1
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Bettina JS, Chen Q, Goldman AL, Gregory MD, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine signaling enriched striatal gene set predicts striatal dopamine synthesis and physiological activity in vivo. Nat Commun 2024; 15:3342. [PMID: 38688917 PMCID: PMC11061310 DOI: 10.1038/s41467-024-47456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Enrico D'Ambrosio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Linda A Antonucci
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Jasmine S Bettina
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Holmusk Technologies, New York, NY, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Teresa Popolizio
- Radiology Department, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - William S Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Urueña-Méndez G, Arrondeau C, Bellés L, Ginovart N. Decoupling Dopamine Synthesis from Impulsive Action, Risk-Related Decision-Making, and Propensity to Cocaine Intake: A Longitudinal [ 18F]-FDOPA PET Study in Roman High- and Low-Avoidance Rats. eNeuro 2024; 11:ENEURO.0492-23.2023. [PMID: 38253584 PMCID: PMC10867553 DOI: 10.1523/eneuro.0492-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Impulsive action and risk-related decision-making (RDM) are two facets of impulsivity linked to a hyperdopaminergic release in the striatum and an increased propensity to cocaine intake. We previously showed that with repeated cocaine exposure, this initial hyperdopaminergic release is blunted in impulsive animals, potentially signaling drug-induced tolerance. Whether such dopaminergic dynamics involve changes in dopamine (DA) synthesis as a function of impulsivity is currently unknown. Here, we investigated the predictive value of DA synthesis for impulsive action, RDM, and the propensity to take cocaine in a rat model of vulnerability to cocaine abuse. Additionally, we assessed the effects of cocaine intake on these variables. Rats were tested sequentially in the rat Gambling Task (rGT) and were scanned with positron emission tomography and [18F]-FDOPA to respectively assess both impulsivity facets and striatal DA synthesis before and after cocaine self-administration (SA). Our results revealed that baseline striatal levels of DA synthesis did not significantly predict impulsive action, RDM, or a greater propensity to cocaine SA in impulsive animals. Besides, we showed that impulsive action, but not RDM, predicted higher rates of cocaine taking. However, chronic cocaine exposure had no impact on DA synthesis, nor affected impulsive action and RDM. These findings indicate that the hyper-responsive DA system associated with impulsivity and a propensity for cocaine consumption, along with the reduction in this hyper-responsive DA state in impulsive animals with a history of cocaine use, might not be mediated by dynamic changes in DA synthesis.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Lidia Bellés
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| |
Collapse
|
3
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Chen Q, Czarapata J, Goldman AL, Gregory M, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine and schizophrenia from bench to bedside: Discovery of a striatal co-expression risk gene set that predicts in vivo measures of striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558594. [PMID: 37786720 PMCID: PMC10541621 DOI: 10.1101/2023.09.20.558594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.
Collapse
|
4
|
Rogdaki M, Devroye C, Ciampoli M, Veronese M, Ashok AH, McCutcheon RA, Jauhar S, Bonoldi I, Gudbrandsen M, Daly E, van Amelsvoort T, Van Den Bree M, Owen MJ, Turkheimer F, Papaleo F, Howes OD. Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Mol Psychiatry 2023; 28:1995-2006. [PMID: 33981004 PMCID: PMC10575769 DOI: 10.1038/s41380-021-01108-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK.
| | - Céline Devroye
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mariasole Ciampoli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Veronese
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Abhishekh H Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - Marianne Van Den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| |
Collapse
|
5
|
Shin S, Jung WH, McCutcheon R, Veronese M, Beck K, Lee JS, Lee YS, Howes OD, Kim E, Kwon JS. The Relationship Between Frontostriatal Connectivity and Striatal Dopamine Function in Schizophrenia: An 18F-DOPA PET and Diffusion Tensor Imaging Study in Treatment Responsive and Resistant Patients. Psychiatry Investig 2022; 19:570-579. [PMID: 35903059 PMCID: PMC9334810 DOI: 10.30773/pi.2022.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Striatal dopamine dysfunction caused by cortical abnormalities is a leading hypothesis of schizophrenia. Although prefrontal cortical pathology is negatively correlated with striatal dopamine synthesis, the relationship between structural frontostriatal connectivity and striatal dopamine synthesis has not been proved in patients with schizophrenia with different treatment response. We therefore investigated the relationship between frontostriatal connectivity and striatal dopamine synthesis in treatment-responsive schizophrenia (non-TRS) and compared them to treatment-resistant schizophrenia (TRS) and healthy controls (HC). METHODS Twenty-four patients with schizophrenia and twelve HC underwent [18F] DOPA PET scans to measure dopamine synthesis capacity (the influx rate constant Kicer) and diffusion 3T MRI to measure structural connectivity (fractional anisotropy, FA). Connectivity was assessed in 2 major frontostriatal tracts. Associations between Kicer and FA in each group were evaluated using Spearman's rho correlation coefficients. RESULTS Non-TRS showed a negative correlation (r=-0.629, p=0.028) between connectivity of dorsolateral prefrontal cortex-associative striatum (DLPFC-AST) and dopamine synthesis capacity of associative striatum but this was not evident in TRS (r=-0.07, p=0.829) and HC (r=-0.277, p=0.384). CONCLUSION Our findings are consistent with the hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology localized to connectivity of DLPFC-AST in non-TRS, and also extend the hypothesis to suggest that different mechanisms underlie the pathophysiology of non-TRS and TRS.
