1
|
Logan R, Shelton M, Horan N, Xue X, Maturin L, Eacret D, Michaud J, Singh N, Williams B, Gamble M, Seggio J, Kuppe-Fish M, Phan B, Tseng G, Blendy J, Woods LS, Palmer A, George O, Seney M. Sex-specific Concordance of Striatal Transcriptional Signatures of Opioid Addiction in Human and Rodent Brains. RESEARCH SQUARE 2024:rs.3.rs-5006061. [PMID: 39399686 PMCID: PMC11469374 DOI: 10.21203/rs.3.rs-5006061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Opioid use disorder (OUD) has emerged as a severe, ongoing public health emergency. Current, frontline addiction treatment strategies fail to produce lasting abstinence in most users. This underscores the lasting effects of chronic opioid exposure and emphasizes the need to understand the molecular mechanisms of drug seeking and taking, but also how those alterations persist through acute and protracted withdrawal. Here, we used RNA sequencing in post-mortem human tissue from males (n=10) and females (n=10) with OUD and age and sex-matched comparison subjects. We compared molecular alterations in the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC) between humans with OUD and rodent models across distinct stages of opioid use and withdrawal (acute and prolonged) using differential gene expression and network-based approaches. We found that the molecular signature in the NAc of females with OUD mirrored effects seen in the NAc of female mice at all stages of exposure. Conversely, males with OUD showed strong overlap in expression profile with rats in acute withdrawal. Co-expression networks involved in post-transcriptional modification of RNA and epigenetic modification of chromatin state. This study provides fundamental insight into the converging molecular pathways altered by opioids across species. Further, this work helps to disentangle which alterations observed in humans with OUD are driven by acute drug exposure and which alterations are consequences of chronic exposure.
Collapse
Affiliation(s)
- Ryan Logan
- University of Massachusetts Chan Medical School
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Grantham EK, Tiwari GR, Ponomareva O, Harris RA, Lopez MF, Becker HC, Mayfield RD. Transcriptome changes in the nucleus of the solitary tract induced by repeated stress, alcohol dependence, or stress-induced drinking in dependent mice. Neuropharmacology 2024; 242:109768. [PMID: 37865137 PMCID: PMC10688594 DOI: 10.1016/j.neuropharm.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Stress increases alcohol consumption in dependent animals and contributes to the development of alcohol use disorder. The nucleus of the solitary tract (NTS) is a critical brainstem region for integrating and relaying central and peripheral signals to regulate stress responses, but it is not known if it plays a role in alcohol dependence- or in stress-induced escalations in alcohol drinking in dependent mice. Here, we used RNA-sequencing and bioinformatics analyses to study molecular adaptations in the NTS of C57BL/6J male mice that underwent an ethanol drinking procedure that uses exposure to chronic intermittent ethanol (CIE) vapor, forced swim stress (FSS), or both conditions (CIE + FSS). Transcriptome profiling was performed at three different times after the last vapor cycle (0-hr, 72-hr, and 168-hr) to identify changes in gene expression associated with different stages of ethanol intoxication and withdrawal. In the CIE and CIE + FSS groups at 0-hr, there was upregulation of genes enriched for cellular response to type I interferon (IFN) and type I IFN- and cytokine-mediated signaling pathways, while the FSS group showed upregulation of neuronal genes. IFN signaling was the top gene network positively correlated with ethanol consumption levels in the CIE and CIE + FSS groups. Results from different analyses (differential gene expression, weighted gene coexpression network analysis, and rank-rank hypergeometric overlap) indicated that activation of type I IFN signaling would be expected to increase ethanol consumption. The CIE and CIE + FSS groups also shared an immune signature in the NTS as has been demonstrated in other brain regions after chronic ethanol exposure. A temporal-based clustering analysis revealed a unique expression pattern in the CIE + FSS group that suggests the interaction of these two stressors produces adaptations in synaptic and glial functions that may drive stress-induced drinking.
Collapse
Affiliation(s)
- Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gayatri R Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Olga Ponomareva
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marcello F Lopez
- Department of Psychiatry & Behavioral Sciences and Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 28425, USA; Department of Psychiatry & Behavioral Sciences and Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Veterans Affairs Medical Center, Charleston, SC, 20401, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Ciucă Anghel DM, Nițescu GV, Tiron AT, Guțu CM, Baconi DL. Understanding the Mechanisms of Action and Effects of Drugs of Abuse. Molecules 2023; 28:4969. [PMID: 37446631 DOI: 10.3390/molecules28134969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
AIM Drug abuse and addiction are major public health concerns, with millions of people worldwide affected by the negative consequences of drug use. To better understand this complex issue, a review was conducted to examine the mechanisms of action and effects of drugs of abuse, including their acute and chronic effects, the symptoms of abstinence syndrome, as well as their cardiovascular impacts. METHODS The analyzed data were obtained after surveying an electronic database, namely PubMed, with no time limit, grey literature sources, and reference lists of relevant articles. RESULTS The review highlights the different categories of drugs of abuse, such as opioids, stimulants, depressants, hallucinogens, and cannabis, and discusses the specific ways that each drug affects the brain and body. Additionally, the review explores the short-term and long-term effects of drug abuse on the body and mind, including changes in brain structure and function, physical health problems, and mental health issues, such as depression and anxiety. In addition, the review explores the effects of drug abuse on cardiovascular health, focusing on electrocardiogram changes. Moreover, the analysis of relevant literature also highlighted possible genetic susceptibility in various addictions. Furthermore, the review delves into the withdrawal symptoms that occur when someone stops using drugs of abuse after a period of chronic use. CONCLUSION Overall, this review provides a comprehensive overview of the current state of knowledge on drug abuse and addiction. The findings of this review can inform the development of evidence-based prevention and intervention strategies to address this critical public health issue.
Collapse
Affiliation(s)
| | - Gabriela Viorela Nițescu
- Ward ATI-Toxicology, Paediatric Clinic 2, "Grigore Alexandrescu" Emergency Clinical Hospital for Children, 011732 Bucharest, Romania
| | - Andreea-Taisia Tiron
- Department of Medical Semiology, Sf. Ioan Emergency Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Claudia Maria Guțu
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Daniela Luiza Baconi
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
4
|
Zhang T, Yang Y, Sima X. No association of GABRA1 rs2279020 and GABRA6 rs3219151 polymorphisms with risk of epilepsy and antiepileptic drug responsiveness in Asian and Arabic populations: Evidence from a meta-analysis with trial sequential analysis. Front Neurol 2022; 13:996631. [PMID: 36188399 PMCID: PMC9518753 DOI: 10.3389/fneur.2022.996631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAAR) have been reported to contribute to the pathogenesis of epilepsy and the recurrence of chronic seizures. Genetic polymorphisms in GABRA1 and GABRA6 may confer a high risk of epilepsy and multiple drug resistance, but with conflicting results. We aimed to assess the association of GABRA1 rs2279020 and GABRA6 rs3219151 with epilepsy risk using a meta-analysis. The databases of Pubmed, Ovid, Web of Science, and China National Knowledge Infrastructure were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed to evaluate the association between the polymorphisms and epilepsy risk using a fixed- or random-effect model. Trial sequential analysis (TSA) was performed to assess the results of the meta-analysis. No significant association between the GABRA1 rs2279020 and GABRA6 rs3219151 and the risk of epilepsy was found in the Asian and Arabic populations. The negative results were also observed when comparing the GABRA1 rs2279020 and GABRA6 rs3219151 polymorphism to antiepileptic drug responsiveness. The trial sequential analysis confirmed the results of the meta-analysis. This meta-analysis suggests that GABRA1 rs2279020 and GABRA6 rs3219151 are not risk factors for the etiology of epilepsy and antiepileptic drug responsiveness in the Asian and Arabic populations.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiutian Sima
| |
Collapse
|
5
|
Ashton MK, Rueda AVL, Ho AM, Noor Aizin NABM, Sharma H, Dodd PR, Stadlin A, Camarini R. Sex differences in GABA A receptor subunit transcript expression are mediated by genotype in subjects with alcohol-related cirrhosis of the liver. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12785. [PMID: 35301805 PMCID: PMC9744570 DOI: 10.1111/gbb.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Male and female human subjects show contrasting propensities to misuse drugs of addiction, including alcohol. These differences lead to different psychological and neurological consequences, such as the likelihood of developing dependence. The pattern and extent of brain damage in alcohol-use disorder cases also varies with comorbid disease. To explore mechanisms that might underlie these outcomes, we used autopsy tissue to determine mRNA transcript expression in relation to genotype for two GABAA receptor subunit genes. We used quantitative Real-Time PCR to measure GABRA6 and GABRA2 mRNA concentrations in dorsolateral prefrontal and primary motor cortices of alcohol-use disorder subjects and controls of both sexes with and without liver disease who had been genotyped for these GABAA receptor subunit genes. Cirrhotic alcohol-use disorder cases had significantly higher expression of GABRA6 and GABRA2 transcripts than either controls or non-cirrhotic alcohol-use disorder cases. Differences were observed between sexes, genotypes and brain regions. We show that sex differences in subjects with GABRA6 and GABRA2 variants may contribute to differences in susceptibility to alcohol-use disorder and alcohol-induced cirrhosis.
