1
|
Cheng JL, Cook AL, Talbot J, Perry S. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Neurotox Res 2024; 42:43. [PMID: 39405005 PMCID: PMC11480214 DOI: 10.1007/s12640-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Collapse
Affiliation(s)
- Jan L Cheng
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia.
| |
Collapse
|
2
|
Neřoldová M, Stuchlík A. Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders. Physiol Res 2024; 73:S449-S470. [PMID: 38957949 PMCID: PMC11412350 DOI: 10.33549/physiolres.935401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Collapse
Affiliation(s)
- M Neřoldová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| | | |
Collapse
|
3
|
Kim J, Vanrobaeys Y, Davatolhagh MF, Kelvington B, Chatterjee S, Ferri SL, Angelakos C, Mills AA, Fuccillo MV, Nickl-Jockschat T, Abel T. A chromosome region linked to neurodevelopmental disorders acts in distinct neuronal circuits in males and females to control locomotor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594746. [PMID: 38952795 PMCID: PMC11216371 DOI: 10.1101/2024.05.17.594746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Biological sex shapes the manifestation and progression of neurodevelopmental disorders (NDDs). These disorders often demonstrate male-specific vulnerabilities; however, the identification of underlying mechanisms remains a significant challenge in the field. Hemideletion of the 16p11.2 region (16p11.2 del/+) is associated with NDDs, and mice modeling 16p11.2 del/+ exhibit sex-specific striatum-related phenotypes relevant to NDDs. Striatal circuits, crucial for locomotor control, consist of two distinct pathways: the direct and indirect pathways originating from D1 dopamine receptor (D1R) and D2 dopamine receptor (D2R) expressing spiny projection neurons (SPNs), respectively. In this study, we define the impact of 16p11.2 del/+ on striatal circuits in male and female mice. Using snRNA-seq, we identify sex- and cell type-specific transcriptomic changes in the D1- and D2-SPNs of 16p11.2 del/+ mice, indicating distinct transcriptomic signatures in D1-SPNs and D2-SPNs in males and females, with a ∼5-fold greater impact in males. Further pathway analysis reveals differential gene expression changes in 16p11.2 del/+ male mice linked to synaptic plasticity in D1- and D2-SPNs and GABA signaling pathway changes in D1-SPNs. Consistent with our snRNA-seq study revealing changes in GABA signaling pathways, we observe distinct changes in miniature inhibitory postsynaptic currents (mIPSCs) in D1- and D2-SPNs from 16p11.2 del/+ male mice. Behaviorally, we utilize conditional genetic approaches to introduce the hemideletion selectively in either D1- or D2-SPNs and find that conditional hemideletion of genes in the 16p11.2 region in D2-SPNs causes hyperactivity in male mice, but hemideletion in D1-SPNs does not. Within the striatum, hemideletion of genes in D2-SPNs in the dorsal lateral striatum leads to hyperactivity in males, demonstrating the importance of this striatal region. Interestingly, conditional 16p11.2 del/+ within the cortex drives hyperactivity in both sexes. Our work reveals that a locus linked to NDDs acts in different striatal circuits, selectively impacting behavior in a sex- and cell type-specific manner, providing new insight into male vulnerability for NDDs. Highlights - 16p11.2 hemideletion (16p11.2 del/+) induces sex- and cell type-specific transcriptomic signatures in spiny projection neurons (SPNs). - Transcriptomic changes in GABA signaling in D1-SPNs align with changes in inhibitory synapse function. - 16p11.2 del/+ in D2-SPNs causes hyperactivity in males but not females. - 16p11.2 del/+ in D2-SPNs in the dorsal lateral striatum drives hyperactivity in males. - 16p11.2 del/+ in cortex drives hyperactivity in both sexes. Graphic abstract
Collapse
|
4
|
Chen Y, Hong Z, Wang J, Liu K, Liu J, Lin J, Feng S, Zhang T, Shan L, Liu T, Guo P, Lin Y, Li T, Chen Q, Jiang X, Li A, Li X, Li Y, Wilde JJ, Bao J, Dai J, Lu Z. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model. Cell 2023; 186:5394-5410.e18. [PMID: 37922901 DOI: 10.1016/j.cell.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.
Collapse
Affiliation(s)
- Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zexuan Hong
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jingyi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Liang Shan
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taian Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinyue Guo
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaodan Jiang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | | | - Jin Bao
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yang M, Singh A, McDougle M, Décarie-Spain L, Kanoski S, de Lartigue G. Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561580. [PMID: 37873148 PMCID: PMC10592764 DOI: 10.1101/2023.10.09.561580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The hippocampus (HPC), traditionally known for its role in learning and memory, has emerged as a controller of food intake. While prior studies primarily associated the HPC with food intake inhibition, recent research suggests a critical role in appetitive processes. We hypothesized that orexigenic HPC neurons differentially respond to fats and/or sugars, potent natural reinforcers that contribute to obesity development. Results uncover previously-unrecognized, spatially-distinct neuronal ensembles within the dorsal HPC (dHPC) that are responsive to separate nutrient signals originating from the gut. Using activity-dependent genetic capture of nutrient-responsive HPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific preference through different mechanisms. Sugar-responsive neurons encode an appetitive spatial memory engram for meal location, whereas fat-responsive neurons selectively enhance the preference and motivation for fat intake. Collectively, these findings uncover a neural basis for the exquisite specificity in processing macronutrient signals from a meal that shape dietary choices.
Collapse
|
6
|
Olsen RH, English JG. Advancements in G protein-coupled receptor biosensors to study GPCR-G protein coupling. Br J Pharmacol 2023; 180:1433-1443. [PMID: 36166832 PMCID: PMC10511148 DOI: 10.1111/bph.15962] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Enzymatic and cellular signalling biosensors are used to decipher the activities of complex biological systems. Biosensors for monitoring G protein-coupled receptors (GPCRs), the most drugged class of proteins in the human body, are plentiful and vary in utility, form and function. Their applications have continually expanded our understanding of this important protein class. Here, we briefly summarize a subset of this field with accelerating importance: transducer biosensors measuring receptor-coupling and selectivity, with an emphasis on sensors measuring receptor association and activation of heterotrimeric signalling complexes.
