1
|
Spangemacher M, Reinwald J, Adolphi H, Kärtner L, Mertens LJ, Schmitz CN, Gründer G. [Mechanisms of action of antidepressive pharmacotherapy: brain and mind-body and environment]. DER NERVENARZT 2025:10.1007/s00115-024-01786-3. [PMID: 39821675 DOI: 10.1007/s00115-024-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Novel antidepressive substances are challenging the explanations for the mechanisms of action of traditional psychopharmacology. OBJECTIVE What could be the shared effects of various antidepressants and in this context what role do extrapharmacological factors, such as the body and environment, play? MATERIAL AND METHOD The available literature on clinical and preclinical data for assumed combined active factors of serotonergic psychedelic drugs, (es)ketamine, monoaminergic antidepressants and zuranolone are presented and the influence of context factors on the individual mechanisms of action is discussed. RESULTS There are many indications that classical and novel pharmacological approaches could share similar mechanisms of action in the treatment of depression. These mechanisms favor long-term neuroplasticity, which can trigger subsequent molecular cascades and vice versa. Furthermore, an improvement in the negative bias in emotional processing could be detected for most antidepressive substances. The influence of extrapharmacological factors appears to be necessary so that the biopsychological alterations can have an antidepressive effect. CONCLUSION Instead of attributing factors such as environment, body and social interaction to placebo effects, they should be tested as essential components of the antidepressive effect and considered in the clinical practice.
Collapse
Affiliation(s)
- Moritz Spangemacher
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland.
- Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland.
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland.
| | - Jonathan Reinwald
- Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
- AG Translationales Imaging, Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
- AG Systemische Neurowissenschaften und Psychische Gesundheit, Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Mainz, Johannes-Gutenberg-Universität, Mainz, Deutschland
| | - Hana Adolphi
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
| | - Laura Kärtner
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
| | - Lea J Mertens
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
| | - Christian N Schmitz
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
| | - Gerhard Gründer
- Abteilung für Molekulares Neuroimaging, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim, Universität Heidelberg, 68159, Mannheim, Deutschland
- Standort Mannheim, Deutsches Zentrum für Psychische Gesundheit (DZPG), Mannheim, Deutschland
| |
Collapse
|
2
|
Wang S, Liu Y, Peng LC, Duan W, Shu Y, Tian Y. A Self-Supporting Flexible Electrode for Tracking and Reversible Quantification of Mg 2+ and Ca 2+ in the Brains of Freely Behaving Animal. Angew Chem Int Ed Engl 2025:e202422602. [PMID: 39789605 DOI: 10.1002/anie.202422602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days. Using this powerful tool, we discovered for the first time that, during the 4-aminopyridine-induced seizure in the live brain, extracellular Mg2+ inhibited Ca2+ influx. Moreover, the timing of initial changes in Mg2+ and Ca2+ levels during seizures aligned with neural pathways, which had not been previously reported.
Collapse
Affiliation(s)
- Shidi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuandong Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Lin-Chun Peng
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wei Duan
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
3
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
4
|
Perry AN, Jarosova R, Witt CE, Weese-Myers ME, Subedi V, Ross AE. Plasma-treated gold microelectrodes for subsecond detection of Zn(II) with fast-scan cyclic voltammetry. Analyst 2024; 149:4643-4652. [PMID: 39136087 DOI: 10.1039/d4an00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The sensitivity of zinc (Zn(II)) detection using fast-scan cyclic voltammetry (FSCV) with carbon fiber microelectrodes (CFMEs) is low compared to other neurochemicals. We have shown previously that Zn(II) plates to the surface of CFME's and we speculate that it is because of the abundance of oxide functionality on the surface. Plating reduces sensitivity over time and causes significant disruption to detection stability. This limited sensitivity and stability hinders Zn(II) detection, especially in complex matrices like the brain. To address this, we developed plasma-treated gold fiber microelectrodes (AuMEs) which enable sensitive and stable Zn(II) detection with FSCV. Typically, gold fibers are treated using corrosive acids to clean the surface and this step is important for preparing the surface for electrochemistry. Likewise, because FSCV is an adsorption-based technique, it is also important for Zn(II) to adsorb and desorb to prevent irreversible plating. Because of these requirements, careful optimization of the electrode surface was necessary to render the surface for Zn(II) adsorption yet strike a balance between attraction to the surface vs. irreversible interactions. In this study, we employed oxygen plasma treatment to activate the gold fiber surface without inducing significant morphological changes. This treatment effectively removes the organic layer while functionalizing the surface with oxygen, enabling Zn(II) detection that is not possible on untreated gold surfaces. Our results demonstrate significantly improved Zn(II) detection sensitivity and stability on AuME compared to CFME's. Overall, this work provides an advance in our understanding of Zn(II) electrochemistry and a new tool for improved metallotransmitter detection in the brain.