Collapse
Affiliation(s)
- Madeline K. Ashton
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - André V. L. Rueda
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| | - Ada M.‐C. Ho
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Noradibah Arina Binte M. Noor Aizin
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Vela Research Singapore Pte LtdThe KendallSingapore
| | - Hansa Sharma
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Peter R. Dodd
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Rosana Camarini
- Departamento de Farmacologia, ICBUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
6
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
7
|
GABRA1 and GABRA6 gene mutations in idiopathic generalized epilepsy patients. Seizure 2021; 93:88-94. [PMID: 34740144 DOI: 10.1016/j.seizure.2021.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The GABA receptor is an important epilepsy-associated candidate gene, and has always been a focus in etiology and in the treatment of epilepsy. This study explores the genetic association between GABA receptor gene polymorphisms and epilepsy in a cohort of the Pakistani population. A case-control study was conducted on 150 patients with idiopathic generalized epilepsy (IGE) and 150 controls. Blood samples were collected, and genomic DNA was extracted and amplified using polymerase chain reaction (PCR). The amplified products were subsequently genotyped by Sanger sequencing and the results were analyzed using the chi-square test. Among the five mutational sites observed, two GABRA1 (rs2279020 and novel c.1016_1017insT) and two GABRA6 (rs3219151 and novel c.1344C>G) were found to be significantly associated with IGE. Amino acid alignment showed that a novel insertion mutation, c.1016_1017insT, in GABRA1 disrupted the reading frame and was possibly damaging, whereas c.1344C>G in GABRA6 was responsible for a synonymous mutation. Therefore, both the GABA receptor genes may play critical roles in the development of epilepsy in Pakistani patients.
Collapse
|
8
|
Xie X, Gu J, Zhuang D, Chen X, Zhou Y, Shen W, Li L, Liu Y, Xu W, Hong Q, Chen W, Zhou W, Liu H. Association study of genetic polymorphisms in GABRD with treatment response and dose in methadone maintenance treatment. Per Med 2021; 18:423-430. [PMID: 34160285 DOI: 10.2217/pme-2021-0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim: This study determined if gene variants in the GABA receptor delta subunit (GABRD) are associated with treatment response and dose in methadone maintenance treatment (MMT) for heroin addiction. Materials & methods: A total of 286 MMT patients were recruited and divided into response and nonresponse groups based on retention time in therapy. A total of 177 responders were classified into low dose and high dose subgroups according to the stabilized methadone dose. Four (single nucleotide polymorphisms) SNPs (rs13303344, rs4481796, rs2376805 and rs2229110) in GABRD were genotyped using the TaqMan SNP assay. Logistic regression was used to assess the genetic effects of the SNPs in MMT. Results: No significant associations were observed between the SNPs and treatment response or dose, except the frequency of haplotype ACGC at the four SNPs significantly differed between responders and nonresponders. Conclusion: The results indicated that GABRD variants may play a small role in modulating methadone treatment response.
Collapse
Affiliation(s)
- Xiaohu Xie
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Gu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiaoyu Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yun Zhou
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Shen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Longhui Li
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yue Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Wenjin Xu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Weisheng Chen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Huifen Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Burmeister M, Sen S. Genetic interactions with stressful environments in depression and addiction. BJPSYCH ADVANCES 2021; 27:153-157. [DOI: 10.1192/bja.2021.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARYStress is the most important proximal precipitant of depression, yet most large genome-wide association studies (GWAS) do not include stress as a variable. Here, we review how gene × environment (G × E) interaction might impede the discovery of genetic factors, discuss two examples of G × E interaction in depression and addiction, studies incorporating high-stress environments, as well as upcoming waves of genome-wide environment interaction studies (GWEIS). We discuss recent studies which have shown that genetic distributions can be affected by social factors such as migrations and socioeconomic background. These distinctions are not just academic but have practical consequences. Owing to interaction with the environment, genetic predispositions to depression should not be viewed as unmodifiable destiny. Patients may genetically differ not just in their response to drugs, as in the now well-recognised field of pharmacogenetics, but also in how they react to stressful environments and how they are affected by behavioural therapies.
Collapse
|
10
|
Xie X, Gu J, Zhuang D, Shen W, Li L, Liu Y, Xu W, Hong Q, Chen W, Zhou W, Liu H. Association between GABA receptor delta subunit gene polymorphisms and heroin addiction. Neurosci Lett 2021; 755:135905. [PMID: 33887383 DOI: 10.1016/j.neulet.2021.135905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Evidence suggests that γ-aminobutyric acid (GABA) receptors are involved in the development of drug dependence. Considering its exclusively extrasynaptic localization, GABA receptor delta subunit (GABRD) is likely involved in heroin addiction. The purpose of this study was to explore the association between the single nucleotide polymorphisms (SNPs) of GABRD and heroin addiction. Genotyping of five SNPs (rs13303344, rs4481796, rs2376805, rs2229110, and rs41307846) in GABRD gene was performed by using TaqMan SNP assay. The association between heroin addiction and these SNPs was assessed in 446 heroin dependent patients and 400 normal control subjects of male Han Chinese origin. Only the genotype and allele frequencies at rs13303344 differed significantly between the cases and controls (nominal P values were 0.028 and 0.019, respectively). The C allele of rs13303344 was associated with an increased risk of heroin addiction (OR = 1.281, 95 % CI: 1.042-1.575). After Bonferroni correction, the association lost significance. The frequencies of the haplotype C-C-A and A-C-A at GARBD (rs13303344-rs4481796- rs2376805) differed significantly between the cases and controls. The heroin craving score was significantly higher in patients with CC/AC genotypes at rs13303344 than in those with the AA genotype (nominal P = 0.017). The results suggest that GABRD rs13303344 may contribute to the susceptibility to heroin addiction and is associated with the drug cravings of heroin dependent patients.
Collapse
Affiliation(s)
- Xiaohu Xie
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Jun Gu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Shen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Longhui Li
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenjin Xu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Weisheng Chen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Huifen Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
11
|
Phillips TJ, Roy T, Aldrich SJ, Baba H, Erk J, Mootz JRK, Reed C, Chesler EJ. Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Front Psychiatry 2021; 12:725839. [PMID: 34512422 PMCID: PMC8428522 DOI: 10.3389/fpsyt.2021.725839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.
Collapse
Affiliation(s)
- Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States.,Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tyler Roy
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| | - Sara J Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Elissa J Chesler
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| |
Collapse
|
12
|
Guerin AA, Nestler EJ, Berk M, Lawrence AJ, Rossell SL, Kim JH. Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies. Neurosci Biobehav Rev 2021; 120:48-74. [PMID: 33217458 PMCID: PMC7856253 DOI: 10.1016/j.neubiorev.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Genetic susceptibility to methamphetamine use disorder is poorly understood. No twin or adequately powered genome-wide association studies (GWASs) have been conducted. However, there are a large number of hypothesis-driven candidate gene association studies, which were systematically reviewed herein. Seventy-six studies were identified, investigating markers of 75 different genes. Allele frequencies, odds ratios, 95 % confidence intervals and power were calculated. Risk of bias was also assessed as a quality measure. Meta-analyses were conducted for gene markers if three or more studies were available. Eleven markers from adequately powered studies were significantly associated with methamphetamine use disorder, with Fatty Acid Amide Hydrolase (FAAH) and Brain Derived Neurotrophic Factor (BDNF) representing promising targets. Limitations of these studies include unclear rationale for candidate gene selection, low power and high risk of bias. Future research should include replications to enable more meta-analyses, well-powered GWASs or whole exome or genome sequencing, as well as twin and family studies to further complement the findings of this review to uncover genetic contributions toward methamphetamine use disorder.
