1
|
Achterberg EJM, Vanderschuren LJMJ. The neurobiology of social play behaviour: Past, present and future. Neurosci Biobehav Rev 2023; 152:105319. [PMID: 37454882 DOI: 10.1016/j.neubiorev.2023.105319] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Social play behaviour is a highly energetic and rewarding activity that is of great importance for the development of brain and behaviour. Social play is abundant during the juvenile and early adolescent phases of life, and it occurs in most mammalian species, as well as in certain birds and reptiles. To date, the majority of research into the neural mechanisms of social play behaviour has been performed in male rats. In the present review we summarize studies on the neurobiology of social play behaviour in rats, including work on pharmacological and genetic models for autism spectrum disorders, early life manipulations and environmental factors that influence play in rats. We describe several recent developments that expand the field, and highlight outstanding questions that may guide future studies.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Louk J M J Vanderschuren
- Dept. of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
2
|
Cortés-Patiño DM, Neira VM, Ballesteros-Acosta H, Bustos-Rangel A, Lamprea MR. Interaction of Nicotine and Social reward in group-reared male adolescent rats. Behav Brain Res 2023; 447:114432. [PMID: 37054992 DOI: 10.1016/j.bbr.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Adolescents exhibit great sensitivity to nicotine and social interaction; accordingly, when both stimuli are presented together, they interact to enhance the incentive value of the context in which they occur. Noteworthy, most studies assessing the interaction between nicotine and social reward have used isolated-reared rats. Adolescent isolation is an adverse condition that impacts brain development and behavior, so it is not known if the interaction also occurs in rats without social deprivation. The present study used a conditioned place preference model (CPP) to examine the interaction between nicotine and social reward in group-reared male adolescent rats. At weaning, Wistar rats were randomly assigned to four groups: vehicle, vehicle and a social partner, nicotine (0.1mg/Kg s.c.), and nicotine and a social partner. Conditioning trials occurred on eight consecutive days followed by a test session in which the preference change was assessed. Besides the establishment of CPP, we examined the effects of nicotine on (1) social behaviors during CPP trials and (2) tyrosine hydroxylase (TH) and oxytocin (OT) as markers of changes in the neuronal mechanisms for reward and social affiliation. Similar to previous results, the joint presentation of nicotine and social reward induced CPP, whereas either nicotine or social interaction presented alone did not. This finding coincided with an increase in TH levels observed after nicotine administration only in socially conditioned rats. The interaction between nicotine and social reward is not related to the effects of nicotine on social investigation or social play.
Collapse
|
3
|
Grillo L. A Possible Anti-anxiety Effect of Appetitive Aggression and a Possible Link to the Work of Donald Winnicott. Scand J Child Adolesc Psychiatr Psychol 2022; 10:102-113. [PMID: 36133733 PMCID: PMC9454322 DOI: 10.2478/sjcapp-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various pleasant sensations that give a particularly intense pleasure are able to improve anxiety. In the present study I consider the possibility that their anti-anxiety action depends on the strong pleasure they provide, and I propose a possible mechanism of this action. According to some studies, also appetitive aggression (an aggression that provokes a strong pleasure and that is performed only for the pleasure it provides) can improve anxiety, and in this article I consider the possibility that the pleasure of appetitive aggression is able to reduce anxiety by the same mechanism I have proposed for other intense pleasurable sensations. The aggression performed by a child against the mother or against a substitute for the mother in the first period of life (a period in which this aggression is not dangerous) is a recurring theme throughout the work of of Donald Winnicott. Winnicott stresses that this aggression is necessary for the normal development of the child, and that the child must be free to practise it. According to Winnicott, this aggression is highly pleasurable and is not a response to unpleasant or hostile external situations. For these characteristics it seems to correspond to appetitive aggression in the adult that has been found to be able to reduce anxiety. Consequently, aggression performed by the child in the first period of life may also relieve anxiety, in the same way that appetitive aggression helps against anxiety in the adult. In his writings, Winnicott returns several times to an unthinkable or archaic anxiety that children experience when they feel abandoned by their mother for a period that is too long for them, and all children, according to Winnicott, live on the brink of this anxiety. In this study I propose the hypothesis that aggression in the early period of life may be necessary for children because the intense pleasure it provides may help them against this continuously impending anxiety.
Collapse
Affiliation(s)
- Luigi Grillo
- San Giorgio su Legnano via Ragazzi del 99Milano MI, Italy
| |
Collapse
|
4
|
Individual differences in social play behaviour predict alcohol intake and control over alcohol seeking in rats. Psychopharmacology (Berl) 2021; 238:3119-3130. [PMID: 34338827 PMCID: PMC8605978 DOI: 10.1007/s00213-021-05929-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Social play behaviour is a rewarding social activity displayed by young mammals, thought to be important for the development of brain and behaviour. Indeed, disruptions of social play behaviour in rodents have been associated with cognitive deficits and augmented sensitivity to self-administration of substances of abuse, including alcohol, later in life. However, the relation between social development and loss of control over substance use, a key characteristic of substance use disorders including alcohol use disorder (AUD), has not been investigated. Moreover, it remains unknown how inherent differences in playfulness relate to differences in the sensitivity to substance use and AUD. OBJECTIVE The objective of this study is to determine how individual differences in juvenile social play behaviour predict alcohol intake and loss of control over alcohol seeking. METHODS Juvenile male Lister hooded rats were characterized for their tendency to engage in social play behaviour. Subsequently, alcohol consumption and conditioned suppression of alcohol seeking were assessed in the tertiles of rats that showed the most and least social play. RESULTS The rats that engaged most in social play behaviour consumed more alcohol than their less playful counterparts. However, whereas the most playful rats showed intact conditioned suppression of alcohol seeking, the least playful rats showed no such suppression. CONCLUSION Individual levels of playfulness predict the sensitivity to alcohol-directed behaviour. Highly playful rats are more prone to alcohol intake, yet show greater control over alcohol seeking. These findings increase our understanding of the relationship between social development and vulnerability to AUD.
Collapse
|
5
|
Zhao C, Chang L, Auger AP, Gammie SC, Riters LV. Mu opioid receptors in the medial preoptic area govern social play behavior in adolescent male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12662. [PMID: 32388931 DOI: 10.1111/gbb.12662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1-labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA-mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liza Chang
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Ševčíková M, Petríková I, Šlamberová R. Methamphetamine exposure during the first, but not the second half of prenatal development, affects social play behavior. Physiol Res 2020; 69:319-330. [PMID: 32199010 DOI: 10.33549/physiolres.934230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methamphetamine (MA), as a psychostimulant drug that crosses the placental barrier, may disrupt the development of social play. The present study aims to examine the effect of prenatal MA (5 mg/kg) exposure during the first (gestational day (GD) 1-11) or second (GD 12-22) halves of prenatal development of rats on social play behavior. To investigate an acute effect of MA on social play in adulthood, juvenile rats were exposed to a dose of 1 mg/kg MA or saline on the test day and tested for social play for 15 min. Prenatal exposure to MA during GD 1-11 increased social play behavior during 5-10 min interval of the test in males but not females. Prenatal MA during GD 12-22 did not influence social play in males nor females. However, social play occurred to a greater extent in GD 12-22 groups compared with GD 1-11. Acute exposure to MA eliminated playful behavior in all groups and decreased social exploration in GD 1-11. Our results suggest that manipulation of prenatal development during the first half of the gestational period has a greater impact on social play behavior than during the second half.