Collapse
Affiliation(s)
- Anntonette N Perry
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Romana Jarosova
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Colby E Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Moriah E Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Vivek Subedi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Office# 418A Rieveschl, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
5
|
Heesbeen EJ, van Kampen T, Verdouw PM, van Lissa C, Bijlsma EY, Groenink L. The effect of SSRIs on unconditioned anxiety: a systematic review and meta-analysis of animal studies. Psychopharmacology (Berl) 2024; 241:1731-1755. [PMID: 38980348 PMCID: PMC11339141 DOI: 10.1007/s00213-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are the first choice of treatment for anxiety-like disorders. However, which aspects of anxiety are affected by SSRIs is not yet fully understood. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on four aspects of unconditioned anxiety: approach-avoidance behaviour (elevated plus maze), repetitive behaviour (marble burying), distress behaviour (ultrasonic vocalization), and activation of the autonomous nervous system (stress-induced hyperthermia). METHODS We identified publications by searching Medline and Embase databases and assessed the risk of bias. A random effects meta-analysis was performed and moderator effects were analysed with Bayesian penalized meta-regression. RESULTS Our search yielded 105 elevated plus maze, 63 marble burying, 11 ultrasonic vocalization, and 7 stress-induced hyperthermia articles. Meta-analysis suggested that SSRIs reduce anxiety-like behaviour in the elevated plus maze, marble burying and ultrasonic vocalization test and that effects are moderated by pre-existing stress conditions (elevated plus maze) and dose dependency (marble burying) but not by duration of treatment or type of SSRI. The reporting quality was low, publication bias was likely, and heterogeneity was high. CONCLUSION SSRIs seem to reduce a broad range of unconditioned anxiety-associated behaviours. These results should be interpreted with caution due to a high risk of bias, likely occurrence of publication bias, substantial heterogeneity and limited moderator data availability. Our review demonstrates the importance of including bias assessments when interpreting meta-analysis results. We further recommend improving the reporting quality, the conduct of animal research, and the publication of all results regardless of significance.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tatum van Kampen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, The Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Wilson C, Gattuso JJ, Hannan AJ, Renoir T. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol Dis 2023; 185:106223. [PMID: 37423502 DOI: 10.1016/j.nbd.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
7
|
Involvement of DR→mPFC 5-HTergic neural projections in changes of social exploration behaviors caused by adult chronic social isolation in mice. Brain Res Bull 2022; 186:16-26. [DOI: 10.1016/j.brainresbull.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
8
|
Stucky C, Johnson MA. Improved Serotonin Measurement with Fast-Scan Cyclic Voltammetry: Mitigating Fouling by SSRIs. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:045501. [PMID: 36157165 PMCID: PMC9491377 DOI: 10.1149/1945-7111/ac5ec3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been used for decades to treat disorders linked to serotonin dysregulation in the brain. Moreover, SSRIs are often used in studies aimed at measuring serotonin with fast-scan cyclic voltammetry (FSCV) in living tissues. Here, we show that three different SSRIs - fluoxetine, escitalopram, and sertraline - significantly diminish the faradaic oxidation current of serotonin when employing the commonly used Jackson waveform. Coating carbon-fiber microelectrodes (CFMs) with Nafion resulted in further degradation of peak current, increased response times, and decreased background charging currents compared to bare CFMs. To decrease fouling, we employed a recently published extended serotonin waveform, which scans to a maximum positive potential of +1.3 V, rather than +1.0 V used in the Jackson waveform. Use of this waveform with bare CFMs alleviated the decrease in faradaic current, indicating decreased electrode fouling. Collectively, our results suggest that fouling considerations are important when designing FSCV experiments that employ SSRIs and that they can be overcome by using the appropriate waveform.