Collapse
Affiliation(s)
- Sangho Shin
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.,Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Seongnam, Republic of Korea
| | - Robert McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kim S, Shin SH, Santangelo B, Veronese M, Kang SK, Lee JS, Cheon GJ, Lee W, Kwon JS, Howes OD, Kim E. Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: an [ 18F]DOPA and [ 11C]raclopride PET study in first-episode psychosis. Mol Psychiatry 2021; 26:3476-3488. [PMID: 32929214 DOI: 10.1038/s41380-020-00879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Although antipsychotic drugs are effective for relieving the psychotic symptoms of first-episode psychosis (FEP), psychotic relapse is common during the course of the illness. While some FEPs remain remitted even without medication, antipsychotic discontinuation is regarded as the most common risk factor for the relapse. Considering the actions of antipsychotic drugs on presynaptic and postsynaptic dopamine dysregulation, this study evaluated possible mechanisms underlying relapse after antipsychotic discontinuation. Twenty five FEPs who were clinically stable and 14 matched healthy controls were enrolled. Striatal dopamine activity was assessed as Kicer value using [18F]DOPA PET before and 6 weeks after antipsychotic discontinuation. The D2/3 receptor availability was measured as BPND using [11C]raclopride PET after antipsychotic discontinuation. Healthy controls also underwent PET scans according to the corresponding schedule of the patients. Patients were monitored for psychotic relapse during 12 weeks after antipsychotic discontinuation. 40% of the patients showed psychotic relapse after antipsychotic discontinuation. The change in Kicer value over time significantly differed between relapsed, non-relapsed patients and healthy controls (Week*Group: F = 4.827, df = 2,253.193, p = 0.009). In relapsed patients, a significant correlation was found between baseline striatal Kicer values and time to relapse after antipsychotic discontinuation (R2 = 0.518, p = 0.018). BPND were not significantly different between relapsed, non-relapsed patients and healthy controls (F = 1.402, df = 2,32.000, p = 0.261). These results suggest that dysfunctional dopamine autoregulation might precipitate psychotic relapse after antipsychotic discontinuation in FEP. This finding could be used for developing a strategy for the prevention of psychotic relapse related to antipsychotic discontinuation.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Sang Ho Shin
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Barbara Santangelo
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Seung Kwan Kang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Institute of Radiation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woojoo Lee
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Oliver D Howes
- Department of Psychosis studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea. .,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD. The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 2021; 26:1332-1345. [PMID: 31690805 PMCID: PMC7610423 DOI: 10.1038/s41380-019-0570-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Enrico D’Ambrosio
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sameer Jauhar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Maria Rogdaki
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Fiona Pepper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Matthew J Kempton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
8
|
Egerton A, Murphy A, Donocik J, Anton A, Barker GJ, Collier T, Deakin B, Drake R, Eliasson E, Emsley R, Gregory CJ, Griffiths K, Kapur S, Kassoumeri L, Knight L, Lambe EJB, Lawrie SM, Lees J, Lewis S, Lythgoe DJ, Matthews J, McGuire P, McNamee L, Semple S, Shaw AD, Singh KD, Stockton-Powdrell C, Talbot PS, Veronese M, Wagner E, Walters JTR, Williams SR, MacCabe JH, Howes OD. Dopamine and Glutamate in Antipsychotic-Responsive Compared With Antipsychotic-Nonresponsive Psychosis: A Multicenter Positron Emission Tomography and Magnetic Resonance Spectroscopy Study (STRATA). Schizophr Bull 2021; 47:505-516. [PMID: 32910150 PMCID: PMC7965076 DOI: 10.1093/schbul/sbaa128] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The variability in the response to antipsychotic medication in schizophrenia may reflect between-patient differences in neurobiology. Recent cross-sectional neuroimaging studies suggest that a poorer therapeutic response is associated with relatively normal striatal dopamine synthesis capacity but elevated anterior cingulate cortex (ACC) glutamate levels. We sought to test whether these measures can differentiate patients with psychosis who are antipsychotic responsive from those who are antipsychotic nonresponsive in a multicenter cross-sectional study. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure glutamate levels (Glucorr) in the ACC and in the right striatum in 92 patients across 4 sites (48 responders [R] and 44 nonresponders [NR]). In 54 patients at 2 sites (25 R and 29 NR), we additionally acquired 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-DOPA) positron emission tomography (PET) to index striatal dopamine function (Kicer, min-1). The mean ACC Glucorr was higher in the NR than the R group after adjustment for age and sex (F1,80 = 4.27; P = .04). This was associated with an area under the curve for the group discrimination of 0.59. There were no group differences in striatal dopamine function or striatal Glucorr. The results provide partial further support for a role of ACC glutamate, but not striatal dopamine synthesis, in determining the nature of the response to antipsychotic medication. The low discriminative accuracy might be improved in groups with greater clinical separation or increased in future studies that focus on the antipsychotic response at an earlier stage of the disorder and integrate other candidate predictive biomarkers. Greater harmonization of multicenter PET and 1H-MRS may also improve sensitivity.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jacek Donocik