Collapse
Affiliation(s)
| | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| |
Collapse
|
7
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
8
|
Zhang L, Liu C, Zhou X, Zhou H, Luo S, Wang Q, Yao Z, Chen JF. Neural representation and modulation of volitional motivation in response to escalating efforts. J Physiol 2023; 601:631-645. [PMID: 36534700 PMCID: PMC10108165 DOI: 10.1113/jp283915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Task-dependent volitional control of the selected neural activity in the cortex is critical to neuroprosthetic learning to achieve reliable and robust control of the external device. The volitional control of neural activity is driven by a motivational factor (volitional motivation), which directly reinforces the target neurons via real-time biofeedback. However, in the absence of motor behaviour, how do we evaluate volitional motivation? Here, we defined the criterion (ΔF/F) of the calcium fluorescence signal in a volitionally controlled neural task, then escalated the efforts by progressively increasing the number of reaching the criterion or holding time after reaching the criterion. We devised calcium-based progressive threshold-crossing events (termed 'Calcium PTE') and calcium-based progressive threshold-crossing holding-time (termed 'Calcium PTH') for quantitative assessment of volitional motivation in response to progressively escalating efforts. Furthermore, we used this novel neural representation of volitional motivation to explore the neural circuit and neuromodulator bases for volitional motivation. As with behavioural motivation, chemogenetic activation and pharmacological blockade of the striatopallidal pathway decreased and increased, respectively, the breakpoints of the 'Calcium PTE' and 'Calcium PTH' in response to escalating efforts. Furthermore, volitional and behavioural motivation shared similar dopamine dynamics in the nucleus accumbens in response to trial-by-trial escalating efforts. In general, the development of a neural representation of volitional motivation may open a new avenue for smooth and effective control of brain-machine interface tasks. KEY POINTS: Volitional motivation is quantitatively evaluated by M1 neural activity in response to progressively escalating volitional efforts. The striatopallidal pathway and adenosine A2A receptor modulate volitional motivation in response to escalating efforts. Dopamine dynamics encode prediction signal for reward in response to repeated escalating efforts during motor and volitional conditioning. Mice learn to modulate neural activity to compensate for repeated escalating efforts in volitional control.
Collapse
Affiliation(s)
- Liping Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengwei Liu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaopeng Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shengtao Luo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qin Wang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Glat M, Gundacker A, Cuenca Rico L, Czuczu B, Ben‐Simon Y, Harkany T, Pollak DD. An accessory prefrontal cortex-thalamus circuit sculpts maternal behavior in virgin female mice. EMBO J 2022; 41:e111648. [PMID: 36341708 PMCID: PMC9753463 DOI: 10.15252/embj.2022111648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.
Collapse
Affiliation(s)
- Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Barbara Czuczu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Yoav Ben‐Simon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Scott-Solomon E, Hsu YC. Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair. Annu Rev Cell Dev Biol 2022; 38:419-446. [PMID: 36201298 PMCID: PMC10085582 DOI: 10.1146/annurev-cellbio-120320-032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peripheral nervous system (PNS) endows animals with the remarkable ability to sense and respond to a dynamic world. Emerging evidence shows the PNS also participates in tissue homeostasis and repair by integrating local changes with organismal and environmental changes. Here, we provide an in-depth summary of findings delineating the diverse roles of peripheral nerves in modulating stem cell behaviors and immune responses under steady-state conditions and in response to injury and duress, with a specific focus on the skin and the hematopoietic system. These examples showcase how elucidating neuro-stem cell and neuro-immune cell interactions provides a conceptual framework that connects tissue biology and local immunity with systemic bodily changes to meet varying demands. They also demonstrate how changes in these interactions can manifest in stress, aging, cancer, and inflammation, as well as how these findings can be harnessed to guide the development of new therapeutics.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
12
|
Kosten L, Emmi SA, Missault S, Keliris GA. Combining magnetic resonance imaging with readout and/or perturbation of neural activity in animal models: Advantages and pitfalls. Front Neurosci 2022; 16:938665. [PMID: 35911983 PMCID: PMC9334914 DOI: 10.3389/fnins.2022.938665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
One of the main challenges in brain research is to link all aspects of brain function: on a cellular, systemic, and functional level. Multimodal neuroimaging methodology provides a continuously evolving platform. Being able to combine calcium imaging, optogenetics, electrophysiology, chemogenetics, and functional magnetic resonance imaging (fMRI) as part of the numerous efforts on brain functional mapping, we have a unique opportunity to better understand brain function. This review will focus on the developments in application of these tools within fMRI studies and highlight the challenges and choices neurosciences face when designing multimodal experiments.
Collapse
Affiliation(s)
- Lauren Kosten
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Serena Alexa Emmi
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Foundation for Research & Technology – Hellas, Heraklion, Greece
| |
Collapse
|
13
|
Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, Heck N, Trifilieff P, Barik J, Vanhoutte P. Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Front Synaptic Neurosci 2022; 13:799274. [PMID: 34970134 PMCID: PMC8712310 DOI: 10.3389/fnsyn.2021.799274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
Collapse
Affiliation(s)
- Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Vanesa Ortiz
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Paula Pousinha
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| |
Collapse
|
14
|
Gatica RI, Aguilar-Rivera M, Henny P, Fuentealba JA. Susceptibility to express amphetamine locomotor sensitization correlates with dorsolateral striatum bursting activity and GABAergic synapses in the globus pallidus. Brain Res Bull 2021; 179:83-96. [PMID: 34920034 DOI: 10.1016/j.brainresbull.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Repeated psychostimulant administration results in behavioral sensitization, a process that is relevant in the early phases of drug addiction. Critically, behavioral sensitization is not observed in all subjects. Evidence shows that differential neuronal activity in the dorsolateral striatum (DLS) accompanies the expression of amphetamine (AMPH) locomotor sensitization. However, whether individual differences in DLS activity previous to AMPH administration can predict the expression of locomotor sensitization has not been assessed. Here, we examined DLS neuronal activity before and after repeated AMPH administration and related it to the susceptibility of rats to sensitize. For that, single-unit recordings on DLS medium spiny neurons (MSNs) were carried out in freely moving male Sprague Dawley rats during repeated AMPH administration. We also examined differences in neurostructure that could accompany sensitization. We quantified the density of the inhibitory postsynaptic marker gephyrin (Geph) in the entopeduncular nucleus (EP) and globus pallidus (GP). A higher burst firing and a lower percentage of correlation between MSNs post-Saline firing rate vs. locomotion predicted the expression of locomotor sensitization. Moreover, during the AMPH challenge, we observed that burst firing decreased in sensitized rats, in contrast to non-sensitized rats in which burst firing was maintained. Finally, a higher Geph density on GP but not EP was observed in non-sensitized rats after AMPH challenge. These results indicate that initial differences in DLS burst firing might underlie the susceptibility to express locomotor sensitization and suggest that the potentiation of dorsal striatum indirect pathway could be considered a protective mechanism to locomotor sensitization.
Collapse
Affiliation(s)
- Rafael Ignacio Gatica
- Laboratorio de Neuroquímica, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile; Laboratorio de Neuroanatomía, Departamento de Anatomía, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile
| | - Marcelo Aguilar-Rivera
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile
| | - José Antonio Fuentealba
- Laboratorio de Neuroquímica, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile.