Collapse
Affiliation(s)
| | - Michael A. Johnson
- Corresponding author: Michael A. Johnson, 2030 Becker Drive, Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047 USA,
| |
Collapse
|
9
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|
10
|
Dunham KE, Venton BJ. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst 2021; 145:7437-7446. [PMID: 32955048 DOI: 10.1039/d0an01406k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Serotonin is a neuromodulator implicated in depression that is often measured in real-time by fast-scan cyclic voltammetry (FSCV). A specialized "Jackson" waveform (JW, 0.2, 1.0 V, -0.1 V, 0.2 V, 1000 V s-1) was developed to reduce serotonin fouling, but the 1.0 V switching potential limits sensitivity and electrodes still foul. The goal of this study was to test the effects of extending the FSCV switching potential to increase serotonin sensitivity and decrease fouling. We compared the Jackson waveform, the dopamine waveform (DA, -0.4 V, 1.3 V, 400 V s-1), and two new waveforms: the extended serotonin waveform (ESW, 0.2, 1.3, -0.1, 0.2, 1000 V s-1) and extended hold serotonin waveform (EHSW, 0.2, 1.3 (hold 1 ms), -0.1, 0.2, 400 V s-1). The EHSW was the most sensitive (LOD = 0.6 nM), and the JW the least sensitive (LOD = 2.4 nM). With the Jackson waveform, electrode fouling was significant with repeated injections of serotonin or exposure to its metabolite, 5-hydroxyindoleacetic acid (5-HIAA). Using the extended waveforms, electrodes fouled 50% less than with the Jackson waveform for both analytes. No electrode fouling was observed with the dopamine waveform because of the negative holding potential. The Jackson waveform was the most selective for serotonin over dopamine (800×), and the ESW was also highly selective. All waveforms were useful for measuring serotonin with optogenetic stimulation in Drosophila larvae. These results provide new FSCV waveforms to measure dynamic serotonin changes with different experimental requirements, like high sensitivity (EHSW), high selectivity (ESW, JW), or eliminating electrode fouling (DA).
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | |
Collapse
|
11
|
Mora S, Martín-González E, Flores P, Moreno M. Neuropsychiatric consequences of childhood group A streptococcal infection: A systematic review of preclinical models. Brain Behav Immun 2020; 86:53-62. [PMID: 30818033 DOI: 10.1016/j.bbi.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, clinical studies have shown strong epidemiological evidence of an increased risk of developing neuropsychiatric disorders after childhood exposure to streptococcal infection, including the Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infection (PANDAS). New preclinical studies on group A streptococcus (GAS) exposure investigate how to disentangle the influences of immune activation to induce long-term neurobehavioral effects associated with neuropsychiatric disorders such as obsessive-compulsive disorder, schizophrenia or autism. The present systematic review collects neurobehavioral evidence regarding the use of GAS exposure in animal models to study the vulnerability to different neuropsychiatric disorders, improving our understanding of its possible causes and consequences, and compares its contribution with other preclinical models of immune activation in a variety of paradigms. Specifically, we reviewed the effects of postnatal GAS exposure, in comparison with post- and prenatal exposure to Lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly I:C), on the long-term effects concerning psychomotor, cognition and socioemotional outcomes in rodents. GAS exposure in animal models has revealed different behavioral alterations such as reduced locomotion and motor coordination, a deficit in sensorimotor gating, learning, working memory, altered social behavior, and increased anxiety and stereotyped behavior. Most of the results found are in accordance with other immune activation models -LPS and Poly I:C-, with some discrepancies. The systematic review of the literature supports the preclinical model of GAS exposure as a valid model for studying the neurobehavioral consequences of streptococcal infections. Future studies on streptococcal infection could contribute increasing our knowledge on preventive actions or treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Elena Martín-González
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Pilar Flores
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain.
