1
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
2
|
Algermissen J, den Ouden HEM. High stakes slow responding, but do not help overcome Pavlovian biases in humans. Learn Mem 2024; 31:a054017. [PMID: 39284619 PMCID: PMC11407693 DOI: 10.1101/lm.054017.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
"Pavlovian" or "motivational" biases are the phenomenon that the valence of prospective outcomes modulates action invigoration: the prospect of reward invigorates actions, while the prospect of punishment suppresses actions. Effects of the valence of prospective outcomes are well established, but it remains unclear how the magnitude of outcomes ("stake magnitude") modulates these biases. In this preregistered study (N = 55), we manipulated stake magnitude (high vs. low) in an orthogonalized Motivational Go/NoGo Task. We tested whether higher stakes (a) strengthen biases or (b) elicit cognitive control recruitment, enhancing the suppression of biases in motivationally incongruent conditions. Confirmatory tests showed that high stakes slowed down responding, especially in motivationally incongruent conditions. However, high stakes did not affect whether a response was made or not, and did not change the magnitude of Pavlovian biases. Reinforcement-learning drift-diffusion models (RL-DDMs) fit to the data suggested that response slowing was best captured by stakes prolonging the non-decision time. There was no effect of the stakes on the response threshold (as in typical speed-accuracy trade-offs). In sum, these results suggest that high stakes slow down responses without affecting the expression of Pavlovian biases in behavior. We speculate that this slowing under high stakes might reflect heightened cognitive control, which is however ineffectively used, or reflect positive conditioned suppression, i.e., the interference between goal-directed and consummatory behaviors, a phenomenon previously observed in rodents that might also exist in humans. Pavlovian biases and slowing under high stakes may arise in parallel to each other.
Collapse
Affiliation(s)
- Johannes Algermissen
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 GD Nijmegen, The Netherlands
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hanneke E M den Ouden
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 GD Nijmegen, The Netherlands
| |
Collapse
|
3
|
Malamud J, Lewis G, Moutoussis M, Duffy L, Bone J, Srinivasan R, Lewis G, Huys QJM. The selective serotonin reuptake inhibitor sertraline alters learning from aversive reinforcements in patients with depression: evidence from a randomized controlled trial. Psychol Med 2024; 54:2719-2731. [PMID: 38629200 DOI: 10.1017/s0033291724000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for depression and anxiety. However, little is known about how pharmacological action is related to cognitive and affective processes. Here, we examine whether specific reinforcement learning processes mediate the treatment effects of SSRIs. METHODS The PANDA trial was a multicentre, double-blind, randomized clinical trial in UK primary care comparing the SSRI sertraline with placebo for depression and anxiety. Participants (N = 655) performed an affective Go/NoGo task three times during the trial and computational models were used to infer reinforcement learning processes. RESULTS There was poor task performance: only 54% of the task runs were informative, with more informative task runs in the placebo than in the active group. There was no evidence for the preregistered hypothesis that Pavlovian inhibition was affected by sertraline. Exploratory analyses revealed that in the sertraline group, early increases in Pavlovian inhibition were associated with improvements in depression after 12 weeks. Furthermore, sertraline increased how fast participants learned from losses and faster learning from losses was associated with more severe generalized anxiety symptoms. CONCLUSIONS The study findings indicate a relationship between aversive reinforcement learning mechanisms and aspects of depression, anxiety, and SSRI treatment, but these relationships did not align with the initial hypotheses. Poor task performance limits the interpretability and likely generalizability of the findings, and highlights the critical importance of developing acceptable and reliable tasks for use in clinical studies. FUNDING This article presents research supported by NIHR Program Grants for Applied Research (RP-PG-0610-10048), the NIHR BRC, and UCL, with additional support from IMPRS COMP2PSYCH (JM, QH) and a Wellcome Trust grant (QH).
Collapse
Affiliation(s)
- Jolanda Malamud
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry & Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - Larisa Duffy
- Division of Psychiatry, University College London, London, UK
| | - Jessica Bone
- Division of Psychiatry, University College London, London, UK
- Research Department of Behavioural Science and Health, Institute of Epidemiology, University College London, London, UK
| | | | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Quentin J M Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Martinez RM, Chou SH, Fan YT, Chen YC, Goh KK, Chen C. Negative emotionality downregulation affects moral choice but not moral judgement of harm: a pharmacological study. Sci Rep 2024; 14:1200. [PMID: 38216629 PMCID: PMC10786834 DOI: 10.1038/s41598-024-51345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Previous neuroscientific research has expounded on the fundamental role played by emotion during moral decision-making. Negative emotionality has been observed to exert a general inhibitory effect towards harmful behaviors against others. Nevertheless, the downregulation of negative affects at different levels of moral processing (e.g. impersonal versus personal moral dilemmas) alongside its possible interactions with other factors (e.g. perspective taking) hasn't been directly assessed; both of which can assist in predicting future moral decision-making. In the present research, we empirically test (Study 1, N = 41) whether downregulating negative emotionality through pharmacological interventions using lorazepam (a GABA receptor agonist), modulate the permissibility of harm to others -i.e. if participants find it more morally permissible to harm others when harm is unavoidable (inevitable harm moral dilemmas), than when it may be avoided (evitable harm moral dilemmas). Furthermore, using another sample (Study 2, N = 31), we assess whether lorazepam's effect is modulated by different perspective-taking conditions during a moral dilemma task -e.g. "is it morally permissible for you to […]?" (1st person perspective), relative to "is it morally permissible for [x individual] to […]?" (3rd person perspective)-, where the outcome of the different scenarios is controlled. The results of both studies converge, revealing an emotion-dependent, rather than an outcome-dependent, pharmacological modulation. Lorazepam only influenced interpersonal moral judgments when not modulated by the evitable/inevitable condition. Furthermore, there was a significant interaction between perspective-taking and drug administration, as lorazepam exerted a larger effect in modulating moral choices rather than moral judgements.
Collapse
Affiliation(s)
- Roger Marcelo Martinez
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- School of Psychological Sciences, National Autonomous University of Honduras, Tegucigalpa, Honduras
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Han Chou
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yang-Teng Fan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Yu-Chun Chen
- Department of Physical Education, National Taiwan University of Sport, Taichung, Taiwan
| | - Kah Kheng Goh
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Chenyi Chen
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- The Innovative and Translational Research Center for Brain Consciousness, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei, Taiwan.
| |
Collapse
|
5
|
Kim H, Hur JK, Kwon M, Kim S, Zoh Y, Ahn WY. Causal role of the dorsolateral prefrontal cortex in modulating the balance between Pavlovian and instrumental systems in the punishment domain. PLoS One 2023; 18:e0286632. [PMID: 37267307 PMCID: PMC10237433 DOI: 10.1371/journal.pone.0286632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Previous literature suggests that a balance between Pavlovian and instrumental decision-making systems is critical for optimal decision-making. Pavlovian bias (i.e., approach toward reward-predictive stimuli and avoid punishment-predictive stimuli) often contrasts with the instrumental response. Although recent neuroimaging studies have identified brain regions that may be related to Pavlovian bias, including the dorsolateral prefrontal cortex (dlPFC), it is unclear whether a causal relationship exists. Therefore, we investigated whether upregulation of the dlPFC using transcranial current direct stimulation (tDCS) would reduce Pavlovian bias. In this double-blind study, participants were assigned to the anodal or the sham group; they received stimulation over the right dlPFC for 3 successive days. On the last day, participants performed a reinforcement learning task known as the orthogonalized go/no-go task; this was used to assess each participant's degree of Pavlovian bias in reward and punishment domains. We used computational modeling and hierarchical Bayesian analysis to estimate model parameters reflecting latent cognitive processes, including Pavlovian bias, go bias, and choice randomness. Several computational models were compared; the model with separate Pavlovian bias parameters for reward and punishment domains demonstrated the best model fit. When using a behavioral index of Pavlovian bias, the anodal group showed significantly lower Pavlovian bias in the punishment domain, but not in the reward domain, compared with the sham group. In addition, computational modeling showed that Pavlovian bias parameter in the punishment domain was lower in the anodal group than in the sham group, which is consistent with the behavioral findings. The anodal group also showed a lower go bias and choice randomness, compared with the sham group. These findings suggest that anodal tDCS may lead to behavioral suppression or change in Pavlovian bias in the punishment domain, which will help to improve comprehension of the causal neural mechanism.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Jihyun K. Hur
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Mina Kwon
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Soyeon Kim
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Yoonseo Zoh
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Chao YS, Parrilla-Carrero J, Eid M, Culver OP, Jackson TB, Lipat R, Taniguchi M, Jhou TC. Innate cocaine-seeking vulnerability arising from loss of serotonin-mediated aversive effects of cocaine in rats. Cell Rep 2023; 42:112404. [PMID: 37083325 DOI: 10.1016/j.celrep.2023.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.