| |
Collapse
|
15
|
Selective Manipulation of G-Protein γ 7 Subunit in Mice Provides New Insights into Striatal Control of Motor Behavior. J Neurosci 2021; 41:9065-9081. [PMID: 34544837 DOI: 10.1523/jneurosci.1211-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 09/11/2021] [Indexed: 01/15/2023] Open
Abstract
Stimulatory coupling of dopamine D1 (D1R) and adenosine A2A receptors (A2AR) to adenylyl cyclase within the striatum is mediated through a specific Gαolfβ2γ7 heterotrimer to ultimately modulate motor behaviors. To dissect the individual roles of the Gαolfβ2γ7 heterotrimer in different populations of medium spiny neurons (MSNs), we produced and characterized conditional mouse models, in which the Gng7 gene was deleted in either the D1R- or A2AR/D2R-expressing MSNs. We show that conditional loss of γ7 disrupts the cell type-specific assembly of the Gαolfβ2γ7 heterotrimer, thereby identifying its circumscribed roles acting downstream of either the D1Rs or A2ARs in coordinating motor behaviors, including in vivo responses to psychostimulants. We reveal that Gαolfβ2γ7/cAMP signal in D1R-MSNs does not impact spontaneous and amphetamine-induced locomotor behaviors in male and female mice, while its loss in A2AR/D2R-MSNs results in a hyperlocomotor phenotype and enhanced locomotor response to amphetamine. Additionally, Gαolfβ2γ7/cAMP signal in either D1R- or A2AR/D2R-expressing MSNs is not required for the activation of PKA signaling by amphetamine. Finally, we show that Gαolfβ2γ7 signaling acting downstream of D1Rs is selectively implicated in the acute locomotor-enhancing effects of morphine. Collectively, these results support the general notion that receptors use specific Gαβγ proteins to direct the fidelity of downstream signaling pathways and to elicit a diverse repertoire of cellular functions. Specifically, these findings highlight the critical role for the γ7 protein in determining the cellular level, and hence, the function of the Gαolfβ2γ7 heterotrimer in several disease states associated with dysfunctional striatal signaling.SIGNIFICANCE STATEMENT Dysfunction or imbalance of cAMP signaling in the striatum has been linked to several neurologic and neuropsychiatric disorders, including Parkinson's disease, dystonia, schizophrenia, and drug addiction. By genetically targeting the γ7 subunit in distinct striatal neuronal subpopulations in mice, we demonstrate that the formation and function of the Gαolfβ2γ7 heterotrimer, which represents the rate-limiting step for cAMP production in the striatum, is selectively disrupted. Furthermore, we reveal cell type-specific roles for Gαolfβ2γ7-mediated cAMP production in the control of spontaneous locomotion as well as behavioral and molecular responses to psychostimulants. Our findings identify the γ7 protein as a novel therapeutic target for disease states associated with dysfunctional striatal cAMP signaling.
Collapse
|
16
|
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II. Acta Naturae 2021; 13:17-32. [PMID: 35127143 PMCID: PMC8807539 DOI: 10.32607/actanaturae.11415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
In modern life sciences, the issue of a specific, exogenously directed manipulation of a cell's biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells' electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (overviewed in Part I), as well as chemogenetics and thermogenetics (described here, in Part II), which is significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.
Collapse
Affiliation(s)
- D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
17
|
Van Steenbergen V, Bareyre FM. Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury. Exp Neurol 2021; 345:113839. [PMID: 34389362 DOI: 10.1016/j.expneurol.2021.113839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 01/21/2023]
Abstract
A critical shortcoming of the central nervous system is its limited ability to repair injured nerve connections. Trying to overcome this limitation is not only relevant to understand basic neurobiological principles but also holds great promise to advance therapeutic strategies related, in particular, to spinal cord injury (SCI). With barely any SCI patients re-gaining complete neurological function, there is a high need to understand how we could target and improve spinal plasticity to re-establish neuronal connections into a functional network. The development of chemogenetic tools has proven to be of great value to understand functional circuit wiring before and after injury and to correlate novel circuit formation with behavioral outcomes. This review covers commonly used chemogenetic approaches based on metabotropic receptors and their use to improve our understanding of circuit wiring following spinal cord injury.
Collapse
Affiliation(s)
- Valérie Van Steenbergen
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany.
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany; Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
18
|
Nakamura Y, Longueville S, Nishi A, Hervé D, Girault JA, Nakamura Y. Dopamine D1 receptor-expressing neurons activity is essential for locomotor and sensitizing effects of a single injection of cocaine. Eur J Neurosci 2021; 54:5327-5340. [PMID: 34273137 DOI: 10.1111/ejn.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Dopamine D1 receptors play an important role in the effects of cocaine. Here, we investigated the role of neurons which express these receptors (D1-neurons) in the acute locomotor effects of cocaine and the locomotor sensitization observed after a second injection of this drug, using the previously established two-injection protocol of sensitization. We inhibited D1-neurons using double transgenic mice conditionally expressing the inhibitory Gi-coupled designer receptor exclusively activated by designer drugs (Gi-DREADD) in D1-neurons. Chemogenetic inhibition of D1-neurons by a low dose of clozapine (0.1 mg/kg) decreased the cocaine-induced expression of Fos in striatal neurons. It diminished the basal locomotor activity and acute hyper-locomotion induced by cocaine (20 mg/kg). Clozapine 0.1 mg/kg had no effect by itself and did not alter cocaine effects in wild-type mice. Inhibition of D1-neurons during the first cocaine administration prevented the sensitization of the locomotor response in response to a second cocaine administration 10 days later. On Day 11, inhibition of D1-neurons by clozapine stimulation of Gi-DREADD blocked cocaine-induced locomotion including in sensitized mice, whereas on Day 12, in the absence of clozapine and D1-neurons inhibition, all mice displayed a sensitized response to cocaine. These results show that chemogenetic inhibition of D1-neurons decreases spontaneous and cocaine-induced locomotor activity. It prevents sensitization induction and blocks sensitized locomotion in a two-injection protocol of sensitization but does not reverse established sensitization. Our study further supports the central role of D1-neurons in mediating the acute locomotor effects of cocaine and its sensitization.
Collapse
Affiliation(s)
- Yukari Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France.,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Sophie Longueville
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Denis Hervé
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- INSERM UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne University, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
19
|
Pickering CA, Mazarakis ND. Viral Vector Delivery of DREADDs for CNS Therapy. Curr Gene Ther 2021; 21:191-206. [PMID: 33573551 DOI: 10.2174/1566523221666210211102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are genetically modified G-protein-coupled receptors (GPCRs), that can be activated by a synthetic ligand which is otherwise inert at endogenous receptors. DREADDs can be expressed in cells in the central nervous system (CNS) and subsequently offer the opportunity for remote and reversible silencing or activation of the target cells when the synthetic ligand is systemically administered. In neuroscience, DREADDs have thus far shown to be useful tools for several areas of research and offer considerable potential for the development of gene therapy strategies for neurological disorders. However, in order to design a DREADD-based gene therapy, it is necessary to first evaluate the viral vector delivery methods utilised in the literature to deliver these chemogenetic tools. This review evaluates each of the prominent strategies currently utilised for DREADD delivery, discussing their respective advantages and limitations. We focus on adeno-associated virus (AAV)-based and lentivirus-based systems, and the manipulation of these through cell-type specific promoters and pseudotyping. Furthermore, we address how virally mediated DREADD delivery could be improved in order to make it a viable gene therapy strategy and thus expand its translational potential.