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Academic Unit of Radiology, Medical School, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Tracy Collier
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Richard Emsley
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Knight
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Emily J B Lambe
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Lily McNamee
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Scott Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alexander D Shaw
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Krish D Singh
- CUBRIC, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Charlotte Stockton-Powdrell
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mattia Veronese
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ernest Wagner
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
9
|
The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology 2020; 45:1870-1876. [PMID: 32612207 PMCID: PMC7608388 DOI: 10.1038/s41386-020-0740-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
There have been few studies performed to examine the pathophysiological differences between different types of psychosis, such as between delusional disorder (DD) and schizophrenia (SZ). Notably, despite the different clinical characteristics of DD and schizophrenia (SZ), antipsychotics are deemed equally effective pharmaceutical treatments for both conditions. In this context, dopamine dysregulation may be transdiagnostic of the pathophysiology of psychotic disorders such as DD and SZ. In this study, an examination is made of the dopamine synthesis capacity (DSC) of patients with SZ, DD, other psychotic disorders, and the DSC of healthy subjects. Fifty-four subjects were recruited to the study, comprising 35 subjects with first-episode psychosis (11 DD, 12 SZ, 12 other psychotic disorders) and 19 healthy controls. All received an 18F-DOPA positron emission tomography (PET)/magnetic resonance (MR) scan to measure DSC (Kocc;30-60 value) within 1 month of starting antipsychotic treatment. Clinical assessments were also made, which included Positive and Negative Syndrome Scale (PANSS) measurements. The mean Kocc;30-60 was significantly greater in the caudate region of subjects in the DD group (ES = 0.83, corrected p = 0.048), the SZ group (ES = 1.40, corrected p = 0.003) and the other psychotic disorder group (ES = 1.34, corrected p = 0.0045), compared to that of the control group. These data indicate that DD, SZ, and other psychotic disorders have similar dysregulated mechanisms of dopamine synthesis, which supports the utility of abnormal dopamine synthesis in transdiagnoses of these psychotic conditions.
Collapse
|
10
|
Amphetamine-induced striatal dopamine release in schizotypal personality disorder. Psychopharmacology (Berl) 2020; 237:2649-2659. [PMID: 32572588 DOI: 10.1007/s00213-020-05561-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
Abstract
RATIONALE Previous research has suggested that schizotypal personality disorder (SPD), a condition that shares clinical and cognitive features with schizophrenia, may be associated with elevated striatal dopamine functioning; however, there are no published studies of dopamine release within subregions of the striatum in SPD. OBJECTIVES To characterize dopamine release capacity in striatal subregions and its relation to clinical and cognitive features in SPD. METHODS We used positron emission tomography with [11C]raclopride and an amphetamine challenge to measure dopamine D2-receptor availability (binding potential, BPND), and its percent change post-amphetamine (∆BPND) to index amphetamine-induced dopamine release, in subregions of the striatum in 16 SPD and 16 healthy control participants. SPD participants were evaluated with measures of schizotypal symptom severity and working memory. RESULTS There were no significant group differences in BPND or ∆BPND in any striatal subregion or whole striatum. Among SPD participants, cognitive-perceptual symptoms were associated at trend level with ∆BPND in the ventral striatum, and disorganized symptoms were significantly negatively related to ∆BPND in several striatal subregions. CONCLUSIONS In contrast to previous findings, SPD was not associated with elevated striatal dopamine release. However, in SPD, there was a moderate positive association between ventral striatal dopamine release and severity of cognitive-perceptual symptoms, and negative associations between striatal dopamine release and severity of disorganized symptoms. Future larger scale investigations that allow for the separate examination of subgroups of participants based on clinical presentation will be valuable in further elucidating striatal DA functioning in SPD.
