1
|
Totty MS, Juanes RC, Bach SV, Ameur LB, Valentine MR, Simons E, Romac M, Trinh H, Henderson K, Del Rosario I, Tippani M, Miller RA, Kleinman JE, Page SC, Saunders A, Hyde TM, Martinowich K, Hicks SC, Costa VD. Transcriptomic diversity of amygdalar subdivisions across humans and nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618721. [PMID: 39463931 PMCID: PMC11507838 DOI: 10.1101/2024.10.18.618721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The amygdaloid complex mediates learning, memory, and emotions. Understanding the cellular and anatomical features that are specialized in the amygdala of primates versus other vertebrates requires a systematic, anatomically-resolved molecular analysis of constituent cell populations. We analyzed five nuclear subdivisions of the primate amygdala with single-nucleus RNA sequencing in macaques, baboons, and humans to examine gene expression profiles for excitatory and inhibitory neurons and confirmed our results with single-molecule FISH analysis. We identified distinct subtypes of FOXP2 + interneurons in the intercalated cell masses and protein-kinase C-δ interneurons in the central nucleus. We also establish that glutamatergic, pyramidal-like neurons are transcriptionally specialized within the basal, lateral, or accessory basal nuclei. Understanding the molecular heterogeneity of anatomically-resolved amygdalar neuron types provides a cellular framework for improving existing models of how amygdalar neural circuits contribute to cognition and mental health in humans by using nonhuman primates as a translational bridge.
Collapse
|
2
|
Margariti MM, Vlachos II, Mpourazana D, Aristotelidis P, Selakovic M, Ifanti M, Papageorgiou C. Psychotic Arousal and the Psychopathology of Acute Schizophrenia: An Exploratory Study of the Experiential Emotional State in Acute Psychosis. J Clin Med 2024; 13:5477. [PMID: 39336964 PMCID: PMC11432037 DOI: 10.3390/jcm13185477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Increasing research data suggest that the dysfunction of emotional brain systems may be an important contributor to the pathophysiology of schizophrenia. However, contemporary psychopathology consistently underestimates the role of emotions in the phenomenology of the disease. Psychotic arousal (PA) is a conceptually defined psychopathological construct aiming to portray the experiential emotional state of acute psychosis. The concept provides an explanatory model for the emergence of psychosis, and the formation and maintenance of delusions based on neurobiological models on the formation of core consciousness and subjectivity. This is the first exploratory study of the major assumptions, endorsed in the project summarized as follows: (1) psychotic arousal is a discrete state, eligible for investigation; (2) abnormal experiential feelings are an integral part of this state; and (3) the state is responsive to antipsychotic intervention during the first weeks of treatment. Methods: We developed the Psychotic Arousal Scale (PAS) accordingly, explored its first psychometric properties and tested its relation to other psychopathological measures. Fifty-five acute schizophrenia patients were evaluated with the PAS, the Positive and Negative Syndrome Scale, the Brown Assessment of Beliefs Scale, the Hamilton Anxiety Scale, and the Calgary Depression Scale. Cronbach α coefficients, t-test analysis, correlations and mixed linear regression models were applied for testing the internal reliability of the scale, associations between parameters and sensitivity to change in three time periods during therapeutic intervention. Results: The results of the study support that (PA) is eligible for investigation as a discrete psychopathological state. Abnormal experiential feelings are an integral part of this state, presenting high affinity with other affective measures; their degree of severity relates to the delusions' conviction and are amenable to antipsychotics early in treatment during the acute psychotic episode. Conclusions: The findings of this exploratory study are connotative of the presence of an emotional arousal permeated by abnormal experiential feelings during acute psychosis, largely overlooked by contemporary psychopathology.
Collapse
Affiliation(s)
- Maria M Margariti
- 1st Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ilias I Vlachos
- 1st Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitra Mpourazana
- 1st Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Aristotelidis
- 2nd Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mirjana Selakovic
- Department of Psychiatry, "Sismanogleio" General Hospital, 15126 Athens, Greece
| | - Maria Ifanti
- 1st Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | |
Collapse
|
3
|
Lisboa JRF, Costa O, Pakes GH, Colodete DAE, Gomes FV. Perineuronal net density in schizophrenia: A systematic review of postmortem brain studies. Schizophr Res 2024; 271:100-109. [PMID: 39018984 DOI: 10.1016/j.schres.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The onset of schizophrenia is concurrent with multiple key processes of brain development, such as the maturation of inhibitory networks. Some of these processes are proposed to depend on the development of perineuronal nets (PNNs), a specialized extracellular matrix structure that surrounds preferentially parvalbumin-containing GABAergic interneurons (PVIs). PNNs are fundamental to the postnatal experience-dependent maturation of inhibitory brain circuits. PNN abnormalities have been proposed as a core pathophysiological finding in SCZ, being linked to widespread consequences on circuit disruptions underlying SCZ symptoms. OBJECTIVE Here, we systematically evaluate PNN density in postmortem brain studies of subjects with SCZ. METHODS A systematic search in 3 online databases (PubMed, Embase, and Scopus) and qualitative review analysis of case-control studies reporting on PNN density in the postmortem brain of subjects with SCZ were performed. RESULTS Results consisted of 7 studies that were included in the final analysis. The specific brain regions investigated in the studies varied, with most attention given to the dorsolateral prefrontal cortex (DLPFC; 3 studies) and amygdala (2 studies). Findings were mostly positive for reduced PNN density in SCZ, with 6 of the 7 studies reporting significant reductions and one reporting a tendency towards reduced PNN density. Overall, tissue processing methodologies were heterogeneous. CONCLUSIONS Despite few studies, PNN density was consistently reduced in SCZ across different brain regions. These findings support evidence that implicates deficits in PNN density in the pathophysiology of SCZ. However, more studies, preferably using similar methodological approaches as well as replication of findings, are needed.
Collapse
Affiliation(s)
- João Roberto F Lisboa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Olga Costa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Henrique Pakes
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Debora Akemi E Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Liang J, Chen L, Li Y, Chen Y, Yuan L, Qiu Y, Ma S, Fan F, Cheng Y. Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models. Schizophr Bull 2024; 50:913-923. [PMID: 38811350 PMCID: PMC11283200 DOI: 10.1093/schbul/sbae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND HYPOTHESIS This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. STUDY DESIGN This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. STUDY RESULTS Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. CONCLUSIONS Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.
Collapse
Affiliation(s)
- Jiaquan Liang
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- The Third People’s Hospital of Foshan, Guangdong, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yue Qiu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| |
Collapse
|
5
|
Philibert CE, Garcia-Marcos M. Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators. Trends Cell Biol 2024:S0962-8924(24)00140-5. [PMID: 39054106 DOI: 10.1016/j.tcb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits.
Collapse
Affiliation(s)
- Clementine E Philibert
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts and Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Thanaraju A, Marzuki AA, Chan JK, Wong KY, Phon-Amnuaisuk P, Vafa S, Chew J, Chia YC, Jenkins M. Structural and functional brain correlates of socioeconomic status across the life span: A systematic review. Neurosci Biobehav Rev 2024; 162:105716. [PMID: 38729281 DOI: 10.1016/j.neubiorev.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
It is well-established that higher socioeconomic status (SES) is associated with improved brain health. However, the effects of SES across different life stages on brain structure and function is still equivocal. In this systematic review, we aimed to synthesise findings from life course neuroimaging studies that investigated the structural and functional brain correlates of SES across the life span. The results indicated that higher SES across different life stages were independently and cumulatively related to neural outcomes typically reflective of greater brain health (e.g., increased cortical thickness, grey matter volume, fractional anisotropy, and network segregation) in adult individuals. The results also demonstrated that the corticolimbic system was most commonly impacted by socioeconomic disadvantages across the life span. This review highlights the importance of taking into account SES across the life span when studying its effects on brain health. It also provides directions for future research including the need for longitudinal and multimodal research that can inform effective policy interventions tailored to specific life stages.