Collapse
Affiliation(s)
- Alexandre A Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
13
|
Goetjen A, Watson M, Lieberman R, Clinton K, Kranzler HR, Covault J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABA A subunit gene expression in the context of alcohol use disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:464-474. [PMID: 33029895 PMCID: PMC8022112 DOI: 10.1002/ajmg.b.32824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Twin studies indicate that there is a significant genetic contribution to the risk of developing alcohol use disorder (AUD). With the exception of coding variants in ADH1B and ALDH2, little is known about the molecular effects of AUD-associated loci. We previously reported that the AUD-associated synonymous polymorphism rs279858 within the GABAA α2 receptor subunit gene, GABRA2, was associated with gene expression of the chr4p12 GABAA subunit gene cluster in induced pluripotent stem cell (iPSC)-derived neural cultures. Based on this and other studies that showed changes in GABRA2 DNA methylation associated with schizophrenia and aging, we examined methylation in GABRA2. Specifically, using 69 iPSC lines and neural cultures derived from 47 of them, we examined whether GABRA2 rs279858 genotype predicted methylation levels and whether methylation was related to GABAA receptor subunit gene expression. We found that the GABRA2 CpG island undergoes random stochastic methylation during reprogramming and that methylation is associated with decreased GABRA2 gene expression, an effect that extends to the GABRB1 gene over 600 kb distal to GABRA2. Further, we identified additive effects of GABRA2 CpG methylation and GABRA2 rs279858 genotype on expression of the GABRB1 subunit gene in iPSC-derived neural cultures.
Collapse
Affiliation(s)
- Alexandra Goetjen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Genetics and Developmental Biology Graduate Program, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Maegan Watson
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kaitlin Clinton
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
14
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Gupta I, Dandavate R, Gupta P, Agrawal V, Kapoor M. Recent advances in genetic studies of alcohol use disorders. CURRENT GENETIC MEDICINE REPORTS 2020; 8:27-34. [PMID: 33344068 PMCID: PMC7748121 DOI: 10.1007/s40142-020-00185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Alcohol use disorder (AUD) is a complex genetic disorder with very high heritability. This polygenic disorder not only results in increased morbidity and mortality, it is also a substantial social and economic burden on families and the nation. For past three decades, several genetic studies were conducted to identify genes and pathways associated with AUD. This review aims to summarize past efforts and recent advances in genetic association studies of AUD and related traits. RECENT FINDINGS Initial genetic association studies achieved a limted success and suffered from low power due to small sample sizes. AUD is a polygenic trait and data from several thousands individuals was required to identify the genetic factors of small effect sizes. The scenario changed recently with technological advances and significant reduction in cost of the genome wide association analyses (GWAS). This enabled researchers to generate genomic data on mega biobanks and cohorts with access to extensive clinical and non-clinical phenotypes. Public access to data from biobanks and collaborative efforts of researchers lead to identification of several novel loci associated with AUDs and related traits. Efforts are now underway to identify the causal variants under the GWAS loci to identify target genes and biological mechanisms underpining AUDs. Many GWAS variants occur in promoter or enhancer regions of the genes and are involved in regulation of gene expression of causal genes. This, large amounts of "omics" data from projects such as "ENCODE", RoadMap and GTEx is also helping researchers to integrate "multi-omics" data to interpret functional significance of GWAS variants. SUMMARY With current review, we aim to present the recent advances in genetic and molecular studies of AUDs. Recent successes in genetic studies of AUDs will definetely motivate researchers and lead to better therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
| | - Rohan Dandavate
- Indian Institute of Science Education and Research, Bhopal, India
| | - Pallavi Gupta
- Indian Institute of Science Education and Research, Bhopal, India
| | - Viplav Agrawal
- Indian Institute of Science Education and Research, Bhopal, India
| | - Manav Kapoor
- Icahn School of Medicine at Mount Sinai, New york, USA
| |
Collapse
|
16
|
Determining population stratification and subgroup effects in association studies of rare genetic variants for nicotine dependence. Psychiatr Genet 2020; 29:111-119. [PMID: 31033776 PMCID: PMC6636808 DOI: 10.1097/ypg.0000000000000227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Background Rare variants (minor allele frequency < 1% or 5 %) can help researchers to deal with the confounding issue of ‘missing heritability’ and have a proven role in dissecting the etiology for human diseases and complex traits. Methods We extended the combined multivariate and collapsing (CMC) and weighted sum statistic (WSS) methods and accounted for the effects of population stratification and subgroup effects using stratified analyses by the principal component analysis, named here as ‘str-CMC’ and ‘str-WSS’. To evaluate the validity of the extended methods, we analyzed the Genetic Architecture of Smoking and Smoking Cessation database, which includes African Americans and European Americans genotyped on Illumina Human Omni2.5, and we compared the results with those obtained with the sequence kernel association test (SKAT) and its modification, SKAT-O that included population stratification and subgroup effect as covariates. We utilized the Cochran–Mantel–Haenszel test to check for possible differences in single nucleotide polymorphism allele frequency between subgroups within a gene. We aimed to detect rare variants and considered population stratification and subgroup effects in the genomic region containing 39 acetylcholine receptor-related genes. Results The Cochran–Mantel–Haenszel test as applied to GABRG2 (P = 0.001) was significant. However, GABRG2 was detected both by str-CMC (P= 8.04E-06) and str-WSS (P= 0.046) in African Americans but not by SKAT or SKAT-O. Conclusions Our results imply that if associated rare variants are only specific to a subgroup, a stratified analysis might be a better approach than a combined analysis.
Collapse
|
17
|
Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry 2019; 9:255. [PMID: 31594920 PMCID: PMC6783461 DOI: 10.1038/s41398-019-0591-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive alcohol use is the cause of an ongoing public health crisis, and accounts for ~5% of global disease burden. A minority of people with recreational alcohol use develop alcohol addiction (hereafter equated with "alcohol dependence" or simply "alcoholism"), a condition characterized by a systematically biased choice preference for alcohol at the expense of healthy rewards, and continued use despite adverse consequences ("compulsivity"). Alcoholism is arguably the most pressing area of unmet medical needs in psychiatry, with only a small fraction of patients receiving effective, evidence-based treatments. Medications currently approved for the treatment of alcoholism have small effect sizes, and their clinical uptake is negligible. No mechanistically new medications have been approved since 2004, and promising preclinical results have failed to translate into novel treatments. This has contributed to a reemerging debate whether and to what extent alcohol addiction represents a medical condition, or reflects maladaptive choices without an underlying brain pathology. Here, we review this landscape, and discuss the challenges, lessons learned, and opportunities to retool drug development in this important therapeutic area.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83, Linköping, Sweden.
| | - Eric Augier
- 0000 0001 2162 9922grid.5640.7Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden
| | - Simone Pfarr
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| | - Wolfgang H. Sommer
- 0000 0004 0477 2235grid.413757.3Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany ,0000 0004 0477 2235grid.413757.3Department of Addiction Medicine, Central Institute of Mental Health (CIMH), J 5, 68159 Mannheim, Germany
| |
Collapse
|
18
|
Hasan A, Afzal M. Gene and environment interplay in cognition: Evidence from twin and molecular studies, future directions and suggestions for effective candidate gene x environment (cGxE) research. Mult Scler Relat Disord 2019; 33:121-130. [PMID: 31185373 DOI: 10.1016/j.msard.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Last decade of molecular research in the field of cognitive science has shown that no single approach can give satisfactory results as far as gene hunt is concerned. Cohesive theory of gene-environment interaction seems to be a rational idea for bridging the gap in our knowledge of disorders involving cognitive deficit. It may even be helpful to some extent in resolving issues of missing heritability. We review the current state of play in the area of cognition at genetic and environmental fronts. Evidence of apparent gene-environment (GxE) interactions from various studies has been mentioned with the aim of redirecting the focus of research community towards studying such interactions with the help of sensitive designs and molecular techniques. We re-evaluate candidate gene-environment research in order to emphasize its potential if carried out strategically.
Collapse
Affiliation(s)
- Anam Hasan
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Darnieder LM, Melón LC, Do T, Walton NL, Miczek KA, Maguire JL. Female-specific decreases in alcohol binge-like drinking resulting from GABA A receptor delta-subunit knockdown in the VTA. Sci Rep 2019; 9:8102. [PMID: 31147611 PMCID: PMC6542821 DOI: 10.1038/s41598-019-44286-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Binge drinking is short-term drinking that achieves blood alcohol levels of 0.08 g/dl or above. It exhibits well-established sex differences in GABAergic inhibitory neurotransmission, including extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) that mediate tonic inhibition, or synaptic γ2-containing GABAARs which underlie fast, synaptic, phasic inhibition have been implicated in sex differences in binge drinking. Ovarian hormones regulate δ-GABAARs, further implicating these receptors in potential sex differences. Here, we explored the contribution of extrasynaptic δ-GABAARs to male and female binge-like drinking in a critical area of mesolimbic circuitry-the ventral tegmental area (VTA). Quantitative PCR revealed higher Gabrd transcript levels and larger tonic currents in the VTA of females compared to males. In contrast, male and female Gabrg2 transcript levels and measures of phasic inhibition were equivalent. Intra-VTA infusion of AAV-Cre-GFP in floxed Gabrd mice downregulated δ-GABAARs and decreased binge-like drinking in females. There was no significant difference in either male or female mice after GABAAR γ2 subunit reduction in the VTA following AAV-Cre-GFP infusion in floxed Gabrg2 mice. Collectively, these findings suggest sex differences and GABAAR subunit specificity in alcohol intake.