Collapse
Affiliation(s)
- Ceri A Pickering
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Ozawa A, Arakawa H. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behav Brain Res 2021; 406:113234. [PMID: 33741409 PMCID: PMC8110310 DOI: 10.1016/j.bbr.2021.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Recent developments in chemogenetic approaches to the investigation of brain function have ushered in a paradigm change in the strategy for drug and behavior research and clinical drug-based medications. As the nature of the drug action is based on humoral regulation, it is a challenge to identify the neuronal mechanisms responsible for the expression of certain targeted behavior induced by drug application. The development of chemogenetic approaches has allowed researchers to control neural activities in targeted neurons through a toolbox, including engineered G protein-coupled receptors or ligand-gated ion channels together with exogenously inert synthetic ligands. This review provides a brief overview of the chemogenetics toolbox with an emphasis on the DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) technique used in rodent models, which is applicable to the investigation of how specific neural circuits regulate behavioral processes. The use of chemogenetics has had a significant impact on basic neuroscience for a better understanding of the relationships between brain activity and the expression of behaviors with cell- and circuit-specific orders. Furthermore, chemogenetics is potentially a useful tool to deconstruct the neuropathological mechanisms of mental diseases and its regulation by drug, and provide us with transformative therapeutics with medication. We also review recent findings in the use of chemogenetic techniques to uncover functional circuit connections of serotonergic neurons in rodent models.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, Mito, Ibaraki, Japan; Department of Systems Physiology, University of Ryukyus, Faculty of Medicine, Nakagami District, Okinawa, Japan.
| |
Collapse
|
21
|
Nuzzaci D, Cansell C, Liénard F, Nédélec E, Ben Fradj S, Castel J, Foppen E, Denis R, Grouselle D, Laderrière A, Lemoine A, Mathou A, Tolle V, Heurtaux T, Fioramonti X, Audinat E, Pénicaud L, Nahon JL, Rovère C, Benani A. Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal. Cell Rep 2021; 30:3067-3078.e5. [PMID: 32130907 DOI: 10.1016/j.celrep.2020.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Céline Cansell
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Selma Ben Fradj
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julien Castel
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Ewout Foppen
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Raphael Denis
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Dominique Grouselle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Aleth Lemoine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Alexia Mathou
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Virginie Tolle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, INRA, Université de Bordeaux, 33076 Bordeaux, France
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Luc Pénicaud
- StromaLab, CNRS, EFS, INP-ENVT, INSERM, Université Paul Sabatier, 31100 Toulouse, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
22
|
Bączyk M, Alami NO, Delestrée N, Martinot C, Tang L, Commisso B, Bayer D, Doisne N, Frankel W, Manuel M, Roselli F, Zytnicki D. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med 2021; 217:151829. [PMID: 32484501 PMCID: PMC7398175 DOI: 10.1084/jem.20191734] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.
Collapse
Affiliation(s)
- Marcin Bączyk
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Nicolas Delestrée
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Clémence Martinot
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Linyun Tang
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Barbara Commisso
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - David Bayer
- Department of Neurology, Ulm University, Ulm, Germany.,Cellular and Molecular Mechanisms in Aging Research Training Group, Ulm University, Ulm, Germany
| | - Nicolas Doisne
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Wayne Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Marin Manuel
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
23
|
Schalbetter SM, Mueller FS, Scarborough J, Richetto J, Weber-Stadlbauer U, Meyer U, Notter T. Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab Anim (NY) 2021; 50:69-75. [PMID: 33619409 DOI: 10.1038/s41684-021-00723-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.
Collapse
Affiliation(s)
- Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tina Notter
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
24
|
Neuronal activity increases translocator protein (TSPO) levels. Mol Psychiatry 2021; 26:2025-2037. [PMID: 32398717 PMCID: PMC8440208 DOI: 10.1038/s41380-020-0745-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.
Collapse
|
25
|
Ehinger Y, Morisot N, Phamluong K, Sakhai SA, Soneja D, Adrover MF, Alvarez VA, Ron D. cAMP-Fyn signaling in the dorsomedial striatum direct pathway drives excessive alcohol use. Neuropsychopharmacology 2021; 46:334-342. [PMID: 32417851 PMCID: PMC7852539 DOI: 10.1038/s41386-020-0712-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use. First, we knocked down Fyn selectively in DMS dMSNs or iMSNs of mice and measured the level of alcohol consumption. We found that downregulation of Fyn in dMSNs, but not in iMSNs, reduces excessive alcohol but not saccharin intake. D1Rs are coupled to Gαs/olf, which activate cAMP signaling. To examine whether Fyn's actions are mediated through cAMP signaling, DMS dMSNs were infected with GαsDREADD, and the activation of Fyn signaling was measured following CNO treatment. We found that remote stimulation of cAMP signaling in DMS dMSNs activates Fyn and promotes the phosphorylation of the Fyn substrate, GluN2B. In contract, remote activation of GαsDREADD in DLS dMSNs did not alter Fyn signaling. We then tested whether activation of GαsDREADD in DMS dMSNs or iMSNs alters alcohol intake and observed that CNO-dependent activation of GαsDREADD in DMS dMSNs but not iMSNs increases alcohol but not saccharin intake. Finally, we examined the contribution of Fyn to GαsDREADD-dependent increase in alcohol intake, and found that systemic administration of the Fyn inhibitor, AZD0503 blocks GαsDREADD-dependent increase in alcohol consumption. Our results suggest that the cAMP-Fyn axis in the DMS dMSNs is a molecular transducer of mechanisms underlying the development of excessive alcohol consumption.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Nadege Morisot
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Nkarta Therapeutics, San Francisco, CA, USA
| | - Khanhky Phamluong
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Samuel A Sakhai
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
- Sage Therapeutics, San Francisco, CA, USA
| | - Drishti Soneja
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Martin F Adrover
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- INGEBI, CONICET, Buenos Aires, Argentina
| | - Veronica A Alvarez
- National Institutes of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, 20892, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Soto PL. Single‐case experimental designs for behavioral neuroscience. J Exp Anal Behav 2020; 114:447-467. [DOI: 10.1002/jeab.633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Paul L. Soto
- Department of Psychology Louisiana State University
| |
Collapse
|
27
|
Dyavanapalli J. Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am J Physiol Heart Circ Physiol 2020; 319:H1153-H1161. [PMID: 33035444 DOI: 10.1152/ajpheart.00398.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neural control of the heart is regulated by sympathetic and parasympathetic divisions of the autonomic nervous system, both opposing each other to maintain cardiac homeostasis via regulating heart rate, conduction velocity, force of contraction, and coronary blood flow. Sympathetic hyperactivity and diminished parasympathetic activity are the characteristic features of many cardiovascular disease states including hypertension, myocardial ischemia, and arrhythmias that result in heart failure. Restoring parasympathetic activity to the heart has recently been identified as the promising approach to treat such conditions. However, approaches that used vagal nerve stimulation have been shown to be unsuccessful in heart failure. This review focuses on novel chemogenetic approaches used to identify the cardioprotective nature of activating neural points along the vagal pathway (both central and peripheral) while being selectively therapeutic in heart failure and obstructive sleep apnea.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
28
|
McIver EL, Atherton JF, Chu HY, Cosgrove KE, Kondapalli J, Wokosin D, Surmeier DJ, Bevan MD. Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons. Cell Rep 2020; 28:992-1002.e4. [PMID: 31340159 PMCID: PMC6699776 DOI: 10.1016/j.celrep.2019.06.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
Abnormal subthalamic nucleus (STN) activity is linked to impaired movement in Parkinson’s disease (PD). The autonomous firing of STN neurons, which contributes to their tonic excitation of the extrastriatal basal ganglia and shapes their integration of synaptic input, is downregulated in PD models. Using electrophysiological, chemogenetic, genetic, and optical approaches, we find that chemogenetic activation of indirect pathway striatopallidal neurons downregulates intrinsic STN activity in normal mice but this effect is occluded in Parkinsonian mice. Loss of autonomous spiking in PD mice is prevented by STN N-methyl-D-aspartate receptor (NMDAR) knockdown and reversed by reactive oxygen species breakdown or KATP channel inhibition. Chemogenetic activation of hM3D(Gq) in STN neurons in Parkinsonian mice rescues their intrinsic activity, modifies their synaptic integration, and ameliorates motor dysfunction. Together these data argue that in PD mice increased indirect pathway activity leads to disinhibition of the STN, which triggers maladaptive NMDAR-dependent downregulation of autonomous firing. McIver et al. describe the cellular and circuit mechanisms responsible for the loss of autonomous subthalamic nucleus (STN) spiking in dopamine-depleted mice and demonstrate that chemogenetic rescue of intrinsic STN activity reduces Parkinsonian motor dysfunction.