Collapse
Affiliation(s)
- Arjun Thanaraju
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia.
| | - Aleya A Marzuki
- Department for Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Germany
| | - Jee Kei Chan
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Kean Yung Wong
- Sensory Neuroscience and Nutrition Lab, University of Otago, New Zealand
| | - Paveen Phon-Amnuaisuk
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Samira Vafa
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Yook Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Michael Jenkins
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Malaysia
| |
Collapse
|
7
|
Cheng J, Wang Z, Tang M, Zhang W, Li G, Tan S, Mu C, Hu M, Zhang D, Jia X, Wen Y, Guo H, Xu D, Liu L, Li J, Xia K, Li F, Duan R, Xu Z, Yuan L. KCTD10 regulates brain development by destabilizing brain disorder-associated protein KCTD13. Proc Natl Acad Sci U S A 2024; 121:e2315707121. [PMID: 38489388 PMCID: PMC10963008 DOI: 10.1073/pnas.2315707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jianbo Cheng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Zhen Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Manpei Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Guozhong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Senwei Tan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Chenjun Mu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Mengyuan Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbin Jia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Yangxuan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Hui Guo
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou350005, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing100053, China
| | - Jiada Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Kun Xia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Faxiang Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Ling Yuan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
8
|
DelaCuesta-Barrutia J, Martínez-Peula O, Rivero G, Santas-Martín JA, Munarriz-Cuezva E, Brocos-Mosquera I, Miranda-Azpiazu P, Diez-Alarcia R, Morentin B, Honer WG, Callado LF, Erdozain AM, Ramos-Miguel A. Effect of antipsychotic drugs on group II metabotropic glutamate receptor expression and epigenetic control in postmortem brains of schizophrenia subjects. Transl Psychiatry 2024; 14:113. [PMID: 38396013 PMCID: PMC10891050 DOI: 10.1038/s41398-024-02832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Antipsychotic-induced low availability of group II metabotropic glutamate receptors (including mGlu2R and mGlu3R) in brains of schizophrenia patients may explain the limited efficacy of mGlu2/3R ligands in clinical trials. Studies evaluating mGlu2/3R levels in well-designed, large postmortem brain cohorts are needed to address this issue. Postmortem samples from the dorsolateral prefrontal cortex of 96 schizophrenia subjects and matched controls were collected. Toxicological analyses identified cases who were (AP+) or were not (AP-) receiving antipsychotic treatment near the time of death. Protein and mRNA levels of mGlu2R and mGlu3R, as well as GRM2 and GRM3 promoter-attached histone posttranslational modifications, were quantified. Experimental animal models were used to compare with data obtained in human tissues. Compared to matched controls, schizophrenia cortical samples had lower mGlu2R protein amounts, regardless of antipsychotic medication. Downregulation of mGlu3R was observed in AP- schizophrenia subjects only. Greater predicted occupancy values of dopamine D2 and serotonin 5HT2A receptors correlated with higher density of mGlu3R, but not mGlu2R. Clozapine treatment and maternal immune activation in rodents mimicked the mGlu2R, but not mGlu3R regulation observed in schizophrenia brains. mGlu2R and mGlu3R mRNA levels, and the epigenetic control mechanisms did not parallel the alterations at the protein level, and in some groups correlated inversely. Insufficient cortical availability of mGlu2R and mGlu3R may be associated with schizophrenia. Antipsychotic treatment may normalize mGlu3R, but not mGlu2R protein levels. A model in which epigenetic feedback mechanisms controlling mGlu3R expression are activated to counterbalance mGluR loss of function is described.
Collapse
Affiliation(s)
| | | | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Jon A Santas-Martín
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Eva Munarriz-Cuezva
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | | | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Basque Institute of Legal Medicine, Bilbao, Spain
| | - William G Honer
- Department Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain.
| |
Collapse
|
9
|
Roell L, Keeser D, Papazov B, Lembeck M, Papazova I, Greska D, Muenz S, Schneider-Axmann T, Sykorova EB, Thieme CE, Vogel BO, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Stoecklein S, Ertl-Wagner B, Henkel K, Wolfarth B, Tantchik W, Walter H, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P, Maurus I. Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia-Data From a Multicenter Randomized-Controlled Study. Schizophr Bull 2024; 50:145-156. [PMID: 37597507 PMCID: PMC10754172 DOI: 10.1093/schbul/sbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications. STUDY DESIGN In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance. STUDY RESULTS Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity. CONCLUSIONS These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia. CLINICAL TRIALS REGISTRATION The underlying study of this manuscript was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112, https://clinicaltrials.gov/ct2/show/NCT03466112?term=NCT03466112&draw=2&rank=1) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
Affiliation(s)
- Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Muenz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eliska B Sykorova
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christina E Thieme
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Katriona Keller-Varady
- Hannover Medical School, Department of Rehabilitation and Sports Medicine, Hannover, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Wladimir Tantchik
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Dusan Hirjak
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Gaus R, Popal M, Heinsen H, Schmitt A, Falkai P, Hof PR, Schmitz C, Vollhardt A. Reduced cortical neuron number and neuron density in schizophrenia with focus on area 24: a post-mortem case-control study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1209-1223. [PMID: 36350376 PMCID: PMC10449727 DOI: 10.1007/s00406-022-01513-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Structural and functional abnormalities of the anterior cingulate cortex (ACC) have frequently been identified in schizophrenia. Alterations of von Economo neurons (VENs), a class of specialized projection neurons, have been found in different neuropsychiatric disorders and are also suspected in schizophrenia. To date, however, no definitive conclusions can be drawn about quantitative histologic changes in the ACC in schizophrenia because of a lack of rigorous, design-based stereologic studies. In the present study, the volume, total neuron number and total number of VENs in layer V of area 24 were determined in both hemispheres of postmortem brains from 12 male patients with schizophrenia and 11 age-matched male controls. To distinguish global from local effects, volume and total neuron number were also determined in the whole area 24 and whole cortical gray matter (CGM). Measurements were adjusted for hemisphere, age, postmortem interval and fixation time using an ANCOVA model. Compared to controls, patients with schizophrenia showed alterations, with lower mean total neuron number in CGM (- 14.9%, P = 0.007) and in layer V of area 24 (- 21.1%, P = 0.002), and lower mean total number of VENs (- 28.3%, P = 0.027). These data provide evidence for ACC involvement in the pathophysiology of schizophrenia, and complement neuroimaging findings of impaired ACC connectivity in schizophrenia. Furthermore, these results support the hypothesis that the clinical presentation of schizophrenia, particularly deficits in social cognition, is associated with pathology of VENs.
Collapse
Affiliation(s)
- Richard Gaus
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Melanie Popal
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christoph Schmitz
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Alisa Vollhardt
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| |
Collapse
|
11
|
Delavari F, Rafi H, Sandini C, Murray RJ, Latrèche C, Van De Ville D, Eliez S. Amygdala subdivisions exhibit aberrant whole-brain functional connectivity in relation to stress intolerance and psychotic symptoms in 22q11.2DS. Transl Psychiatry 2023; 13:145. [PMID: 37142582 PMCID: PMC10160125 DOI: 10.1038/s41398-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The amygdala is a key region in emotional regulation, which is often impaired in psychosis. However, it is unclear if amygdala dysfunction directly contributes to psychosis, or whether it contributes to psychosis through symptoms of emotional dysregulation. We studied the functional connectivity of amygdala subdivisions in patients with 22q11.2DS, a known genetic model for psychosis susceptibility. We investigated how dysmaturation of each subdivision's connectivity contributes to positive psychotic symptoms and impaired tolerance to stress in deletion carriers. Longitudinally-repeated MRI scans from 105 patients with 22q11.2DS (64 at high-risk for psychosis and 37 with impaired tolerance to stress) and 120 healthy controls between the ages of 5 to 30 years were included. We calculated seed-based whole-brain functional connectivity for amygdalar subdivisions and employed a longitudinal multivariate approach to evaluate the developmental trajectory of functional connectivity across groups. Patients with 22q11.2DS presented a multivariate pattern of decreased basolateral amygdala (BLA)-frontal connectivity alongside increased BLA-hippocampal connectivity. Moreover, associations between developmental drops in centro-medial amygdala (CMA)-frontal connectivity to both impaired tolerance to stress and positive psychotic symptoms in deletion carriers were detected. Superficial amygdala hyperconnectivity to the striatum was revealed as a specific pattern arising in patients who develop mild to moderate positive psychotic symptoms. Overall, CMA-frontal dysconnectivity was found as a mutual neurobiological substrate in both impaired tolerance to stress and psychosis, suggesting a role in prodromal dysregulation of emotions in psychosis. While BLA dysconnectivity was found to be an early finding in patients with 22q11.2DS, which contributes to impaired tolerance to stress.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
12
|
Guo H, Ye H, Li Z, Li X, Huang W, Yang Y, Xie G, Xu C, Li X, Liang W, Jing H, Zhang C, Tang C, Liang J. Amygdala signal abnormality and cognitive impairment in drug-naïve schizophrenia. BMC Psychiatry 2023; 23:231. [PMID: 37020192 PMCID: PMC10074687 DOI: 10.1186/s12888-023-04728-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Recently studies had showed that the amygdala may take part in the cognitive impairment in schizophrenia (SC). However, the mechanism is still unclear, so we explored the relationship between the amygdala resting state magnetic resonance imaging (rsMRI) signal and cognitive function, to provide a reference for the follow-up study. METHODS We collected 59 drug-naïve SCs and 46 healthy controls (HCs) from the Third People's Hospital of Foshan. The rsMRI technique and automatic segmentation tool were used to extract the volume and functional indicators of the SC's amygdala. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of the disease, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function. Pearson correlation analysis was used to compare the relationship between the structural and functional indicators of the amygdala and PANSS and RBANS. RESULTS (1) There was no significant difference between SC and HC in age, gender and years of education. Compared with HC, the PANSS score of SC increased and the RBANS score decreased significantly. Meanwhile, the left amygdala volume decreased (t=-3.675, p < 0.001), and the Fractional amplitude of low-frequency fluctuations (FALFF) values of bilateral amygdala increased (tL=3.916, p < 0.001; tR=3.131, p = 0.002). (2) The volumes of the left amygdala were negatively correlated with the PANSS score (rL=-0.243, p = 0.039). While the FALFF values of the bilateral amygdala were positively correlated with the PANSS score (rL=0.257, p = 0.026; rR=0.259, p = 0.026). Bilateral amygdala volumes and FALFF values were positively correlated (rL=0.445, p < 0.001; rR=0.326, p = 0.006) and negatively correlated with RBANS score (rL=-0.284, p = 0.014; rR=-0.272, p = 0.020), respectively. CONCLUSION The abnormal volume and function of the amygdala play important roles in the disease process of SC, and are closely related to cognitive impairment.