Collapse
|
11
|
EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 2020; 47:1885-1912. [PMID: 32388612 PMCID: PMC7300075 DOI: 10.1007/s00259-020-04817-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Purpose This joint practice guideline or procedure standard was developed collaboratively by the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI). The goal of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of dopaminergic imaging in parkinsonian syndromes. Methods Currently nuclear medicine investigations can assess both presynaptic and postsynaptic function of dopaminergic synapses. To date both EANM and SNMMI have published procedural guidelines for dopamine transporter imaging with single photon emission computed tomography (SPECT) (in 2009 and 2011, respectively). An EANM guideline for D2 SPECT imaging is also available (2009). Since the publication of these previous guidelines, new lines of evidence have been made available on semiquantification, harmonization, comparison with normal datasets, and longitudinal analyses of dopamine transporter imaging with SPECT. Similarly, details on acquisition protocols and simplified quantification methods are now available for dopamine transporter imaging with PET, including recently developed fluorinated tracers. Finally, [18F]fluorodopa PET is now used in some centers for the differential diagnosis of parkinsonism, although procedural guidelines aiming to define standard procedures for [18F]fluorodopa imaging in this setting are still lacking. Conclusion All these emerging issues are addressed in the present procedural guidelines for dopaminergic imaging in parkinsonian syndromes.
Collapse
|
12
|
Avram M, Brandl F, Cabello J, Leucht C, Scherr M, Mustafa M, Leucht S, Ziegler S, Sorg C. Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 2020; 142:1813-1826. [PMID: 31135051 DOI: 10.1093/brain/awz093] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
While there is consistent evidence for increased presynaptic dopamine synthesis capacity in the striatum of patients with schizophrenia during psychosis, it is unclear whether this also holds for patients during psychotic remission. This study investigates whether striatal dopamine synthesis capacity is altered in patients with schizophrenia during symptomatic remission of positive symptoms, and whether potential alterations relate to symptoms other than positive, such as cognitive difficulties. Twenty-three patients with schizophrenia in symptomatic remission of positive symptoms according to Andreasen, and 24 healthy controls underwent 18F-DOPA-PET and behavioural-cognitive assessment. Imaging data were analysed with voxel-wise Patlak modelling with cerebellum as reference region, resulting in the influx constant kicer reflecting dopamine synthesis capacity. For the whole striatum and its subdivisions (i.e. limbic, associative, and sensorimotor), averaged regional kicer values were calculated, compared across groups, and correlated with behavioural-cognitive scores, including a mediation analysis. Patients had negative symptoms (Positive and Negative Syndrome Scale-negative 14.13 ± 5.91) and cognitive difficulties, i.e. they performed worse than controls in Trail-Making-Test-B (TMT-B; P = 0.01). Furthermore, kicer was reduced in patients for whole striatum (P = 0.004) and associative (P = 0.002) and sensorimotor subdivisions (P = 0.007). In patients, whole striatum kicer was negatively correlated with TMT-B (rho = -0.42, P = 0.04; i.e. the lower striatal kicer, the worse the cognitive performance). Mediation analysis showed that striatal kicer mediated the group difference in TMT-B. Results demonstrate that patients with schizophrenia in symptomatic remission of positive symptoms have decreased striatal dopamine synthesis capacity, which mediates the disorder's impact on cognitive difficulties. Data suggest that striatal dopamine dysfunction contributes to cognitive difficulties in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychosis Studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
13
|
Howes OD, Bonoldi I, McCutcheon RA, Azis M, Antoniades M, Bossong M, Modinos G, Perez J, Stone JM, Santangelo B, Veronese M, Grace A, Allen P, McGuire PK. Glutamatergic and dopaminergic function and the relationship to outcome in people at clinical high risk of psychosis: a multi-modal PET-magnetic resonance brain imaging study. Neuropsychopharmacology 2020; 45:641-648. [PMID: 31618752 PMCID: PMC7021794 DOI: 10.1038/s41386-019-0541-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Preclinical models of psychosis propose that hippocampal glutamatergic neuron hyperactivity drives increased striatal dopaminergic activity, which underlies the development of psychotic symptoms. The aim of this study was to examine the relationship between hippocampal glutamate and subcortical dopaminergic function in people at clinical high risk for psychosis, and to assess the association with the development of psychotic symptoms. 1H-MRS was used to measure hippocampal glutamate concentrations, and 18F-DOPA PET was used to measure dopamine synthesis capacity in 70 subjects (51 people at clinical high risk for psychosis and 19 healthy controls). Clinical assessments were undertaken at baseline and follow-up (median 15 months). Striatal dopamine synthesis capacity predicted the worsening of psychotic symptoms at follow-up (r = 0.35; p < 0.05), but not transition to a psychotic disorder (p = 0.22), and was not significantly related to hippocampal glutamate concentration (p = 0.13). There were no differences in either glutamate (p = 0.5) or dopamine (p = 0.5) measures in the total patient group relative to controls. Striatal dopamine synthesis capacity at presentation predicts the subsequent worsening of sub-clinical total and psychotic symptoms, consistent with a role for dopamine in the development of psychotic symptoms, but is not strongly linked to hippocampal glutamate concentrations.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK.