Collapse
Affiliation(s)
- Ying S Chao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oliver P Culver
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tyler B Jackson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel Lipat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C Jhou
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
8
|
Garbusow M, Ebrahimi C, Riemerschmid C, Daldrup L, Rothkirch M, Chen K, Chen H, Belanger MJ, Hentschel A, Smolka MN, Heinz A, Pilhatsch M, Rapp MA. Pavlovian-to-Instrumental Transfer across Mental Disorders: A Review. Neuropsychobiology 2022; 81:418-437. [PMID: 35843212 DOI: 10.1159/000525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
A mechanism known as Pavlovian-to-instrumental transfer (PIT) describes a phenomenon by which the values of environmental cues acquired through Pavlovian conditioning can motivate instrumental behavior. PIT may be one basic mechanism of action control that can characterize mental disorders on a dimensional level beyond current classification systems. Therefore, we review human PIT studies investigating subclinical and clinical mental syndromes. The literature prevails an inhomogeneous picture concerning PIT. While enhanced PIT effects seem to be present in non-substance-related disorders, overweight people, and most studies with AUD patients, no altered PIT effects were reported in tobacco use disorder and obesity. Regarding AUD and relapsing alcohol-dependent patients, there is mixed evidence of enhanced or no PIT effects. Additionally, there is evidence for aberrant corticostriatal activation and genetic risk, e.g., in association with high-risk alcohol consumption and relapse after alcohol detoxification. In patients with anorexia nervosa, stronger PIT effects elicited by low caloric stimuli were associated with increased disease severity. In patients with depression, enhanced aversive PIT effects and a loss of action-specificity associated with poorer treatment outcomes were reported. Schizophrenic patients showed disrupted specific but intact general PIT effects. Patients with chronic back pain showed reduced PIT effects. We provide possible reasons to understand heterogeneity in PIT effects within and across mental disorders. Further, we strengthen the importance of reliable experimental tasks and provide test-retest data of a PIT task showing moderate to good reliability. Finally, we point toward stress as a possible underlying factor that may explain stronger PIT effects in mental disorders, as there is some evidence that stress per se interacts with the impact of environmental cues on behavior by selectively increasing cue-triggered wanting. To conclude, we discuss the results of the literature review in the light of Research Domain Criteria, suggesting future studies that comprehensively assess PIT across psychopathological dimensions.
Collapse
Affiliation(s)
- Maria Garbusow
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Carlotta Riemerschmid
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Luisa Daldrup
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Marcus Rothkirch
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ke Chen
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Hao Chen
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Matthew J Belanger
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Angela Hentschel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Maximilan Pilhatsch
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Elblandklinikum, Radebeul, Germany
| | - Michael A Rapp
- Area of Excellence Cognitive Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
9
|
Wert-Carvajal C, Reneaux M, Tchumatchenko T, Clopath C. Dopamine and serotonin interplay for valence-based spatial learning. Cell Rep 2022; 39:110645. [PMID: 35417691 DOI: 10.1016/j.celrep.2022.110645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/31/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) and serotonin (5-HT) are important neuromodulators of synaptic plasticity that have been linked to learning from positive or negative outcomes or valence-based learning. In the hippocampus, both affect long-term plasticity but play different roles in encoding uncertainty or predicted reward. DA has been related to positive valence, from reward consumption or avoidance behavior, and 5-HT to aversive encoding. We propose DA produces overall LTP while 5-HT elicits LTD. Here, we compare two reward-modulated spike timing-dependent plasticity (R-STDP) rules to describe the action of these neuromodulators. We examined their role in cognitive performance and flexibility for computational models of the Morris water maze task and reversal learning. Our results show that the interplay of DA and 5-HT improves learning performance and can explain experimental evidence. This study reinforces the importance of neuromodulation in determining the direction of plasticity.
Collapse
Affiliation(s)
- Carlos Wert-Carvajal
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK; Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Melissa Reneaux
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, University of Bonn Medical Center, 53127 Bonn, Germany; Institute of Physiological Chemistry, University of Mainz Medical Center, 55131 Mainz, Germany.
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022; 16:791749. [PMID: 35250501 PMCID: PMC8892181 DOI: 10.3389/fnbeh.2022.791749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit. From this perspective, this review focuses on impulse control as a competition over behavioral output between an initially learned response-reward outcome association, and a subsequently acquired opposing inhibitory association. Our goal is to present a synthesis of research from humans and animal models that supports this dual-systems approach to understanding the behavioral and neural substrates that contribute to impulsivity, with a focus on the neuromodulatory role of serotonin. We review evidence for the role of serotonin signaling in mediating the balance of the "drive" and "brake" circuits. Additionally, we consider parallels of these competing instrumental systems in impulsivity within classical conditioning processes (e.g., extinction) in order to point us to potential behavioral and neural mechanisms that may modulate the competing instrumental associations. Finally, we consider how the balance of these competing associations might contribute to, or be extracted from, our experimental assessments of impulsivity. A careful understanding of the underlying behavioral and circuit level contributions to impulsivity is important for understanding the pathogenesis of increased impulsivity present in a number of psychiatric disorders. Pathological levels of impulsivity in such disorders are likely subserved by deficits in the balance of motivational and inhibitory processes.
Collapse
Affiliation(s)
| | | | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
11
|
Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol 2022; 32:586-599.e7. [PMID: 34936883 PMCID: PMC8825708 DOI: 10.1016/j.cub.2021.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions should be slow in stable environments, but accelerate when that environment changes. Recognizing stability and detecting change are difficult in environments with noisy relationships between actions and outcomes. Under these conditions, theories propose that uncertainty can be used to modulate learning rates ("meta-learning"). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe serotonin neurons tracked both types of uncertainty in the foraging task as well as in a dynamic Pavlovian task. Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron activity, learning, and decision making.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Bilal A Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Kohne S, Diekhof EK. Testosterone and estradiol affect adolescent reinforcement learning. PeerJ 2022; 10:e12653. [PMID: 35186450 PMCID: PMC8818269 DOI: 10.7717/peerj.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
During adolescence, gonadal hormones influence brain maturation and behavior. The impact of 17β-estradiol and testosterone on reinforcement learning was previously investigated in adults, but studies with adolescents are rare. We tested 89 German male and female adolescents (mean age ± sd = 14.7 ± 1.9 years) to determine the extent 17β-estradiol and testosterone influenced reinforcement learning capacity in a response time adjustment task. Our data showed, that 17β-estradiol correlated with an enhanced ability to speed up responses for reward in both sexes, while the ability to wait for higher reward correlated with testosterone primary in males. This suggests that individual differences in reinforcement learning may be associated with variations in these hormones during adolescence, which may shift the balance between a more reward- and an avoidance-oriented learning style.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K. Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
14
|
The Effect of Acute Aerobic Exercise on Divergent and Convergent Thinking and Its Influence by Mood. Brain Sci 2021; 11:brainsci11050546. [PMID: 33925304 PMCID: PMC8145661 DOI: 10.3390/brainsci11050546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Abundant evidence shows that various forms of physical exercise, even conducted briefly, may improve cognitive functions. However, the effect of physical exercise on creative thinking remains under-investigated, and the role of mood in this effect remains unclear. In the present study, we set out to investigate the effect of an acute bout of aerobic exercise on divergent and convergent thinking and whether this effect depends on the post-exercise mood. Forty healthy young adults were randomly assigned to receive a 15-min exercise or control intervention, before and after which they conducted an alternate use test measuring divergent thinking and an insight problem-solving task measuring convergent thinking. It was found that exercise enhanced divergent thinking in that it increased flexibility and fluency. Importantly, these effects were not mediated by the post-exercise mood in terms of pleasure and vigor. In contrast, the effect on convergent thinking depended on subjects' mood after exercise: subjects reporting high vigor tended to solve more insight problems that were unsolved previously, while those reporting low vigor became less capable of solving previously unsolved problems. These findings suggest that aerobic exercise may affect both divergent and convergent thinking, with the former being mood-independent and the latter mood-dependent. If these findings can be replicated with more rigorous studies, engaging in a bout of mood, particularly vigor-enhancing aerobic exercise, may be considered a useful strategy for gaining insights into previously unsolved problems.