| |
Collapse
|
12
|
de Abreu MS, Giacomini ACVV, Genario R, Rech N, Carboni J, Lakstygal AM, Amstislavskaya TG, Demin KA, Leonard BE, Vlok M, Harvey BH, Piato A, Barcellos LJG, Kalueff AV. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol Biochem Behav 2020; 193:172928. [PMID: 32289330 DOI: 10.1016/j.pbb.2020.172928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália Rech
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Júlia Carboni
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
| | - Brian E Leonard
- University College Galway, Pharmacology Department, Galway, Ireland
| | - Marli Vlok
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Angelo Piato
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Postgraduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
13
|
Oliver DK, Intson K, Sargin D, Power SK, McNabb J, Ramsey AJ, Lambe EK. Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour. Neuropharmacology 2020; 168:108015. [PMID: 32092443 DOI: 10.1016/j.neuropharm.2020.108015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- David K Oliver
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derya Sargin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janice McNabb
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amy J Ramsey
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of OBGYN, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry 2019; 24:1798-1815. [PMID: 30967681 PMCID: PMC6785351 DOI: 10.1038/s41380-019-0415-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Depression is a complex disorder that takes an enormous toll on individual health. As affected individuals display a wide variation in their clinical symptoms, the precise neural mechanisms underlying the development of depression remain elusive. Although it is impossible to phenocopy every symptom of human depression in rodents, the preclinical field has had great success in modeling some of the core affective and neurovegetative depressive symptoms, including social withdrawal, anhedonia, and weight loss. Adaptations in select cell populations may underlie these individual depressive symptoms and new tools have expanded our ability to monitor and manipulate specific cell types. This review outlines some of the most recent preclinical discoveries on the molecular and neurophysiological mechanisms in reward circuitry that underlie the expression of behavioral constructs relevant to depressive symptoms.
Collapse
|
15
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
16
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Johnson JA, Hobbs CN, Wightman RM. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Anal Chem 2017; 89:6166-6174. [PMID: 28488873 PMCID: PMC5685151 DOI: 10.1021/acs.analchem.7b01005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).
Collapse
Affiliation(s)
- Justin A Johnson
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Caddy N Hobbs
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - R Mark Wightman
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
18
|
Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first week of treatment of Major Depressive Disorder. J Psychiatr Res 2017; 84:174-183. [PMID: 27770740 DOI: 10.1016/j.jpsychires.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 01/15/2023]
Abstract
Serotonin modulates brain oscillatory activity, and serotonergic projections to the thalamus and cortex modulate the frequency of prefrontal rhythmic oscillations. Changes in serotonergic tone have been reported to shift oscillations between the combined delta-theta (2.5-8 Hz) and the alpha (8-12 Hz) frequency ranges. Such frequency shifts may constitute a useful biomarker for the effects of selective serotonin reuptake inhibitor (SSRI) medications in Major Depressive Disorder (MDD). We utilized quantitative electroencephalography (qEEG) to measure shifts in prefrontal rhythmic oscillations early in treatment with either the SSRI escitalopram or placebo, and examined the relationship between these changes and remission of depressive symptoms. Prefrontal delta-theta and alpha power were calculated for 194 subjects with moderate MDD prior to and one week after start of treatment. Changes at one week in delta-theta and alpha power, as well as the delta-theta/alpha ratio, were examined in three cohorts: initial (N = 70) and replication (N = 76) cohorts treated with escitalopram, and a cohort treated with placebo (N = 48). Mean delta-theta power significantly increased and alpha power decreased after one week of escitalopram treatment, but did not significantly change with placebo treatment. The delta-theta/alpha ratio change was a specific predictor of the likelihood of remission after seven weeks of medication treatment: a large increase in this ratio was associated with non-remission in escitalopram-treated subjects, but not placebo-treated subjects. Escitalopram and placebo treatment have differential effects on delta-theta and alpha frequency oscillations. Early increase in delta-theta/alpha may constitute a replicable biomarker for non-remission during SSRI treatment of MDD.
Collapse
|
19
|
Hai A, Cai LX, Lee T, Lelyveld VS, Jasanoff A. Molecular fMRI of Serotonin Transport. Neuron 2016; 92:754-765. [PMID: 27773583 DOI: 10.1016/j.neuron.2016.09.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Reuptake of neurotransmitters from the brain interstitium shapes chemical signaling processes and is disrupted in several pathologies. Serotonin reuptake in particular is important for mood regulation and is inhibited by first-line drugs for treatment of depression. Here we introduce a molecular-level fMRI technique for micron-scale mapping of serotonin transport in live animals. Intracranial injection of an MRI-detectable serotonin sensor complexed with serotonin, together with serial imaging and compartmental analysis, permits neurotransmitter transport to be quantified as serotonin dissociates from the probe. Application of this strategy to much of the striatum and surrounding areas reveals widespread nonsaturating serotonin removal with maximal rates in the lateral septum. The serotonin reuptake inhibitor fluoxetine selectively suppresses serotonin removal in septal subregions, whereas both fluoxetine and a dopamine transporter blocker depress reuptake in striatum. These results highlight promiscuous pharmacological influences on the serotonergic system and demonstrate the utility of molecular fMRI for characterization of neurochemical dynamics.