Collapse
Affiliation(s)
- M Ševčíková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
7
|
Towner TT, Varlinskaya EI. Adolescent Ethanol Exposure: Anxiety-Like Behavioral Alterations, Ethanol Intake, and Sensitivity. Front Behav Neurosci 2020; 14:45. [PMID: 32296315 PMCID: PMC7136472 DOI: 10.3389/fnbeh.2020.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a developmental period associated with rapid age-specific physiological, neural, and hormonal changes. Behaviorally, human adolescents are characterized by age-typical increases in novelty-seeking and risk-taking, including the frequent initiation of alcohol and drug use. Alcohol use typically begins during early adolescence, and older adolescents often report high levels of alcohol consumption, commonly referred to as high-intensity drinking. Early-onset and heavy drinking during adolescence are associated with an increased risk of developing alcohol use disorders later in life. Yet, long-term behavioral consequences of adolescent alcohol use that might contribute to excessive drinking in adulthood are still not well understood. Recent animal research, however, using different exposure regimens and routes of ethanol administration, has made substantial progress in identifying the consequences of adolescent ethanol exposure that last into adulthood. Alterations associated with adolescent ethanol exposure include increases in anxiety-like behavior, impulsivity, risk-taking, and ethanol intake, although the observed alterations differ as a function of exposure regimens and routes of ethanol administration. Rodent studies have also shown that adolescent ethanol exposure produces alterations in sensitivity to ethanol, with these alterations reminiscent of adolescent-typical ethanol responsiveness. The goal of this mini-review article is to summarize the current state of animal research, focusing on the long-term consequences related to adolescent ethanol exposure, with a special emphasis on the behavioral alterations and changes to ethanol sensitivity that can foster high levels of drinking in adulthood.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
9
|
Abreu-Villaça Y, Guimarães VMS, Nunes-Freitas A, Dutra-Tavares AC, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. Tobacco smoke and ethanol during adolescence: Both combined- and single-drug exposures lead to short- and long-term disruption of the serotonergic system in the mouse brain. Brain Res Bull 2019; 146:94-103. [PMID: 30584905 DOI: 10.1016/j.brainresbull.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023]
Abstract
The impairment of the serotonergic system contributes to nicotine and ethanol effects on mood, suggesting that this system is targeted by each of these drugs and that co-exposure possibly worsens the disruption. Here, we tested this hypothesis in an adolescent mice model of tobacco smoke and/or ethanol exposure. From postnatal day (PN) 30-45, Swiss mice were exposed to one of the following: 1) tobacco smoke (SMK; research cigarettes 2R1F, whole-body exposure, 8 h/daily); 2) ethanol (ETOH; 2 g/kg i.p., every other day); 3) SMK + ETOH; 4) Control (VEH). At PN45 (end-of-exposure), hippocampal serotonin transporter (5 H TT) binding was increased in SMK and decreased in ETOH male mice. At PN50 (short-term deprivation), cortical 5 H TT was reduced in all drug-exposed mice. In the hippocampus, similar deficits were identified in females. In both brain regions, the effects of SMK + ETOH deprivation on 5 H TT were equivalent to the damage caused by either drug. At PN50, hippocampal 5 H T1A receptor binding was reduced in ETOH and SMK + ETOH mice. Similar results were observed in the male cortex. In females, deficits were identified in SMK mice. In both brain regions, SMK + ETOH 5 H T1A deficits reflected the summation of SMK and ETOH outcomes. At PN75 (long-term deprivation), there was a late-emergent increase in cortical 5 H T1A binding in SMK mice, while cortical 5 H T2 receptor binding was similarly increased in SMK and SMK + ETOH groups. Adolescent SMK and/or ETOH serotonergic impairment is sex-dependent and most evident during short-term deprivation. SMK + ETOH deprivation evokes serotonergic disruption that is at least equivalent to that caused by either drug alone.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil.
| | - Vinicius M S Guimarães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - André Nunes-Freitas
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Ana Carolina Dutra-Tavares
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Alex C Manhães
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Claudio C Filgueiras
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| | - Anderson Ribeiro-Carvalho
- YA-V, VMSG, AN-F, ACD-T, ACM, CCF - Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil; AR-C - Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, 24435-005, Brazil
| |
Collapse
|
10
|
Carlson SJ, O'Loughlin AA, Anez-Bustillos L, Baker MA, Andrews NA, Gunner G, Dao DT, Pan A, Nandivada P, Chang M, Cowan E, Mitchell PD, Gura KM, Fagiolini M, Puder M. A Diet With Docosahexaenoic and Arachidonic Acids as the Sole Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual, Cognitive, Motor, and Social Development in Mice. Front Neurosci 2019; 13:72. [PMID: 30858795 PMCID: PMC6397844 DOI: 10.3389/fnins.2019.00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids serve multiple functions in neurodevelopment and neurocognitive function. Intravenous lipid emulsions are administered to children that are dependent on parenteral nutrition to provide the essential fatty acids needed to sustain growth and development. One of these emulsions, derived from fish-oil, is particularly poor in the traditional essential fatty acids, linoleic and alpha-linolenic acids. However, it does contain adequate amounts of its main derivatives, arachidonic acid (ARA) and docosahexaenoic acid (DHA), respectively. This skewed composition has raised concern about the sole use of fish-oil based lipid emulsions in children and how its administration can be detrimental to their neurodevelopment. Using a custom-made diet that contains ARA and DHA as a sole source of polyunsaturated fatty acids, we bred and fed mice for multiple generations. Compared to adult, chow-fed mice, animals maintained on this special diet showed similar outcomes in a battery of neurocognitive tests performed under controlled conditions. Chow-fed mice did perform better in the rotarod test for ataxia and balance, although both experimental groups showed a conserved motor learning capacity. Conversely, mice fed the custom diet rich in DHA and ARA showed less neophobia than the chow-fed animals. Results from these experiments suggest that providing a diet where ARA and DHA are the sole source of polyunsaturated fatty acids is sufficient to support gross visual, cognitive, motor, and social development in mice.
Collapse
Affiliation(s)
- Sarah J Carlson
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alison A O'Loughlin
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Meredith A Baker
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Nicholas A Andrews
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Georgia Gunner
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Duy T Dao
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Prathima Nandivada
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Melissa Chang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Eileen Cowan
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, United States
| | - Kathleen M Gura
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, United States.,Department of Pharmacy, Boston Children's Hospital, Boston, MA, United States
| | - Michela Fagiolini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
11
|
Abstract
Many smokers are aware that smoking is a dangerous health behavior and eventually try to quit smoking. Unfortunately, most quit attempts end in failure. Traditionally, the addictive nature of smoking has been attributed to the pharmacologic effects of nicotine. In an effort to offer a more comprehensive, biobehavioral analysis of smoking behavior and motivation, some researchers have begun to consider the role of social factors in smoking. In line with recent recommendations to integrate social and pharmacological analyses of smoking, we reviewed the experimental literature examining the effects of nicotine and nicotine withdrawal on social functioning. The review identified 13 studies that experimentally manipulated nicotine and assessed social functioning, 12 of which found support for nicotine's enhancement of social functioning. Although few experiments have investigated social functioning, they nevertheless offer compelling evidence that nicotine enhances social functioning in smokers and suggest that nicotine deprivation may hamper social functioning in those dependent on nicotine. Future directions for investigating social outcomes and context in those who use nicotine products are discussed with a focus on leveraging advances in social and developmental psychology, animal research, sociology, and neuroimaging to more comprehensively understand smoking behavior. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Lea M Martin
- Department of Psychology, University of Pittsburgh
| | | |
Collapse
|
12
|
Perkins AE, Vore AS, Lovelock D, Varlinskaya E, Deak T. Late aging alters behavioral sensitivity to ethanol in a sex-specific manner in Fischer 344 rats. Pharmacol Biochem Behav 2018; 175:1-9. [PMID: 30171932 DOI: 10.1016/j.pbb.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
Responsiveness to ethanol (EtOH) differs as a function of age. Adolescent rodents are less sensitive than adults to the sedative effects of EtOH, whereas they show enhanced sensitivity to EtOH-induced social facilitation. Late aging is associated with a natural decline in social behavior and aging-related peculiarities in sensitivity to EtOH have been largely unexplored. Whether there are sex differences in the behavioral response to EtOH during late aging remains unknown. Thus, behavioral responses to EtOH in male and female Fischer (F) 344 rats aged 4-5 months (adult) and 19-20 months (aging) were examined. First, the effects of saline and EtOH (0.5 and 0.75 g/kg) on social interaction were assessed. Social investigation and contact behavior were lower in aging animals and higher in females. Interestingly, in aged females, social contact behavior was increased following a 0.5 g/kg EtOH dose, whereas the same dose suppressed social contact in aged males. Behavioral sensitivity to the sedative effects of 3.0 and 3.5 g/kg EtOH was assessed with the loss of righting reflex (LORR) test. Although latency to LORR did not differ as a function of age or sex, aged rats showed significantly greater LORR duration and significantly lower blood ethanol concentrations (BECs) at regaining of the righting reflex relative to adults. In addition, females had a lower LORR duration, regardless of age; no sex differences were evident in BECs at awakening. In a second experiment, blood ethanol concentrations (BECs) over time were assessed following 0.75, 1.5, and 3.0 g/kg EtOH in 3-, 12-, and 18-month-old male and female F344 rats. Aged rats had higher peak BECs following 3.0 g/kg EtOH, whereas few age or sex differences were apparent at lower doses. Taken together, these data indicate that late aging is associated with altered sensitivity to the social facilitating effects and sedative effects of EtOH.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Andrew S Vore
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Dennis Lovelock
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Elena Varlinskaya
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America.