Collapse
Affiliation(s)
- Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Hong-Yuan Chu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen E Cosgrove
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Bariselli S, Miyazaki NL, Creed MC, Kravitz AV. Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nat Commun 2020; 11:3996. [PMID: 32778725 PMCID: PMC7417999 DOI: 10.1038/s41467-020-17763-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Psychomotor stimulants increase dopamine levels in the striatum and promote locomotion; however, their effects on striatal pathway function in vivo remain unclear. One model that has been proposed to account for these motor effects suggests that stimulants drive hyperactivity via activation and inhibition of direct and indirect pathway striatal neurons, respectively. Although this hypothesis is consistent with the cellular actions of dopamine receptors and received support from optogenetic and chemogenetic studies, it has been rarely tested with in vivo recordings. Here, we test this model and observe that cocaine increases the activity of both pathways in the striatum of awake mice. These changes are linked to a dopamine-dependent cocaine-induced strengthening of upstream orbitofrontal cortex (OFC) inputs to the dorsomedial striatum (DMS) in vivo. Finally, depressing OFC-DMS pathway with a high frequency stimulation protocol in awake mice over-powers the cocaine-induced potentiation of OFC-DMS pathway and attenuates the expression of locomotor sensitization, directly linking OFC-DMS potentiation to cocaine-induced hyperactivity.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), Laboratory for Integrative Neuroscience (LIN), Bethesda, MD, 20892-9412, USA
| | - Nanami L Miyazaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Meaghan C Creed
- Washington University Pain Center, St Louis, MO, 63110, USA
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Salery M, Trifilieff P, Caboche J, Vanhoutte P. From Signaling Molecules to Circuits and Behaviors: Cell-Type-Specific Adaptations to Psychostimulant Exposure in the Striatum. Biol Psychiatry 2020; 87:944-953. [PMID: 31928716 DOI: 10.1016/j.biopsych.2019.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Addiction is characterized by a compulsive pattern of drug seeking and consumption and a high risk of relapse after withdrawal that are thought to result from persistent adaptations within brain reward circuits. Drugs of abuse increase dopamine (DA) concentration in these brain areas, including the striatum, which shapes an abnormal memory trace of drug consumption that virtually highjacks reward processing. Long-term neuronal adaptations of gamma-aminobutyric acidergic striatal projection neurons (SPNs) evoked by drugs of abuse are critical for the development of addiction. These neurons form two mostly segregated populations, depending on the DA receptor they express and their output projections, constituting the so-called direct (D1 receptor) and indirect (D2 receptor) SPN pathways. Both SPN subtypes receive converging glutamate inputs from limbic and cortical regions, encoding contextual and emotional information, together with DA, which mediates reward prediction and incentive values. DA differentially modulates the efficacy of glutamate synapses onto direct and indirect SPN pathways by recruiting distinct striatal signaling pathways, epigenetic and genetic responses likely involved in the transition from casual drug use to addiction. Herein we focus on recent studies that have assessed psychostimulant-induced alterations in a cell-type-specific manner, from remodeling of input projections to the characterization of specific molecular events in each SPN subtype and their impact on long-lasting behavioral adaptations. We discuss recent evidence revealing the complex and concerted action of both SPN populations on drug-induced behavioral responses, as these studies can contribute to the design of future strategies to alleviate specific behavioral components of addiction.
Collapse
Affiliation(s)
- Marine Salery
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pierre Trifilieff
- NutriNeuro, Unité Mixte de Recherche (UMR) 1286, Institut National de la Recherche Agronomique, Bordeaux Institut Polytechnique, University of Bordeaux, Bordeaux, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France.
| | - Peter Vanhoutte
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Sorbonne Université, Faculty of Sciences, Paris, France; Centre National de la Recherche Scientifique, UMR8246, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1130, Paris France
| |
Collapse
|
31
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
32
|
Baker M, Hong SI, Kang S, Choi DS. Rodent models for psychiatric disorders: problems and promises. Lab Anim Res 2020; 36:9. [PMID: 32322555 PMCID: PMC7161141 DOI: 10.1186/s42826-020-00039-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Psychiatric disorders are a prevalent global health problem, over 900 million individuals affected by a continuum of mental and substance use disorders. Due to this high prevalence, and the substantial direct and indirect societal costs, it is essential to understand the underlying mechanisms of these disorders to facilitate development of new and more effective treatments. Since the advent of recombinant DNA technologies in the early 1980s, genetically modified rodent models have significantly contributed to the genetic and molecular basis of psychiatric disorders. Despite significant advancements, many challenges remain after unsuccessful drug development based on rodent models. Recent human genetics show the polygenetic nature of mental disorders, identifying hundreds of allelic variants that confer increased risk. However, given the complexity of the brain, with many unique cell types, gene expression profiles, and developmental trajectories, proper animal models are needed more than ever to dissect genes and circuits in a cell type-specific manner to advance our understanding and treatment of psychiatric disorders. In this mini-review, we highlight current challenges and promises of using rodent models in advancing science and drug development, focusing on advanced techniques, and their applications to rodent models of psychiatric disorders.
Collapse
Affiliation(s)
- Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905 USA
- Neuroscience Program, Rochester, MN USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
33
|
Synaptic and cellular plasticity in Parkinson's disease. Acta Pharmacol Sin 2020; 41:447-452. [PMID: 32112041 PMCID: PMC7470833 DOI: 10.1038/s41401-020-0371-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, which causes a tremendous socioeconomic burden. PD patients are suffering from debilitating motor and nonmotor symptoms. Cardinal motor symptoms of PD, including akinesia, bradykinesia, resting tremor, and rigidity, are caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. In addition, decreased amounts of dopamine (DA) level in the basal ganglia induces numerous adaptive changes at the cellular and synaptic levels in the basal ganglia circuits. These cellular and synaptic adaptations are believed to underlie the emergence and propagation of correlated, rhythmic pattern of activity throughout the interconnected cortico-basal ganglia-thalamocortical network. The widespread pathological pattern of brain activity is closely linked to the devastating motor symptoms of PD. Accumulating evidence suggests that both dopaminergic degeneration and the associated abnormal cellular and circuit activity in the basal ganglia drive the motor symptoms of PD. In this short review I summarize the recent advances in our understanding of synaptic and cellular alterations in two basal ganglia nuclei (i.e. the striatum and the subthalamic nucleus) following a complete loss of DA, and in our conceptual understanding of the cellular and circuit bases for the pathological pattern of brain activity in parkinsonian state.