Collapse
|
15
|
|
16
|
Liu L, Artigas SO, Ulrich A, Tardu J, Mohr PNC, Wilms B, Koletzko B, Schmid SM, Park SQ. Eating to dare - Nutrition impacts human risky decision and related brain function. Neuroimage 2021; 233:117951. [PMID: 33722669 DOI: 10.1016/j.neuroimage.2021.117951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022] Open
Abstract
Macronutrient composition modulates plasma amino acids that are precursors of neurotransmitters and can impact brain function and decisions. Neurotransmitter serotonin has been shown to regulate not only food intake, but also economic decisions. We investigated whether an acute nutrition-manipulation inducing plasma tryptophan fluctuation affects brain function, thereby affecting risky decisions. Breakfasts differing in carbohydrate/protein ratios were offered to test changes in risky decision-making while metabolic and neural dynamics were tracked. We identified that a high-carbohydrate/protein breakfast increased plasma tryptophan/LNAA (large neutral amino acids) ratio which mapped to individual risk propensity changes. The nutrition-manipulation and tryptophan/LNAA fluctuation effects on risk propensity changes were further modulated by individual differences in body fat mass. Using fMRI, we further identified activation in the parietal lobule during risk-processing, of which activities 1) were sensitive to the tryptophan/LNAA fluctuation, 2) were modulated by individual's body fat mass, and 3) predicted the risk propensity changes in decision-making. Our results provide evidence for a personalized nutrition-driven modulation on human risky decision and its metabolic and neural mechanisms.
Collapse
Affiliation(s)
- Lu Liu
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; Department of Psychology, University of Lübeck, Lübeck, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | | | - Anja Ulrich
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Jeremy Tardu
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Peter N C Mohr
- School of Business and Economics, Freie Universität Berlin, Germany; WZB Berlin Social Science Center, Berlin, Germany; Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Berthold Koletzko
- Dr. von Hauner Children's Hospital, University of Munich Medical Center, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sebastian M Schmid
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Soyoung Q Park
- Department of Decision Neuroscience & Nutrition, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; Department of Psychology, University of Lübeck, Lübeck, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
| |
Collapse
|
17
|
Gershman SJ, Guitart-Masip M, Cavanagh JF. Neural signatures of arbitration between Pavlovian and instrumental action selection. PLoS Comput Biol 2021; 17:e1008553. [PMID: 33566831 PMCID: PMC7901778 DOI: 10.1371/journal.pcbi.1008553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/23/2021] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Pavlovian associations drive approach towards reward-predictive cues, and avoidance of punishment-predictive cues. These associations “misbehave” when they conflict with correct instrumental behavior. This raises the question of how Pavlovian and instrumental influences on behavior are arbitrated. We test a computational theory according to which Pavlovian influence will be stronger when inferred controllability of outcomes is low. Using a model-based analysis of a Go/NoGo task with human subjects, we show that theta-band oscillatory power in frontal cortex tracks inferred controllability, and that these inferences predict Pavlovian action biases. Functional MRI data revealed an inferior frontal gyrus correlate of action probability and a ventromedial prefrontal correlate of outcome valence, both of which were modulated by inferred controllability. Using a combination of computational modeling, neuroimaging (both EEG and fMRI), and behavioral analysis, we present evidence for a dual-process architecture in which Pavlovian and instrumental action values are adaptively combined through a Bayesian arbitration mechanism. Building on prior research, we find neural signatures of this arbitration mechanism in frontal cortex. In particular, we show that trial-by-trial changes in Pavlovian influences on action can be predicted by our computational model, and are reflected in midfrontal theta power, as well as inferior frontal and ventromedial prefrontal cortex fMRI responses.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America.,Center for Brains, Minds and Machines, MIT, Cambridge, Massachusetts, United States of America
| | - Marc Guitart-Masip
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Aging Research Center, Karolinska Institute, Solna, Sweden
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
18
|
Evaluating the Effect of Inert Recruiting on Blood Donations Immediately After the Consecutive Earthquakes. Disaster Med Public Health Prep 2021; 16:642-649. [PMID: 33531101 DOI: 10.1017/dmp.2020.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Disasters can have impact on the demand and supply of blood, with such a difficult perspective, planning of an appropriate response to counterbalance the need for blood is of paramount importance. The primary objective of this study was to evaluate how the impact of blood imbalances may be absorbed by inert recruitment of donors during 2 life-threatening earthquakes that shook Taiwan on the same date in 2016 and 2018. METHOD A retrospective database search from blood bank registries was developed. RESULTS Despite the public efforts to restrain the flow, a 3- to 4-fold increase in volunteers responded to the earthquakes. This surge alleviated after a day and did not contribute to sub-par collections. Those who donated more than usual immediately after the event were identified as first-time, younger, and female populations. The hospitals providing inpatient care to the injured transfused a slightly decreased amount of packed red cells, whereas the use of whole blood, platelets, and plasma remained stable. The inert recruiting was effective in reducing the duration of donor overabundance. CONCLUSION Compared with other examples, the inert recruiting approach was effective in reducing the duration of donor overabundance to 1 day and may be useful for disaster preparedness of transfusion supplies.
Collapse
|
19
|
Kanen JW, Arntz FE, Yellowlees R, Cardinal RN, Price A, Christmas DM, Apergis-Schoute AM, Sahakian BJ, Robbins TW. Serotonin depletion amplifies distinct human social emotions as a function of individual differences in personality. Transl Psychiatry 2021; 11:81. [PMID: 33518708 PMCID: PMC7847998 DOI: 10.1038/s41398-020-00880-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Serotonin is involved in a wide range of mental capacities essential for navigating the social world, including emotion and impulse control. Much recent work on serotonin and social functioning has focused on decision-making. Here we investigated the influence of serotonin on human emotional reactions to social conflict. We used a novel computerised task that required mentally simulating social situations involving unjust harm and found that depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-enhanced emotional responses to the scenarios in a large sample of healthy volunteers (n = 73), and interacted with individual differences in trait personality to produce distinctive human emotions. Whereas guilt was preferentially elevated in highly empathic participants, annoyance was potentiated in those high in trait psychopathy, with medium to large effect sizes. Our findings show how individual differences in personality, when combined with fluctuations of serotonin, may produce diverse emotional phenotypes. This has implications for understanding vulnerability to psychopathology, determining who may be more sensitive to serotonin-modulating treatments, and casts new light on the functions of serotonin in emotional processing.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Fréderique E Arntz
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, Leiden University, Leiden, The Netherlands
| | - Robyn Yellowlees
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Annabel Price
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - David M Christmas
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Annemieke M Apergis-Schoute
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Psychology, and Behaviour, University of Leicester, Leicester, UK
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
21
|
Wang D, Si W, Luo Y. A Biologically Inspired Behavior Control for the Unexpected Uncertainty With Motivated Developmental Network. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2019.2953944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Aquili L. The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. Int J Tryptophan Res 2020; 13:1178646920964825. [PMID: 33149600 PMCID: PMC7586026 DOI: 10.1177/1178646920964825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/31/2023] Open
Abstract
The serotonergic precursor tryptophan and the dopaminergic precursor tyrosine have been shown to be important modulators of mood, behaviour and cognition. Specifically, research on the function of tryptophan has characterised this molecule as particularly relevant in the context of pathological disorders such as depression. Moreover, a large body of evidence has now been accumulated to suggest that tryptophan may also be involved in executive function and reward processing. Despite some clear differentiation with tryptophan, the data reviewed in this paper illustrates that tyrosine shares similar functions with tryptophan in the regulation of executive function and reward, and that these processes in turn, rather than acting in isolation, causally influence each other.