| |
Collapse
|
13
|
Tielbeek JJ, Al-Itejawi Z, Zijlmans J, Polderman TJC, Buckholtz JW, Popma A. The impact of chronic stress during adolescence on the development of aggressive behavior: A systematic review on the role of the dopaminergic system in rodents. Neurosci Biobehav Rev 2018; 91:187-197. [DOI: 10.1016/j.neubiorev.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
|
14
|
Mooney SM, Varlinskaya EI. Enhanced sensitivity to socially facilitating and anxiolytic effects of ethanol in adolescent Sprague Dawley rats following acute prenatal ethanol exposure. Alcohol 2018; 69:25-32. [PMID: 29571047 DOI: 10.1016/j.alcohol.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
Emerging evidence suggests that deficits in social functioning and social anxiety are associated with adolescent alcohol use. Our previous research has shown that acute exposure to a high dose of ethanol on gestational day (G) 12 produces social alterations in adolescent Sprague Dawley rats. The present study assessed whether these social alterations can affect sensitivity to acute ethanol challenge during adolescence. Pregnant females were exposed intraperitoneally (i.p.) to ethanol (2.5 g/kg followed by 1.25 g/kg in 2 h) or saline on G12, and their male and female offspring were tested on postnatal day (P) 42. Rats were challenged i.p. with one of four ethanol doses (0, 0.5, 0.75, and 1.0 g/kg), and their social behavior was assessed in a modified social interaction test. Social alterations associated with prenatal ethanol exposure and indexed via decreases of social investigation, social preference, and play fighting were evident in males and females challenged with the 0 g/kg ethanol dose. Acute ethanol increased social investigation, social preference, and play fighting in animals prenatally exposed to ethanol. In contrast, rats prenatally exposed to saline, showing no social facilitation, demonstrated significant ethanol-induced (0.75 and 1.0 g/kg) decreases in social behavior. Given that late adolescents demonstrating social alterations induced by prenatal ethanol exposure become sensitive to the socially anxiolytic as well as socially facilitating effects of acute ethanol, it is possible that the attractiveness of ethanol to these adolescents may be based on its ability to alleviate anxiety under social circumstances and facilitate interactions with peers.
Collapse
Affiliation(s)
- Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| |
Collapse
|
15
|
Dannenhoffer CA, Varlinskaya EI, Spear LP. Effects of AMPA receptor antagonist, NBQX, and extrasynaptic GABA A agonist, THIP, on social behavior of adolescent and adult rats. Physiol Behav 2018; 194:212-217. [PMID: 29800636 DOI: 10.1016/j.physbeh.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Adolescence is characterized by high significance of social interactions, along with a propensity to exhibit social facilitating effects of ethanol while being less sensitive than adults to the inhibition of social behavior that emerges at higher doses of ethanol. Among the neural characteristics of adolescence are generally enhanced levels of glutamatergic (especially NMDA receptor) activity relative to adults, whereas the GABA system is still developmentally immature. Activation of NMDA receptors likely plays a role in modulation of social behavior in adolescent animals as well as in socially facilitating and suppressing effects of ethanol. For instance, adolescent and adult rats differ in their sensitivities to the effects of NMDA antagonists and ethanol on social behavior, with adolescents but not adults demonstrating social facilitation at lower doses of both drugs and adults being more sensitive to the socially suppressing effects evident at higher doses of each. The roles of AMPA and extrasynaptic GABAA receptors in modulation of social behavior during adolescence and in adulthood are still unknown. The present study was designed to assess whether pharmacological blockade of AMPA receptors and/or activation of extrasynaptic GABAA receptors results in age-dependent alterations of social behavior. Adolescent and adult male and female Sprague-Dawley rats were injected with an assigned dose of either a selective AMPA antagonist, NBQX (Experiment 1) or extrasynaptic GABAA agonist, THIP (Experiment 2) and placed into a modified social interaction chamber for a 30-min habituation period prior to a 10-min social interaction test with a novel age- and sex-matched partner. Behaviors such as social investigation, contact behavior and play behavior were scored from video recordings of the interaction tests. In Experiment 1, NBQX produced similar social inhibition at higher doses in both age groups. In Experiment 2, THIP induced inhibition in adolescents, but not adults. No social facilitation was evident following low doses of either drug. Therefore, AMPA and extrasynaptic GABAA receptors appear to play little role if any in modulation of peer-directed social behavior in adolescence and adulthood and not likely to contribute to previously observed age differences in the social effects of acute ethanol.
Collapse
Affiliation(s)
- Carol A Dannenhoffer
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Pkwy E, Binghamton, NY 13902-6000, United States.
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Pkwy E, Binghamton, NY 13902-6000, United States
| | - Linda Patia Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Pkwy E, Binghamton, NY 13902-6000, United States
| |
Collapse
|
16
|
Batista TH, Giusti-Paiva A, Vilela FC. Maternal protein malnutrition induces autism-like symptoms in rat offspring. Nutr Neurosci 2018; 22:655-663. [DOI: 10.1080/1028415x.2018.1427660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatiane Helena Batista
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fabiana Cardoso Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
17
|
Šlamberová R, Mikulecká A, Macúchová E, Hrebíčková I, Ševčíková M, Nohejlová K, Pometlová M. Morphine decreases social interaction of adult male rats, while THC does not affect it. Physiol Res 2017; 65:S547-S555. [PMID: 28006937 DOI: 10.33549/physiolres.933527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.
Collapse
Affiliation(s)
- R Šlamberová
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dimoff JD, Sayette MA. The case for investigating social context in laboratory studies of smoking. Addiction 2017; 112:388-395. [PMID: 27503776 PMCID: PMC5296362 DOI: 10.1111/add.13503] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND With increasing frequency, addiction is conceived of as a brain disease, and such accounts seem especially pertinent with regard to the rapid delivery of nicotine to the brain via cigarette smoke. Moreover, drug administration trials (cigarette puffs) suggest that the behavior of smoking becomes automatized, with individuals developing prototypical approaches to smoking a cigarette. Compared with presumably more social activities, such as drinking alcohol, there may be little opportunity for social processes to influence smoking behavior. However, survey research examining smoking motivation often reveals a broadly defined 'social' factor and field research suggests that social context does influence smoking. ARGUMENT We posit that laboratory smoking research has largely ignored social contextual factors that may help to understand better the precise mechanisms underlying smoking behavior and smoking motivation. METHOD We reviewed laboratory studies examining the effect of social context (operationalized as modeling) on smoking behavior. Studies were identified by searching PsychInfo and Medline using the following keywords: smoking, nicotine, tobacco, cigarette, consumption, topography, puff, smoking behavior, cigarettes smoked, modeling, imitation, social context, social influence and peer pressure. The reference and citation lists of these studies were then searched to identify additional studies. CONCLUSIONS Few laboratory smoking studies target social context. Those few studies indicate that smoking behavior can be influenced by the presence of others. There is also some evidence that social context influences the effects of smoking as well as processes related to self-perception and self-regulation that reinforce smoking and hamper smoking cessation efforts.