Collapse
Affiliation(s)
- Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Haibiao Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wenting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Huan Jing
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Zhu X, Grace AA. Sex- and exposure age-dependent effects of adolescent stress on ventral tegmental area dopamine system and its afferent regulators. Mol Psychiatry 2023; 28:611-624. [PMID: 36224257 PMCID: PMC9918682 DOI: 10.1038/s41380-022-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Adolescent stress is a risk factor for schizophrenia. Emerging evidence suggests that age-dependent sensitive windows for childhood trauma are associated more strongly with adult psychosis, but the neurobiological basis and potential sex differences are unknown.Using in vivo electrophysiology and immunohistology in rats, we systematically compared the effects of two age-defined adolescent stress paradigms, prepubertal (postnatal day [PD] 21-30; PreP-S) and postpubertal (PD41-50; PostP-S) foot-shock and restraint combined stress, on ventral tegmental area (VTA) dopaminergic activity, pyramidal neuron activity in the ventral hippocampus (vHipp) and the basolateral amygdala (BLA), corticoamygdalar functional inhibitory control, and vHipp and BLA parvalbumin interneuron (PVI) impairments. These endpoints were selected based on their well-documented roles in the pathophysiology of psychosis.Overall, we found distinct sex- and exposure age-dependent stress vulnerability. Specifically, while males were selectively vulnerable to PreP-S-induced adult VTA dopamine neuron and vHipp hyperactivities, females were selectively vulnerable to PostP-S. These male selective PreP-S effects were correlated with stress-induced aberrant persistent BLA hyperactivity, dysfunctional prefrontal inhibitory control of BLA neurons, and vHipp/BLA PVI impairments. In contrast, female PostP-S only produced vHipp PVI impairments in adults, with the BLA structure and functions largely unaffected.Our results indicated distinct adolescent-sensitive periods during which stress can sex-dependently confer maximal risks to corticolimbic systems to drive dopamine hyperactivity, which provide critical insights into the neurobiological basis for sex-biased stress-related psychopathologies emphasizing but not limited to schizophrenia. Furthermore, our work also provides a framework for future translational research on age-sensitive targeted interventions.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
15
|
Huang X, Li Y, Liu H, Xu J, Tan Z, Dong H, Tian B, Wu S, Wang W. Activation of basolateral amygdala to anterior cingulate cortex circuit alleviates MK-801 induced social and cognitive deficits of schizophrenia. Front Cell Neurosci 2022; 16:1070015. [PMID: 36619672 PMCID: PMC9813383 DOI: 10.3389/fncel.2022.1070015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Schizophrenia is a severe psychiatric disorder with a high prevalence worldwide, however, its pathogenesis remains poorly understood. Methods and results In this study, we used the non-competitive NMDA receptor antagonist MK-801 to induce schizophrenia-like behaviors and confirmed that mice exhibited stereotypic rotational behavior and hyperlocomotion, social interaction defects and cognitive dysfunction, similar to the clinical symptoms in patients. Here, the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) were involved in the schizophrenia-like behaviors induced by MK-801. Furthermore, we confirmed BLA sent glutamatergic projection to the ACC. Chemogenetic and optogenetic regulation of BLA-ACC projecting neurons affected social and cognitive deficits but not stereotypic rotational behavior in MK-801-treated mice. Discussion Overall, our study revealed that the BLA-ACC circuit plays a major role and may be a potential target for treating schizophrenia-related symptoms.
Collapse
|
16
|
Apam-Castillejos DJ, Tendilla-Beltrán H, Vázquez-Roque RA, Vázquez-Hernández AJ, Fuentes-Medel E, García-Dolores F, Díaz A, Flores G. Second-generation antipsychotic olanzapine attenuates behavioral and prefrontal cortex synaptic plasticity deficits in a neurodevelopmental schizophrenia-related rat model. J Chem Neuroanat 2022; 125:102166. [PMID: 36156295 DOI: 10.1016/j.jchemneu.2022.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Specifically, second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL animals but failed to enhance social disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Collapse
Affiliation(s)
| | | | | | | | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Mexico.
| |
Collapse
|
17
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
18
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
19
|
Beggiato S, Ieraci A, Zuccarini M, Di Iorio P, Schwarcz R, Ferraro L. Alterations in rat prefrontal cortex kynurenic acid levels are involved in the enduring cognitive dysfunctions induced by tetrahydrocannabinol exposure during the adolescence. Front Psychiatry 2022; 13:996406. [PMID: 36483135 PMCID: PMC9722723 DOI: 10.3389/fpsyt.2022.996406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Cannabis abuse during adolescence is a risk factor for cognitive impairments in psychiatric disorders later in life. To date, the possible causal relationship between cannabinoids, kynurenic acid (KYNA; i.e., a neuroactive metabolite of tryptophan degradation) and cognition has not been investigated in adolescence. Early exposure to delta 9-tetrahydrocannabinol (THC; i.e., the main psychotropic component of cannabis) causes enduring cognitive deficits, which critically involve impaired glutamatergic function in the prefrontal cortex (PFC). In addition, prenatal cannabis exposure results in enduring increases in PFC KYNA levels. Based on these findings, the effects of chronic THC exposure in rats, during another critical period of neurodevelopment particularly sensitive to perturbation by exogenous stimuli, such as adolescence, have been investigated. METHODS Male Wistar rats were chronically treated with vehicle or ascending intraperitoneal (i.p.) doses of THC starting on postnatal day (PND) 35 until PND 45. In adulthood (PND 75), cognitive assessment (Y-maze) and extracellular KYNA/glutamate levels were measured in the PFC by in vivo microdialysis, before and after a challenge with KYN (5 mg/kg i.p., the biological precursor of KYNA). By using the selective, brain-penetrable KAT II inhibitor PF-04859989, we then examined whether blockade of KYNA neosynthesis prevents the cognitive impairment. RESULTS Compared to vehicle-treated controls, extracellular basal KYNA levels were higher in the PFC of adult rats chronically exposed to THC in adolescence (p < 0.01). No changes were observed in extracellular glutamate levels. Following a challenge with KYN, extracellular KYNA levels similarly increased in both groups (i.e., vehicle- and THC-treated; p < 0.001 and p < 0.01, respectively). Chronic adolescent THC exposure negatively affected short-term memory (reduced spontaneous alternation), in adult animals (p < 0.001), while PF-04859989 (30 mg/kg i.p.) restored the cognitive impairment (p < 0.05). DISCUSSION We propose that the observed alterations in PFC KYNA signaling might be involved in the cognitive dysfunction induced by the exposure to THC during the adolescence. In the translational realm, these experiments raise the prospect of prevention of KYNA neosynthesis as a possible novel approach to counteract some of the detrimental long-term effects of adolescence cannabis use.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.,Department of Theoretical and Applied Science, eCampus University, Novedrate, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Luca Ferraro
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy.,Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Förster A, Model V, Gos T, Frodl T, Schiltz K, Dobrowolny H, Meyer-Lotz G, Guest PC, Mawrin C, Bernstein HG, Bogerts B, Schlaaff K, Steiner J. Reduced GABAergic neuropil and interneuron profiles in schizophrenia: Complementary analysis of disease course-related differences. J Psychiatr Res 2021; 145:50-59. [PMID: 34864489 DOI: 10.1016/j.jpsychires.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND GABAergic interneuron dysfunction has been implicated in the pathophysiology of schizophrenia. Expression of glutamic acid decarboxylase (GAD), a key enzyme in GABA synthesis, may also be altered. Here, we have simultaneously evaluated GAD-immunoreactive (GAD-ir) neuropil and cell profiles in schizophrenia-relevant brain regions, and analysed disease-course related differences. METHODS GAD65/67 immunoreactivity was quantified in specific brain regions for profiles of fibres and cell bodies of interneurons by automated digital image analysis in post-mortem brains of 16 schizophrenia patients from paranoid (n = 10) and residual (n = 6) diagnostic subgroups and 16 matched controls. Regions of interest were superior temporal gyrus (STG) layers III and V, mediodorsal (MD) and laterodorsal (LD) thalamus, and hippocampal CA1 and dentate gyrus (DG) regions. RESULTS A reduction in GAD-ir neuropil profiles (p < 0.001), particularly in STG layer V (p = 0.012) and MD (p = 0.001), paralleled decreased GAD-ir cell profiles (p = 0.029) in schizophrenia patients compared to controls. Paranoid schizophrenia patients had lower GAD-ir neuron cell profiles in STG layers III (p = 0.007) and V (p = 0.001), MD (p = 0.002), CA1 (p = 0.001) and DG (p = 0.043) than residual patients. There was no difference in GAD-ir neuropil profiles between paranoid and residual subgroups (p = 0.369). CONCLUSIONS These results support the hypothesis of GABAergic dysfunction in schizophrenia. They show a more prominent reduction of GAD-ir interneurons in paranoid versus residual patients, suggestive of more pronounced GABAergic dysfunction in the former. Fully automated analyses of histological sections represent a step towards user-independent assessment of brain structure.