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- TREAT Service, South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, SE5 8AZ, UK.
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
- TREAT Service, South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, SE5 8AZ, UK
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK.
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Matilda Azis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Mathilde Antoniades
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Matthijs Bossong
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gemma Modinos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Jesus Perez
- Cambridge Early Onset service, Cambridgeshire and Peterborough Mental Health Partnership National Health Service Trust, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James M Stone
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Barbara Santangelo
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Anthony Grace
- Department of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
| | - Philip K McGuire
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| |
Collapse
|
14
|
12-h abstinence-induced functional connectivity density changes and craving in young smokers: a resting-state study. Brain Imaging Behav 2020; 13:953-962. [PMID: 29926324 DOI: 10.1007/s11682-018-9911-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studying the neural correlates of craving to smoke is of great importance to improve treatment outcomes in smoking addiction. According to previous studies, the critical roles of striatum and frontal brain regions had been revealed in addiction. However, few studies focused on the hub of brain regions in the 12 h abstinence induced craving in young smokers. Thirty-one young male smokers were enrolled in the present study. A within-subject experiment design was carried out to compare functional connectivity density between 12-h smoking abstinence and smoking satiety conditions during resting state in young adult smokers by using functional connectivity density mapping (FCDM). Then, the functional connectivity density changes during smoking abstinence versus satiety were further used to examine correlations with abstinence-induced changes in subjective craving. We found young adult smokers in abstinence state (vs satiety) had higher local functional connectivity density (lFCD) and global functional connectivity density (gFCD) in brain regions including striatal subregions (i.e., bilateral caudate and putamen), frontal regions (i.e., anterior cingulate cortex (ACC) and orbital frontal cortex (OFC)) and bilateral insula. We also found higher lFCD during smoking abstinence (vs satiety) in bilateral thalamus. Additionally, the lFCD changes of the left ACC, bilateral caudate and right OFC were positively correlated with the changes in craving induced by abstinence (i.e., abstinence minus satiety) in young adult smokers. The present findings improve the understanding of the effects of acute smoking abstinence on the hubs of brain gray matter in the abstinence-induces craving and may contribute new insights into the neural mechanism of abstinence-induced craving in young smokers in smoking addiction.
Collapse
|
15
|
Wulff S, Nielsen MØ, Rostrup E, Svarer C, Jensen LT, Pinborg L, Glenthøj BY. The relation between dopamine D 2 receptor blockade and the brain reward system: a longitudinal study of first-episode schizophrenia patients. Psychol Med 2020; 50:220-228. [PMID: 30642415 DOI: 10.1017/s0033291718004099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psychotic symptoms have been linked to salience abnormalities in the brain reward system, perhaps caused by a dysfunction of the dopamine neurotransmission in striatal regions. Blocking dopamine D2 receptors dampens psychotic symptoms and normalises reward disturbances, but a direct relationship between D2 receptor blockade, normalisation of reward processing and symptom improvement has not yet been demonstrated. The current study examined the association between blockade of D2 receptors in the caudate nucleus, alterations in reward processing and the psychopathology in a longitudinal study of antipsychotic-naïve first-episode schizophrenia patients. METHODS Twenty-two antipsychotic-naïve first-episode schizophrenia patients (10 males, mean age 23.3) and 23 healthy controls (12 males, mean age 23.5) were examined with single-photon emission computed tomography using 123I-labelled iodobenzamide. Reward disturbances were measured with functional magnetic resonance imaging (fMRI) using a modified version of the monetary-incentive-delay task. Patients were assessed before and after 6 weeks of treatment with amisulpride. RESULTS In line with previous results, patients had a lower fMRI response at baseline (0.2 ± 0.5 v. 0.7 ± 0.6; p = 0.008), but not at follow-up (0.5 ± 0.6 v. 0.6 ± 0.7), and a change in the fMRI signal correlated with improvement in Positive and Negative Syndrome Scale positive symptoms (ρ = -0.435, p = 0.049). In patients responding to treatment, a correlation between improvement in the fMRI signal and receptor occupancy was found (ρ = 0.588; p = 0.035). CONCLUSION The results indicate that salience abnormalities play a role in the reward system in schizophrenia. In patients responding to a treatment-induced blockade of dopamine D2 receptors, the psychotic symptoms may be ameliorated by normalising salience abnormalities in the reward system.