Collapse
Affiliation(s)
- John D. Dimoff
- University of Pittsburgh; Department of Psychology; Pittsburgh PA USA
| | | |
Collapse
|
19
|
Melancia F, Servadio M, Schiavi S, Campolongo P, Giusti-Paiva A, Trezza V. Testing the correlation between experimentally-induced hypothyroidism during pregnancy and autistic-like symptoms in the rat offspring. Behav Brain Res 2017; 321:113-122. [DOI: 10.1016/j.bbr.2016.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
|
20
|
Geng KW, He T, Wang RR, Li CL, Luo WJ, Wu FF, Wang Y, Li Z, Lu YF, Guan SM, Chen J. Ethanol Increases Mechanical Pain Sensitivity in Rats via Activation of GABAA Receptors in Medial Prefrontal Cortex. Neurosci Bull 2016; 32:433-44. [PMID: 27628528 DOI: 10.1007/s12264-016-0063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Ethanol is widely known for its ability to cause dramatic changes in emotion, social cognition, and behavior following systemic administration in humans. Human neuroimaging studies suggest that alcohol dependence and chronic pain may share common mechanisms through amygdala-medial prefrontal cortex (mPFC) interactions. However, whether acute administration of ethanol in the mPFC can modulate pain perception is unknown. Here we showed that bilateral microinjections of ethanol into the prelimbic and infralimbic areas of the mPFC lowered the bilateral mechanical pain threshold for 48 h without influencing thermal pain sensitivity in adult rats. However, bilateral microinjections of artificial cerebrospinal fluid into the mPFC or bilateral microinjections of ethanol into the dorsolateral PFC (also termed as motor cortex area 1 in Paxinos and Watson's atlas of The Rat Brain. Elsevier Academic Press, Amsterdam, 2005) failed to do so, suggesting regional selectivity of the effects of ethanol. Moreover, bilateral microinjections of ethanol did not change the expression of either pro-apoptotic (caspase-3 and Bax) or anti-apoptotic (Bcl-2) proteins, suggesting that the dose was safe and validating the method used in the current study. To determine whether γ-aminobutyric acid A (GABAA) receptors are involved in mediating the ethanol effects, muscimol, a selective GABAA receptor agonist, or bicuculline, a selective GABAA receptor antagonist, was administered alone or co-administered with ethanol through the same route into the bilateral mPFC. The results showed that muscimol mimicked the effects of ethanol while bicuculline completely reversed the effects of ethanol and muscimol. In conclusion, ethanol increases mechanical pain sensitivity through activation of GABAA receptors in the mPFC of rats.
Collapse
Affiliation(s)
- Kai-Wen Geng
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Fang-Fang Wu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yun-Fei Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
21
|
Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev 2016; 70:86-105. [PMID: 27587003 DOI: 10.1016/j.neubiorev.2016.07.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
22
|
Abstract
There is a considerable degree of individual vulnerability for alcohol use disorder (AUD) as only a subpopulation of individuals who regularly consume alcohol develop AUD. It is therefore very important to understand the factors and mechanisms that contribute towards the individual risk for AUD. In this respect, social influences, in particular during development, may be relevant for AUD as disruptions in early social experiences are associated with an increased risk for AUD. Social play, the most prominent form of social behaviour shown by young mammals, is rewarding and considered to be important for social, emotional and cognitive development. Recent studies suggest that early social isolation, effectively depriving animals from social play, increases the risk for addictive behaviour. The aim of this study was therefore to explore the long-term consequences of early social isolation on alcohol consumption and motivation for alcohol. To this end, rats were socially isolated from postnatal days 21-42, followed by 4 weeks of social housing, and voluntary alcohol consumption and operant responding for alcohol were determined in adulthood. We observed enhanced levels of alcohol consumption in adulthood in previously isolated rats, whereas operant responding for alcohol was not altered. The impact of early social isolation was independent of the individual variation in alcohol consumption. These data indicate that social isolation, during a developmental period when social play is highly abundant, enhances the propensity to consume alcohol in adulthood. This implies that early social experience may be a protective factor against excessive alcohol use.
Collapse
|
23
|
Socially acquired nicotine self-administration with an aversive flavor cue in adolescent female rats. Psychopharmacology (Berl) 2016; 233:1837-1844. [PMID: 26911379 PMCID: PMC4846487 DOI: 10.1007/s00213-016-4249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Establishing a behavioral model for the effect of social environment on nicotine intake in rodents facilitates the investigation of molecular mechanisms critical for the interaction between social environment and cigarette smoking. OBJECTIVES Our main objective was to test the hypothesis that nicotine is the primary reinforcer in the socially acquired nicotine intravenous self-administration (IVSA) model by using an aversive flavor cue. METHODS Adolescent female rats were placed in operant conditioning chambers equipped with two lickometers. Operant licking triggered concurrent deliveries of a flavor (i.e., taste and odor) cue containing either quinine or saccharin and an i.v. infusion (30 μg/kg nicotine or saline). An audiovisual cue was provided for some groups of rats. A second rat that did not receive nicotine was placed in the operant conditioning chambers to provide either a neutral or an inducing (i.e., by consuming the flavored solution) social environment. These two rats were separated by a divider that allowed orofacial interactions. RESULTS Rats acquired stable nicotine IVSA with either the aversive or the appetitive flavor cue in the inducing social environment, and obtained similar amounts of infusions. The neutral social environment did not support nicotine IVSA with either cue. The audiovisual cue per se did not support nicotine IVSA but enhanced nicotine intake. Nicotine increased the number of concurrent nose pokes by the two rats into the center divider, a measure of social interaction. CONCLUSIONS Despite its aversive effects, nicotine is the primary reinforcer for the operant responses in the socially acquired nicotine IVSA model.
Collapse
|
24
|
Varlinskaya EI, Kim EU, Spear LP. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood. Brain Res 2016; 1654:145-156. [PMID: 27048754 DOI: 10.1016/j.brainres.2016.03.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Esther U Kim
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
25
|
Achterberg EJM, van Kerkhof LWM, Servadio M, van Swieten MMH, Houwing DJ, Aalderink M, Driel NV, Trezza V, Vanderschuren LJMJ. Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats. Neuropsychopharmacology 2016; 41:858-68. [PMID: 26174597 PMCID: PMC4707831 DOI: 10.1038/npp.2015.212] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 11/09/2022]
Abstract
Social play behavior, abundant in the young of most mammalian species, is thought to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only sporadically been investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play, but not their play-suppressant effects, were blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play unaltered. In sum, the present study introduces a novel method to study the incentive motivational properties of social play behavior in rats. Using this paradigm, we demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play behavior and its expression.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Linda W M van Kerkhof
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michela Servadio
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike M H van Swieten
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Danielle J Houwing
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mandy Aalderink
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nina V Driel
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University ‘Roma Tre', Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands, Tel: +31 30 2535239, Fax: +31 30 2537997, E-mail:
| |
Collapse
|
26
|
A Possible Role of Anhedonia as Common Substrate for Depression and Anxiety. DEPRESSION RESEARCH AND TREATMENT 2016; 2016:1598130. [PMID: 27042346 PMCID: PMC4793100 DOI: 10.1155/2016/1598130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
Depression and anxiety are often comorbid, in up to 70% of cases, and the level of one or the other may fluctuate, leading now to a diagnosis of depression, now to a diagnosis of anxiety. For these reasons, and for the presence of many other common factors, it has been suggested that both are part of the same continuum of problems and that they have a common substrate. This paper proposes the possibility that anhedonia may be an important component of this possible common substrate, and it tries to identify the mechanism with which anhedonia could contribute to causing both depression and anxiety. It also proposes an explanation why an intense pleasure could improve both depression and anxiety.