Collapse
Affiliation(s)
- Aviad Hai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lili X Cai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Taekwan Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victor S Lelyveld
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Dankoski EC, Carroll S, Wightman RM. Acute selective serotonin reuptake inhibitors regulate the dorsal raphe nucleus causing amplification of terminal serotonin release. J Neurochem 2016; 136:1131-1141. [PMID: 26749030 PMCID: PMC4939133 DOI: 10.1111/jnc.13528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) were designed to treat depression by increasing serotonin levels throughout the brain via inhibition of clearance from the extracellular space. Although increases in serotonin levels are observed after acute SSRI exposure, 3–6 weeks of continuous use is required for relief from the symptoms of depression. Thus, it is now believed that plasticity in multiple brain systems that are downstream of serotonergic inputs contributes to the therapeutic efficacy of SSRIs. The onset of antidepressant effects also coincides with desensitization of somatodendritic serotonin autoreceptors in the dorsal raphe nucleus (DRN), suggesting that disrupting inhibitory feedback within the serotonin system may contribute to the therapeutic effects of SSRIs. Previously, we showed that chronic SSRI treatment caused a frequency‐dependent facilitation of serotonin signaling that persisted in the absence of uptake inhibition. In this work, we use in vivo fast‐scan cyclic voltammetry in mice to investigate a similar facilitation after a single treatment of the SSRI citalopram hydrobromide. Acute citalopram hydrobromide treatment resulted in frequency‐dependent increases of evoked serotonin release in the substantia nigra pars reticulata. These increases were independent of changes in uptake velocity, but required SERT expression. Using microinjections, we show that the frequency‐dependent enhancement in release is because of SERT inhibition in the DRN, demonstrating that SSRIs can enhance serotonin release by inhibiting uptake in a location distal to the terminal release site. The novel finding that SERT inhibition can disrupt modulatory mechanisms at the level of the DRN to facilitate serotonin release will help future studies investigate serotonin's role in depression and motivated behavior.
In this work, stimulations of the dorsal raphe nucleus (DRN) evoke serotonin release that is recorded in the substantia nigra pars reticulata (SNpr) using in vivo fast‐scan cyclic voltammetry. Systemic administration of a selective serotonin reuptake inhibitor (SSRI) causes both an increase in t1/2 and an increase in [5‐HT]max in the SNpr. Local application of SSRI to the DRN recapitulates the increase in [5‐HT]max observed in the SNpr without affecting uptake. Thus, SSRIs increase serotonin signaling via two distinct SERT‐mediated mechanisms.
Collapse
Affiliation(s)
- Elyse C Dankoski
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan Carroll
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Mark Wightman
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Rethinking psychopharmacotherapy: The role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev 2015; 60:51-64. [PMID: 26616735 DOI: 10.1016/j.neubiorev.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Emerging evidence indicates that treatment context profoundly affects psychopharmacological interventions. We review the evidence for the interaction between drug application and the context in which the drug is given both in human and animal research. We found evidence for this interaction in the placebo response in clinical trials, in our evolving knowledge of pharmacological and environmental effects on neural plasticity, and in animal studies analyzing environmental influences on psychotropic drug effects. Experimental placebo research has revealed neurobiological trajectories of mechanisms such as patients' treatment expectations and prior treatment experiences. Animal research confirmed that "enriched environments" support positive drug effects, while unfavorable environments (low sensory stimulation, low rates of social contacts) can even reverse the intended treatment outcome. Finally we provide recommendations for context conditions under which psychotropic drugs should be applied. Drug action should be steered by positive expectations, physical activity, and helpful social and physical environmental stimulation. Future drug trials should focus on fully controlling and optimizing such drug×environment interactions to improve trial sensitivity and treatment outcome.
Collapse
|
22
|
Bucher ES, Wightman RM. Electrochemical Analysis of Neurotransmitters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:239-61. [PMID: 25939038 PMCID: PMC4728736 DOI: 10.1146/annurev-anchem-071114-040426] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.
Collapse
|