Collapse
Affiliation(s)
- Sanne Wulff
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Functional Imaging Unit, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, København, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Rigshospitalet, University of Copenhagen, København, Denmark
| | - Lars Thorbjørn Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lars Pinborg
- Neurobiology Research Unit, Rigshospitalet, University of Copenhagen, København, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
16
|
Bloomfield MA, McCutcheon RA, Kempton M, Freeman TP, Howes O. The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife 2019; 8:46797. [PMID: 31711569 PMCID: PMC6850765 DOI: 10.7554/elife.46797] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/12/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic psychosocial adversity induces vulnerability to mental illnesses. Animal studies demonstrate that this may be mediated by dopaminergic dysfunction. We therefore investigated whether long-term exposure to psychosocial adversity was associated with dopamine dysfunction and its relationship to psychological and physiological responses to acute stress. Using 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine ([18F]-DOPA) positron emission tomography (PET), we compared dopamine synthesis capacity in n = 17 human participants with high cumulative exposure to psychosocial adversity with n = 17 age- and sex-matched participants with low cumulative exposure. The PET scan took place 2 hr after the induction of acute psychosocial stress using the Montréal Imaging Stress Task to induce acute psychosocial stress. We found that dopamine synthesis correlated with subjective threat and physiological response to acute psychosocial stress in the low exposure group. Long-term exposure to psychosocial adversity was associated with dampened striatal dopaminergic function (p=0.03, d = 0.80) and that psychosocial adversity blunted physiological yet potentiated subjective responses to acute psychosocial stress. Future studies should investigate the roles of these changes in vulnerability to mental illnesses.
Collapse
Affiliation(s)
- Michael Ap Bloomfield
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom.,The Traumatic Stress Clinic, St Pancras Hospital, Camden and Islington NHS Foundation Trust, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Robert A McCutcheon
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Matthew Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, UCL Institute of Mental Health, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom.,Department of Psychology, University of Bath, Bath, United Kingdom
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
17
|
Kim S, Jung WH, Howes OD, Veronese M, Turkheimer FE, Lee YS, Lee JS, Kim E, Kwon JS. Frontostriatal functional connectivity and striatal dopamine synthesis capacity in schizophrenia in terms of antipsychotic responsiveness: an [ 18F]DOPA PET and fMRI study. Psychol Med 2019; 49:2533-2542. [PMID: 30460891 DOI: 10.1017/s0033291718003471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Given that only a subgroup of patients with schizophrenia responds to first-line antipsychotic drugs, a key clinical question is what underlies treatment response. Observations that prefrontal activity correlates with striatal dopaminergic function, have led to the hypothesis that disrupted frontostriatal functional connectivity (FC) could be associated with altered dopaminergic function. Thus, the aim of this study was to investigate the relationship between frontostriatal FC and striatal dopamine synthesis capacity in patients with schizophrenia who had responded to first-line antipsychotic drug compared with those who had failed but responded to clozapine. METHODS Twenty-four symptomatically stable patients with schizophrenia were recruited from Seoul National University Hospital, 12 of which responded to first-line antipsychotic drugs (first-line AP group) and 12 under clozapine (clozapine group), along with 12 matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging and [18F]DOPA PET scans. RESULTS No significant difference was found in the total PANSS score between the patient groups. Voxel-based analysis showed a significant correlation between frontal FC to the associative striatum and the influx rate constant of [18F]DOPA in the corresponding region in the first-line AP group. Region-of-interest analysis confirmed the result (control group: R2 = 0.019, p = 0.665; first-line AP group: R2 = 0.675, p < 0.001; clozapine group: R2 = 0.324, p = 0.054) and the correlation coefficients were significantly different between the groups. CONCLUSIONS The relationship between striatal dopamine synthesis capacity and frontostriatal FC is different between responders to first-line treatment and clozapine treatment in schizophrenia, indicating that a different pathophysiology could underlie schizophrenia in patients who respond to first-line treatments relative to those who do not.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Wi Hoon Jung
- Department of Psychology, College of Liberal Arts, Korea University, Seoul, Republic of Korea
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yun-Sang Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
D'Ambrosio E, Dahoun T, Pardiñas AF, Veronese M, Bloomfield MAP, Jauhar S, Bonoldi I, Rogdaki M, Froudist-Walsh S, Walters JTR, Howes OD. The effect of a genetic variant at the schizophrenia associated AS3MT/BORCS7 locus on striatal dopamine function: A PET imaging study. Psychiatry Res Neuroimaging 2019; 291:34-41. [PMID: 31386983 PMCID: PMC7099976 DOI: 10.1016/j.pscychresns.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
One of the most statistically significant loci to result from large-scale GWAS of schizophrenia is 10q24.32. However, it is still unclear how this locus is involved in the pathoaetiology of schizophrenia. The hypothesis that presynaptic dopamine dysfunction underlies schizophrenia is one of the leading theories of the pathophysiology of the disorder. Supporting this, molecular imaging studies show evidence for elevated dopamine synthesis and release capacity. Thus, altered dopamine function could be a potential mechanism by which this genetic variant acts to increase the risk of schizophrenia. We therefore tested the hypothesis that the 10q24.32 region confers genetic risk for schizophrenia through an effect on striatal dopamine function. To this aim we investigated the in vivo relationship between a GWAS schizophrenia-associated SNP within this locus and dopamine synthesis capacity measured using [18F]-DOPA PET in healthy controls. 92 healthy volunteers underwent [18F]-DOPA PET scans to measure striatal dopamine synthesis capacity (indexed as Kicer) and were genotyped for the SNP rs7085104. We found a significant association between rs7085104 genotype and striatal Kicer. Our findings indicate that the mechanism mediating the 10q24.32 risk locus for schizophrenia could involve altered dopaminergic function. Future studies are needed to clarify the neurobiological pathway implicated in this association.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Tarik Dahoun
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX37 JX, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Translational Psychiatry, Research Department of Mental Health Neuroscience, Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational & Health Psychology, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; NIHR University College London Hospitals Biomedical Research Centre, Maple House, 149 Tottenham Court Road, London W1T 7DN, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Trust, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; South London and Maudsley NHS Trust, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| | | | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK; South London and Maudsley NHS Trust, London, UK.