Collapse
|
34
|
Peeters LM, Missault S, Keliris AJ, Keliris GA. Combining designer receptors exclusively activated by designer drugs and neuroimaging in experimental models: A powerful approach towards neurotheranostic applications. Br J Pharmacol 2020; 177:992-1002. [PMID: 31658365 PMCID: PMC7042113 DOI: 10.1111/bph.14885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
The combination of chemogenetics targeting specific brain cell populations with in vivo imaging techniques provides scientists with a powerful new tool to study functional neural networks at the whole-brain scale. A number of recent studies indicate the potential of this approach to increase our understanding of brain function in health and disease. In this review, we discuss the employment of a specific chemogenetic tool, designer receptors exclusively activated by designer drugs, in conjunction with non-invasive neuroimaging techniques such as PET and MRI. We highlight the utility of using this multiscale approach in longitudinal studies and its ability to identify novel brain circuits relevant to behaviour that can be monitored in parallel. In addition, some identified shortcomings in this technique and more recent efforts to overcome them are also presented. Finally, we discuss the translational potential of designer receptors exclusively activated by designer drugs in neuroimaging and the promise it holds for future neurotheranostic applications.
Collapse
|
35
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
36
|
Lee J, Lee HR, Kim JI, Baek J, Jang EH, Lee J, Kim M, Lee RU, Kim S, Park P, Kaang BK. Transient cAMP elevation during systems consolidation enhances remote contextual fear memory. Neurobiol Learn Mem 2020; 169:107171. [PMID: 31978552 DOI: 10.1016/j.nlm.2020.107171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/19/2020] [Indexed: 11/30/2022]
Abstract
Memory is stored in our brains over a temporally graded transition. With time, recently formed memories are transformed into remote memories for permanent storage; multiple brain regions, such as the hippocampus and neocortex, participate in this process. In this study, we aimed to understand the molecular mechanism of systems consolidation of memory and to investigate the brain regions that contribute to this regulation. We first carried out a contextual fear memory test using a transgenic mouse line, which expressed exogenously-derived Aplysia octopamine receptors in the forebrain region, such that, in response to octopamine treatment, cyclic adenosine monophosphate (cAMP) levels could be transiently elevated. From this experiment, we revealed that transient elevation of cAMP levels in the forebrain during systems consolidation led to an enhancement in remote fear memory and increased miniature excitatory synaptic currents in layer II/III of the anterior cingulate cortex (ACC). Furthermore, using an adeno-associated-virus-driven DREADD system, we investigated the specific regions in the forebrain that contribute to the regulation of memory transfer into long-term associations. Our results implied that transient elevation of cAMP levels was induced chemogenetically in the ACC, but not in the hippocampus, and showed a significant enhancement of remote memory. This finding suggests that neuronal activation during systems consolidation through the elevation of cAMP levels in the ACC contributes to remote memory enhancement.
Collapse
Affiliation(s)
- Jaehyun Lee
- Interdisciplinary Program in Neuroscience, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, Republic of Korea; Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Hye-Ryeon Lee
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Jae-Ick Kim
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Jinhee Baek
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Eun-Hae Jang
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Jihye Lee
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Myeongwon Kim
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Ro Un Lee
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Somi Kim
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Pojeong Park
- Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Bong-Kiun Kaang
- Interdisciplinary Program in Neuroscience, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 08826, Republic of Korea; Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Gwanak-Gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Gatica RI, Aguilar-Rivera MÍ, Azocar VH, Fuentealba JA. Individual Differences in Amphetamine Locomotor Sensitization are Accompanied with Changes in Dopamine Release and Firing Pattern in the Dorsolateral Striatum of Rats. Neuroscience 2019; 427:116-126. [PMID: 31874242 DOI: 10.1016/j.neuroscience.2019.11.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022]
Abstract
Not all the people that consume drugs of abuse develop addiction. In this sense, just a percentage of rats express locomotor sensitization after repeated psychostimulant exposure. Neurochemical evidence has shown that locomotor sensitization is associated with changes in dorsolateral striatum (DLS) activity. However, it is unknown if individual differences observed in locomotor sensitization are related to differential neuro-adaptations in DLS activity. In this study, we measured basal dopamine (DA) levels and single unit activity in the DLS of anesthetized rats, after repeated amphetamine (AMPH) administration. Rats were treated with AMPH 1.0 mg/kg ip or saline ip for 5 days. Following 5 days of withdrawal, a challenge dose of AMPH 1.0 mg/kg ip was injected. In-vivo microdialysis experiments and single unit recording were carried out twenty-four hours after the last AMPH injection. Sensitized rats showed increased basal DA levels and baseline firing rate of medium spiny neurons (MSNs) compared to non-sensitized rats. The local variation index (Lv) was used to measure the firing pattern of MSNs. In saline rats, a bursty firing pattern was observed in MSNs. A decrease in MSNs baseline Lv accompanies the expression of AMPH locomotor sensitization. Moreover, a decrease in Lv after an acute AMPH 1.0 mg/kg injection was only observed in saline and sensitized rats. Our results show individual differences in DLS basal DA levels and firing pattern after repeated AMPH administration, suggesting that an hyperfunction of nigrostriatal pathway, accompanied by a decrease in DLS MSNs firing irregularity underlies the expression of AMPH locomotor sensitization.
Collapse
Affiliation(s)
- Rafael Ignacio Gatica
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Victor Hugo Azocar
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Antonio Fuentealba
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Transient Chemogenetic Inhibition of D1-MSNs in the Dorsal Striatum Enhances Methamphetamine Self-Administration. Brain Sci 2019; 9:brainsci9110330. [PMID: 31752398 PMCID: PMC6895983 DOI: 10.3390/brainsci9110330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
The dorsal striatum is important for the development of drug addiction; however, the role of dopamine D1 receptor (D1R) expressing medium-sized spiny striatonigral (direct pathway) neurons (D1-MSNs) in regulating excessive methamphetamine intake remains elusive. Here we seek to determine if modulating D1-MSNs in the dorsal striatum alters methamphetamine self-administration in animals that have demonstrated escalation of self-administration. A viral vector-mediated approach was used to induce expression of the inhibitory (Gi coupled-hM4D) or stimulatory (Gs coupled-rM3D) designer receptors exclusively activated by designer drugs (DREADDs) engineered to specifically respond to the exogenous ligand clozapine-N-oxide (CNO) selectively in D1-MSNs in the dorsal striatum. CNO in animals expressing hM4D increased responding for methamphetamine compared to vehicle in a within subject treatment paradigm. CNO in animals that did not express DREADDs (DREADD naïve-CNO) or expressed rM3D did not alter responding for methamphetamine, demonstrating specificity for hM4D-CNO interaction in increasing self-administration. Postmortem tissue analysis reveals that hM4D-CNO animals had reduced Fos immunoreactivity in the dorsal striatum compared to rM3D-CNO animals and DREADD naïve-CNO animals. Cellular mechanisms in the dorsal striatum in hM4D-CNO animals reveal enhanced expression of D1R and Ca2+/calmodulin-dependent kinase II (CaMKII). Conversely, rM3D-CNO animals had enhanced activity of extracellular signal-regulated kinase (Erk1/2) and Akt in the dorsal striatum, supporting rM3D-CNO interaction in these animals compared with drug naïve controls, DREADD naïve-CNO and hM4D-CNO animals. Our studies indicate that transient inhibition of D1-MSNs-mediated strengthening of methamphetamine addiction-like behavior is associated with cellular adaptations that support dysfunctional dopamine signaling in the dorsal striatum.