Collapse
Affiliation(s)
- Luca Aquili
- College of Health & Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
23
|
Bang D, Kishida KT, Lohrenz T, White JP, Laxton AW, Tatter SB, Fleming SM, Montague PR. Sub-second Dopamine and Serotonin Signaling in Human Striatum during Perceptual Decision-Making. Neuron 2020; 108:999-1010.e6. [PMID: 33049201 PMCID: PMC7736619 DOI: 10.1016/j.neuron.2020.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
Recent animal research indicates that dopamine and serotonin, neuromodulators traditionally linked to appetitive and aversive processes, are also involved in sensory inference and decisions based on such inference. We tested this hypothesis in humans by monitoring sub-second striatal dopamine and serotonin signaling during a visual motion discrimination task that separates sensory uncertainty from decision difficulty in a factorial design. Caudate nucleus recordings (n = 4) revealed multi-scale encoding: in three participants, serotonin tracked sensory uncertainty, and, in one participant, both dopamine and serotonin tracked deviations from expected trial transitions within our factorial design. Putamen recordings (n = 1) supported a cognition-action separation between caudate nucleus and putamen—a striatal sub-division unique to primates—with both dopamine and serotonin tracking decision times. These first-of-their-kind observations in the human brain reveal a role for sub-second dopamine and serotonin signaling in non-reward-based aspects of cognition and action. Dopamine and serotonin are measured in human striatum during awake decision-making Serotonin tracks sensory uncertainty in caudate nucleus Dopamine and serotonin track sensory statistics in caudate nucleus Dopamine and serotonin track decision times in putamen
Collapse
Affiliation(s)
- Dan Bang
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK.
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Department of Experimental Psychology, University College London, London WC1H 0AP, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, UK
| | - P Read Montague
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK; Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Bhatt DL, Hull MA, Song M, Van Hulle C, Carlsson C, Chapman MJ, Toth PP. Beyond cardiovascular medicine: potential future uses of icosapent ethyl. Eur Heart J Suppl 2020; 22:J54-J64. [PMID: 33061868 PMCID: PMC7537800 DOI: 10.1093/eurheartj/suaa119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The REDUCE-IT trial demonstrated that icosapent ethyl, an ethyl ester of eicosapentaenoic acid (EPA), reduced cardiovascular events in an at-risk population by a substantial degree. While the cardiovascular protective properties of this compound are now proven, several other potential uses are being actively explored in clinical studies. These areas of investigation include cancer, inflammatory bowel disease, infections, Alzheimer's disease, dementia, and depression. The next decade promises to deepen our understanding of the beneficial effects that EPA may offer beyond cardiovascular risk reduction.
Collapse
Affiliation(s)
- Deepak L Bhatt
- Brigham and Women’s Hospital, Heart & Vascular Center and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Mark A Hull
- Division of Gastrointestinal and Surgical Sciences, Leeds Institute of Medical Research, St James’s University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 50 Fruit Street, Boston, MA 02114, USA
| | - Carol Van Hulle
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cindy Carlsson
- William S. Middleton Memorial Veterans Hospital, Madison VA Geriatric Research, Education and Clinical Center (GRECC), 2500 Overlook Terrace, Madison, WI 53705, USA
- Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center (ADRC), 600 Highland Ave, J5/1 Mezzanine, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute (WAI), 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - M John Chapman
- Sorbonne University, 21, Rue de l'Ecole de Medicine, 75006 Paris, France
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital, 47-83, Boulevard de lopital, 75651 Paris Cedex, France
| | - Peter P Toth
- CGH Medical Center, 101 East Miller Road, Sterling, IL 61081, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Effects of serotonin and dopamine depletion on neural prediction computations during social learning. Neuropsychopharmacology 2020; 45:1431-1437. [PMID: 32330925 PMCID: PMC7360591 DOI: 10.1038/s41386-020-0678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/23/2023]
Abstract
We have previously shown that individuals with high depression scores demonstrate impaired behavioral and neural responses during social learning. Given that depression is associated with altered dopamine (DA) and serotonin (5-HT) functioning, the current study aimed to elucidate the role of these neurotransmitters in the social learning process using a dietary depletion manipulation. In a double-blind design, 70 healthy volunteers were randomly allocated to a 5-HT depletion (N = 24), DA depletion (N = 24), or placebo (N = 22) group. Participants performed a social learning task during fMRI scanning, as part of which they learned associations between name cues and rewarding (happy faces) or aversive (fearful faces) social outcomes. Behaviorally, 5-HT depleted subjects demonstrated impaired social reward learning compared to placebo controls, with a marginal effect in the same direction in the DA depletion group. On the neural level, computational modeling-based fMRI analyses revealed that 5-HT depletion altered social reward prediction signals in the insula, temporal lobe, and prefrontal cortex, while DA depletion affected social reward prediction encoding only in the prefrontal cortex. These results indicate that 5-HT depletion impairs learning from social rewards, on both the behavioral and the neural level, while DA depletion has a less extensive effect. Interestingly, the behavioral and neural responses observed after 5-HT depletion in the current study closely resemble our previous findings in individuals with high depression scores using the same task. It may thus be the case that decreased 5-HT levels contribute to social learning deficits in depression.
Collapse
|
26
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Voon V, Joutsa J, Majuri J, Baek K, Nord CL, Arponen E, Forsback S, Kaasinen V. The neurochemical substrates of habitual and goal-directed control. Transl Psychiatry 2020; 10:84. [PMID: 32127520 PMCID: PMC7054261 DOI: 10.1038/s41398-020-0762-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 11/10/2022] Open
Abstract
Our daily decisions are governed by the arbitration between goal-directed and habitual strategies. However, the neurochemical basis of this arbitration is unclear. We assessed the contribution of dopaminergic, serotonergic, and opioidergic systems to this balance across reward and loss domains. Thirty-nine participants (17 healthy controls, 15 patients with pathological gambling, and 7 with binge eating disorder) underwent positron emission tomography (PET) imaging with [18F]FDOPA, [11C]MADAM and [11C]carfentanil to assess presynaptic dopamine, and serotonin transporter and mu-opioid receptor binding potential. Separately, participants completed a modified two-step task, which quantifies the degree to which decision-making is influenced by goal-directed or habitual strategies. All participants completed a version with reward outcomes; healthy controls additionally completed a version with loss outcomes. In the context of rewarding outcomes, we found that greater serotonin transporter binding potential in prefrontal regions was associated with habitual control, while greater serotonin transporter binding potential in the putamen was marginally associated with goal-directed control; however, the findings were no longer significant when controlling for the opposing valence (loss). In blocks with loss outcomes, we found that the opioidergic system, specifically greater [11C]carfentanil binding potential, was positively associated with goal-directed control and negatively associated with habit-directed control. Our findings illuminate the complex neurochemical basis of goal-directed and habitual behavior, implicating differential roles for prefrontal and subcortical serotonin in decision-making across healthy and pathological populations.
