes on brain regions and systems of emotion processing in vivo in healthy subjects as well as in mood disorder patients. While sufficient evidence already exists for several monaminergic genes as well as for a few non-monoaminergic genes, such as brain-derived neurotrophic factor (BDNF) in healthy subjects, many others only have been investigated in single studies so far. Apart from these studies, the present review also covers imaging genetics studies applying more complex genetic disease models of mood disorders, such as epistasis and gene-environment interactions, and their impact on brain systems of emotion processing. This review attempts to provide a comprehensive overview of the rapidly growing field of imaging genetics studies in mood disorder research.
Collapse
Affiliation(s)
- Christian Scharinger
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ulrich Rabl
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Lukas Pezawas
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
38
|
Dannlowski U, Konrad C, Arolt V, Suslow T. [Neurogenetics of emotional processes. Neuroimaging findings as endophenotypes for depression]. DER NERVENARZT 2010; 81:24-31. [PMID: 20013254 DOI: 10.1007/s00115-009-2828-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Major depression is one of the most frequent and serious psychiatric diseases. Although the disease is highly heritable, the search for candidate genes has been of limited success hitherto. The complex, polygenetic hereditary transmissions coding for heterogeneous, clinically defined phenotypes such as major depression may be better identified using the endophenotype approach. A recent study, reporting an association of the risk allele in a serotonin transporter polymorphism (5-HTTLPR) with increased amygdala responsiveness to aversive stimuli, stimulated the new research field of imaging genetics, which is characterized by the choice of neurobiological activity patterns as endophenotypes. This review discusses recent studies from this rapidly growing research field, focussing on genetic effects on cortico-limbic circuitries during emotion processing. Evidence is reviewed suggesting that potential risk-alleles for depression are associated with functional cortico-limbic abnormalities, which frequently occur in patients with major depression.
Collapse
Affiliation(s)
- U Dannlowski
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum, Albert-Schweitzer-Strasse 11, 48149 Münster.
| | | | | | | |
Collapse
|
39
|
Holmes AJ, Bogdan R, Pizzagalli DA. Serotonin transporter genotype and action monitoring dysfunction: a possible substrate underlying increased vulnerability to depression. Neuropsychopharmacology 2010; 35:1186-97. [PMID: 20090673 PMCID: PMC2840070 DOI: 10.1038/npp.2009.223] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A variable number of tandem repeats (short (S) vs long (L)) in the promoter region of the serotonin transporter gene (5-HTTLPR) and a functional variant of a single-nucleotide polymorphism (rs25531) in 5-HTTLPR have been recently associated with increased risk for major depressive disorder (MDD). In particular, relative to L/L or L(A) homozygotes (hereafter referred to as L' participants), S carriers or L(g)-allele carriers (S' participants) have been found to have a higher probability of developing depression after stressful life events, although inconsistencies abound. Previous research indicates that patients with MDD are characterized by executive dysfunction and abnormal activation within the anterior cingulate cortex (ACC), particularly in situations requiring adaptive behavioral adjustments following errors and response conflict (action monitoring). The goal of this study was to test whether psychiatrically healthy S' participants would show abnormalities similar to those of MDD subjects. To this end, 19 S' and 14 L' participants performed a modified Flanker task known to induce errors, response conflict, and activations in various ACC subdivisions during functional magnetic resonance imaging. As hypothesized, relative to L' participants, S' participants showed (1) impaired post-error and post-conflict behavioral adjustments; (2) larger error-related rostral ACC activation; and (3) lower conflict-related dorsal ACC activation. As similar behavioral and neural dysfunctions have been recently described in MDD patient samples, the current results raise the possibility that impaired action monitoring and associated ACC dysregulation may represent risk factors increased vulnerability to depression.
Collapse
Affiliation(s)
- Avram J Holmes
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| | - Ryan Bogdan
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Diego A Pizzagalli
- Department of Psychology, Harvard University, Cambridge, MA, USA,Department of Psychology, Harvard University, 1220 William James Hall, 33 Kirkland Street, Cambridge, MA 02138, USA, Tel: +1 671 496 8896, Fax: +1 617 495 3728, E-mail:
| |
Collapse
|
40
|
Abstract
Functional neuroimaging techniques have been important research tools in the study of bipolar disorder (BPD). These methods provide measures of regional brain functioning that reflect the mental state at the time of scanning and have helped to elucidate both state and trait features of BPD. This chapter will review converging functional neuroimaging evidence implicating state and trait dysfunction in a ventral prefrontal cortex-amygdala neural system in BPD. Emerging evidence that suggests a developmental progression in dysfunction in this neural system over the course of adolescence will be considered. Finally, new research approaches that have begun to reveal the contribution of specific genetic mechanisms to regional dysfunction in the disorder, potential salutary effects of medications, and structure-function relationships will be discussed.