Collapse
|
27
|
Effects of amphetamine on striatal dopamine release, open-field activity, and play in Fischer 344 and Sprague–Dawley rats. Behav Pharmacol 2015; 26:720-32. [DOI: 10.1097/fbp.0000000000000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Blanco-Gandía MC, Mateos-García A, García-Pardo MP, Montagud-Romero S, Rodríguez-Arias M, Miñarro J, Aguilar MA. Effect of drugs of abuse on social behaviour. Behav Pharmacol 2015. [DOI: 10.1097/fbp.0000000000000162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Manduca A, Morena M, Campolongo P, Servadio M, Palmery M, Trabace L, Hill MN, Vanderschuren LJMJ, Cuomo V, Trezza V. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur Neuropsychopharmacol 2015; 25:1362-74. [PMID: 25914159 DOI: 10.1016/j.euroneuro.2015.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 01/15/2023]
Abstract
To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy; Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Louk J M J Vanderschuren
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy.
| |
Collapse
|
30
|
Achterberg EJM, van Kerkhof LWM, Damsteegt R, Trezza V, Vanderschuren LJMJ. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats. J Neurosci 2015; 35:161-9. [PMID: 25568111 PMCID: PMC4287139 DOI: 10.1523/jneurosci.2945-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/24/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Linda W M van Kerkhof
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Ruth Damsteegt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre," 00146 Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands, Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| |
Collapse
|
31
|
Varlinskaya EI, Spear LP. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure. Physiol Behav 2014; 148:145-50. [PMID: 25431835 DOI: 10.1016/j.physbeh.2014.11.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/19/2014] [Indexed: 12/23/2022]
Abstract
The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested in adulthood. Adult males exposed to ethanol early in adolescence also show enhanced sensitivity to the socially facilitating effects of ethanol, whereas adult males exposed to ethanol during late adolescence demonstrate insensitivity to the socially suppressing effects of ethanol. To the extent that these results are applicable to humans, stressful live events may make alcohol more attractive for stressed adolescents and adults due to its socially facilitating and socially anxiolytic properties, therefore fostering high levels of drinking. Retention of adolescent-typical responsiveness to alcohol in adult males following adolescent alcohol exposure, including enhanced sensitivity to the socially facilitating effects of ethanol following early exposure and insensitivity to the socially inhibiting effects following late adolescent exposure, may put these males at risk for the development of alcohol-related disorders later in life.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
32
|
Varlinskaya EI, Truxell E, Spear LP. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood. Alcohol 2014; 48:433-44. [PMID: 24928792 DOI: 10.1016/j.alcohol.2014.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
Abstract
This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later in life.
Collapse
Affiliation(s)
- Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, State University of New York, P.O. Box 6000, Binghamton, NY 13902-6000, USA.
| | - Eric Truxell
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, State University of New York, P.O. Box 6000, Binghamton, NY 13902-6000, USA
| | - Linda P Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, State University of New York, P.O. Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
33
|
Morales M, Varlinskaya EI, Spear LP. Pre-pubertal gonadectomy and the social consequences of acute ethanol in adolescent male and female rats. Horm Behav 2014; 66:209-19. [PMID: 24816080 PMCID: PMC4127139 DOI: 10.1016/j.yhbeh.2014.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/13/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
It has previously been shown that pre-pubertal or adult gonadectomy (GX) increases ethanol intake in male rats. This study examined whether this sex-selective increase reflects a GX-induced maintenance in males of more adolescent-typical responsiveness to ethanol characterized by enhanced sensitivity to positive (e.g., socially facilitating) and a decreased sensitivity to adverse (e.g., socially inhibitory) effects of ethanol. Male and female Sprague-Dawley rats were pre-pubertally GX, sham (SH)-operated, or non-manipulated (NM) at postnatal day (P) 25. During the late adolescent transition into adulthood (P48 - baseline day), rats were given a saline injection, placed alone into a familiar test apparatus for 30min and then exposed for 10min to an unfamiliar partner of the same age and sex. On the following day (P49), similar testing occurred after administration of 0.5, 0.75, 1.0 or 1.25g/kg ethanol. At baseline, GX males and females displayed higher levels of social activity (especially adolescent-typical play and contact behavior) than SH and NM animals, with GX females displaying greater social activity than GX males. Neither males nor females demonstrated social facilitation at lower ethanol doses, regardless of hormonal status. Whereas the social inhibitory effects of higher doses of ethanol were similar across groups among females, SH males were less sensitive than both GX and NM males to ethanol-induced social inhibition. These results suggest that enhanced ethanol intake in GX males is not related to alterations in sensitivity to ethanol's social inhibitory effects. GX, however, results in retention of adolescent-typical social behaviors, with older GX adolescent rats resembling early adolescents in exhibiting elevated social activity-particularly play and contact behavior.
Collapse
Affiliation(s)
- Melissa Morales
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
34
|
Mikulecká A, Subrt M, Pařízková M, Mareš P, Kubová H. Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Front Behav Neurosci 2014; 8:169. [PMID: 24982619 PMCID: PMC4055859 DOI: 10.3389/fnbeh.2014.00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/19/2014] [Indexed: 12/24/2022] Open
Abstract
Social behavior represents an integral part of behavioral repertoire of rats particularly sensitive to pharmacological and environmental influences. The aim of the present study was to investigate whether early postnatal clonazepam (CZP) exposure can induce age-dependent changes related to expression of social behavior. The drug was administered from postnatal day (P) 7 until P11 at daily doses of 0.1, 0.5 and 1.0 mg/kg i.p. We designed three experiments to assess whether exposure to CZP affects social behavior in respect to the age of rats and the test circumstances, specifically their familiarity with test conditions during adolescence (P32), social behavior in juveniles and adolescents (P18–P42) and social behavior in a resident-intruder paradigm. The frequency and duration of a various patterns of social behavior related to play and social investigation not related to play were evaluated. The results showed that CZP postnatal exposure decreased social play behavior regardless of age and familiarity or unfamiliarity of experimental environment but did not affect the social investigation per se. When rats were confronted with an intruder in their home cages intense wrestling and inhibition of genital investigation were found. In conclusion, these findings show that short-term CZP postnatal exposure inhibits social play behavior and alters specific patterns of social behavior in an age and environment related manner.
Collapse
Affiliation(s)
- Anna Mikulecká
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Martin Subrt
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Martina Pařízková
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Pavel Mareš
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Hana Kubová
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
35
|
Manduca A, Campolongo P, Palmery M, Vanderschuren LJMJ, Cuomo V, Trezza V. Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-Dawley rats. Psychopharmacology (Berl) 2014; 231:1661-73. [PMID: 24221828 DOI: 10.1007/s00213-013-3337-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Social play behavior is the most characteristic social behavior in young mammals. It is highly rewarding and crucial for proper neurobehavioral development. Despite the importance of genetic factors in normal and pathological social behaviors, little information is available about strain influences on social play. OBJECTIVE AND METHODS The aim of this study was to investigate differences in social play behavior, 50-kHz ultrasonic vocalizations (USVs) and their modulation by acute morphine and amphetamine administration in two rat strains widely used in behavioral pharmacology studies, i.e., Wistar and Sprague-Dawley rats. RESULTS Sprague-Dawley rats showed higher levels of social play than Wistar rats. In both strains, no correlation was found between the performance of social behaviors and the emission of 50-kHz USVs. In Wistar and Sprague-Dawley rats, morphine increased and amphetamine decreased social play. The effects of morphine, however, were more pronounced in Wistar than Sprague-Dawley animals. In both strains, morphine did not affect USV emission, while amphetamine increased it during cage exploration. In Sprague-Dawley rats only, amphetamine decreased USVs during social interaction. CONCLUSIONS Wistar and Sprague-Dawley rats differ in their absolute levels of social play behavior and 50-kHz USVs, and quantitative differences exist in their response to pharmacological manipulations of social play. The emission of 50-kHz USVs and the behavioral parameters thought to reflect rewarding social interactions in adolescent rats are dissociable.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Achterberg EM, Trezza V, Siviy SM, Schrama L, Schoffelmeer AN, Vanderschuren LJ. Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms. Psychopharmacology (Berl) 2014; 231:1503-15. [PMID: 24057815 PMCID: PMC3962711 DOI: 10.1007/s00213-013-3272-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE Social play behavior is a characteristic form of social behavior displayed by juvenile and adolescent mammals. This social play behavior is highly rewarding and of major importance for social and cognitive development. Social play is known to be modulated by neurotransmitter systems involved in reward and motivation. Interestingly, psychostimulant drugs, such as amphetamine and cocaine, profoundly suppress social play, but the neural mechanisms underlying these effects remain to be elucidated. OBJECTIVE In this study, we investigated the pharmacological underpinnings of amphetamine- and cocaine-induced suppression of social play behavior in rats. RESULTS The play-suppressant effects of amphetamine were antagonized by the alpha-2 adrenoreceptor antagonist RX821002 but not by the dopamine receptor antagonist alpha-flupenthixol. Remarkably, the effects of cocaine on social play were not antagonized by alpha-2 noradrenergic, dopaminergic, or serotonergic receptor antagonists, administered either alone or in combination. The effects of a subeffective dose of cocaine were enhanced by a combination of subeffective doses of the serotonin reuptake inhibitor fluoxetine, the dopamine reuptake inhibitor GBR12909, and the noradrenaline reuptake inhibitor atomoxetine. CONCLUSIONS Amphetamine, like methylphenidate, exerts its play-suppressant effect through alpha-2 noradrenergic receptors. On the other hand, cocaine reduces social play by simultaneous increases in dopamine, noradrenaline, and serotonin neurotransmission. In conclusion, psychostimulant drugs with different pharmacological profiles suppress social play behavior through distinct mechanisms. These data contribute to our understanding of the neural mechanisms of social behavior during an important developmental period, and of the deleterious effects of psychostimulant exposure thereon.