Collapse
Affiliation(s)
- Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Cambridgeshire and Peterborough Foundation NHS Trust, Cambridge, UK. .,NIHR Biomedical Research Centre, Cambridge University, Cambridge, UK.
| | - Juho Joutsa
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Turku Brain and Mind Center, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital, Turku, Finland ,grid.410552.70000 0004 0628 215XDivision of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Joonas Majuri
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital, Turku, Finland
| | - Kwangyeol Baek
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.262229.f0000 0001 0719 8572School of Biomedical Convergence Engineering, Pusan National University, Busan, Republic of Korea
| | - Camilla L. Nord
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Eveliina Arponen
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital, Turku, Finland
| | - Sarita Forsback
- grid.410552.70000 0004 0628 215XTurku PET Centre, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDivision of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
28
|
Bazinet RP, Metherel AH, Chen CT, Shaikh SR, Nadjar A, Joffre C, Layé S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav Immun 2020; 85:21-28. [PMID: 31278982 DOI: 10.1016/j.bbi.2019.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
The results of several meta-analyses suggest that eicosapentaenoic acid (EPA) supplementation is therapeutic in managing the symptoms of major depression. It was previously assumed that because EPA is extremely low in the brain it did not cross the blood-brain barrier and any therapeutic effects it exerted would be via the periphery. However, more recent studies have established that EPA does enter the brain, but is rapidly metabolised following entry. While EPA does not accumulate within the brain, it is present in microglia and homeostatic mechanisms may regulate its esterification to phospholipids that serve important roles in cell signaling. Furthermore, a variety of signaling molecules from EPA have been described in the periphery and they have the potential to exert effects within the brain. If EPA is confirmed to be therapeutic in major depression as a result of adequately powered randomized clinical trials, future research on brain EPA metabolism could lead to the discovery of novel targets for treating or preventing major depression.
Collapse
Affiliation(s)
- Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, North Bethesda, MD 20852, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Agnes Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
29
|
Sebold M, Garbusow M, Jetzschmann P, Schad DJ, Nebe S, Schlagenhauf F, Heinz A, Rapp M, Romanczuk-Seiferth N. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms. Psychopharmacology (Berl) 2019; 236:2437-2449. [PMID: 31254091 PMCID: PMC6695365 DOI: 10.1007/s00213-019-05299-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aversive stimuli in the environment influence human actions. This includes valence-dependent influences on action selection, e.g., increased avoidance but decreased approach behavior. However, it is yet unclear how aversive stimuli interact with complex learning and decision-making in the reward and avoidance domain. Moreover, the underlying computational mechanisms of these decision-making biases are unknown. METHODS To elucidate these mechanisms, 54 healthy young male subjects performed a two-step sequential decision-making task, which allows to computationally model different aspects of learning, e.g., model-free, habitual, and model-based, goal-directed learning. We used a within-subject design, crossing task valence (reward vs. punishment learning) with emotional context (aversive vs. neutral background stimuli). We analyzed choice data, applied a computational model, and performed simulations. RESULTS Whereas model-based learning was not affected, aversive stimuli interacted with model-free learning in a way that depended on task valence. Thus, aversive stimuli increased model-free avoidance learning but decreased model-free reward learning. The computational model confirmed this effect: the parameter lambda that indicates the influence of reward prediction errors on decision values was increased in the punishment condition but decreased in the reward condition when aversive stimuli were present. Further, by using the inferred computational parameters to simulate choice data, our effects were captured. Exploratory analyses revealed that the observed biases were associated with subclinical depressive symptoms. CONCLUSION Our data show that aversive environmental stimuli affect complex learning and decision-making, which depends on task valence. Further, we provide a model of the underlying computations of this affective modulation. Finally, our finding of increased decision-making biases in subjects reporting subclinical depressive symptoms matches recent reports of amplified Pavlovian influences on action selection in depression and suggests a potential vulnerability factor for mood disorders. We discuss our findings in the light of the involvement of the neuromodulators serotonin and dopamine.
Collapse
Affiliation(s)
- Miriam Sebold
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department for Social and Preventive Medicine, University of Potsdam, Potsdam, Germany.
| | - M Garbusow
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - P Jetzschmann
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - D J Schad
- Cognitive Science, University of Potsdam, Potsdam, Germany
| | - S Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - F Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04303, Leipzig, Germany
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - M Rapp
- Department for Social and Preventive Medicine, University of Potsdam, Potsdam, Germany
| | - N Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
30
|
Nord CL, Lawson RP, Huys QJM, Pilling S, Roiser JP. Depression is associated with enhanced aversive Pavlovian control over instrumental behaviour. Sci Rep 2018; 8:12582. [PMID: 30135491 PMCID: PMC6105578 DOI: 10.1038/s41598-018-30828-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
The dynamic modulation of instrumental behaviour by conditioned Pavlovian cues is an important process in decision-making. Patients with major depressive disorder (MDD) are known to exhibit mood-congruent biases in information processing, which may occur due to Pavlovian influences, but this hypothesis has never been tested directly in an unmedicated sample. To address this we tested unmedicated MDD patients and healthy volunteers on a computerized Pavlovian-Instrumental Transfer (PIT) task designed to separately examine instrumental approach and withdrawal actions in the context of Pavlovian appetitive and aversive cues. This design allowed us to directly measure the degree to which Pavlovian cues influence instrumental responding. Depressed patients were profoundly influenced by aversive Pavlovian stimuli, to a significantly greater degree than healthy volunteers. This was the case for instrumental behaviour both in the approach condition (in which aversive Pavlovian cues inhibited ‘go’ responses), and in the withdrawal condition (in which aversive Pavlovian cues facilitated ‘go’ responses). Exaggerated aversive PIT provides a potential cognitive mechanism for biased emotion processing in major depression. This finding also has wider significance for the understanding of disrupted motivational processing in neuropsychiatric disorders.
Collapse
Affiliation(s)
- C L Nord
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK. .,Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Level E4, Box 189, Hills Road, CB2 0QQ, Cambridge, UK.
| | - R P Lawson
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK.,Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, UK.,Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, UK
| | - Q J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, ETH Zürich and University of Zürich, Wilfriedstrasse 6, 8032, Zürich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Lenggstasse 31, 8032, Zürich, Switzerland
| | - S Pilling
- Department of Clinical, Educational and Health Psychology, University College London, Gower Street, WC1E 6BT, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK
| |
Collapse
|
31
|
Moran RJ, Kishida KT, Lohrenz T, Saez I, Laxton AW, Witcher MR, Tatter SB, Ellis TL, Phillips PEM, Dayan P, Montague PR. The Protective Action Encoding of Serotonin Transients in the Human Brain. Neuropsychopharmacology 2018; 43:1425-1435. [PMID: 29297512 PMCID: PMC5916372 DOI: 10.1038/npp.2017.304] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/01/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Abstract
The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of 14 brains of human patients with Parkinson's disease. Here we report these novel measurements and show that they correlate with outcomes and decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events.
Collapse
Affiliation(s)
- Rosalyn J Moran
- Department of Engineering Mathematics, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, UK
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Ignacio Saez
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark R Witcher
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas L Ellis
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul EM Phillips
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Dayan
- The Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Department of Physics, Virginia Tech, Blacksburg, VA, USA,Wellcome Trust Centre for Neuroimaging, University College London, London, UK,Virginia Tech Carilion, Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA, Tel: +1 540 526 2006, Fax: +1 540 982 3805, E-mail:
| |
Collapse
|
32
|
Robbins TW. Opinion on monoaminergic contributions to traits and temperament. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170153. [PMID: 29483339 PMCID: PMC5832679 DOI: 10.1098/rstb.2017.0153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
This article critically reviews evidence relating temperamental traits and personality factors to the monoamine neurotransmitters, especially dopamine and serotonin. The genetic evidence is not yet considered to be conclusive and it is argued that basic neuroscience research on the neural basis of behaviour in experimental animals should be taken more into account. While questionnaire and lexical methodology including the 'Five Factor' theory has been informative (mostly for the traits relevant to social functioning, i.e. personality), biologically oriented approaches should be employed with more objective, theoretically grounded measures of cognition and behaviour, combined with neuroimaging and psychopharmacology, where appropriate. This strategy will enable specific functions of monoamines and other neuromodulators such as acetylcholine and neuropeptides (such as orexin) to be defined with respect to their roles in modulating activity in specific neural networks-leading to a more realistic definition of their interactive roles in complex, biologically based traits (i.e. temperament).This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- T W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
33
|
Lottem E, Banerjee D, Vertechi P, Sarra D, Lohuis MO, Mainen ZF. Activation of serotonin neurons promotes active persistence in a probabilistic foraging task. Nat Commun 2018. [PMID: 29520000 PMCID: PMC5843608 DOI: 10.1038/s41467-018-03438-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuromodulator serotonin (5-HT) has been implicated in a variety of functions that involve patience or impulse control. Many of these effects are consistent with a long-standing theory that 5-HT promotes behavioral inhibition, a motivational bias favoring passive over active behaviors. To further test this idea, we studied the impact of 5-HT in a probabilistic foraging task, in which mice must learn the statistics of the environment and infer when to leave a depleted foraging site for the next. Critically, mice were required to actively nose-poke in order to exploit a given site. We show that optogenetic activation of 5-HT neurons in the dorsal raphe nucleus increases the willingness of mice to actively attempt to exploit a reward site before giving up. These results indicate that behavioral inhibition is not an adequate description of 5-HT function and suggest that a unified account must be based on a higher-order function.