Collapse
Affiliation(s)
- L M Darnieder
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - L C Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
| | - T Do
- Northeastern University, Bouvé College of Health Sciences, Boston, MA, 02115, USA
| | - N L Walton
- University of Massachusetts Boston, Honors College of Nursing and Health Sciences, Boston, MA, 02125, USA
| | - K A Miczek
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
- Tufts University, Psychology Department, Medford, MA, 02155, USA
| | - J L Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Mulligan MK, Abreo T, Neuner SM, Parks C, Watkins CE, Houseal MT, Shapaker TM, Hook M, Tan H, Wang X, Ingels J, Peng J, Lu L, Kaczorowski CC, Bryant CD, Homanics GE, Williams RW. Identification of a Functional Non-coding Variant in the GABA A Receptor α2 Subunit of the C57BL/6J Mouse Reference Genome: Major Implications for Neuroscience Research. Front Genet 2019; 10:188. [PMID: 30984232 PMCID: PMC6449455 DOI: 10.3389/fgene.2019.00188] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Timothy Abreo
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.,The Jackson Laboratory, Bar Harbor, ME, United States
| | - Cory Parks
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Christine E Watkins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - M Trevor Houseal
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thomas M Shapaker
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xusheng Wang
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Gregg E Homanics
- Departments of Anesthesiology and Perioperative Medicine, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
21
|
Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: Current status and outlook. Alcohol 2019; 74:83-93. [PMID: 30087005 DOI: 10.1016/j.alcohol.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
22
|
Gajos JM, Russell MA, Cleveland HH, Vandenbergh DJ, Feinberg ME. Romantic Partner Alcohol Misuse Interacts with GABRA2 Genotype to Predict Frequency of Drunkenness in Young Adulthood. JOURNAL OF CONTEMPORARY CRIMINAL JUSTICE 2019; 35:7-20. [PMID: 31598057 PMCID: PMC6784828 DOI: 10.1177/1043986218810578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous research has identified the importance of romantic partners-including spouses, significant others, and dating partners-for influencing the engagement in health-risking behaviors, such as alcohol misuse during emerging adulthood. Although genetic factors are known to play a role in the development of young adult alcohol misuse, little research has examined whether genetic factors affect young adults' susceptibility to their romantic partners' alcohol misusing behaviors. The current study tests whether a single nucleotide polymorphism in the GABRA2 gene (rs279845) moderates the relationship between romantic partner alcohol misuse and frequency of drunkenness in young adulthood. Results revealed differential risk associated with romantic partner alcohol misuse and young adult drunk behavior according to GABRA2 genotype, such that individuals with the TT genotype displayed an elevated risk for frequency of drunkenness when romantic partner alcohol misuse was also high (IRR = 1.06, p ≤ 0.05). The findings demonstrate the potential for genetic factors to moderate the influence of romantic partners' alcohol misuse on drunk behavior during the transition to young adulthood.
Collapse
Affiliation(s)
- Jamie M. Gajos
- The Methodology Center, The Pennsylvania State University University Park, PA
- The Bennett Pierce Prevention Research Center, The Pennsylvania State University University Park, PA
| | - Michael A. Russell
- The Methodology Center, The Pennsylvania State University University Park, PA
- Department of Biobehavioral Health, The Pennsylvania State University University Park, PA
| | - H. Harrington Cleveland
- Department of Human Development and Family Studies, The Pennsylvania State University University Park, PA
| | - David J Vandenbergh
- Department of Biobehavioral Health, The Pennsylvania State University University Park, PA
- Penn State Institute for the Neurosciences; Molecular Cellular & Integrative Biosciences Program, The Pennsylvania State University University Park, PA
| | - Mark E. Feinberg
- The Bennett Pierce Prevention Research Center, The Pennsylvania State University University Park, PA
| |
Collapse
|
23
|
Sahni S, Tickoo M, Gupta R, Vaswani M, Ambekar A, Grover T, Sharma A. Association of serotonin and GABA pathway gene polymorphisms with alcohol dependence: A preliminary study. Asian J Psychiatr 2019; 39:169-173. [PMID: 29673739 DOI: 10.1016/j.ajp.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alcohol dependence (AD), characterized by profound disruptions in specific circuits of the brain is influenced by both environmental, which play a significant role in developing addiction and genetic factors, which make some individuals more susceptible to disruptions. Various polymorphisms in the neurotransmitter genes are reported to increase the risk of developing dependence. The present study aimed to identify association of serotonin and GABA polymorphisms with AD in Indian subjects. METHOD The study group comprised of 141 AD cases recruited as per DSM IV TR criteria from the outpatient Department of Psychiatry and 110 volunteers from the general population. Clinical and family history was noted and 5 ml blood drawn for genetic studies. Polymorphisms 5-HTTLPR and STin2 of serotonin and rs2279020 and rs3219151 of the GABA pathway were analyzed and results correlated with age at first use quantity consumed, duration of use, dependence and age at onset of dependence. RESULTS The marker frequencies were similar between cases and controls except for rs3219151. 5-HTTLPR was significantly associated with high AUDIT scores and alcohol intake (p < 0.0001), GABAA rs2279020 and rs3219151 with age at first use (p < 0.0001); rs2279020 with higher AUDIT score (p = 0.002) and rs3219151 with quantity (p = 0.0001). High frequency of GABRA6 rs3219151 TT genotype in AD and its association with lower age at first use, higher intake/day, and higher duration of dependence appears to confer risk. CONCLUSIONS This preliminary study, though on a smaller sample size, suggests an association of 5-HTTLPR and GABAA receptor polymorphisms with AD in our population.
Collapse
Affiliation(s)
- Shweta Sahni
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Mayanka Tickoo
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Ranjan Gupta
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Meera Vaswani
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi, 110029, India; University of Minnesota, USA.
| | - Atul Ambekar
- National Drug Dependence Treatment Center, Department of Psychiatry, AIIMS, New Delhi, 110029, India.
| | - Tripti Grover
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
24
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
25
|
Sun Y, Zhang Y, Zhang D, Chang S, Jing R, Yue W, Lu L, Chen D, Sun Y, Fan Y, Shi J. GABRA2 rs279858-linked variants are associated with disrupted structural connectome of reward circuits in heroin abusers. Transl Psychiatry 2018; 8:138. [PMID: 30061709 PMCID: PMC6066482 DOI: 10.1038/s41398-018-0180-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
The reward system plays a vital role in drug addiction. The purpose of this study is to investigate the structural connectivity characteristics and driving-control subnetwork patterns of reward circuits in heroin abusers and assess the genetic modulation on the reward network. We first defined the reward network based on systematic literature review, and built the reward network based on diffusion tensor imaging data of 78 heroin abusers (HAs) and 79 healthy controls (HCs) using structural connectomics. Then we assessed genetic factors that might modulate changes in the reward network by performing imaging-genetic screening for 22 addiction-related polymorphisms. The genetic association was validated by performing genetic associations (1032 HAs and 2863 HCs) and expanded-variant analysis. Finally, we estimated the association between these genetic variations, reward network, and clinical performance. We found that HAs had widespread deficiencies in the structural connectivity of the reward circuit (center in VTA-linked connections), which correlated with cognition deficiency. The disruptions synchronously were shown on the reward driving system and reward control system. GABRA2 rs279858-linked variants might be a key genetic modulator for heroin vulnerability by affecting the connections of reward network and cognition. The role of the reward network connections that mediates the effects of rs279858 on cognition would be disrupted by heroin addiction. These findings provide new insights into the neurocircuitry and genetic mechanisms of addiction.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, 100191 Beijing, China
| | - Yang Zhang
- National Institute on Drug Dependence, Peking University, 100191 Beijing, China
- Department of Pharmacology School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Dai Zhang
- National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China
| | - Suhua Chang
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, 100191 Beijing, China
| | - Rixing Jing
- National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China
| | - Weihua Yue
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, 100191 Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, 100191 Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Peking University, 100191 Beijing, China
| | - Dong Chen
- Sanshui addiction treatment hospital, 528100 Guangdong, China
| | - Yankun Sun
- National Institute on Drug Dependence, Peking University, 100191 Beijing, China
- Department of Pharmacology School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Yong Fan
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, 100191 Beijing, China
- Beijing Key Laboratory on Drug Dependence Research, 100191 Beijing, China
- The State Key Laboratory of Natural and Biomimetic Drugs, 100191 Beijing, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, 100191 Beijing, China
| |
Collapse
|
26
|
An Emerging Circuit Pharmacology of GABA A Receptors. Trends Pharmacol Sci 2018; 39:710-732. [PMID: 29903580 DOI: 10.1016/j.tips.2018.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
In the past 20 years we have learned a great deal about GABAA receptor (GABAAR) subtypes, and which behaviors are regulated or which drug effects are mediated by each subtype. However, the question of where GABAARs involved in specific drug effects and behaviors are located in the brain remains largely unanswered. We review here recent studies taking a circuit pharmacology approach to investigate the functions of GABAAR subtypes in specific brain circuits controlling fear, anxiety, learning, memory, reward, addiction, and stress-related behaviors. The findings of these studies highlight the complexity of brain inhibitory systems and the importance of taking a subtype-, circuit-, and neuronal population-specific approach to develop future therapeutic strategies using cell type-specific drug delivery.