Collapse
|
39
|
Sutton LP, Muntean BS, Ostrovskaya O, Zucca S, Dao M, Orlandi C, Song C, Xie K, Martemyanov KA. NF1-cAMP signaling dissociates cell type-specific contributions of striatal medium spiny neurons to reward valuation and motor control. PLoS Biol 2019; 17:e3000477. [PMID: 31600280 PMCID: PMC6805008 DOI: 10.1371/journal.pbio.3000477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/22/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
The striatum plays a fundamental role in motor learning and reward-related behaviors that are synergistically shaped by populations of D1 dopamine receptor (D1R)- and D2 dopamine receptor (D2R)-expressing medium spiny neurons (MSNs). How various neurotransmitter inputs converging on common intracellular pathways are parsed out to regulate distinct behavioral outcomes in a neuron-specific manner is poorly understood. Here, we reveal that distinct contributions of D1R-MSNs and D2R-MSNs towards reward and motor behaviors are delineated by the multifaceted signaling protein neurofibromin 1 (NF1). Using genetic mouse models, we show that NF1 in D1R-MSN modulates opioid reward, whereas loss of NF1 in D2R-MSNs delays motor learning by impeding the formation and consolidation of repetitive motor sequences. We found that motor learning deficits upon NF1 loss were associated with the disruption in dopamine signaling to cAMP in D2R-MSN. Restoration of cAMP levels pharmacologically or chemogenetically rescued the motor learning deficits seen upon NF1 loss in D2R-MSN. Our findings illustrate that multiplex signaling capabilities of MSNs are deployed at the level of intracellular pathways to achieve cell-specific control over behavioral outcomes. A mouse genetic study reveals that the multifaceted signaling protein neurofibromin (known for its role in the human genetic disease neurofibromatosis type 1) plays a key role in differential routing of motor and reward signals in populations of striatal medium spiny neurons.
Collapse
Affiliation(s)
- Laurie P. Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Brian S. Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Olga Ostrovskaya
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Keqiang Xie
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
41
|
Roth BL. How structure informs and transforms chemogenetics. Curr Opin Struct Biol 2019; 57:9-16. [DOI: 10.1016/j.sbi.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
42
|
Indirect Medium Spiny Neurons in the Dorsomedial Striatum Regulate Ethanol-Containing Conditioned Reward Seeking. J Neurosci 2019; 39:7206-7217. [PMID: 31315945 DOI: 10.1523/jneurosci.0876-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/21/2022] Open
Abstract
Adenosine 2A receptor (A2AR)-containing indirect medium spiny neurons (iMSNs) in the dorsomedial striatum (DMS) contribute to reward-seeking behaviors. However, those roles for ethanol-seeking behaviors remain unknown. To investigate ethanol-seeking behaviors, we used an ethanol-containing reward (10% ethanol and 10% sucrose solution; 10E10S). Upon conditioning with 10E10S, mice that initially only preferred 10% sucrose, not 10E10S, showed a stronger preference for 10E10S. Then, we investigated whether the manipulation of the DMS-external globus pallidus (GPe) iMSNs circuit alters the ethanol-containing reward (10E10S) seeking behaviors using the combination of pharmacologic and optogenetic approaches. DMS A2AR activation dampened operant conditioning-induced ethanol-containing reward, whereas A2AR antagonist abolished the effects of the A2AR agonist and restored ethanol-containing reward-seeking. Moreover, pre-ethanol exposure potentiated the A2AR-dependent reward-seeking. Interestingly, mice exhibiting ethanol-containing reward-seeking showed the reduction of the DMS iMSNs activity, suggesting that disinhibiting iMSNs decreases reward-seeking behaviors. In addition, we found that A2AR activation reversed iMSNs neural activity in the DMS. Similarly, optogenetic stimulation of the DMS-GPe iMSNs reduced ethanol-containing reward-seeking, whereas optogenetic inhibition of the DMS-GPe iMSNs reversed this change. Together, our study demonstrates that DMS A2AR and iMSNs regulate ethanol-containing reward-seeking behaviors.SIGNIFICANCE STATEMENT Our findings highlight the mechanisms of how operant conditioning develops the preference of ethanol-containing conditioned reward. Mice exhibiting ethanol-containing reward-seeking showed a reduction of the indirect medium spiny neuronal activity in the dorsomedial striatum. Pharmacological activation of adenosine A2A receptor (A2AR) or optogenetic activation of indirect medium spiny neurons dampened operant conditioned ethanol-containing reward-seeking, whereas inhibiting this neuronal activity restored ethanol-containing reward-seeking. Furthermore, repeated intermittent ethanol exposure potentiated A2AR-dependent reward-seeking. Therefore, our finding suggests that A2AR-containing indirect medium spiny neuronal activation reduces ethanol-containing reward-seeking, which may provide a potential therapeutic target for alcohol use disorder.
Collapse
|
43
|
Runegaard AH, Fitzpatrick CM, Woldbye DPD, Andreasen JT, Sørensen AT, Gether U. Modulating Dopamine Signaling and Behavior with Chemogenetics: Concepts, Progress, and Challenges. Pharmacol Rev 2019; 71:123-156. [PMID: 30814274 DOI: 10.1124/pr.117.013995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For more than 60 years, dopamine (DA) has been known as a critical modulatory neurotransmitter regulating locomotion, reward-based motivation, and endocrine functions. Disturbances in DA signaling have been linked to an array of different neurologic and psychiatric disorders, including Parkinson's disease, schizophrenia, and addiction, but the underlying pathologic mechanisms have never been fully elucidated. One major obstacle limiting interpretation of standard pharmacological and transgenic interventions is the complexity of the DA system, which only appears to widen as research progresses. Nonetheless, development of new genetic tools, such as chemogenetics, has led to an entirely new era for functional studies of neuronal signaling. By exploiting receptors that are engineered to respond selectively to an otherwise inert ligand, so-called Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), chemogenetics enables pharmacological remote control of neuronal activity. Here we review the recent, extensive application of this technique to the DA field and how its use has advanced the study of the DA system and contributed to our general understanding of DA signaling and related behaviors. Moreover, we discuss the challenges and pitfalls associated with the chemogenetic technology, such as the metabolism of the DREADD ligand clozapine N-oxide (CNO) to the D2 receptor antagonist clozapine. We conclude that despite the recent concerns regarding CNO, the chemogenetic toolbox provides an exceptional approach to study neuronal function. The huge potential should promote continued investigations and additional refinements to further expound key mechanisms of DA signaling and circuitries in normal as well as maladaptive behaviors.