Collapse
Affiliation(s)
- E.J. Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Sciences, Section of Biomedical Sciences and Technologies, University “Roma Tre”, Rome, Italy
- Corresponding authors: Louk J.M.J. Vanderschuren, PhD, Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands, tel: +31-30-2535239; fax: +31-30-2537997, . Viviana Trezza, PhD, Department of Sciences, Section of Biomedical Sciences and Technologies, University ‘Roma Tre’, Viale G. Marconi 446, 00146 Rome, Italy, tel: +39-0657336343,
| | - Stephen M. Siviy
- Gettysburg College, Department of Psychology, Gettysburg, United States
| | - Laurens Schrama
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton N.M. Schoffelmeer
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Louk J.M.J. Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Corresponding authors: Louk J.M.J. Vanderschuren, PhD, Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands, tel: +31-30-2535239; fax: +31-30-2537997, . Viviana Trezza, PhD, Department of Sciences, Section of Biomedical Sciences and Technologies, University ‘Roma Tre’, Viale G. Marconi 446, 00146 Rome, Italy, tel: +39-0657336343,
| |
Collapse
|
37
|
Trezza V, Baarendse PJJ, Vanderschuren LJMJ. On the interaction between drugs of abuse and adolescent social behavior. Psychopharmacology (Berl) 2014; 231:1715-29. [PMID: 24553578 DOI: 10.1007/s00213-014-3471-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/26/2014] [Indexed: 01/20/2023]
Abstract
RATIONALE Social factors influence drug abuse. Conversely, drugs of abuse alter social behavior. This is especially pertinent during post-weaning development, when there are profound changes in the social repertoire, and the sensitivity to the positive and negative effects of drugs of abuse is altered. OBJECTIVES This study aimed to provide an overview of our current understanding of the interaction between drugs of abuse and juvenile/adolescent social behavior. METHODS We first provide evidence that a characteristic form of juvenile and adolescent social behavior, i.e., social play behavior, has reinforcing properties and is affected by drugs of abuse. Next, social risk factors for drug use and addiction are described, including antisocial personality traits and early social insults. Last, we discuss research that investigates social influences on drug use, as well as the consequences of perinatal drug exposure on later social interactions. RESULTS Social play behavior is highly rewarding in laboratory animals, and it is affected by low doses of opioids, cannabinoids, ethanol, nicotine, and psychostimulants. In humans, antisocial personality traits, most prominently in the form of conduct disorder, are a prominent risk factor for drug addiction. Preclinical studies have consistently shown altered sensitivity to drugs as a result of social isolation during post-weaning development. The social environment of an individual has a profound, but complex, influence on drug use, and perinatal drug exposure markedly alters later social interactions. CONCLUSIONS The studies reviewed here provide a framework to understand the interaction between drugs of abuse and adolescent social interaction, at the preclinical and the clinical level.
Collapse
Affiliation(s)
- Viviana Trezza
- Department of Science, Section of Biomedical Science and Technologies, University "Roma Tre", Rome, Italy
| | | | | |
Collapse
|
38
|
Segatto M, Manduca A, Lecis C, Rosso P, Jozwiak A, Swiezewska E, Moreno S, Trezza V, Pallottini V. Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats. Neuropsychopharmacology 2014; 39:841-54. [PMID: 24108067 PMCID: PMC3924519 DOI: 10.1038/npp.2013.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to shed light on the role played by the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and memory consolidation in rodents through the inhibition of the key and rate-limiting enzyme 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR) both in vivo and in vitro with simvastatin. Three-month-old male Wistar rats treated for 21 days with simvastatin or vehicle were tested in the social interaction, elevated plus-maze, and inhibitory avoidance tasks; after behavioral testing, the amygdala, hippocampus, prefrontal cortex, dorsal, and ventral striatum were dissected out for biochemical assays. In order to delve deeper into the molecular mechanisms underlying the observed effects, primary rat hippocampal neurons were used. Our results show that HMGR inhibition by simvastatin induces anxiogenic-like effects in the social interaction but not in the elevated plus-maze test, and improves memory consolidation in the inhibitory avoidance task. These effects are accompanied by imbalances in the activity of specific prenylated proteins, Rab3 and RhoA, involved in neurotransmitter release, and synaptic plasticity, respectively. Taken together, the present findings indicate that the isoprenoid/cholesterol biosynthetic pathway is critically involved in the physiological modulation of both emotional and cognitive processes in rodents.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Antonia Manduca
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Claudio Lecis
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Pamela Rosso
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Adam Jozwiak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | - Viviana Trezza
- Department of Science, University Roma Tre, Viale Marconi, Rome, Italy
| | | |
Collapse
|
39
|
Morales M, Schatz KC, Anderson RI, Spear LP, Varlinskaya EI. Conditioned taste aversion to ethanol in a social context: impact of age and sex. Behav Brain Res 2014; 261:323-7. [PMID: 24406726 DOI: 10.1016/j.bbr.2013.12.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 12/20/2013] [Indexed: 01/28/2023]
Abstract
Given that human adolescents place a high value on social interactions-particularly while consuming alcohol-the current study utilized a novel social drinking paradigm to examine rewarding and aversive properties of ethanol in non-water deprived rats that were housed and tested in groups of five same-sex littermates. On postnatal day P34 (adolescents) or P69 (adults), rats were habituated to the testing apparatus for 30 min. On the next day, animals were placed into the test apparatus and given 30 min access to a supersaccharin solution (3% sucrose; 0.125% saccharin), followed immediately by an intraperitoneal injection of ethanol (0, 0.25, 0.5, 1.0, 1.5 g/kg). Subsequent intake of the supersacharrin solution was assessed on three consecutive test days. Adolescent males were less sensitive to ethanol's aversive effects than adult males, with adolescent males maintaining an aversion on all three test days only at the 1.5 g/kg dose, whereas adults demonstrated aversions across test days to 1 and 1.5 g/kg. Adolescent females maintained aversions to 1 and 1.5 g/kg across days, whereas adult females continued to show an aversion to the 1.5 g/kg dose only. These opposite patterns of sensitivity that emerged among males and females at each age in the propensity to maintain an ethanol-induced taste aversion under social conditions may contribute to age- and sex-related differences in ethanol intake. Testing in social groups may be useful for future work when studying rodent models of adolescent alcohol use given the importance that human adolescents place on drinking in social settings.