Collapse
|
27
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
28
|
Several behavioral traits relevant for alcoholism are controlled by ɣ2 subunit containing GABA A receptors on dopamine neurons in mice. Neuropsychopharmacology 2018; 43:1548-1556. [PMID: 29463910 PMCID: PMC5957272 DOI: 10.1038/s41386-018-0022-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Abstract
The risk factors for developing alcohol addiction include impulsivity, high sensitivity to the rewarding action of ethanol, and low sensitivity to its sedative and intoxicating effects. Genetic variation in GABAA receptor subunits, including the ɣ2 subunit (Gabrg2), affects the risk for developing alcoholism. Alcohol directly potentiates GABAA receptors and activates the mesolimbic dopamine system. Here, we deleted Gabrg2 selectively in dopamine cells of adult mice. The deletion resulted in elevated firing of dopamine neurons and made them less sensitive to drugs acting at GABAA receptors. At the behavioral level, the deletion increased exploratory behavior and augmented both correct and incorrect responding in the go/no-go task, a test often used to assay the response inhibition component of impulsivity. In addition, conditioned place preference to alcohol, but not to cocaine or morphine, was increased. Ethanol-induced locomotor activation was enhanced in the mice lacking Gabrg2 on dopaminergic cells, whereas the sedative effect of alcohol was reduced. Finally, the alcohol drinking, but not the alcohol preference, at a high concentration was increased in the mutant mice. In summary, deletion of Gabrg2 on dopamine cells induced several behavioral traits associated with high risk of developing alcoholism. The findings suggest that mice lacking Gabrg2 on dopaminergic cells could be used as models for individuals at high risk for developing alcoholism and that GABAA receptors on dopamine cells are protective against the development of excessive alcohol drinking.
Collapse
|
29
|
Neural and psychological characteristics of college students with alcoholic parents differ depending on current alcohol use. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:284-296. [PMID: 28939188 PMCID: PMC5690848 DOI: 10.1016/j.pnpbp.2017.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022]
Abstract
A significant proportion of college students are adult children of an alcoholic parent (ACoA), which can confer greater risk of depression, poor self-esteem, alcohol and drug problems, and greater levels of college attrition. However, some ACoA are resilient to these negative outcomes. The goal of this study was to better understand the psychobiological factors that distinguish resilient and vulnerable college-aged ACoAs. To do so, scholastic performance and psychological health were measured in ACoA college students not engaged in hazardous alcohol use (resilient) and those currently engaged in hazardous alcohol use (vulnerable). Neural activity (as measured by functional magnetic resonance imaging) in response to performing working memory and emotion-based tasks were assessed. Furthermore, the frequency of polymorphisms in candidate genes associated with substance use, risk taking and stress reactivity were compared between the two ACoA groups. College ACoAs currently engaged in hazardous alcohol use reported more anxiety, depression and posttraumatic stress symptoms, and increased risky nicotine and marijuana use as compared to ACoAs resistant to problem alcohol use. ACoA college students with current problem alcohol showed greater activity of the middle frontal gyrus and reduced activation of the posterior cingulate in response to visual working memory and emotional processing tasks, which may relate to increased anxiety and problem alcohol and drug behaviors. Furthermore, polymorphisms of cholinergic receptor and the serotonin transporter genes also appear to contribute a role in problem alcohol use in ACoAs. Overall, findings point to several important psychobiological variables that distinguish ACoAs based on their current alcohol use that may be used in the future for early intervention.
Collapse
|
30
|
Brenton A, Lee C, Lewis K, Sharma M, Kantorovich S, Smith GA, Meshkin B. A prospective, longitudinal study to evaluate the clinical utility of a predictive algorithm that detects risk of opioid use disorder. J Pain Res 2018; 11:119-131. [PMID: 29379313 PMCID: PMC5759857 DOI: 10.2147/jpr.s139189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose The purpose of this study was to determine the clinical utility of an algorithm-based decision tool designed to assess risk associated with opioid use. Specifically, we sought to assess how physicians were using the profile in patient care and how its use affected patient outcomes. Patients and methods A prospective, longitudinal study was conducted to assess the utility of precision medicine testing in 5,397 patients across 100 clinics in the USA. Using a patent-protected, validated algorithm combining specific genetic risk factors with phenotypic traits, patients were categorized into low-, moderate-, and high-risk patients for opioid abuse. Physicians who ordered precision medicine testing were asked to complete patient evaluations and document their actions, decisions, and perceptions regarding the utility of the precision medicine tests. The patient outcomes associated with each treatment action were carefully documented. Results Physicians used the profile to guide treatment decisions for over half of the patients. Of those, guided treatment decisions for 24.5% of the patients were opioid related, including changing the opioid prescribed, starting an opioid, or titrating a patient off the opioid. Treatment guidance was strongly influenced by profile-predicted opioid use disorder (OUD) risk. Most importantly, patients whose physicians used the profile to guide opioid-related treatment decisions had improved clinical outcomes, including better pain management by medication adjustments, with an average pain decrease of 3.4 points on a scale of 1–10. Conclusion Patients whose physicians used the profile to guide opioid-related treatment decisions had improved clinical outcomes, as measured by decreased pain levels resulting from better pain management with prescribed medications. The clinical utility of the profile is twofold. It provides clinically actionable recommendations that can be used to 1) prevent OUD through limiting initial opioid prescriptions and 2) reduce pain in patients at low risk of developing OUD.
Collapse
|
31
|
Chandler CM, Overton JS, Rüedi-Bettschen D, Platt DM. GABA A Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handb Exp Pharmacol 2018; 248:3-27. [PMID: 29204713 DOI: 10.1007/164_2017_80] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
32
|
Malhotra S, Basu D, Ghosh A, Khullar M, Chugh N, Kakkar N. An exploratory study of candidate gene(s) for Delirium Tremens: Adding the new cholinergic dimension to the conundrum. Asian J Psychiatr 2018; 31:137-141. [PMID: 29478862 DOI: 10.1016/j.ajp.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/31/2017] [Accepted: 02/03/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Delirium Tremens (DT) is the most severe form of alcohol withdrawal syndrome, with a potential risk of mortality. Search for the predictors of DT led to study of candidate genes, with inconsistent and inconclusive results. This study aimed to explore the association of various candidate gene polymorphisms and DT in a case-control design. METHODS This was a genetic association study with a case control design. Two hundred ten Alcohol dependent (AD) male subjects and 200 age matched controls were recruited. DT was diagnosed with the help of Semi-structured Assessment for Genetics of Alcoholism. SNP genotyping was done using TaqMan assay by real time PCR (q-PCR). RESULTS T allele carrying status (GT and TT) [rs1824024] of muscarinic cholinergic receptor 2 (CHRM2) was found to be significantly associated with DT. When compared to the general population, this genetic polymorphism was not found to be more common in alcohol dependence per se, which excludes the possibility of spurious association between CHRM2 and DT. Withdrawal seizure was more common in the DT group and came out to be one of the important predictors of DT. However, the genetic association was found to be specific for DT, not related to withdrawal seizures. CONCLUSION The present research added a new cholinergic dimension in the genetic association and biological mechanism of DT.