Collapse
Affiliation(s)
- Eran Lottem
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Dhruba Banerjee
- School of Medicine, University of California, Irvine, CA, 92697-3950, USA
| | - Pietro Vertechi
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Dario Sarra
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Matthijs Oude Lohuis
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098XH, Amsterdam, The Netherlands
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal.
| |
Collapse
|
34
|
Serotonin enhances the impact of health information on food choice. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:542-553. [PMID: 28116581 PMCID: PMC5403870 DOI: 10.3758/s13415-016-0496-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Serotonin has been implicated in promoting self-control, regulation of hunger and physiological homeostasis, and regulation of caloric intake. However, it remains unclear whether the effects of serotonin on caloric intake reflect purely homeostatic mechanisms, or whether serotonin also modulates cognitive processes involved in dietary decision making. We investigated the effects of an acute dose of the serotonin reuptake inhibitor citalopram on choices between food items that differed along taste and health attributes, compared with placebo and the noradrenaline reuptake inhibitor atomoxetine. Twenty-seven participants attended three sessions and received single doses of atomoxetine, citalopram, and placebo in a double-blind randomised cross-over design. Relative to placebo, citalopram increased choices of more healthy foods over less healthy foods. Citalopram also increased the emphasis on health considerations in decisions. Atomoxetine did not affect decision making relative to placebo. The results support the hypothesis that serotonin may influence food choice by enhancing a focus on long-term goals. The findings are relevant for understanding decisions about food consumption and also for treating health conditions such as eating disorders and obesity.
Collapse
|
35
|
Avery MC, Krichmar JL. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Front Neural Circuits 2017; 11:108. [PMID: 29311844 PMCID: PMC5744617 DOI: 10.3389/fncir.2017.00108] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.
Collapse
Affiliation(s)
- Michael C Avery
- SNL-R, Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
36
|
Millner AJ, Gershman SJ, Nock MK, den Ouden HEM. Pavlovian Control of Escape and Avoidance. J Cogn Neurosci 2017; 30:1379-1390. [PMID: 29244641 DOI: 10.1162/jocn_a_01224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To survive in complex environments, animals need to have mechanisms to select effective actions quickly, with minimal computational costs. As perhaps the computationally most parsimonious of these systems, Pavlovian control accomplishes this by hardwiring specific stereotyped responses to certain classes of stimuli. It is well documented that appetitive cues initiate a Pavlovian bias toward vigorous approach; however, Pavlovian responses to aversive stimuli are less well understood. Gaining a deeper understanding of aversive Pavlovian responses, such as active avoidance, is important given the critical role these behaviors play in several psychiatric conditions. The goal of the current study was to establish a behavioral and computational framework to examine aversive Pavlovian responses (activation vs. inhibition) depending on the proximity of an aversive state (escape vs. avoidance). We introduce a novel task in which participants are exposed to primary aversive (noise) stimuli and characterized behavior using a novel generative computational model. This model combines reinforcement learning and drift-diffusion models so as to capture effects of invigoration/inhibition in both explicit choice behavior as well as changes in RT. Choice and RT results both suggest that escape is associated with a bias for vigorous action, whereas avoidance is associated with behavioral inhibition. These results lay a foundation for future work seeking insights into typical and atypical aversive Pavlovian responses involved in psychiatric disorders, allowing us to quantify both implicit and explicit indices of vigorous choice behavior in the context of aversion.
Collapse
|
37
|
Higgs S, Spetter MS, Thomas JM, Rotshtein P, Lee M, Hallschmid M, Dourish CT. Interactions between metabolic, reward and cognitive processes in appetite control: Implications for novel weight management therapies. J Psychopharmacol 2017; 31:1460-1474. [PMID: 29072515 PMCID: PMC5700796 DOI: 10.1177/0269881117736917] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional models of appetite control have emphasised the role of parallel homeostatic and hedonic systems, but more recently the distinction between independent homeostatic and hedonic systems has been abandoned in favour of a framework that emphasises the cross talk between the neurochemical substrates of the two systems. In addition, evidence has emerged more recently, that higher level cognitive functions such as learning, memory and attention play an important role in everyday appetite control and that homeostatic signals also play a role in cognition. Here, we review this evidence and present a comprehensive model of the control of appetite that integrates cognitive, homeostatic and reward mechanisms. We discuss the implications of this model for understanding the factors that may contribute to disordered patterns of eating and suggest opportunities for developing more effective treatment approaches for eating disorders and weight management.
Collapse
Affiliation(s)
- Suzanne Higgs
- 1 School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Jason M Thomas
- 2 Department of Psychology, Aston University, Birmingham, UK
| | - Pia Rotshtein
- 1 School of Psychology, University of Birmingham, Birmingham, UK
| | - Michelle Lee
- 3 Department of Psychology, Swansea University, Swansea, UK
| | - Manfred Hallschmid
- 4 Institute for Medical Psychology and Behavioural Neurobiology, University Tübingen, Tübingen, Germany
- 6 Institute for Diabetes Research and Metabolic Diseases, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
38
|
Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front Hum Neurosci 2017; 11:484. [PMID: 29075184 PMCID: PMC5641585 DOI: 10.3389/fnhum.2017.00484] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Collapse
Affiliation(s)
- Adrian G Fischer
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
39
|
Mkrtchian A, Roiser JP, Robinson OJ. Threat of shock and aversive inhibition: Induced anxiety modulates Pavlovian-instrumental interactions. J Exp Psychol Gen 2017; 146:1694-1704. [PMID: 28910125 PMCID: PMC5733814 DOI: 10.1037/xge0000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anxiety can be an adaptive response to potentially threatening situations. However, if experienced in inappropriate contexts, it can also lead to pathological and maladaptive anxiety disorders. Experimentally, anxiety can be induced in healthy individuals using the threat of shock (ToS) paradigm. Accumulating work with this paradigm suggests that anxiety promotes harm–avoidant mechanisms through enhanced inhibitory control. However, the specific cognitive mechanisms underlying anxiety-linked inhibitory control are unclear. Critically, behavioral inhibition can arise from at least 2 interacting valuation systems: instrumental (a goal-directed system) and Pavlovian (a “hardwired” reflexive system). The present study (N = 62) replicated a study showing improved response inhibition under ToS in healthy participants, and additionally examined the impact of ToS on aversive and appetitive Pavlovian-instrumental interactions in a reinforced go/no-go task. When Pavlovian and instrumental systems were in conflict, ToS increased inhibition to aversive events, while leaving appetitive interactions unperturbed. We argue that anxiety promotes avoidant behavior in potentially harmful situations by potentiating aversive Pavlovian reactions (i.e., promoting avoidance in the face of threats). Critically, such a mechanism would drive adaptive harm–avoidant behavior in threatening situations where Pavlovian and instrumental processes are aligned, but at the same time, result in maladaptive behaviors when misaligned and where instrumental control would be advantageous. This has important implications for our understanding of the mechanisms that underlie pathological anxiety.