Collapse
Affiliation(s)
- Annika Højrup Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ciarán Martin Fitzpatrick
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Paul Drucker Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tobias Andreasen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Toft Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience (A.H.R., D.P.D.W., A.T.S., U.G.) and Department of Drug Design and Pharmacology (C.M.F., J.T.A.), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Cheng Y, Wang J. The use of chemogenetic approaches in alcohol use disorder research and treatment. Alcohol 2019; 74:39-45. [PMID: 30442535 DOI: 10.1016/j.alcohol.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 02/09/2023]
Abstract
Several novel techniques were developed recently to explore neural circuit mechanisms of neuropsychiatric disorders. These techniques include the Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools, which represent valuable platforms for selective and non-invasive control of neural activity with a high degree of spatial resolution. Among all variants, Gq- and Gi-DREADDs are widely used by neuroscientists to dissect out the circuitry and cellular signals. This review is focused on strategies to access a specific neuronal population or circuit using the DREADD technique and summarizes the current knowledge of the DREADDs' application in alcohol use disorder research and therapeutics.
Collapse
|
45
|
cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium current in striatal projection neurons. Neuropharmacology 2019; 148:229-243. [PMID: 30659840 DOI: 10.1016/j.neuropharm.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Adenosine A2a receptors (A2aRs) are highly and selectively expressed in D2-medium spiny neurons (D2-MSNs) that also express a high level of dopamine D2 receptors (D2Rs). However, it was not established how A2aR activity affects D2-MSN excitability, let alone the ion channels involved. We have performed two sets of experiments to determine the potential A2aR agonistic effects on D2-MSN intrinsic excitability and the underlying ion channel mechanism. First, we have used the cAMP-producing, Gαs/olf coupled designer receptors exclusively activated by designer drug (Gs-DREADDs) to phenocopy cAMP-stimulating A2aR activation. We found that activation of Gs-DREADD inhibited the inwardly rectifying potassium current (Kir)-a key regulator of MSN excitability, caused a depolarization, increased input resistance, and substantially increased the intrinsic excitability of MSNs such that depolarizing inputs evoked many more action potentials. Second, we have determined that A2aR agonism produced these same excitatory effects on D2-MSN intrinsic excitability and spike firing, although at lower magnitudes than those induced by Gs-DREADD activation; furthermore, these A2aR-triggered excitatory effects were intact in the presence of a D2R antagonist. Taken together, these results clearly establish that in striatal D2-MSNs, A2aR activation can independently inhibit Kir and increase intrinsic excitability and spike and neurotransmitter output; our results also indicate that Gs-DREADD can serve as a broadly useful positive control for neurotransmitter receptors that increase intracellular cAMP levels and hence facilitate the determination of the cellular effects of these neurotransmitter receptors.
Collapse
|
46
|
Aldrin-Kirk P, Björklund T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods Mol Biol 2019; 1937:59-87. [PMID: 30706390 DOI: 10.1007/978-1-4939-9065-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.
Collapse
Affiliation(s)
- Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
47
|
Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, Ferreira TL, Quinn D, Liu ZW, Gao XB, Kaelberer MM, Bohórquez DV, Shammah-Lagnado SJ, de Lartigue G, de Araujo IE. A Neural Circuit for Gut-Induced Reward. Cell 2018; 175:665-678.e23. [PMID: 30245012 PMCID: PMC6195474 DOI: 10.1016/j.cell.2018.08.049] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/08/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.
Collapse
Affiliation(s)
- Wenfei Han
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis A Tellez
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew H Perkins
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isaac O Perez
- The John B. Pierce Laboratory, New Haven, CT, USA; Section of Neurobiology of Oral Sensations, FES-Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Taoran Qu
- The John B. Pierce Laboratory, New Haven, CT, USA
| | - Jozelia Ferreira
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Tatiana L Ferreira
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Mathematics, Computing and Cognition Center, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | | | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Diego V Bohórquez
- Department of Medicine, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA
| | - Sara J Shammah-Lagnado
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan E de Araujo
- The John B. Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
48
|
Gilman TL, Dutta S, Adkins JM, Cecil CA, Jasnow AM. Basolateral amygdala Thy1-expressing neurons facilitate the inhibition of contextual fear during consolidation, reconsolidation, and extinction. Neurobiol Learn Mem 2018; 155:498-507. [PMID: 30287384 DOI: 10.1016/j.nlm.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
Disrupted fear inhibition is a characteristic of many anxiety disorders. Investigations into the neural mechanisms responsible for inhibiting fear will improve understanding of the essential circuits involved, and facilitate development of treatments that promote their activity. Within the basolateral amygdala (BLA), Thy1-expressing neuron activity has been characterized by us and others as promoting fear inhibition to discrete fear cues by influencing consolidation of cued fear learning or cued fear extinction. Here, we evaluated how activating BLA Thy1-expressing neurons using DREADDs affected the consolidation, expression, reconsolidation, and extinction of contextual fear. Using an inhibitory avoidance paradigm, our present findings indicate a similar involvement of BLA Thy1-expressing neuron activity in the consolidation and extinction, but not expression, of fear. Importantly, our data also provide the first evidence for involvement of these neurons in inhibiting fear reconsolidation. Therefore, these data enhance our understanding of the roles that Thy1-expressing neurons within the BLA play in inhibiting fear when examining avoidance, in addition to the already established role in Pavlovian fear paradigms. Future investigations should further explore the circuits responsible for these contextual effects modulated by BLA Thy1 neuron activation, and could promulgate development of therapies targeting these neurons and their downstream effectors.
Collapse
Affiliation(s)
- T Lee Gilman
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Sohini Dutta
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Cassandra A Cecil
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, 144 Kent Hall, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
49
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
50
|
McCullough KM, Daskalakis NP, Gafford G, Morrison FG, Ressler KJ. Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction. Transl Psychiatry 2018; 8:164. [PMID: 30135420 PMCID: PMC6105686 DOI: 10.1038/s41398-018-0190-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Behavioral and molecular characterization of cell-type-specific populations governing fear learning and behavior is a promising avenue for the rational identification of potential therapeutics for fear-related disorders. Examining cell-type-specific changes in neuronal translation following fear learning allows for targeted pharmacological intervention during fear extinction learning, mirroring possible treatment strategies in humans. Here we identify the central amygdala (CeA) Drd2-expressing population as a novel fear-supporting neuronal population that is molecularly distinct from other, previously identified, fear-supporting CeA populations. Sequencing of actively translating transcripts of Drd2 neurons using translating ribosome affinity purification (TRAP) technology identifies mRNAs that are differentially regulated following fear learning. Differentially expressed transcripts with potentially targetable gene products include Npy5r, Rxrg, Adora2a, Sst5r, Fgf3, Erbb4, Fkbp14, Dlk1, and Ssh3. Direct pharmacological manipulation of NPY5R, RXR, and ADORA2A confirms the importance of this cell population and these cell-type-specific receptors in fear behavior. Furthermore, these findings validate the use of functionally identified specific cell populations to predict novel pharmacological targets for the modulation of emotional learning.
Collapse
Affiliation(s)
- Kenneth M McCullough
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Georgette Gafford
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Filomene G Morrison
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Behavioral Science Division, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|