Collapse
Affiliation(s)
- Savita Malhotra
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Debasish Basu
- Drug Deaddiction & Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Abhishek Ghosh
- Drug Deaddiction & Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
| | - Madhu Khullar
- Department of Experimental Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neera Chugh
- Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neeraj Kakkar
- Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
33
|
Meyers JL, Zhang J, Wang JC, Su J, Kuo SI, Kapoor M, Wetherill L, Bertelsen S, Lai D, Salvatore JE, Kamarajan C, Chorlian D, Agrawal A, Almasy L, Bauer L, Bucholz KK, Chan G, Hesselbrock V, Koganti L, Kramer J, Kuperman S, Manz N, Pandey A, Seay M, Scott D, Taylor RE, Dick DM, Edenberg HJ, Goate A, Foroud T, Porjesz B. An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast beta EEG in families of African ancestry. Mol Psychiatry 2017; 22:1767-1775. [PMID: 28070124 PMCID: PMC5503794 DOI: 10.1038/mp.2016.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/24/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023]
Abstract
Fast beta (20-28 Hz) electroencephalogram (EEG) oscillatory activity may be a useful endophenotype for studying the genetics of disorders characterized by neural hyperexcitability, including substance use disorders (SUDs). However, the genetic underpinnings of fast beta EEG have not previously been studied in a population of African-American ancestry (AA). In a sample of 2382 AA individuals from 482 families drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a genome-wide association study (GWAS) on resting-state fast beta EEG power. To further characterize our genetic findings, we examined the functional and clinical/behavioral significance of GWAS variants. Ten correlated single-nucleotide polymorphisms (SNPs) (r2>0.9) located in an intergenic region on chromosome 3q26 were associated with fast beta EEG power at P<5 × 10-8. The most significantly associated SNP, rs11720469 (β: -0.124; P<4.5 × 10-9), is also an expression quantitative trait locus for BCHE (butyrylcholinesterase), expressed in thalamus tissue. Four of the genome-wide SNPs were also associated with Diagnostic and Statistical Manual of Mental Disorders Alcohol Dependence in COGA AA families, and two (rs13093097, rs7428372) were replicated in an independent AA sample (Gelernter et al.). Analyses in the AA adolescent/young adult (offspring from COGA families) subsample indicated association of rs11720469 with heavy episodic drinking (frequency of consuming 5+ drinks within 24 h). Converging findings presented in this study provide support for the role of genetic variants within 3q26 in neural and behavioral disinhibition. These novel genetic findings highlight the importance of including AA populations in genetics research on SUDs and the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.
Collapse
Affiliation(s)
- J L Meyers
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J Zhang
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J C Wang
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Su
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - S I Kuo
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Kapoor
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Bertelsen
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J E Salvatore
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - C Kamarajan
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Chorlian
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - A Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - L Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - K K Bucholz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - G Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - V Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - L Koganti
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Kramer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - N Manz
- Department of Physics, The College of Wooster, Wooster, OH, USA
| | - A Pandey
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - M Seay
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Scott
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - R E Taylor
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - D M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - H J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Goate
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Porjesz
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
34
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
35
|
Kuperman S, Chan G, Kramer J, Wetherill L, Acion L, Edenberg HJ, Foroud TM, Nurnberger J, Agrawal A, Anokhin A, Brooks A, Hesselbrock V, Hesselbrock M, Schuckit M, Tischfield J, Liu X. A GABRA2 polymorphism improves a model for prediction of drinking initiation. Alcohol 2017; 63:1-8. [PMID: 28847377 PMCID: PMC5657392 DOI: 10.1016/j.alcohol.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival analysis was used to explore the addition of a single nucleotide polymorphism (SNP) and covariates (sex, interview age, and ancestry) on a previously published model's ability to predict onset of drinking. A SNP variant of rs279871, in the chromosome 4 gene encoding gamma-aminobutyric acid receptor (GABRA2), was selected due to its associations with alcoholism in young adults and with behaviors that increased risk for early drinking. METHODS A subsample of 674 adolescents (ages 14-17) participating in the Collaborative Study on the Genetics of Alcoholism (COGA) was examined using a previously derived Cox proportional hazards model containing: 1) number of non-drinking related conduct disorder (CD) symptoms, 2) membership in a high-risk alcohol-dependent (AD) family, 3) most best friends drank (MBFD), 4) Achenbach Youth Self Report (YSR) externalizing score, and 5) YSR social problems score. The above covariates along with the SNP variant of GABRA2, rs279871, were added to this model. Five new prototype models were examined. The most parsimonious model was chosen based on likelihood ratio tests and model fit statistics. RESULTS The final model contained four of the five original predictors (YSR social problems score was no longer significant and hence dropped from subsequent models), the three covariates, and a recessive GABRA2 rs279871 TT genotype (two copies of the high-risk allele containing thymine). The model indicated that adolescents with the high-risk TT genotype were more likely to begin drinking than those without this genotype. CONCLUSIONS The joint effect of the gene (rs279871 TT genotype) and environment (MBFD) on adolescent alcohol initiation is additive, but not interactive, after controlling for behavior problems (CD and YSR externalizing score). This suggests that the impact of the high-risk TT genotype on the onset of drinking is affected by controlling for peer drinking and does not include genotype-by-environment interactions.
Collapse
Affiliation(s)
- Samuel Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Grace Chan
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - John Kramer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Acion
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Howard J Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrey Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Brooks
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Michie Hesselbrock
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Marc Schuckit
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jay Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Xiangtao Liu
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
36
|
Jin Y, Jin W, Zheng Z, Chen E, Wang Q, Wang Y, Wang O, Zhang X. GABRB2 plays an important role in the lymph node metastasis of papillary thyroid cancer. Biochem Biophys Res Commun 2017; 492:323-330. [PMID: 28859983 DOI: 10.1016/j.bbrc.2017.08.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid cancer is a common malignant tumor of the endocrine system. Its incidence has increased continuously worldwide for the past three decades. With advanced sequencing technology, we discovered that GABRB2 gene is overexpressed in tumor tissues and closely associated with vertebrate nervous systems. However, its role in cancer remains unclear. METHODS We conducted a massively parallel whole transcriptome resequencing and a comprehensive analysis of matched papillary thyroid carcinoma (PTC) tumors and normal tissues in 19 patients. Results showed that GABRB2 expression was significantly upregulated in thyroid cancer. Forty-five pairs of tumors and normal tissues were subjected to reverse transcription polymerase chain reaction to validate previous findings. The specific functions of GABRB2 in PTC cell lines (BCPAP, TPC1, and KTC-1) transfected with small interfering RNA were determined through cell colony formation, Cell Counting Kit-8, Transwell migration, Transwell invasion, and apoptosis assays. The effect of DNA demethylation on this gene was also examined. RESULTS GABRB2 was remarkably overexpressed in primarily sequenced PTC tumors and validation cohort (T: N = 4.94 ± 3.43:0.83 ± 1.71, P < 0.001), and this observation was consistent with that in the TCGA cohort (T: N = 38.92 ± 35.53:0.30 ± 0.55, P < 0.001). GABRB2 overexpression was correlated with lymph node metastasis in both cohorts (P < 0.01). In vitro experiments revealed that GABRB2 downregulation significantly inhibited the colony formation, migration, and invasion of the three PTC cell lines. CONCLUSION GABRB2 plays important tumorigenic functions and acts as a novel oncogene in PTC.
Collapse
Affiliation(s)
- Yixiang Jin
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Jin
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouci Zheng
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Endong Chen
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingxuan Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinghao Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ouchen Wang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohua Zhang
- Departments of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
37
|
Kiive E, Laas K, Vaht M, Veidebaum T, Harro J. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele. Eur Neuropsychopharmacol 2017; 27:816-827. [PMID: 28237505 DOI: 10.1016/j.euroneuro.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/28/2016] [Accepted: 02/09/2017] [Indexed: 01/14/2023]
Abstract
Research of GABRA2 gene in alcohol use and impulse control suggests its role in aggressive behaviour. The purpose of the present study was to examine the effects of GABRA2 genotype and stressful life events on aggressive behaviour, alcohol use frequency and occurrence of alcohol use disorder in a population representative sample of adolescents followed up from third grade to 25 years of age. The sample consisted of the younger cohort of the longitudinal Estonian Children Personality, Behaviour and Health Study. Aggressive behaviour was rated with the activity scale of af Klinteberg, Illinois Bully Scale and Buss-Perry Aggression Questionnaire. Stressful life events and alcohol use were self-reported. Life history of aggression and lifetime occurrence of psychiatric disorders were estimated in a structured interview. The sample was genotyped for GABRA2 rs279826 and rs279858 polymorphisms that are in strong linkage disequilibrium and yielded very similar findings: Higher number of stressful life events reported at age 15 was associated with increased fighting in A-allele carriers, but not in GG homozygotes. At age 25, A-allele carriers with more stressful life events scored higher on physical aggression than those with less stress, and this was also observed regarding life history of aggression. A-allele carriers exposed to higher stress had consumed alcoholic beverages more frequently at age 15, and by age 25, they had alcohol use disorder with higher prevalence. The results of the present study suggest that the GABRA2 genotype interacts with stress in young people with impact on the development of alcohol use and aggressive behaviour.