Collapse
|
40
|
Jones S, Paul ES, Dayan P, Robinson ESJ, Mendl M. Pavlovian influences on learning differ between rats and mice in a counter-balanced Go/NoGo judgement bias task. Behav Brain Res 2017; 331:214-224. [PMID: 28549647 PMCID: PMC5480777 DOI: 10.1016/j.bbr.2017.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
Judgement bias tests of animal affect and hence welfare assume that the animal's responses to ambiguous stimuli, which may herald positive or negative outcomes, are under instrumental control and reflect 'optimism' or 'pessimism' about what will happen. However, Pavlovian control favours responses (e.g. approach or withdrawal) according to the valence associated with a stimulus, rather than the anticipated response outcomes. Typically, positive contexts promote action and approach whilst negative contexts promote inhibition or withdrawal. The prevalence of Go-for-reward (Go-pos) and NoGo-to-avoid-punishment (NoGo-neg) judgement bias tasks reflects this Pavlovian influence. A Pavlovian increase or decrease in activity or vigour has also been argued to accompany positive or negative affective states, and this may interfere with instrumental Go or NoGo decisions under ambiguity based on anticipated decision outcomes. One approach to these issues is to develop counter-balanced Go-pos/NoGo-neg and Go-neg/NoGo-pos tasks. Here we implement such tasks in Sprague Dawley rats and C57BL/6J mice using food and air-puff as decision outcomes. We find striking species/strain differences with rats achieving criterion performance on the Go-pos/NoGo-neg task but failing to learn the Go-neg/NoGo-pos task, in line with predictions, whilst mice do exactly the opposite. Pavlovian predispositions may thus differ between species, for example reflecting foraging and predation ecology and/or baseline activity rates. Learning failures are restricted to cues predicting a negative outcome; use of a more powerful air-puff stimulus may thus allow implementation of a fully counter-balanced task. Rats and mice achieve criterion faster than in comparable automated tasks and also show the expected generalisation of responses across ambiguous tones. A fully counter-balanced task thus offers a potentially rapidly implemented and automated method for assessing animal welfare, identifying welfare problems and areas for welfare improvement and 3Rs Refinement, and assessing the effectiveness of refinements.
Collapse
Affiliation(s)
- Samantha Jones
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK
| | - Elizabeth S Paul
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, UK
| | - Michael Mendl
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, UK.
| |
Collapse
|
41
|
Nord CL, Prabhu G, Nolte T, Fonagy P, Dolan R, Moutoussis M. Vigour in active avoidance. Sci Rep 2017; 7:60. [PMID: 28246404 PMCID: PMC5427871 DOI: 10.1038/s41598-017-00127-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/08/2017] [Indexed: 11/24/2022] Open
Abstract
It would be maladaptive to learn about catastrophes by trial and error alone. Investment in planning and effort are necessary. Devoting too many resources to averting disaster, however, can impair quality of life, as in anxiety and paranoia. Here, we developed a novel task to explore how people adjust effort expenditure (vigor) so as to avoid negative consequences. Our novel paradigm is immersive, enabling us to measure vigor in the context of (simulated) disaster. We found that participants (N = 118) exerted effort to avoid disaster-associated states, adjusting their effort expenditure according to the baseline probability of catastrophe, in agreement with theoretical predictions. Furthermore, negative subjective emotional states were associated both with threat level and with increasing vigor in the face of disaster. We describe for the first time effort expenditure in the context of irreversible losses, with important implications for disorders marked by excessive avoidance.
Collapse
Affiliation(s)
- Camilla L Nord
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Gita Prabhu
- Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London, UK
| | - Tobias Nolte
- Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London, UK.,Anna Freud Centre, London, UK
| | - Peter Fonagy
- Anna Freud Centre, London, UK.,Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London, UK.,Max Plank UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Michael Moutoussis
- Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London, UK
| |
Collapse
|
42
|
Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals. PLoS Biol 2017; 15:e2000756. [PMID: 28207733 PMCID: PMC5331946 DOI: 10.1371/journal.pbio.2000756] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales. Drugs acting on the neurotransmitter serotonin in the brain are commonly prescribed to treat depression, but we still lack a complete understanding of their effects on the brain and behavior. We do, however, know that patients who suffer from depression learn about the links between their choices and pleasant and unpleasant outcomes in a different manner than healthy controls. Neural markers of learning are also weakened in depressed people. Here, we looked at the effects of a short-term course (2 weeks) of a serotonergic antidepressant on brain and behavior in healthy volunteers while they learnt to predict what consequences their choices had in a simple computer task. We found that the antidepressant increased how strongly brain areas concerned with predictions of pleasant and unpleasant consequences became active during learning of the task. At the same time, participants who had taken the antidepressant also performed better on the task. Our results suggest that serotonergic drugs might exert their beneficial clinical effects by changing how the brain learns.
Collapse
|
43
|
Raymond JG, Steele JD, Seriès P. Modeling Trait Anxiety: From Computational Processes to Personality. Front Psychiatry 2017; 8:1. [PMID: 28167920 PMCID: PMC5253387 DOI: 10.3389/fpsyt.2017.00001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Computational methods are increasingly being applied to the study of psychiatric disorders. Often, this involves fitting models to the behavior of individuals with subclinical character traits that are known vulnerability factors for the development of psychiatric conditions. Anxiety disorders can be examined with reference to the behavior of individuals high in "trait" anxiety, which is a known vulnerability factor for the development of anxiety and mood disorders. However, it is not clear how this self-report measure relates to neural and behavioral processes captured by computational models. This paper reviews emerging computational approaches to the study of trait anxiety, specifying how interacting processes susceptible to analysis using computational models could drive a tendency to experience frequent anxious states and promote vulnerability to the development of clinical disorders. Existing computational studies are described in the light of this perspective and appropriate targets for future studies are discussed.
Collapse
Affiliation(s)
- James G. Raymond
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - J. Douglas Steele
- School of Medicine (Neuroscience), Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Peggy Seriès
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
The role of serotonin in personality inference: tryptophan depletion impairs the identification of neuroticism in the face. Psychopharmacology (Berl) 2017; 234:2139-2147. [PMID: 28488040 PMCID: PMC5486943 DOI: 10.1007/s00213-017-4619-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/27/2017] [Indexed: 01/31/2023]
Abstract
Serotonergic mechanisms mediate the expression of personality traits (such as impulsivity, aggression and anxiety) that are linked to vulnerability to psychological illnesses, and modulate the identification of emotional expressions in the face as well as learning about broader classes of appetitive and aversive signals. Faces with neutral expressions signal a variety of socially relevant information, such that inferences about the big five personality traits, including Neuroticism, Extraversion and Agreeableness, can be accurately made on the basis of emotionally neutral facial photographs. Given the close link between Neuroticism and psychological distress, we investigated the effects of diminished central serotonin activity (achieved by tryptophan depletion) upon the accuracy of 52 healthy (non-clinical) adults' discriminations of personality from facial characteristics. All participants were able to discriminate reliably four of the big five traits. However, the tryptophan-depleted participants were specifically less accurate in discriminating Neuroticism than the matched non-depleted participants. These data suggest that central serotonin activity modulates the identification of not only negative facial emotional expression but also a broader class of signals about personality characteristics linked to psychological distress.