| |
Collapse
|
19
|
Quigley H, MacCabe JH. The relationship between nicotine and psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319859969. [PMID: 31308936 PMCID: PMC6604123 DOI: 10.1177/2045125319859969] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/15/2019] [Indexed: 01/20/2023] Open
Abstract
Cigarette smoking is strongly associated with psychotic disorders such as schizophrenia. For several decades it was assumed that the relationship could be explained by reverse causation; that smoking was secondary to the illness itself, either through self-medication or a process of institutionalization, or was entirely explained by confounding by cannabis use or social factors. However, studies have exposed that such hypotheses cannot fully explain the association, and more recently a bidirectional relationship has been proposed wherein cigarette smoking may be causally related to risk of psychosis, possibly via a shared genetic liability to smoking and psychosis. We review the evidence for these candidate explanations, using findings from the latest epidemiological, neuroimaging, genetic and preclinical work.
Collapse
Affiliation(s)
- Harriet Quigley
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, SE5 8AF,
Denmark Hill, London, UK
| | - James H. MacCabe
- Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, Kings College London, London,
UK
| |
Collapse
|
20
|
Clark L, Boileau I, Zack M. Neuroimaging of reward mechanisms in Gambling disorder: an integrative review. Mol Psychiatry 2019; 24:674-693. [PMID: 30214041 DOI: 10.1038/s41380-018-0230-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Gambling disorder (GD) was reclassified as a behavioral addiction in the DSM-5 and shares clinical and behavioral features with substance use disorders (SUDs). Neuroimaging studies of GD hold promise in isolating core features of the addiction syndrome, avoiding confounding effects of drug neurotoxicity. At the same time, a neurobiologically-grounded theory of how behaviors like gambling can become addictive remains lacking, posing a significant hurdle for ongoing decisions in addiction nosology. This article integrates research on reward-related brain activity (functional MRI) and neurotransmitter function (PET) in GD, alongside the consideration of structural MRI data as to whether these signals more likely reflect pre-existing vulnerability or neuroadaptive change. Where possible, we point to qualitative similarities and differences with established markers for SUDs. Structural MRI studies indicate modest changes in regional gray matter volume and diffuse reductions in white matter integrity in GD, contrasting with clear structural deterioration in SUDs. Functional MRI studies consistently identify dysregulation in reward-related circuitry (primarily ventral striatum and medial prefrontal cortex), but evidence is mixed as to the direction of these effects. The need for further parsing of reward sub-processes is emphasized, including anticipation vs outcome, gains vs. losses, and disorder-relevant cues vs natural rewards. Neurotransmitter PET studies indicate amplified dopamine (DA) release in GD, in the context of minimal differences in baseline DA D2 receptor binding, highlighting a distinct profile from SUDs. Preliminary work has investigated further contributions of opioids, GABA and serotonin. Neuroimaging data increasingly highlight divergent profiles in GD vs. SUDs. The ability of gambling to perpetually activate DA (via maximal uncertainty) may contribute to neuroimaging similarities between GD and SUDs, whereas the supra-physiological DA effects of drugs may partly explain differences in the neuroimaging profile of the two syndromes. Coupled with consistent observations of correlations with gambling severity and related clinical variables within GD samples, the overall pattern of effects is interpreted as a likely combination of shared vulnerability markers across GD and SUDs, but with further experience-dependent neuroadaptive processes in GD.