Collapse
Affiliation(s)
- Antonia Förster
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Vera Model
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Tomasz Gos
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Thomas Frodl
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Forensic Psychiatry, Mental Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Christian Mawrin
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Salus Institute, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
21
|
Waye SC, Dinesh OC, Hasan SN, Conway JD, Raymond R, Nobrega JN, Blundell J, Bambico FR. Antidepressant action of transcranial direct current stimulation in olfactory bulbectomised adolescent rats. J Psychopharmacol 2021; 35:1003-1016. [PMID: 33908307 DOI: 10.1177/02698811211000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.
Collapse
Affiliation(s)
- Shannon C Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Sm Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Joshua D Conway
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada.,Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
22
|
Rolls ET. Attractor cortical neurodynamics, schizophrenia, and depression. Transl Psychiatry 2021; 11:215. [PMID: 33846293 PMCID: PMC8041760 DOI: 10.1038/s41398-021-01333-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
The local recurrent collateral connections between cortical neurons provide a basis for attractor neural networks for memory, attention, decision-making, and thereby for many aspects of human behavior. In schizophrenia, a reduction of the firing rates of cortical neurons, caused for example by reduced NMDA receptor function or reduced spines on neurons, can lead to instability of the high firing rate attractor states that normally implement short-term memory and attention in the prefrontal cortex, contributing to the cognitive symptoms. Reduced NMDA receptor function in the orbitofrontal cortex by reducing firing rates may produce negative symptoms, by reducing reward, motivation, and emotion. Reduced functional connectivity between some brain regions increases the temporal variability of the functional connectivity, contributing to the reduced stability and more loosely associative thoughts. Further, the forward projections have decreased functional connectivity relative to the back projections in schizophrenia, and this may reduce the effects of external bottom-up inputs from the world relative to internal top-down thought processes. Reduced cortical inhibition, caused by a reduction of GABA neurotransmission, can lead to instability of the spontaneous firing states of cortical networks, leading to a noise-induced jump to a high firing rate attractor state even in the absence of external inputs, contributing to the positive symptoms of schizophrenia. In depression, the lateral orbitofrontal cortex non-reward attractor network system is over-connected and has increased sensitivity to non-reward, providing a new approach to understanding depression. This is complemented by under-sensitivity and under-connectedness of the medial orbitofrontal cortex reward system in depression.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
23
|
Lukow PB, Kiemes A, Kempton MJ, Turkheimer FE, McGuire P, Modinos G. Neural correlates of emotional processing in psychosis risk and onset - A systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 2021; 128:780-788. [PMID: 33722617 PMCID: PMC8345001 DOI: 10.1016/j.neubiorev.2021.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The neural bases of altered emotion processing in psychosis are still unclear. Systematic review indicated widespread activation decreases to emotion in first-episode psychosis. Evidence in people at clinical high-risk for psychosis lacked convergence. These findings were corroborated by image-based meta-analyses.
Aberrant emotion processing is a well-established component of psychotic disorders and is already present at the first episode of psychosis (FEP). However, the role of emotion processing abnormalities in the emergence of psychosis and the underlying neurobiology remain unclear. Here, we systematically reviewed functional magnetic resonance studies that used emotion processing task paradigms in FEP patients, and in people at clinical high-risk for psychosis (CHRp). Image-based meta-analyses with Seed-based d Mapping on available studies (n = 6) were also performed. Compared to controls, FEP patients showed decreased neural responses to emotion, particularly in the amygdala and anterior cingulate cortex. There were no significant differences between CHRp subjects and controls, but a high degree of heterogeneity was identified across studies. The role of altered emotion processing in the early phase of psychosis may be clarified through more homogenous experimental designs, particularly in the CHRp population.
Collapse
Affiliation(s)
- P B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - A Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - M J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - G Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, new hunt's House, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
24
|
Zhu X, Grace AA. Prepubertal Environmental Enrichment Prevents Dopamine Dysregulation and Hippocampal Hyperactivity in MAM Schizophrenia Model Rats. Biol Psychiatry 2021; 89:298-307. [PMID: 33357630 PMCID: PMC7927755 DOI: 10.1016/j.biopsych.2020.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder with a progressive, prolonged course. Early prevention for SCZ is promising but overall lacks support from preclinical evidence. Previous studies have tested environmental enrichment (EE) in certain models of SCZ and discovered a broadly beneficial effect in preventing behavioral abnormalities relevant, yet not specific, to the disorder. Nonetheless, whether EE can prevent dopamine (DA) dysregulation, a hallmark of psychosis and SCZ, had not been tested. METHODS Using the MAM (methylazoxymethanol acetate) rat model of schizophrenia and saline-treated control animals, we investigated the long-term electrophysiological effects of prepubertal (postnatal day 21-40) EE on DA neurons, pyramidal neurons in the ventral hippocampus, and projection neurons in the basolateral amygdala. Anxiety-related behaviors in the elevated plus maze and locomotor responses to amphetamine were also analyzed. RESULTS Prepubertal EE prevented the increased population activity of DA neurons and the associated increase in locomotor response to amphetamine. Prepubertal EE also prevented hyperactivity in the ventral hippocampus but did not prevent hyperactivity in the basolateral amygdala. Anxiety-like behaviors in MAM rats were not ameliorated by prepubertal exposure to EE. CONCLUSIONS Twenty-day prepubertal EE is sufficient to prevent DA hyperresponsivity in the MAM model, measured by electrophysiological recordings and locomotor response to amphetamine. This effect is potentially mediated by normalizing excessive firing in the ventral hippocampus without affecting anxiety-like behaviors and basolateral amygdala firing. This study identified EE as a useful preventative approach that may protect against the pathophysiological development of SCZ.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Haatveit B, Mørch-Johnsen L, Alnæs D, Engen MJ, Lyngstad SH, Færden A, Agartz I, Ueland T, Melle I. Divergent relationship between brain structure and cognitive functioning in patients with prominent negative symptomatology. Psychiatry Res Neuroimaging 2021; 307:111233. [PMID: 33340940 DOI: 10.1016/j.pscychresns.2020.111233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Investigating commonalities in underlying pathology of cognitive dysfunction and negative symptoms in schizophrenia is important, as both are core features of the disorder and linked to brain structure abnormalities. We aimed to explore the relationship between cognition, negative symptoms and brain structure in schizophrenia. A total of 225 patients with Schizophrenia spectrum disorder and 283 healthy controls from the Norwegian Thematically Organized Psychosis (TOP) cohort were included in this study. Patients were categorized into four patient subgroups based on severity of negative symptoms: no-negative- (NNS), threshold-negative- (TNS), moderate-negative- (MNS), and prominent-negative (PNS) subgroups. MRI measures of brain volume, mean cortical thickness and surface area from pre-selected brain regions were tested for relationships with general cognitive ability and negative symptom subgroups. Positive associations were found between brain volume, thickness, surface area and cognition in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), fusiform gyrus (FG) and the left anterior cingulate cortex (ACC), but with no differences between subgroups. In the PNS subgroup, cognition was conversely negatively associated with brain volume in the left ACC. These results indicate that patients with prominent negative symptoms have different associations between cognition and brain structure in the left ACC, which may point to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Beathe Haatveit
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Magnus Johan Engen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Siv Hege Lyngstad
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann Færden
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Acute Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, 0319 Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
27
|
Liu C, Li D, Yang H, Li H, Xu Q, Zhou B, Hu C, Li C, Wang Y, Qiao Z, Jiang YH, Xu X. Altered striatum centered brain structures in SHANK3 deficient Chinese children with genotype and phenotype profiling. Prog Neurobiol 2020; 200:101985. [PMID: 33388374 PMCID: PMC8572121 DOI: 10.1016/j.pneurobio.2020.101985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 12/01/2022]
Abstract
SHANK3 deficiency represents one of the most replicated monogenic risk factors for autism spectrum disorder (ASD) and SHANK3 caused ASD presents a unique opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, genetic tests, comprehensive clinical and neurobehavioral evaluations, as well as multimodal structural MRI using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) were conducted in SHANK3 group (N = 14 with SHANK3 defects), ASD controls (N = 26 with idiopathic ASD without SHANK3 defects) and typically developing (TD) controls (N = 32). Phenotypically, we reported several new features in Chinese SHANK3 deficient children including anteverted nares, sensory stimulation seeking, dental abnormalities and hematological problems. In SHANK3 group, VBM revealed decreased grey matter volumes mainly in dorsal striatum, amygdala, hippocampus and parahippocampal gyrus; TBSS demonstrated decreased fractional anisotropy in multiple tracts involving projection, association and commissural fibers, including middle cerebral peduncle, corpus callosum, superior longitudinal fasciculus, corona radiata, external and internal capsule, and posterior thalamic radiation, etc. We report that the disrupted striatum centered brain structures are associated with SHANK3 deficient children. Study of subjects with monogenic cause offer specific insights into the neuroimaging studies of ASD. The discovery may support a path for future functional connectivity studies to allow for more in-depth understandings of the abnormal neural circuits and the underlying neuropathological mechanisms for ASD.