Collapse
|
41
|
Differential engagement of cognitive and affective neural systems in pediatric bipolar disorder and attention deficit hyperactivity disorder. J Int Neuropsychol Soc 2010; 16:106-17. [PMID: 19849880 PMCID: PMC3169194 DOI: 10.1017/s1355617709991019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This fMRI study investigates the neural bases of cognitive control of emotion processing in pediatric bipolar disorder (PBD) and attention deficit hyperactivity disorder (ADHD). Seventeen un-medicated PBD patients, 15 un-medicated ADHD patients, and 14 healthy controls (HC) (mean age = 13.78 +/- 2.47) performed an emotional valence Stroop Task, requiring them to match the color of an emotionally valenced word to the color of either of two adjacent circles. Both patient groups responded significantly slower than HC, but there were no group differences in accuracy. A voxel-wise analysis of variance on brain activation revealed a significant interaction of group by word valence [F(2,41) = 4.44; p = .02]. Similar group differences were found for negative and positive words. For negative versus neutral words, both patient groups exhibited greater activation in dorsolateral prefrontal cortex (DLPFC) and parietal cortex relative to HC. The PBD group exhibited greater activation in ventrolateral prefrontal cortex (VLPFC) and anterior cingulate cortex (ACC) relative to HC. The ADHD group exhibited decreased VLPFC activation relative to HC and the PBD group. During cognitive control of emotion processing, PBD patients deployed the VLPFC to a greater extent than HC. The ADHD patients showed decreased VLPFC engagement relative to both HC and PBD patients.
Collapse
|
42
|
Womer FY, Kalmar JH, Wang F, Blumberg HP. A ventral prefrontal-amygdala neural system in bipolar disorder: a view from neuroimaging research. Acta Neuropsychiatr 2009; 21:228-38. [PMID: 26952770 DOI: 10.1111/j.1601-5215.2009.00414.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the past decade, neuroimaging research has identified key components in the neural system that underlies bipolar disorder (BD). The ventral prefrontal cortex (VPFC) and amygdala are highly interconnected structures that jointly play a central role in emotional regulation. Numerous research groups have reported prominent structural and functional abnormalities within the VPFC and amygdala supporting their essential role in a neural system underlying the emotional dysregulation that is a core feature of BD. Findings in BD also include those in brain regions interconnected with the VPFC and amygdala, including the ventral striatum, hippocampus and the cerebellum. Abnormalities in these regions may contribute to symptoms that reflect disruption in functions sub-served by these structures, including motivational, mnemonic and psychomotor functions. This article will first review leads from behavioural neurology that implicated these neural system abnormalities in BD. It will then review findings from structural and functional imaging studies to support the presence of abnormalities within these neural system components in BD. It will also review new findings from studies using diffusion tensor imaging (DTI) that provide increasing evidence of abnormalities in the connections between these neural system components in BD. Emerging data supporting differences in this neural system during adolescence, as well as potential beneficial effects of treatment on structure and function will also be presented. Finally, the article will discuss the implications for future investigations, including those for early identification and treatment of BD.
Collapse
Affiliation(s)
- Fay Y Womer
- 1Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica H Kalmar
- 1Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fei Wang
- 1Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hilary P Blumberg
- 1Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Womer FY, Kalmar JH, Wang F, Blumberg HP. A Ventral Prefrontal-Amygdala Neural System in Bipolar Disorder: A View from Neuroimaging Research. Acta Neuropsychiatr 2009; 21:228-238. [PMID: 20676360 PMCID: PMC2911239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
In the past decade, neuroimaging research has identified key components in the neural system that underlies bipolar disorder (BD). The ventral prefrontal cortex (VPFC) and amygdala are highly interconnected structures that jointly play a central role in emotional regulation. Numerous research groups have reported prominent structural and functional abnormalities within the VPFC and amygdala supporting their essential role in a neural system underlying the emotional dysregulation that is a core feature of BD. Findings in BD also include those in brain regions interconnected with the VPFC and amygdala, including the ventral striatum, hippocampus, and the cerebellum. Abnormalities in these regions may contribute to symptoms that reflect disruption in functions subserved by these structures, including motivational, mnemonic and psychomotor functions.This article will first review leads from behavioral neurology that implicated these neural system abnormalities in BD. It will then review findings from structural imaging and functional imaging studies to support the presence of abnormalities within these neural system components in BD. It will also review new findings from studies using diffusion tensor imaging (DTI) that provide increasing evidence of abnormalities in the connections between these neural system components in BD. Emerging data supporting differences in this neural system during adolescence, as well as potential beneficial effects of treatment on structure and function will also be presented. Finally, the article will discuss the implications for future investigations, including those for early identification and treatment of BD.