Collapse
Affiliation(s)
- Melissa Morales
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton 13902-6000, NY, USA.
| | - Kelcie C Schatz
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton 13902-6000, NY, USA
| | - Rachel I Anderson
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton 13902-6000, NY, USA
| | - Linda P Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton 13902-6000, NY, USA
| | - Elena I Varlinskaya
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton 13902-6000, NY, USA
| |
Collapse
|
40
|
Himmler BT, Nakahashi A, Snow E, McMickle A, Muhammad A, Biondolillo KD, Pellis SM, Kolb B. Juvenile play experience does not affect nicotine sensitization and voluntary consumption of nicotine in adult rats. Dev Psychobiol 2013; 56:1052-60. [PMID: 24347393 DOI: 10.1002/dev.21189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/22/2013] [Indexed: 11/11/2022]
Abstract
Juvenile play experiences promote behavioral flexibility in rats. If other early positive experiences, such as tactile stimulation, are given prior to exposure to psychostimulants, the behavioral response to the drug is attenuated. The objective of the present study was to determine if the experience of juvenile play behavior would attenuate the response to nicotine. Two experiments were conducted: (1) behavioral sensitization to nicotine exposure, and (2) voluntary consumption of nicotine. For both experiments, rats were reared either with three same-sex peers (play group) or one adult (no play group) during their juvenile period. Then, as adults, half of each group was exposed to repeated injections of nicotine and the other half to saline. Prior play experience had no effect on behavioral sensitization or on voluntary consumption of nicotine. It remains to be determined whether juvenile experience with play influences the rewarding properties of nicotine in social contexts as adults.
Collapse
Affiliation(s)
- B T Himmler
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol Psychiatry 2013; 18:1294-301. [PMID: 23070073 DOI: 10.1038/mp.2012.145] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 01/10/2023]
Abstract
Obesity is a global problem with often strong neurobiological underpinnings. The cannabinoid 1 receptor (CB1R) was put forward as a promising drug target for antiobesity medication. However, the first marketed CB1R antagonist/inverse agonist rimonabant was discontinued, as its use was occasionally associated with negative affect and suicidality. In artificial cell systems, CB1Rs can become constitutively active in the absence of ligands. Here, we show that such constitutive CB1R activity also regulates GABAergic and glutamatergic neurotransmission in the ventral tegmental area and basolateral amygdala, regions which regulate motivation and emotions. We show that CB1R inverse agonists like rimonabant suppress the constitutive CB1R activity in such regions, and cause anxiety and reduced motivation for reward. The neutral CB1R antagonist NESS0327 does not suppress constitutive activity and lacks these negative effects. Importantly, however, both rimonabant and NESS0327 equally reduce weight gain and food intake. Together, these findings suggest that neutral CB1R antagonists can treat obesity efficiently and more safely than inverse agonists.
Collapse
|
42
|
Combined exposure to tobacco smoke and ethanol during adolescence leads to short- and long-term modulation of anxiety-like behavior. Drug Alcohol Depend 2013; 133:52-60. [PMID: 23810373 DOI: 10.1016/j.drugalcdep.2013.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tobacco smoking is associated with alcohol drinking and consumption of both drugs typically begins during adolescence. Since anxiety is considered a relevant factor for both smoking and drinking due to its motivating force for a continued consumption, anxiety alterations shared by these two drugs could explain their co-use and co-abuse. METHODS Here, we investigated the short- and long-term effects of adolescent tobacco smoke and/or ethanol exposure on anxiety levels. From postnatal day 30-45, Swiss mice were exposed to tobacco smoke (SMK--whole body exposure, 8 h/day) and/or ethanol (ETOH--25% solution, 2g/kg i.p. injected every other day) as follows: (1) SMK+ETOH exposure; (2) SMK exposure; (3) ETOH exposure; (4) Control. Anxiety levels were assessed with the elevated plus maze and open field tests. RESULTS By the end of exposure, SMK female mice presented an anxiolytic response in the elevated plus maze and this response was intensified by co-exposure to ethanol. A short-term deprivation from SMK elicited an anxiogenic state in females in this maze. Although neither smoke nor ethanol effects persisted one month post-exposure, SMK+ETOH male and female mice exhibited an anxiogenic response in the open field. CONCLUSION Adolescent female mice are more susceptible to the anxiolytic effects of SMK. The stronger effect in SMK+ETOH group suggests that, in females, the combined exposure leads to lower anxiety levels. Anxiety levels do not seem to be relevant during a short-term SMK+ETOH deprivation, however, increased anxiety during long-term smoking and drinking deprivation demonstrate late-emergent effects both in males and females.
Collapse
|
43
|
Repeated restraint stress alters sensitivity to the social consequences of ethanol differentially in early and late adolescent rats. Pharmacol Biochem Behav 2013; 113:38-45. [PMID: 24161685 DOI: 10.1016/j.pbb.2013.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/22/2022]
Abstract
In rats, considerable differences in the social consequences of acute ethanol are seen across ontogeny, with adolescents being more sensitive to low dose ethanol-induced social facilitation and less sensitive to the social inhibition evident at higher ethanol doses relative to adults. Stressor exposure induces social anxiety-like behavior, indexed via decreases in social preference, and alters responsiveness to the social consequences of acute ethanol by enhancing ethanol-associated social facilitation and anxiolysis regardless of age. Given that substantial ontogenetic differences in the social consequences of ethanol are evident even within the adolescent period, the present study was designed to investigate whether similar stress-associated alterations in social behavior and ethanol responsiveness are evident in early and late adolescents. Juvenile-early adolescent [postnatal days (P) 24-28] and mid-late adolescent (P38-42) male and female Sprague-Dawley rats were repeatedly restrained (90 min/day) for 5 days, followed by examination of ethanol-induced (0, 0.25, 0.5, or 1.0 g/kg) alterations in social behaviors on the last day. Responsiveness to restraint stress in terms of both stress-induced behavioral alterations and stress-associated changes in sensitivity to the social consequences of acute ethanol challenge differed drastically at the two ages. Repeated restraint increased anxiety-like behavior in a social context in older adolescents, whereas previously stressed young adolescent males showed substantial increases in play fighting - an effect of stress not evident in P28 females or P42 adolescents of either sex. Unexpectedly, repeated restraint eliminated sensitivity to ethanol-induced social facilitation in P28 adolescent males and made their female counterparts less sensitive to this effect. In contrast, previously stressed late adolescents became sensitive to the socially facilitating and anxiolytic effects of acute ethanol.
Collapse
|
44
|
Himmler BT, Pellis SM, Kolb B. Juvenile play experience primes neurons in the medial prefrontal cortex to be more responsive to later experiences. Neurosci Lett 2013; 556:42-5. [PMID: 24103373 DOI: 10.1016/j.neulet.2013.09.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/17/2023]
Abstract
Juvenile play behavior in rats promotes later behavioral flexibility and appears to do so by modifying the neural systems that regulate the animal's response to unexpected challenges. For example, the experience of play has been shown to prune the dendritic arbor of the cells in the medial prefrontal cortex (mPFC), part of the brain's executive control system. The objective of the present study was to determine if the play-induced changes in the mPFC promotes greater plasticity to experiences later in life. In order to test this possibility, exposure to nicotine was used as the secondary experience given later in life, as it has been shown to produce later changes to the morphology of mPFC pyramidal neurons. Animals were either paired with three same-sex peers (play condition) or one adult (no play condition) during their juvenile period. As young adults, half of the rats from each condition were exposed to repeated injections of nicotine and the other half to injections of saline. The neural plasticity of the mPFC was measured by changes in length and branching of dendrites. Neural changes induced separately by play and by nicotine were consistent with previously published findings. The novel finding was that the cells in the mPFC exhibit a greater response to exposure to nicotine if the rats first had play experience. These findings suggest that juvenile play experiences enhance the plasticity of some neural systems.