Collapse
Affiliation(s)
- Chunxue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Haowei Yang
- Department of Radiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Bingrui Zhou
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Chunyang Li
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China.
| | - Yong-Hui Jiang
- Department of Genetics, Pediatrics and Neuroscience, Yale University School of Medicine, New Heaven CT 06520 USA.
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, China.
| |
Collapse
|
28
|
Peris-Yague A, Kiemes A, Cash D, Cotel MC, Singh N, Vernon AC, Modinos G. Region-specific and dose-specific effects of chronic haloperidol exposure on [ 3H]-flumazenil and [ 3H]-Ro15-4513 GABA A receptor binding sites in the rat brain. Eur Neuropsychopharmacol 2020; 41:106-117. [PMID: 33153853 PMCID: PMC7731940 DOI: 10.1016/j.euroneuro.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 11/02/2022]
Abstract
Postmortem studies suggest that schizophrenia is associated with abnormal expression of specific GABAA receptor (GABAAR) α subunits, including α5GABAAR. Positron emission tomography (PET) measures of GABAAR availability in schizophrenia, however, have not revealed consistent alterations in vivo. Animal studies using the GABAAR agonist [3H]-muscimol provide evidence that antipsychotic drugs influence GABAAR availability, in a region-specific manner, suggesting a potential confounding effect of these drugs. No such data, however, are available for more recently developed subunit-selective GABAAR radioligands. To address this, we combined a rat model of clinically relevant antipsychotic drug exposure with quantitative receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or drug vehicle were administered continuously to adult male Sprague-Dawley rats via osmotic mini-pumps for 28 days. Quantitative receptor autoradiography was then performed postmortem using the GABAAR subunit-selective radioligand [3H]-Ro15-4513 and the non-subunit selective radioligand [3H]-flumazenil. Chronic haloperidol exposure increased [3H]-Ro15-4513 binding in the CA1 sub-field of the rat dorsal hippocampus (p<0.01; q<0.01; d=+1.3), which was not dose-dependent. [3H]-flumazenil binding also increased in most rat brain regions (p<0.05; main effect of treatment), irrespective of the haloperidol dose. These data confirm previous findings that chronic haloperidol exposure influences the specific binding of non-subtype selective GABAAR radioligands and is the first to demonstrate a potential effect of haloperidol on the binding of a α1/5GABAAR-selective radioligand. Although caution should be exerted when extrapolating results from animals to patients, our data support a view that exposure to antipsychotics may be a confounding factor in PET studies of GABAAR in the context of schizophrenia.
Collapse
Affiliation(s)
- Alba Peris-Yague
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
29
|
Nelson AD, Caballero-Florán RN, Rodríguez Díaz JC, Hull JM, Yuan Y, Li J, Chen K, Walder KK, Lopez-Santiago LF, Bennett V, McInnis MG, Isom LL, Wang C, Zhang M, Jones KS, Jenkins PM. Ankyrin-G regulates forebrain connectivity and network synchronization via interaction with GABARAP. Mol Psychiatry 2020; 25:2800-2817. [PMID: 30504823 PMCID: PMC6542726 DOI: 10.1038/s41380-018-0308-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons, where it interacts directly with the GABAA receptor-associated protein (GABARAP) to stabilize cell surface GABAA receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction (Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.
Collapse
Affiliation(s)
- A D Nelson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - R N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J C Rodríguez Díaz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J M Hull
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Y Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J Li
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K Chen
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K K Walder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - L F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - V Bennett
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Departments of Biochemistry, Neurobiology, and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - M G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - C Wang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - M Zhang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K S Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - P M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 2020; 14:274. [PMID: 33061891 PMCID: PMC7518314 DOI: 10.3389/fncel.2020.00274] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay between genetic and environmental risk factors. The immune system is now known to play vital roles in nervous system function and pathology through regulating neuronal and glial development, synaptic plasticity, and behavior. In this regard, the immune system is positioned as a common link between the seemingly diverse genetic and environmental risk factors for schizophrenia. Synthesizing information about how the immune-brain axis is affected by multiple factors and how these factors might interact in schizophrenia is necessary to better understand the pathogenesis of this disease. Such knowledge will aid in the development of more translatable animal models that may lead to effective therapeutic interventions. Here, we provide an overview of the genetic risk factors for schizophrenia that modulate immune function. We also explore environmental factors for schizophrenia including exposure to pollution, gut dysbiosis, maternal immune activation and early-life stress, and how the consequences of these risk factors are linked to microglial function and dysfunction. We also propose that morphological and signaling deficits of the blood-brain barrier, as observed in some individuals with schizophrenia, can act as a gateway between peripheral and central nervous system inflammation, thus affecting microglia in their essential functions. Finally, we describe the diverse roles that microglia play in response to neuroinflammation and their impact on brain development and homeostasis, as well as schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ashley L. Comer
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Alberto Cruz-Martín
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| |
Collapse
|
31
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
32
|
Modinos G, Kempton MJ, Tognin S, Calem M, Porffy L, Antoniades M, Mason A, Azis M, Allen P, Nelson B, McGorry P, Pantelis C, Riecher-Rössler A, Borgwardt S, Bressan R, Barrantes-Vidal N, Krebs MO, Nordentoft M, Glenthøj B, Ruhrmann S, Sachs G, Rutten B, van Os J, de Haan L, Velthorst E, van der Gaag M, Valmaggia LR, McGuire P. Association of Adverse Outcomes With Emotion Processing and Its Neural Substrate in Individuals at Clinical High Risk for Psychosis. JAMA Psychiatry 2020; 77:190-200. [PMID: 31722018 PMCID: PMC6865249 DOI: 10.1001/jamapsychiatry.2019.3501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE The development of adverse clinical outcomes in patients with psychosis has been associated with behavioral and neuroanatomical deficits related to emotion processing. However, the association between alterations in brain regions subserving emotion processing and clinical outcomes remains unclear. OBJECTIVE To examine the association between alterations in emotion processing and regional gray matter volumes in individuals at clinical high risk (CHR) for psychosis, and the association with subsequent clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS This naturalistic case-control study with clinical follow-up at 12 months was conducted from July 1, 2010, to August 31, 2016, and collected data from 9 psychosis early detection centers (Amsterdam, Basel, Cologne, Copenhagen, London, Melbourne, Paris, The Hague, and Vienna). Participants (213 individuals at CHR and 52 healthy controls) were enrolled in the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) project. Data were analyzed from October 1, 2018, to April 24, 2019. MAIN MEASURES AND OUTCOMES Emotion recognition was assessed with the Degraded Facial Affect Recognition Task. Three-Tesla magnetic resonance imaging scans were acquired from all participants, and gray matter volume was measured in regions of interest (medial prefrontal cortex, amygdala, hippocampus, and insula). Clinical outcomes at 12 months were evaluated for transition to psychosis using the Comprehensive Assessment of At-Risk Mental States criteria, and the level of overall functioning was measured through the Global Assessment of Functioning [GAF] scale. RESULTS A total of 213 individuals at CHR (105 women [49.3%]; mean [SD] age, 22.9 [4.7] years) and 52 healthy controls (25 women [48.1%]; mean [SD] age, 23.3 [4.0] years) were included in the study at baseline. At the follow-up within 2 years of baseline, 44 individuals at CHR (20.7%) had developed psychosis and 169 (79.3%) had not. Of the individuals at CHR reinterviewed with the GAF, 39 (30.0%) showed good overall functioning (GAF score, ≥65), whereas 91 (70.0%) had poor overall functioning (GAF score, <65). Within the CHR sample, better anger recognition at baseline was associated with worse functional outcome (odds ratio [OR], 0.88; 95% CI, 0.78-0.99; P = .03). In individuals at CHR with a good functional outcome, positive associations were found between anger recognition and hippocampal volume (ze = 3.91; familywise error [FWE] P = .02) and between fear recognition and medial prefrontal cortex volume (z = 3.60; FWE P = .02), compared with participants with a poor outcome. The onset of psychosis was not associated with baseline emotion recognition performance (neutral OR, 0.93; 95% CI, 0.79-1.09; P = .37; happy OR, 1.03; 95% CI, 0.84-1.25; P = .81; fear OR, 0.98; 95% CI, 0.85-1.13; P = .77; anger OR, 1.00; 95% CI, 0.89-1.12; P = .96). No difference was observed in the association between performance and regional gray matter volumes in individuals at CHR who developed or did not develop psychosis (FWE P < .05). CONCLUSIONS AND RELEVANCE In this study, poor functional outcome in individuals at CHR was found to be associated with baseline abnormalities in recognizing negative emotion. This finding has potential implications for the stratification of individuals at CHR and suggests that interventions that target socioemotional processing may improve functional outcomes.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Matthew J. Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom,National Institute for Health Research, Biomedical Research Centre, London, United Kingdom
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Maria Calem
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lilla Porffy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ava Mason
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom,Department of Psychology, University of Roehampton, London, United Kingdom
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia,Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Pantelis