Collapse
|
45
|
Iigaya K, Jolivald A, Jitkrittum W, Gilchrist ID, Dayan P, Paul E, Mendl M. Cognitive Bias in Ambiguity Judgements: Using Computational Models to Dissect the Effects of Mild Mood Manipulation in Humans. PLoS One 2016; 11:e0165840. [PMID: 27829041 PMCID: PMC5102472 DOI: 10.1371/journal.pone.0165840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Positive and negative moods can be treated as prior expectations over future delivery of rewards and punishments. This provides an inferential foundation for the cognitive (judgement) bias task, now widely-used for assessing affective states in non-human animals. In the task, information about affect is extracted from the optimistic or pessimistic manner in which participants resolve ambiguities in sensory input. Here, we report a novel variant of the task aimed at dissecting the effects of affect manipulations on perceptual and value computations for decision-making under ambiguity in humans. Participants were instructed to judge which way a Gabor patch (250ms presentation) was leaning. If the stimulus leant one way (e.g. left), pressing the REWard key yielded a monetary WIN whilst pressing the SAFE key failed to acquire the WIN. If it leant the other way (e.g. right), pressing the SAFE key avoided a LOSS whilst pressing the REWard key incurred the LOSS. The size (0–100 UK pence) of the offered WIN and threatened LOSS, and the ambiguity of the stimulus (vertical being completely ambiguous) were varied on a trial-by-trial basis, allowing us to investigate how decisions were affected by differing combinations of these factors. Half the subjects performed the task in a ‘Pleasantly’ decorated room and were given a gift (bag of sweets) prior to starting, whilst the other half were in a bare ‘Unpleasant’ room and were not given anything. Although these treatments had little effect on self-reported mood, they did lead to differences in decision-making. All subjects were risk averse under ambiguity, consistent with the notion of loss aversion. Analysis using a Bayesian decision model indicated that Unpleasant Room subjects were (‘pessimistically’) biased towards choosing the SAFE key under ambiguity, but also weighed WINS more heavily than LOSSes compared to Pleasant Room subjects. These apparently contradictory findings may be explained by the influence of affect on different processes underlying decision-making, and the task presented here offers opportunities for further dissecting such processes.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, United Kingdom
- * E-mail: (KI); (MM)
| | - Aurelie Jolivald
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, BS40 5DU, United Kingdom
| | | | - Iain D. Gilchrist
- School of Experimental Psychology, University of Bristol, Bristol, BS8 1TU, United Kingdom
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, United Kingdom
| | - Elizabeth Paul
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, BS40 5DU, United Kingdom
| | - Michael Mendl
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, BS40 5DU, United Kingdom
- * E-mail: (KI); (MM)
| |
Collapse
|
46
|
Faulkner P, Mancinelli F, Lockwood PL, Matarin M, Dolan RJ, Wood NW, Dayan P, Roiser JP. Peripheral Serotonin 1B Receptor Transcription Predicts the Effect of Acute Tryptophan Depletion on Risky Decision-Making. Int J Neuropsychopharmacol 2016; 20:58-66. [PMID: 27638901 PMCID: PMC5480594 DOI: 10.1093/ijnp/pyw075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/13/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. METHODS Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. RESULTS Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. CONCLUSIONS These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner);,Correspondence: Paul Faulkner, PhD, Semel Institute, 760 Westwood Boulevard, University of California, Los Angeles, CA 90025 ()
| | - Federico Mancinelli
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Patricia L Lockwood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Mar Matarin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Raymond J Dolan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Nick W Wood
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Peter Dayan
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom (Drs Faulkner and Roiser); Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, California (Dr Faulkner)
| | - Jonathan P Roiser
- Gatsby Computational Neuroscience Unit (Mr Mancinelli and Dr Dayan), and CoMPLEX Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (Mr Mancinelli), University College London, London, United Kingdom; Experimental Psychology, University of Oxford, Oxford, United Kingdom (Dr Lockwood); Clinical and Experimental Epilepsy, Institute of Neurology (Dr Matarin), and Wellcome Trust Centre for Neuroimaging (Dr Dolan), University College London, London, United Kingdom; Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom (Dr Wood)
| |
Collapse
|
47
|
Yee DM, Krug MK, Allen AZ, Braver TS. Humans Integrate Monetary and Liquid Incentives to Motivate Cognitive Task Performance. Front Psychol 2016; 6:2037. [PMID: 26834668 PMCID: PMC4721208 DOI: 10.3389/fpsyg.2015.02037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
It is unequivocal that a wide variety of incentives can motivate behavior. However, few studies have explicitly examined whether and how different incentives are integrated in terms of their motivational influence. The current study examines the combined effects of monetary and liquid incentives on cognitive processing, and whether appetitive and aversive incentives have distinct influences. We introduce a novel task paradigm, in which participants perform cued task-switching for monetary rewards that vary parametrically across trials, with liquid incentives serving as post-trial performance feedback. Critically, the symbolic meaning of the liquid was held constant (indicating successful reward attainment), while liquid valence was blocked. In the first experiment, monetary rewards combined additively with appetitive liquid feedback to improve subject task performance. Aversive liquid feedback counteracted monetary reward effects in low monetary reward trials, particularly in a subset of participants who tended to avoid responding under these conditions. Self-report motivation ratings predicted behavioral performance above and beyond experimental effects. A follow-up experiment replicated the predictive power of motivation ratings even when only appetitive liquids were used, suggesting that ratings reflect idiosyncratic subjective values of, rather than categorical differences between, the liquid incentives. Together, the findings indicate an integrative relationship between primary and secondary incentives and potentially dissociable influences in modulating motivational value, while informing hypotheses regarding candidate neural mechanisms.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Marie K Krug
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Ariel Z Allen
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Todd S Braver
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
48
|
Story GW, Moutoussis M, Dolan RJ. A Computational Analysis of Aberrant Delay Discounting in Psychiatric Disorders. Front Psychol 2016; 6:1948. [PMID: 26793131 PMCID: PMC4710745 DOI: 10.3389/fpsyg.2015.01948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022] Open
Abstract
Impatience for reward is a facet of many psychiatric disorders. We draw attention to a growing literature finding greater discounting of delayed reward, an important aspect of impatience, across a range of psychiatric disorders. We propose these findings are best understood by considering the goals and motivation for discounting future reward. We characterize these as arising from either the opportunity costs of waiting or the uncertainty associated with delayed reward. We link specific instances of higher discounting in psychiatric disorder to heightened subjective estimates of either of these factors. We propose these costs are learned and represented based either on a flexible cognitive model of the world, an accumulation of previous experience, or through evolutionary specification. Any of these can be considered suboptimal for the individual if the resulting behavior results in impairments in personal and social functioning and/or in distress. By considering the neurochemical and neuroanatomical implementation of these processes, we illustrate how this approach can in principle unite social, psychological and biological conceptions of impulsive choice.
Collapse
Affiliation(s)
- Giles W. Story
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondon, UK
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
- Centre for Health Policy, Imperial College London, Institute of Global Health Innovation, St. Mary's HospitalLondon, UK
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondon, UK
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
| | - Raymond J. Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College LondonLondon, UK
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
| |
Collapse
|
49
|
Crockett MJ, Cools R. Serotonin and aversive processing in affective and social decision-making. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Serotonin reuptake inhibitors and serotonin transporter genotype modulate performance monitoring functions but not their electrophysiological correlates. J Neurosci 2015; 35:8181-90. [PMID: 26019334 DOI: 10.1523/jneurosci.5124-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serotonin (5-HT) has been hypothesized to be implicated in performance monitoring by promoting behavioral inhibition in the face of aversive events. However, it is unclear whether this is restricted to external (punishment) or includes internal (response errors) events. The aim of the current study was to test whether higher 5-HT levels instigate inhibition specifically in the face of errors, measured as post-error slowing (PES), and whether this is represented in electrophysiological correlates of error processing, namely error-related negativity (ERN) and positivity. Therefore, from a large sample of human subjects (n = 878), two extreme groups were formed regarding hypothesized high and low 5-HT transporter (5-HTT) expression based on 5-HTTLPR and two additional single nucleotide polymorphisms (rs25531, rs25532). Seventeen higher (LL) and 15 lower (SS) expressing Caucasian subjects were administered the selective serotonin reuptake inhibitor (SSRI) citalopram (10 mg) intravenously in a double-blind crossover design. We found pharmacogenetic evidence for a role of 5-HT in mediating PES: SSRI administration increased PES in both genetic groups, and SS subjects displayed higher PES. These effects were absent on post-conflict slowing. However, ERN and error positivity were unaffected by pharmacogenetic factors, but ERN was decoupled from behavioral adaptation by SSRI administration in the LL group. Thus, pharmacogenetic evidence suggests that increased 5-HT levels lead to behavioral inhibition in the context of internal aversive events, but electrophysiological correlates of performance monitoring appear unrelated to the 5-HT system. Therefore, our findings are consistent with theories suggesting that 5-HT mediates the link between aversive processing and inhibition.
Collapse
|