Collapse
Affiliation(s)
- Fay Y. Womer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- REAP Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Jessica H. Kalmar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- REAP Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Fei Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- REAP Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT
- Child Study Center, Yale University School of Medicine, New Haven, CT
- REAP Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
44
|
Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry 2009; 66:516-521. [PMID: 19427632 PMCID: PMC2830492 DOI: 10.1016/j.biopsych.2009.03.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Abnormalities in the morphology and function of two gray matter structures central to emotional processing, the perigenual anterior cingulate cortex (pACC) and amygdala, have consistently been reported in bipolar disorder (BD). Evidence implicates abnormalities in their connectivity in BD. This study investigates the potential disruptions in pACC-amygdala functional connectivity and associated abnormalities in white matter that provides structural connections between the two brain regions in BD. METHODS Thirty-three individuals with BD and 31 healthy comparison subjects (HC) participated in a scanning session during which functional magnetic resonance imaging (fMRI) during processing of face stimuli and diffusion tensor imaging (DTI) were performed. The strength of pACC-amygdala functional connections was compared between BD and HC groups, and associations between these functional connectivity measures from the fMRI scans and regional fractional anisotropy (FA) from the DTI scans were assessed. RESULTS Functional connectivity was decreased between the pACC and amygdala in the BD group compared with HC group, during the processing of fearful and happy faces (p < .005). Moreover, a significant positive association between pACC-amygdala functional coupling and FA in ventrofrontal white matter, including the region of the uncinate fasciculus, was identified (p < .005). CONCLUSION This study provides evidence for abnormalities in pACC-amygdala functional connectivity during emotional processing in BD. The significant association between pACC-amygdala functional connectivity and the structural integrity of white matter that contains pACC-amygdala connections suggest that disruptions in white matter connectivity may contribute to disturbances in the coordinated responses of the pACC and amygdala during emotional processing in BD.
Collapse
|
45
|
Abstract
OBJECTIVE Previous study supports the presence of reduced volume and elevated response to emotional stimuli in amygdala in adolescents with bipolar disorder (BD). In the present study, structural and functional magnetic resonance imaging scans were obtained during the same neuroimaging session to examine amygdala structure-function relations in adolescents with BD. We hypothesized that amygdala volume would be inversely associated with amygdala response to emotional stimuli, such that BD participants with the smallest amygdala volumes would exhibit the highest amygdala response. METHOD Fifty-one adolescents (21 with BD I and 30 control adolescents, ages 10-18 years) underwent structural and functional magnetic resonance imaging scans. Amygdala volume (n = 49) and signal change (n = 44) during emotional face processing were compared between groups, and structure-function correlations were examined within the BD group (n = 16). RESULTS Adolescents with BD showed decreased amygdala volume (p =.009) and increased amygdala response to emotional faces (p =.043). There was no significant interaction between diagnosis and emotion type. A significant inverse association between amygdala volume and activation during emotional face processing was observed (r = -0.54, p =.029). CONCLUSIONS Decreased volume and increased response to emotional stimuli in the amygdala in adolescents with BD are consistent with previous reports. This study represents the first report, to our knowledge, of the two findings in the same adolescent BD sample and supports an amygdala structure-function relation characterized by an inverse association between volume and response to emotional stimuli. This preliminary finding requires replication and suggests a possible pathophysiological link between abnormalities in amygdala structure and response to emotional stimuli in BD.
Collapse
|
46
|
Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage 2009; 47:946-51. [PMID: 19426812 DOI: 10.1016/j.neuroimage.2009.04.083] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Determining the gene that plays a key role in brain-gut interactions is a crucial step for clarifying the pathophysiology of irritable bowel syndrome (IBS). We previously reported that the 5-hydroxytryptamine transporter gene-linked polymorphic region (5-HTTLPR) is related to anxiety in subjects with IBS. The amygdala is more activated during fearful face recognition in individuals with the s allele of 5-HTTLPR. Here, we tested our hypothesis that 5-HTTLPR differentially activates brain regions with colorectal distention in humans. METHODS We enrolled 28 subjects without any organic disease. The study was approved by the Ethics Committee and all subjects gave written informed consent. DNA was extracted from the peripheral blood. The genotype of 5-HTTLPR was determined using polymerase chain reaction. Age, sex, diagnosis-matched individuals with the s/s genotype (n=14) and individuals with the l allele (genotypes l/s, l/l, l/extra-l, n=14) were compared. A barostat bag was inserted to the colorectum and was intermittently inflated with no (0 mm Hg), mild (20 mm Hg), or intense (40 mm Hg) stimulation on a random order. Radioactive H2[(15-)O] saline was injected at bag inflation and then positron emission tomography was performed. Changes in rCBF were analyzed using statistical parametric mapping. RESULTS Individuals with the s/s genotype showed a significantly larger increase in rCBF by colorectal distention from 0 mm Hg to 40 mm Hg than individuals with the l allele. The significantly more activated brain regions in individuals with the s/s genotype were the left anterior cingulate cortex and right parahippocampal gyrus (p<0.0001). The increase in rCBF by colorectal distention of 20 mm Hg compared with 0 mm Hg was significantly larger in the left orbitofrontal cortex of individuals with the s/s genotype than that of individuals with the l allele (p<0.0001). CONCLUSION These data suggest that individuals with a weak function of serotonin transporter respond to gut signals more in emotion-regulating brain regions. Functional gene polymorphism may partially predict the individual effect of a selective serotonin reuptake inhibitor on visceral pain.
Collapse
|