- Center for Neuropsychiatric Schizophrenia Research, University of Copenhagen, Mental Health Centre Glostrup, Copenhagen, Denmark,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, University of Copenhagen, Mental Health Centre Glostrup, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Rodrigo Bressan
- LiNC—Lab Interdisciplinar Neurociências Clínicas, Depto Psiquiatria, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo, Brazil
| | - Neus Barrantes-Vidal
- Departament de Psicologia Clínica i de la Salut (Universitat Autònoma de Barcelona), Fundació Sanitària Sant Pere Claver (Spain), Spanish Mental Health Research Network (CIBERSAM), Barcelona, Spain
| | - Marie-Odile Krebs
- University of Paris, GHU-Paris, Sainte-Anne, C’JAAD, Hospitalo-Universitaire Department SHU, Inserm U1266, Institut de Psychiatrie (CNRS 3557), Paris, France
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, Denmark,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Mental Health Services in the Capital Region of Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, University of Copenhagen, Mental Health Centre Glostrup, Copenhagen, Denmark,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, University of Copenhagen, Mental Health Centre Glostrup, Copenhagen, Denmark
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Gabriele Sachs
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bart Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom,University Medical Centre Utrecht Brain Center, Department of Psychiatry, Utrecht University Medical Centre, Utrecht, the Netherlands
| | - Lieuwe de Haan
- Early Psychosis Department, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eva Velthorst
- Early Psychosis Department, Amsterdam UMC, Amsterdam, the Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark van der Gaag
- Amsterdam Public Mental Health Research Institute, Department of Clinical Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,Parnassia Psychiatric Institute, Department of Psychosis Research, The Hague, the Netherlands
| | - Lucia R. Valmaggia
- Institute of Psychiatry, Psychology & Neuroscience, Department of Psychology, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom,National Institute for Health Research, Biomedical Research Centre, London, United Kingdom,South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | | |
Collapse
|
33
|
Interaction of emotion and cognitive control along the psychosis continuum: A critical review. Int J Psychophysiol 2020; 147:156-175. [DOI: 10.1016/j.ijpsycho.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
|
34
|
Two Thalamic Regions Screened Using Laser Capture Microdissection with Whole Human Genome Microarray in Schizophrenia Postmortem Samples. SCHIZOPHRENIA RESEARCH AND TREATMENT 2020; 2020:5176834. [PMID: 32566292 PMCID: PMC7285254 DOI: 10.1155/2020/5176834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
We used whole human genome microarray screening of highly enriched neuronal populations from two thalamic regions in postmortem samples from subjects with schizophrenia and controls to identify brain region-specific gene expression changes and possible transcriptional targets. The thalamic anterior nucleus is reciprocally connected to anterior cingulate, a schizophrenia-affected cortical region, and is also thought to be schizophrenia affected; the other thalamic region is not. Using two regions in the same subject to identify disease-relevant gene expression differences was novel and reduced intersubject heterogeneity of findings. We found gene expression differences related to miRNA-137 and other SZ-associated microRNAs, ELAVL1, BDNF, DISC-1, MECP2 and YWHAG associated findings, synapses, and receptors. Manual curation of our data may support transcription repression.
Collapse
|
35
|
Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ. A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model. Schizophr Res 2019; 213:96-106. [PMID: 30857872 DOI: 10.1016/j.schres.2019.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
The fast-spiking parvalbumin (PV) interneurons play a critical role in neural circuit activity and dysfunction of these cells has been implicated in the cognitive deficits typically observed in schizophrenia patients. Due to the high metabolic demands of PV neurons, they are particularly susceptible to oxidative stress. Given the extant literature exploring the pathological effects of oxidative stress on PV cells in cortical regions linked to schizophrenia, we decided to investigate whether PV neurons in other select brain regions, including sub-cortical structures, may be differentially affected by redox dysregulation induced oxidative stress during neurodevelopment in mice with a genetically compromised glutathione synthesis (Gclm KO mice). Our analyses revealed a spatio-temporal sequence of PV cell deficit in Gclm KO mice, beginning with the thalamic reticular nucleus at postnatal day (P) 20 followed by a PV neuronal deficit in the amygdala at P40, then in the lateral globus pallidus and the ventral hippocampus Cornu Ammonis 3 region at P90 and finally the anterior cingulate cortex at P180. We suggest that PV neurons in different brain regions are developmentally susceptible to oxidative stress and that anomalies in the neurodevelopmental calendar of metabolic regulation can interfere with neural circuit maturation and functional connectivity contributing to the emergence of developmental psychopathology.
Collapse
Affiliation(s)
- Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Rudolf Kraftsik
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland.
| |
Collapse
|
36
|
Functional brain networks in never-treated and treated long-term Ill schizophrenia patients. Neuropsychopharmacology 2019; 44:1940-1947. [PMID: 31163450 PMCID: PMC6784906 DOI: 10.1038/s41386-019-0428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
This study compared the topological organization of brain function in never-treated and treated long-term schizophrenia patients. In a cross-sectional study, 21 never-treated schizophrenia patients with illness duration over 5 years, 26 illness duration-matched antipsychotic-treated patients and 24 demographically-matched healthy controls underwent a resting-state functional magnetic resonance imaging (MRI) scan. The topological properties of brain functional networks were compared across groups, and then we tested for differential age-related effects in regions with significant group differences. Both never-treated and antipsychotic-treated schizophrenia patient groups showed altered nodal centralities in left pre-/postcentral gyri relative to controls. Never-treated patients demonstrated reduced global efficacy, decreased nodal centralities in right amygdala/hippocampus and bilateral putamen/caudate relative to antipsychotic-treated patients and controls. No significant relationships of age and altered functional metrics were seen in either patient group, and no alterations were greater in the treated group. These findings provide insight into brain function deficits over the longer-term course of schizophrenia independent from potential effects of antipsychotic medication. The presence of greater alterations in never-treated than treated patients suggests that long-term antipsychotic treatment may partially protect or enhance brain global and nodal topological function over the course of schizophrenia, notably involving the amygdala, hippocampus, and striatum that have long been associated with the disorder.
Collapse
|
37
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
38
|
Fritzius T, Bettler B. The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:25-34. [PMID: 31033219 PMCID: PMC7317483 DOI: 10.1111/bcpt.13241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA), regulate synaptic transmission at most synapses in the brain. Proteomic approaches revealed that native GBR complexes assemble from an inventory of ~30 proteins that provide a molecular basis for the functional diversity observed with these receptors. Studies with reconstituted GBR complexes in heterologous cells and complementary knockout studies have allowed to identify cellular and physiological functions for obligate and several non-obligate receptor components. It emerges that modular association of receptor components in space and time generates a variety of multiprotein receptor complexes with different localizations, kinetic properties and effector channels. This article summarizes current knowledge on the organizing principle of GBR complexes. We further discuss unanticipated receptor functions, links to disease and opportunities for drug discovery arising from the identification of novel receptor components.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Abstract
Over the past 15 years, postmortem studies of the corticolimbic system in subjects with bipolar disorder (BPD) have demonstrated a variety of abnormalities affecting the gamma aminobutyric acid (GABA)ergic system. Although some of the changes are similar to those seen in individuals with schizophrenia, there are pronounced differences in the regulation of complex networks of genes involved in the expression of GAD67, a key marker for functionally differentiated GABAergic interneurons. Overall, these changes vary not only according to diagnosis, but also subregion and layer, suggesting that the activity of GABA cells in complex neural circuits are differentially affected by the unique extrinsic and intrinsic inputs that they receive at different points along a circuit like the trisynaptic pathway. Our ability to understand the functional implications in terms of complex molecular changes will ultimately influence our ability to develop novel treatments for BPD.
Collapse
|
40
|
Structural basis for auxiliary subunit KCTD16 regulation of the GABA B receptor. Proc Natl Acad Sci U S A 2019; 116:8370-8379. [PMID: 30971491 DOI: 10.1073/pnas.1903024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabotropic GABAB receptors mediate a significant fraction of inhibitory neurotransmission in the brain. Native GABAB receptor complexes contain the principal subunits GABAB1 and GABAB2, which form an obligate heterodimer, and auxiliary subunits, known as potassium channel tetramerization domain-containing proteins (KCTDs). KCTDs interact with GABAB receptors and modify the kinetics of GABAB receptor signaling. Little is known about the molecular mechanism governing the direct association and functional coupling of GABAB receptors with these auxiliary proteins. Here, we describe the high-resolution structure of the KCTD16 oligomerization domain in complex with part of the GABAB2 receptor. A single GABAB2 C-terminal peptide is bound to the interior of an open pentamer formed by the oligomerization domain of five KCTD16 subunits. Mutation of specific amino acids identified in the structure of the GABAB2-KCTD16 interface disrupted both the biochemical association and functional modulation of GABAB receptors and G protein-activated inwardly rectifying K+ channel (GIRK) channels. These interfacial residues are conserved among KCTDs, suggesting a common mode of KCTD interaction with GABAB receptors. Defining the binding interface of GABAB receptor and KCTD reveals a potential regulatory site for modulating GABAB-receptor function in the brain.