Collapse
Affiliation(s)
- Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Tartu, Estonia.
| | - Kariina Laas
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | | | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Malhotra S, Basu D, Khullar M, Ghosh A, Chugh N. Candidate genes for alcohol dependence: A genetic association study from India. Indian J Med Res 2017; 144:689-696. [PMID: 28361821 PMCID: PMC5393079 DOI: 10.4103/ijmr.ijmr_1018_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background & objectives: Search for candidate genes for alcohol dependence (AD) has been inconsistent and inconclusive. Moreover, most of the research has been confined to a few specific ethnic groups. Hence, the aim of our study was to explore specific candidate genes for AD in north Indian male population. Methods: In this clinic-based genetic association study, 210 males with AD and 200 controls matched for age, gender and ethnicity were recruited from the clinic and the general population, respectively. Cases were diagnosed with Semi-structured Assessment for Genetics of Alcoholism-II (SSAGA-II). Single-nucleotide polymorphism genotyping was done by real-time quantitative-polymerase chain reaction (PCR) using Taq Man assay (ABI 7500) fast real-time PCR system. Results: Both at the genotypic level and at allelic frequency, Met158 variant of catechol-O-methyl transferase (COMT) showed significant increase in cases as compared to controls. The frequency of heterozygous genotype (A/G) of gamma-aminobutyric acid receptor A1 (GABRA1) was significantly lower in cases as compared to controls. Likewise, for GABRA2, the frequency of homozygous recessive genotype (G/G) was significantly higher in the control group. With respect to the 5-hydroxytryptamine (5HT) transporter long promoter region (5HTTLPR), cholinergic receptor muscarinic (CHRM2) and alcohol dehydrogenase 1B (ADH1B) genes, there was no significant difference between the cases and the controls. Aldehyde dehydrogenase (ALDH2) gene was found to be monomorphic in our study population. Interpretation & conclusions: Our study findings showed COMT polymorphism conferring risk and GABRA polymorphism as a protective genotype for Indian male with AD. Genes for alcohol metabolism, serotonin transporter and cholinergic receptor gene polymorphism were perhaps not contributory to AD for Indian population.
Collapse
Affiliation(s)
- Savita Malhotra
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Debasish Basu
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Abhishek Ghosh
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neera Chugh
- Reliance Industries Limited, Navi Mumbai, India
| |
Collapse
|
39
|
Sulovari A, Liu Z, Zhu Z, Li D. Genome-wide meta-analysis of copy number variations with alcohol dependence. THE PHARMACOGENOMICS JOURNAL 2017; 18:398-405. [PMID: 28696413 DOI: 10.1038/tpj.2017.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
Genetic association studies and meta-analyses of alcohol dependence (AD) have reported AD-associated single nucleotide polymorphisms (SNPs). These SNPs collectively account for a small portion of estimated heritability in AD. Recent genome-wide copy number variation (CNV) studies have identified CNVs associated with AD and substance dependence, suggesting that a portion of the missing heritability is explained by CNV. We applied PennCNV and QuantiSNP CNV calling algorithms to identify consensus CNVs in five AD cohorts of European and African origins. After rigorous quality control, genome-wide meta-analyses of CNVs were carried out in 3243 well-diagnosed AD cases and 2802 controls. We identified nine CNV regions, including a deletion in chromosome 5q21.3 with a suggestive association with AD (OR=2.15 (1.41-3.29) and P=3.8 × 10-4) and eight nominally significant CNV regions. All regions were replicated with consistent effect sizes across studies and populations. Pathway and gene-drug interaction enrichment analyses based on the resulting genes indicated the mitogen-activated protein kinase signaling pathway and the recombinant insulin and hyaluronidase drugs, which were relevant to AD biology or treatment. To our knowledge, this is the first genome-wide meta-analysis of CNVs with addiction. Further investigation of the AD-associated CNV regions will provide better understanding of the AD genetic mechanism.
Collapse
Affiliation(s)
- A Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Z Liu
- Spine Surgery, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Z Zhu
- Spine Surgery, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - D Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA.,Department of Computer Science, University of Vermont, Burlington, VT, USA.,Neuroscience, Behavior, and Health Initiative, University of Vermont, Burlington, VT, USA
| |
Collapse
|
40
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
41
|
Warden AS, Mayfield RD. Gene expression profiling in the human alcoholic brain. Neuropharmacology 2017; 122:161-174. [PMID: 28254370 DOI: 10.1016/j.neuropharm.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/12/2023]
Abstract
Long-term alcohol use causes widespread changes in gene expression in the human brain. Aberrant gene expression changes likely contribute to the progression from occasional alcohol use to alcohol use disorder (including alcohol dependence). Transcriptome studies have identified individual gene candidates that are linked to alcohol-dependence phenotypes. The use of bioinformatics techniques to examine expression datasets has provided novel systems-level approaches to transcriptome profiling in human postmortem brain. These analytical advances, along with recent developments in next-generation sequencing technology, have been instrumental in detecting both known and novel coding and non-coding RNAs, alternative splicing events, and cell-type specific changes that may contribute to alcohol-related pathologies. This review offers an integrated perspective on alcohol-responsive transcriptional changes in the human brain underlying the regulatory gene networks that contribute to alcohol dependence. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Anna S Warden
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, C7000, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA.
| |
Collapse
|
42
|
Sharma M, Lee C, Kantorovich S, Tedtaotao M, Smith GA, Brenton A. Validation Study of a Predictive Algorithm to Evaluate Opioid Use Disorder in a Primary Care Setting. Health Serv Res Manag Epidemiol 2017; 4:2333392817717411. [PMID: 28890908 PMCID: PMC5574481 DOI: 10.1177/2333392817717411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Opioid abuse in chronic pain patients is a major public health issue. Primary care providers are frequently the first to prescribe opioids to patients suffering from pain, yet do not always have the time or resources to adequately evaluate the risk of opioid use disorder (OUD). PURPOSE This study seeks to determine the predictability of aberrant behavior to opioids using a comprehensive scoring algorithm ("profile") incorporating phenotypic and, more uniquely, genotypic risk factors. METHODS AND RESULTS In a validation study with 452 participants diagnosed with OUD and 1237 controls, the algorithm successfully categorized patients at high and moderate risk of OUD with 91.8% sensitivity. Regardless of changes in the prevalence of OUD, sensitivity of the algorithm remained >90%. CONCLUSION The algorithm correctly stratifies primary care patients into low-, moderate-, and high-risk categories to appropriately identify patients in need for additional guidance, monitoring, or treatment changes.
Collapse
Affiliation(s)
| | - Chee Lee
- Proove Biosciences Inc, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
43
|
Chua HC, Chebib M. GABA A Receptors and the Diversity in their Structure and Pharmacology. ADVANCES IN PHARMACOLOGY 2017; 79:1-34. [DOI: 10.1016/bs.apha.2017.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Abstract
Genetic factors contribute to more than 50% of the variation in the vulnerability to alcohol dependence (AD). Although significant advances have been made in medications for AD, these medications do not work for all people. Precise tailoring of medicinal strategies for individual alcoholic patients is needed to achieve optimal outcomes. This review updates the most promising information on genetic variants in AD, which may be useful for improving diagnostic, therapeutic, and monitoring strategies. We describe genetic candidates of various neurotransmitter and enzyme systems. In addition to biological and allelic associations with AD, genetic effects on AD-related phenotypes and treatment responses have also been described. Gene-gene and gene-environment interactions have been considered. Potential applications of genomewide and epigenetic approaches for identifying genetic biomarkers of AD have been discussed. Overall, the application of genetic findings in precision medicine for AD will likely involve an integrated approach that distinguishes effect sizes of specific genetic predictors with regard to sex, pharmacotherapy, ethnicity, and AD-related aspects and considers gene-gene and gene-environment interactions. Our work may pave the way toward more precise treatment for AD that could ultimately improve clinical management and interventions.