Collapse
Affiliation(s)
- B T Himmler
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | | |
Collapse
|
45
|
van Kerkhof LWM, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJMJ. Functional integrity of the habenula is necessary for social play behaviour in rats. Eur J Neurosci 2013; 38:3465-75. [PMID: 24103016 DOI: 10.1111/ejn.12353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/08/2013] [Indexed: 02/05/2023]
Abstract
During post-weaning development, a marked increase in peer-peer interactions is observed in mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the habenula has received widespread attention because of its role in the regulation of monoaminergic neurotransmission as well as in a variety of emotional and cognitive functions. Therefore, in the present study, we investigated the involvement of the habenula in social play behaviour. Using the neuronal activity maker c-fos, we showed that the habenula was activated after 24 h of social isolation in adolescent rats, and that a subsequent social play interaction reduced c-fos activity in the medial part of the lateral habenula. This suggested that habenula activity modulated the aversive properties of social isolation, which was alleviated by the positive effects of social play. Furthermore, after functional inactivation of the habenula, using a mixture of the GABA receptor agonists baclofen and muscimol, social play behaviour was markedly reduced, whereby responsiveness to play solicitation was more sensitive to habenula inactivation than play solicitation itself. Together, our data indicate an important role for the habenula in the processing of positive (i.e., social play behaviour) and negative (i.e., social isolation) social information in adolescent rats. Altered habenula function might therefore be related to the social impairments in childhood and adolescent psychiatric disorders such as autism, attention deficit/hyperactivity disorder and early-onset schizophrenia.
Collapse
Affiliation(s)
- Linda W M van Kerkhof
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
van Kerkhof LWM, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJMJ. Social play behavior in adolescent rats is mediated by functional activity in medial prefrontal cortex and striatum. Neuropsychopharmacology 2013; 38:1899-909. [PMID: 23568326 PMCID: PMC3746695 DOI: 10.1038/npp.2013.83] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
Abstract
Social play behavior is a characteristic, vigorous form of social interaction in young mammals. It is highly rewarding and thought to be of major importance for social and cognitive development. The neural substrates of social play are incompletely understood, but there is evidence to support a role for the prefrontal cortex (PFC) and striatum in this behavior. Using pharmacological inactivation methods, ie, infusions of GABA receptor agonists (baclofen and muscimol; B&M) or the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), we investigated the involvement of several subregions of the medial PFC and striatum in social play. Inactivation of the prelimbic cortex, infralimbic cortex, and medial/ventral orbitofrontal cortex using B&M markedly reduced frequency and duration of social play behavior. Local administration of DNQX into the dorsomedial striatum increased the frequency and duration of social play, whereas infusion of B&M tended to have the same effect. Inactivation of the nucleus accumbens (NAcc) core using B&M increased duration but not frequency of social play, whereas B&M infusion into the NAcc shell did not influence social play behavior. Thus, functional integrity of the medial PFC is important for the expression of social play behavior. Glutamatergic inputs into the dorsomedial striatum exert an inhibitory influence on social play, and functional activity in the NAcc core acts to limit the length of playful interactions. These results highlight the importance of prefrontal and striatal circuits implicated in cognitive control, decision making, behavioral inhibition, and reward-associated processes in social play behavior.
Collapse
Affiliation(s)
- Linda WM van Kerkhof
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ruth Damsteegt
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, Utrecht, The Netherlands,Department of Biology, University ‘Roma Tre', Rome, Italy
| | - Pieter Voorn
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Louk JMJ Vanderschuren
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, Utrecht, The Netherlands,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, Utrecht 3584 CM, The Netherlands, Tel: +31 30 2535239, Fax: +31 30 2537997, E-mail:
| |
Collapse
|
47
|
Drusch K, Lowe A, Fisahn K, Brinkmeyer J, Musso F, Mobascher A, Warbrick T, Shah J, Ohmann C, Winterer G, Wölwer W. Effects of nicotine on social cognition, social competence and self-reported stress in schizophrenia patients and healthy controls. Eur Arch Psychiatry Clin Neurosci 2013; 263:519-27. [PMID: 23081705 DOI: 10.1007/s00406-012-0377-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/05/2012] [Indexed: 12/18/2022]
Abstract
More than 80 % of patients diagnosed with schizophrenia are nicotine-dependent. Self-medication of cognitive deficits and an increased vulnerability to stress are discussed as promoting factors for the development of nicotine dependence. However, the effects of nicotine on social cognition and subjective stress responses in schizophrenia are largely unexplored. A 2 × 2-factorial design (drug × group) was used to investigate the effects of nicotine versus placebo in smoking schizophrenia patients and healthy controls after 24 h of abstinence from smoking. Participants performed a facial affect recognition task and a semi-standardized role-play task, after which social competence and self-reported stress during social interaction were assessed. Data analysis revealed no significant group differences in the facial affect recognition task. During social interaction, healthy controls showed more non-verbal expressions and a lower subjective stress level than schizophrenia patients. There were no significant effects of nicotine in terms of an enhanced recognition of facial affect, more expressive behaviour or reduced subjective stress during social interaction. While schizophrenia patients unexpectedly recognized facial affect not significantly worse than healthy controls, the observed group differences in subjective stress and non-verbal expression during social interaction in the role-play situation are in line with previous findings. Contrary to expectations derived from the self-medication hypothesis, nicotine showed no significant effects on the dependent variables, perhaps because of the dosage used and the delay between the administration of nicotine and the performance of the role-play.
Collapse
Affiliation(s)
- Katharina Drusch
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, LVR Klinikum Düsseldorf, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cellular activation in limbic brain systems during social play behaviour in rats. Brain Struct Funct 2013; 219:1181-211. [PMID: 23670540 DOI: 10.1007/s00429-013-0558-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/17/2013] [Indexed: 02/06/2023]
Abstract
Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats.
Collapse
|
49
|
Low doses of the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, induces social facilitation in adolescent male rats. Behav Brain Res 2013; 250:18-22. [PMID: 23651880 DOI: 10.1016/j.bbr.2013.04.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 11/23/2022]
Abstract
Adolescents display high levels of interactions with peers relative to other age groups, with these interactions further enhanced by ethanol under some circumstances. Understanding of the neural mechanisms underlying these high levels of social interactions is important given that alcohol use is initiated during adolescence and adolescents tend to report drinking for social reasons. Given that ethanol's effects are associated in part with functional antagonism of the NMDA receptor system, the current experiment explored the role of NMDA antagonists for facilitating adolescent social behavior. Adolescent male Sprague-Dawley rats were challenged acutely with either the non-competitive NMDA antagonist, MK-801 (0.01, 0.03mg/kg), the NR2A antagonist, PEAQX (1.25, 3.75mg/kg) or the NR2B antagonist, ifenprodil (0.75, 2.25mg/kg) 30min prior to a 10-min social interaction test. All compounds generally increased overall social activity (i.e., sum of social investigation, contact behavior, and play), with ifenprodil also significantly enhancing play and social contact behaviors. Although the frequencies of peer-directed social behaviors were typically greater following administration with these NMDA antagonists, social preference, indexed via the number of crossovers to the side with the partner relative to crossovers away, was significantly reduced in MK-801 and PEAQX-treated rats. None of these changes were associated with concomitant alterations in overall locomotor activity under these test circumstances. These data support the suggestion that the increases in social interactions observed in adolescents following acute ethanol may be driven in part by NMDA receptor antagonism - particularly of the NR2B subunit - given that ifenprodil stimulated social behavior in a manner similar to that produced by low doses of ethanol.
Collapse
|
50
|
Abreu-Villaça Y, de Carvalho Graça AC, Ribeiro-Carvalho A, Naiff VF, Manhães AC, Filgueiras CC. Combined Exposure to Tobacco Smoke and Ethanol in Adolescent Mice Elicits Memory and Learning Deficits Both During Exposure and Withdrawal. Nicotine Tob Res 2012; 15:1211-21. [DOI: 10.1093/ntr/nts250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|