Collapse
|
41
|
Won JH, Kim M, Park BY, Youn J, Park H. Effectiveness of imaging genetics analysis to explain degree of depression in Parkinson's disease. PLoS One 2019; 14:e0211699. [PMID: 30742647 PMCID: PMC6370199 DOI: 10.1371/journal.pone.0211699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most common and important neuropsychiatric symptoms in Parkinson's disease and often becomes worse as Parkinson's disease progresses. However, the underlying mechanisms of depression in Parkinson's disease are not clear. The aim of our study was to find genetic features related to depression in Parkinson's disease using an imaging genetics approach and to construct an analytical model for predicting the degree of depression in Parkinson's disease. The neuroimaging and genotyping data were obtained from an openly accessible database. We computed imaging features through connectivity analysis derived from tractography of diffusion tensor imaging. The imaging features were used as intermediate phenotypes to identify genetic variants according to the imaging genetics approach. We then constructed a linear regression model using the genetic features from imaging genetics approach to describe clinical scores indicating the degree of depression. As a comparison, we constructed other models using imaging features and genetic features based on references to demonstrate the effectiveness of our imaging genetics model. The models were trained and tested in a five-fold cross-validation. The imaging genetics approach identified several brain regions and genes known to be involved in depression, with the potential to be used as meaningful biomarkers. Our proposed model using imaging genetic features predicted and explained the degree of depression in Parkinson's disease appropriately (adjusted R2 larger than 0.6 over five training folds) and with a lower error and higher correlation than with other models over five test folds.
Collapse
Affiliation(s)
- Ji Hye Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Mansu Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Bo-yong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jinyoung Youn
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
42
|
Modinos G, Şimşek F, Azis M, Bossong M, Bonoldi I, Samson C, Quinn B, Perez J, Broome MR, Zelaya F, Lythgoe DJ, Howes OD, Stone JM, Grace AA, Allen P, McGuire P. Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology 2018; 43:2652-2659. [PMID: 29440719 PMCID: PMC5955214 DOI: 10.1038/s41386-017-0004-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/02/2023]
Abstract
Preclinical models propose that the onset of psychosis is associated with hippocampal hyperactivity, thought to be driven by cortical GABAergic interneuron dysfunction and disinhibition of pyramidal neurons. Recent neuroimaging studies suggest that resting hippocampal perfusion is increased in subjects at ultra-high risk (UHR) for psychosis, but how this may be related to GABA concentrations is unknown. The present study used a multimodal neuroimaging approach to address this issue in UHR subjects. Proton magnetic resonance spectroscopy and pulsed-continuous arterial spin labeling imaging were acquired to investigate the relationship between medial prefrontal (MPFC) GABA+ levels (including some contribution from macromolecules) and hippocampal regional cerebral blood flow (rCBF) in 36 individuals at UHR of psychosis, based on preclinical evidence that MPFC dysfunction is involved in hippocampal hyperactivity. The subjects were then clinically monitored for 2 years: during this period, 7 developed a psychotic disorder and 29 did not. At baseline, MPFC GABA+ levels were positively correlated with rCBF in the left hippocampus (region of interest analysis, p = 0.044 family-wise error corrected, FWE). This correlation in the left hippocampus was significantly different in UHR subjects who went on to develop psychosis relative to those who did not (p = 0.022 FWE), suggesting the absence of a correlation in the latter subgroup. These findings provide the first human evidence that MPFC GABA+ concentrations are related to resting hippocampal perfusion in the UHR state, and offer some support for a link between GABA levels and hippocampal function in the development of psychosis.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Fatma Şimşek
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matilda Azis
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Matthijs Bossong
- 0000000090126352grid.7692.aDepartment of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilaria Bonoldi
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carly Samson
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Beverly Quinn
- 0000 0004 0412 9303grid.450563.1CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Jesus Perez
- 0000 0004 0412 9303grid.450563.1CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK ,0000000121885934grid.5335.0Department of Psychiatry, University of Cambridge, Cambridge, UK ,0000 0001 2180 1817grid.11762.33Department of Neuroscience, Instituto de Investigacion Biomedica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Matthew R Broome
- 0000 0004 1936 8948grid.4991.5Department of Psychiatry, University of Oxford, Oxford, UK ,0000 0004 0573 576Xgrid.451190.8Oxford Health NHS Foundation Trust, Oxford, UK
| | - Fernando Zelaya
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - James M Stone
- 0000 0001 2322 6764grid.13097.3cDepartment of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Anthony A Grace
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Paul Allen
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,0000 0001 0468 7274grid.35349.38Department of Psychology, University of Roehampton, Roehampton, UK
| | - Philip McGuire
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
43
|
The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol 2018; 157:97-107. [DOI: 10.1016/j.bcp.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
|
44
|
Hasegawa S, Miyake Y, Yoshimi A, Mouri A, Hida H, Yamada K, Ozaki N, Nabeshima T, Noda Y. Dysfunction of Serotonergic and Dopaminergic Neuronal Systems in the Antidepressant-Resistant Impairment of Social Behaviors Induced by Social Defeat Stress Exposure as Juveniles. Int J Neuropsychopharmacol 2018; 21:837-846. [PMID: 29618006 PMCID: PMC6119297 DOI: 10.1093/ijnp/pyy038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. METHODS Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. RESULTS Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed impairment of social behaviors, turnover of serotonin and dopamine, but not noradrenaline, was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. CONCLUSIONS These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotonergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuriko Miyake
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan,Aino University, Ibaraki, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Correspondence: Yukihiro Noda, PhD, Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468–8503, Japan ()
| |
Collapse
|
45
|
Zhu C, Liang M, Li Y, Feng X, Hong J, Zhou R. Involvement of Epigenetic Modifications of GABAergic Interneurons in Basolateral Amygdala in Anxiety-like Phenotype of Prenatally Stressed Mice. Int J Neuropsychopharmacol 2018; 21:570-581. [PMID: 29471396 PMCID: PMC6007574 DOI: 10.1093/ijnp/pyy006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prenatal stress is considered a risk factor for anxiety disorder. Downregulation in the expression of GABAergic gene, that is, glutamic acid decarboxylase 67, associated with DNA methyltransferase overexpression in GABAergic neurons has been regarded as a characteristic component of anxiety disorder. Prenatal stress has an adverse effect on the development of the basolateral amygdala, which is a key region in anxiety regulation. The aim of this study is to analyze the possibility of epigenetic alterations of GABAergic neurons in the basolateral amygdala participating in prenatal stress-induced anxiety. METHODS Behavioral tests were used to explore the prenatal stress-induced anxiety behaviors of female adult mice. Real-time RT-PCR, western blot, chromatin immunoprecipitation, and electrophysiological analysis were employed to detect epigenetic changes of GABAergic system in the basolateral amygdala. RESULTS Prenatal stress mice developed an anxiety-like phenotype accompanied by a significant increase of DNA methyltransferase 1 and a reduced expression of glutamic acid decarboxylase 67 in the basolateral amygdala. Prenatal stress mice also showed the increased binding of DNA methyltransferase 1 and methyl CpG binding protein 2 to glutamic acid decarboxylase 67 promoter region. The decrease of glutamic acid decarboxylase 67 transcript was paralleled by an enrichment of 5-methylcytosine in glutamic acid decarboxylase 67 promoter regions. Electrophysiological study revealed the increase of postsynaptic neuronal excitability in the cortical-basolateral amygdala synaptic transmission of prenatal stress mice. 5-Aza-deoxycytidine treatment restored the increased synaptic transmission and anxiety-like behaviors in prenatal stress mice via improving GABAergic system. CONCLUSION The above results suggest that DNA epigenetic modifications of GABAergic interneurons in the basolateral amygdala participate in the etiology of anxiety-like phenotype in prenatal stress mice.