Collapse
|
45
|
Cservenka A, Yardley MM, Ray LA. Review: Pharmacogenetics of alcoholism treatment: Implications of ethnic diversity. Am J Addict 2016; 26:516-525. [PMID: 28134463 DOI: 10.1111/ajad.12463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/21/2016] [Accepted: 10/02/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pharmacogenetic studies of alcohol use disorder (AUD) have suggested that the efficacy of treatments for AUD is, in part, influenced by the genetic background of an individual. Since the frequency of alleles associated with pharmacotherapy for AUD varies by ancestral background, the effectiveness of medications used to treat AUD may vary among different populations. The purpose of this review is to summarize the existing pharmacogenetic studies of treatments for AUD in individuals of European, East Asian, African, and American Indian/Alaska Native ancestry. METHODS Electronic databases were searched for pharmacogenetic studies of AUD treatment that included individuals of diverse ancestral backgrounds. RESULTS Pharmacogenetic studies of AUD reviewed here have primarily investigated genetic variation thought to play a role in the response to naltrexone, ondansetron, and topiramate. There is support that the A118G polymorphism should be further investigated in individuals of East Asian ancestry. DISCUSSION AND CONCLUSIONS Given the lack of pharmacogenetic research on response to AUD medication in ethnic minority populations and the mixed results, there is a critical need for future studies among individuals of different ancestries. More efforts should be devoted to standardizing procedures such that results can be more readily integrated into a body of literature that can directly inform clinical practice. SCIENTIFIC SIGNIFICANCE This review highlights the importance for future research to aim for inclusiveness in pharmacogenetic studies of AUD and increase diversity of clinical trials in order to provide the best treatment outcomes for individuals across different racial and ethnic groups. (Am J Addict 2017;26:516-525).
Collapse
Affiliation(s)
- Anita Cservenka
- School of Psychological Science, Oregon State University, Corvallis, Oregon
| | - Megan M Yardley
- Department of Psychology, University of California, Los Angeles, California
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, California.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
46
|
Newman EL, Gunner G, Huynh P, Gachette D, Moss S, Smart T, Rudolph U, DeBold JF, Miczek KA. Effects of Gabra2 Point Mutations on Alcohol Intake: Increased Binge-Like and Blunted Chronic Drinking by Mice. Alcohol Clin Exp Res 2016; 40:2445-2455. [PMID: 27717041 PMCID: PMC5073020 DOI: 10.1111/acer.13215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alcohol use disorders are associated with single-nucleotide polymorphisms in GABRA2, the gene encoding the GABAA receptor α2-subunit in humans. Deficient GABAergic functioning is linked to impulse control disorders, intermittent explosive disorder, and to drug abuse and dependence, yet it remains unclear whether α2-containing GABAA receptor sensitivity to endogenous ligands is involved in excessive alcohol drinking. METHODS Male wild-type (Wt) C57BL/6J and point-mutated mice rendered insensitive to GABAergic modulation by benzodiazepines (BZD; H101R), allopregnanolone (ALLO) or tetrahydrodeoxycorticosterone (THDOC; Q241M), or high concentrations of ethanol (EtOH) (S270H/L277A) at α2-containing GABAA receptors were assessed for their binge-like, moderate, or escalated chronic drinking using drinking in the dark, continuous access (CA) and intermittent access (IA) to alcohol protocols, respectively. Social approach by mutant and Wt mice in forced alcohol abstinence was compared to approach by EtOH-naïve controls. Social deficits in forced abstinence were treated with allopregnanolone (0, 3.0, 10.0 mg/kg, intraperitoneal [i.p.]) or midazolam (0, 0.56, 1.0 mg/kg, i.p.). RESULTS Mice with BZD-insensitive α2-containing GABAA receptors (H101R) escalated their binge-like drinking. Mutants harboring the Q241M point substitution in Gabra2 showed blunted chronic intake in the CA and IA protocols. S270H/L277A mutants consumed excessive amounts of alcohol but, unlike wild-types, they did not show forced abstinence-induced social deficits. CONCLUSIONS These findings suggest a role for: (i) H101 in species-typical binge-like drinking, (ii) Q241 in escalated chronic drinking, and (iii) S270 and/or L277 in the development of forced abstinence-associated social deficits. Clinical findings report reduced BZD-binding sites in the cortex of dependent patients; the present findings suggest a specific role for BZD-sensitive α2-containing receptors. In addition, amino acid residue 241 in Gabra2 is necessary for positive modulation and activation of GABAA receptors by ALLO and THDOC; we postulate that neurosteroid action on α2-containing receptor may be necessary for escalated chronic EtOH intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Trevor Smart
- Dept. of Neuroscience, Physiology and Pharmacology, University College London
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital,Dept. of Psychiatry, Harvard Medical School
| | | | - Klaus A. Miczek
- Dept. of Psychology, Tufts University,Dept. of Neuroscience, Tufts University
| |
Collapse
|
47
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
48
|
Diószegi J, Fiatal S, Tóth R, Moravcsik-Kornyicki Á, Kósa Z, Sándor J, McKee M, Ádány R. Distribution Characteristics and Combined Effect of Polymorphisms Affecting Alcohol Consumption Behaviour in the Hungarian General and Roma Populations. Alcohol Alcohol 2016; 52:104-111. [PMID: 27511636 DOI: 10.1093/alcalc/agw052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Harmful alcohol drinking habits, even among Roma children and adolescents, are more common than in the majority population. The aim of the study was to evaluate the genetic susceptibility of Roma to hazardous alcohol consumption compared to the Hungarian general population. METHODS A total of 1273 samples from the population of segregated Hungarian Roma colonies and 2967 samples from the Hungarian general population were genotyped for 25 polymorphisms. Differences in genotype and allele distributions were investigated. Genetic risk scores (GRS) were generated to estimate the joint effect of individual single-nucleotide polymorphisms (SNPs). After unweighted and weighted GRS were calculated the distribution of scores in study populations was compared. RESULTS The allele frequencies differed significantly between the study populations for 17 SNPs (P < 0.002), but the genetic alterations that predispose to or protect against harmful alcohol consumption were not overrepresented in the Roma population. The distribution of unweighted GRS in Roma population was left shifted compared to general population (P = 0.0013). The median weighted genetic risk score was lower among the subjects of Roma population compared to the subjects of general population (0.53 vs 0.65, P = 3.33 × 10-27) even after adjustment for confounding factors. CONCLUSIONS Differences in alcohol consumption habits between the Hungarian Roma and Hungarian general populations do not appear to be linked to genetic constitution, this behaviour may occur as a result of different cultural values and environmental exposures. Population-based measures to tackle the fundamental drivers of consumption, which take account of cultural acceptability, are needed to reduce harmful alcohol consumption in the Roma population.
Collapse
Affiliation(s)
- Judit Diószegi
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary
| | - Réka Tóth
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary
| | - Ágota Moravcsik-Kornyicki
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Kassai út 26, Debrecen 4028, Hungary
| | - Zsigmond Kósa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, Sóstói Steet 2-4, Nyíregyháza 4400, Hungary
| | - János Sándor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary
| | - Martin McKee
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Róza Ádány
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary .,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Kassai Street 26, Debrecen 4028, Hungary.,MTA-DE Public Health Research Group, University of Debrecen, Kassai út 26, Debrecen 4028, Hungary
| |
Collapse
|
49
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
50
|
Perry BL. Gendering Genetics: Biological Contingencies in the Protective Effects of Social Integration for Men and Women. AJS; AMERICAN JOURNAL OF SOCIOLOGY 2016; 121:1655-1696. [PMID: 27416652 DOI: 10.1086/685486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence that social and biological processes are intertwined in producing health and human behavior is rapidly accumulating. Using a feminist approach, this research explores how gender moderates the interaction between biological processes and men's and women's behavioral and emotional responses to similar social environments. Using data from the Collaborative Study on the Genetics of Alcoholism, the influence of gender, social integration, and genetic risk on nicotine and alcohol dependence is examined. Three-way interaction models reveal gender-specific moderation of interactions between genetic risk score and social integration. Namely, being currently married and reporting positive social psychological integration are predictive of reduced risk of nicotine dependence among men with genetic susceptibility to strong nicotine cravings in the presence of social cues like stress. In contrast, the protective effects of marital status and social integration are substantially attenuated and absent, respectively, among women with high-risk genotypes. This pattern reflects the dualism (i.e., simultaneous costs and benefits) inherent in social integration for women, which may disproportionately affect those with a genetic sensitivity to stress. These findings contest the notion of genotype as static biological hardwiring that is independent from social and cultural systems of gender difference.
Collapse
|