Collapse
Affiliation(s)
- Chunting Zhu
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Xuejiao Feng
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Jiangsu, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Jiangsu, China,Correspondence: Rong Zhou, PhD, Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, Jiangsu Province, China 211166 ()
| |
Collapse
|
46
|
Memory retrieval in addiction: a role for miR-105-mediated regulation of D1 receptors in mPFC neurons projecting to the basolateral amygdala. BMC Biol 2017; 15:128. [PMID: 29282124 PMCID: PMC5745965 DOI: 10.1186/s12915-017-0467-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Background Drug addiction is a chronic brain disorder characterized by the compulsive use of drugs. The study of chronic morphine-induced adaptation in the brain and its functional significance is of importance to understand the mechanism of morphine addiction. Previous studies have found a number of chronic morphine-induced adaptive changes at molecular levels in the brain. A study from our lab showed that chronic morphine-induced increases in the expression of D1 receptors at presynaptic terminals coming from other structures to the basolateral amygdala (BLA) played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the neurocircuitry where the increased D1 receptors are located and how chronic morphine increases D1 receptor expression in specific neurocircuits remain to be elucidated. Results Our results show that chronic morphine induces a persistent increase in D1 receptor expression in glutamatergic terminals of projection neurons from the medial prefrontal cortex (mPFC) to the BLA, but has no influence on D1 receptor expression in projection neurons from the hippocampus or the thalamus to the BLA. This adaptation to chronic morphine is mediated by reduced expression of miR-105 in the mPFC, which results in enhanced D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA. Ex vivo optogenetic experiments show that a chronic morphine-induced increase in D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA results in sensitization of the effect of D1 receptor agonist on presynaptic glutamate release. mPFC to BLA projection neurons are activated by withdrawal-associated environmental cues in morphine-withdrawal rats, and overexpression of miR-105 in the mPFC leads to reduced D1 receptor induction in response to chronic morphine in glutamatergic terminals of the projection neurons from the mPFC to the BLA, and a reduction in place aversion conditioned by morphine withdrawal. Conclusions These results suggest that chronic morphine use induces a persistent increase in D1 receptors in glutamatergic terminals of projection neurons from the mPFC to the BLA via downregulation of miR-105 in the mPFC, and that these adaptive changes contribute to environmental cue-induced retrieval of morphine withdrawal memory. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0467-2) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Cortical high gamma network oscillations and connectivity: a translational index for antipsychotics to normalize aberrant neurophysiological activity. Transl Psychiatry 2017; 7:1285. [PMID: 29249806 PMCID: PMC5802558 DOI: 10.1038/s41398-017-0002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
Oscillatory activity in the gamma frequency range is a critical mechanism, which integrates neural networks within and across brain structures during cognitive processes. In schizophrenia, abnormalities in high gamma oscillations are ubiquitous and most likely reflect dysfunction in neuronal networks. In conscious rats, disturbed network oscillations associated with positive symptoms and cognitive deficits were modeled in different cortical areas by the dopaminergic agonist (amphetamine) and the N-methyl-D-aspartate (NMDA) receptor antagonists (PCP and MK801). Subsequently, the efficacies of marketed atypical antipsychotics (olanzapine, risperidone, and clozapine) to normalize dysfunctional oscillations and network connectivity were examined. Acute NMDA antagonists elicited aberrant synchrony in the gamma frequency oscillations. In addition, coherent slow alpha network activity was observed with MK801 and amphetamine, both of whose oscillatory rhythms were correlated with pronounced locomotor activity. All antipsychotics commonly decreased slow alpha and high gamma network oscillations in different cortical regions as well as motion behavior. In the combined treatments, antipsychotics attenuated NMDA antagonist-induced abnormalities in functional network oscillations and connectivity, whose effects on motor behavior is mechanistically related. These results suggest that pharmacologically induced disruption of cortical gamma oscillations and network connectivity in rats is a candidate model to study dysfunctional oscillatory patterns described in positive and negative symptoms of schizophrenia. The efficacy of antipsychotics to rescue cortical network oscillatory patterns is in line with the idea that glutamatergic and dopaminergic systems play a role in maintaining the integrity of cortical circuits. Thus, gamma oscillations could provide a powerful translational index to assess the integrity of neural networks and to evaluate the efficacy of drugs with potential antipsychotic properties.
Collapse
|
48
|
Subburaju S, Coleman AJ, Cunningham MG, Ruzicka WB, Benes FM. Epigenetic Regulation of Glutamic Acid Decarboxylase 67 in a Hippocampal Circuit. Cereb Cortex 2017; 27:5284-5293. [PMID: 27733539 PMCID: PMC6411031 DOI: 10.1093/cercor/bhw307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 09/11/2016] [Indexed: 01/05/2023] Open
Abstract
GABAergic dysfunction in hippocampus, a key feature of schizophrenia (SZ), may contribute to cognitive impairment in this disorder. In stratum oriens (SO) of sector CA3/2 of the human hippocampus, a network of genes involved in the regulation of glutamic acid decarboxylase GAD67 has been identified. Several of the genes in this network including epigenetic factors histone deacetylase 1 (HDAC1) and death-associated protein 6 (DAXX), the GABAergic enzyme GAD65 as well as the kainate receptor (KAR) subunits GluR6 and 7 show significant changes in expression in this area in SZ. We have tested whether HDAC1 and DAXX regulate GAD67, GAD65, or GluR in the intact rodent hippocampus. Stereotaxic injections of lentiviral vectors bearing shRNAi sequences for HDAC1 and DAXX were delivered into the SO of CA3/2, followed by laser microdissection of individual transduced GABA neurons. Quantitative PCR (QPCR) analyses demonstrated that inhibition of HDAC1 and DAXX increased expression of GAD67, GAD65, and GluR6 mRNA. Inhibition of DAXX, but not HDAC1 resulted in a significant increase in GluR7 mRNA. Our data support the hypothesis that HDAC1 and DAXX play a central role in coordinating the expression of genes in the GAD67 regulatory pathway in the SO of CA3/2.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- CA2 Region, Hippocampal/cytology
- CA2 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/metabolism
- Cell Line
- Epigenesis, Genetic
- GABAergic Neurons/cytology
- GABAergic Neurons/metabolism
- Glutamate Decarboxylase/metabolism
- Histone Deacetylase 1/antagonists & inhibitors
- Histone Deacetylase 1/metabolism
- Male
- Molecular Chaperones
- Neural Pathways/cytology
- Neural Pathways/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Glutamate/metabolism
Collapse
Affiliation(s)
- Sivan Subburaju
- Program in Structural and Molecular Neuroscience, McLean
Hospital, Belmont, MA 02478,
USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115,
USA
| | - Andrew J Coleman
- Program in Structural and Molecular Neuroscience, McLean
Hospital, Belmont, MA 02478,
USA
| | - Miles G Cunningham
- Program in Structural and Molecular Neuroscience, McLean
Hospital, Belmont, MA 02478,
USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115,
USA
| | - W Brad Ruzicka
- Program in Structural and Molecular Neuroscience, McLean
Hospital, Belmont, MA 02478,
USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115,
USA
| | - Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean
Hospital, Belmont, MA 02478,
USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115,
USA
- Program in Neuroscience, Harvard Medical
School, Boston, MA 02115,
USA
| |
Collapse
|
49
|
Modinos G, Şimşek F, Horder J, Bossong M, Bonoldi I, Azis M, Perez J, Broome M, Lythgoe DJ, Stone JM, Howes OD, Murphy DG, Grace AA, Allen P, McGuire P. Cortical GABA in Subjects at Ultra-High Risk of Psychosis: Relationship to Negative Prodromal Symptoms. Int J Neuropsychopharmacol 2017; 21:114-119. [PMID: 29020419 PMCID: PMC5793728 DOI: 10.1093/ijnp/pyx076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Whilst robust preclinical and postmortem evidence suggests that altered GABAergic function is central to the development of psychosis, little is known about whether it is altered in subjects at ultra-high risk of psychosis, or its relationship to prodromal symptoms. METHODS Twenty-one antipsychotic naïve ultra-high risk individuals and 20 healthy volunteers underwent proton magnetic resonance imaging at 3T. Gamma-aminobutyric acid levels were obtained from the medial prefrontal cortex using MEGA-PRESS and expressed as peak-area ratios relative to the synchronously acquired creatine signal. Gamma-aminobutyric acid levels were then related to severity of positive and negative symptoms as measured with the Community Assessment of At-Risk Mental States. RESULTS Whilst we found no significant difference in gamma-aminobutyric acid levels between ultra-high risk subjects and healthy controls (P=.130), in ultra-high risk individuals, medial prefrontal cortex GABA levels were negatively correlated with the severity of negative symptoms (P=.013). CONCLUSION These findings suggest that gamma-aminobutyric acidergic neurotransmission may be involved in the neurobiology of negative symptoms in the ultra-high risk state.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, King’s College London,Correspondence: Gemma Modinos, PhD, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 8AF London, United Kingdom ()
| | - Fatma Şimşek
- Department of Psychosis Studies, King’s College London
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, King’s College London
| | - Matthijs Bossong
- Department of Psychosis Studies, King’s College London,Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | | | - Matilda Azis
- Department of Psychosis Studies, King’s College London
| | - Jesus Perez
- CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Broome
- Department of Psychiatry, and Faculty of Philosophy, University of Oxford, Oxford, United Kingdom,Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - James M Stone
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, King’s College London
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Allen
- Department of Psychosis Studies, King’s College London,Department of Psychology, University of Roehampton, London, United Kingdom
| | | |
Collapse
|
50
|
Benes FM. Increases of Calbindin-Containing Chandelier Cartridges in Schizophrenia: Fact or Artifact? Biol Psychiatry 2017; 82:4-5. [PMID: 28619251 DOI: 10.1016/j.biopsych.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Francine M Benes
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|