Collapse
Affiliation(s)
- Luke Clark
- Centre for Gambling Research, University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Vivian M. Rakoff PET Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Addictions Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Martin Zack
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Clinical Neuroscience Program, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada. .,Department of Public Health Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Veronese M, Moro L, Arcolin M, Dipasquale O, Rizzo G, Expert P, Khan W, Fisher PM, Svarer C, Bertoldo A, Howes O, Turkheimer FE. Covariance statistics and network analysis of brain PET imaging studies. Sci Rep 2019; 9:2496. [PMID: 30792460 PMCID: PMC6385265 DOI: 10.1038/s41598-019-39005-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([18F]FDG, [18F]FDOPA and [11C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients. A validation of statistics, including the assessment of false positive differences in parametric versus permutation testing, was also performed. Results showed good reproducibility and general applicability of the method within the range of experimental settings typical of PET neuroimaging studies, with permutation being the method of choice for the statistical analysis. The use of graph theory for the quantification of [18F]FDG brain PET covariance, including the definition of an entropy metric, proved to be particularly relevant for Alzheimer's disease, showing an association with the progression of the pathology. This study shows that covariance statistics can be applied to PET neuroimaging data to investigate the topological characteristics of the tracer kinetics and its related targets, although sensitivity to experimental variables, group inhomogeneities and image resolution need to be considered when the method is applied to cross-sectional studies.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom.
| | - Lucia Moro
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Marco Arcolin
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Ottavia Dipasquale
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
| | | | - Paul Expert
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Wasim Khan
- Department of Neuroimaging, IoPPN, King's College London, London, United Kingdom
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Oliver Howes
- Department of Psychosis studies, IoPPN, King's College London, London, United Kingdom
| | | |
Collapse
|
22
|
Ashok AH, Mizuno Y, Howes OD. Tobacco smoking and dopaminergic function in humans: a meta-analysis of molecular imaging studies. Psychopharmacology (Berl) 2019; 236:1119-1129. [PMID: 30887059 PMCID: PMC6591186 DOI: 10.1007/s00213-019-05196-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE About 1.1 billion people smoke tobacco globally and tobacco-related health care costs 1.8% of GDP in many countries. The majority of people are unable to quit smoking despite pharmacological intervention, highlighting the need to understand the pathophysiology associated with tobacco smoking to aid the development of new therapeutics. The reinforcing effects of tobacco smoking are thought to be mediated by the dopamine system. However, the nature of dopamine dysfunction seen in smokers is unclear. OBJECTIVE To determine the nature and robustness of the evidence for dopaminergic alterations in smokers. METHODS The entire MEDLINE, EMBASE, and PsycINFO databases were searched for studies from inception date to November 18, 2018. In vivo human molecular imaging studies of dopamine measures (dopamine synthesis or release capacity, transporter levels, receptor levels) in tobacco smokers were selected. Demographic, clinical, and imaging measures were extracted from each study and meta-analyses, and sensitivity analyses were conducted. RESULTS Fourteen studies met inclusion criteria comprising a total sample of 219 tobacco smokers and 297 controls. The meta-analysis showed a significant reduction in dopamine transporter availability in the smokers relative to controls with an effect size of - 0.72 ([95% CI, - 1.38 to - 0.05], p = 0.03). However, there was no difference in D2/3 receptor availability in smokers relative to controls (d = -0.16 ([95% CI, - 0.42 to 0.1], p = 0.23). There were insufficient studies for meta-analysis of other measures. However, findings from the published studies indicated blunted dopamine release and lower D1 receptor availability, while findings for dopamine synthesis capacity were inconsistent. CONCLUSION Our data indicate that striatal dopamine transporter availability is lower but D2/3 receptors are unaltered in smokers relative to controls. We discuss the putative mechanisms underlying this and their implications.
Collapse
Affiliation(s)
- Abhishekh H. Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London, W12 0NN UK ,Psychiatric Imaging Group, Faculty of Medicine, Imperial College London, Institute of Clinical Sciences (ICS), Du Cane Road, London, UK ,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK
| | - Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK ,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Oliver D. Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London, W12 0NN UK ,Psychiatric Imaging Group, Faculty of Medicine, Imperial College London, Institute of Clinical Sciences (ICS), Du Cane Road, London, UK ,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB UK
| |
Collapse
|
23
|
Dahoun T, Pardiñas AF, Veronese M, Bloomfield MAP, Jauhar S, Bonoldi I, Froudist-Walsh S, Nosarti C, Korth C, Hennah W, Walters J, Prata D, Howes OD. The effect of the DISC1 Ser704Cys polymorphism on striatal dopamine synthesis capacity: an [18F]-DOPA PET study. Hum Mol Genet 2018; 27:3498-3506. [PMID: 29945223 PMCID: PMC6168972 DOI: 10.1093/hmg/ddy242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/14/2022] Open
Abstract
Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX37 JX, UK
| | - Antonio F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Psychiatry, University College London, London, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Sameer Jauhar
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | - Ilaria Bonoldi
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| | | | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King’s College London, London, UK
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Mental Health Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - James Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Instituto Universitário de Lisboa (ISCTE-IUL), Cis-IUL, Lisbon, Portugal
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London, UK
| |
Collapse
|
24
|
van Holst RJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, Cools R. Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction. Biol Psychiatry 2018; 83:1036-1043. [PMID: 28728675 PMCID: PMC6698370 DOI: 10.1016/j.biopsych.2017.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The hypothesis that dopamine plays an important role in the pathophysiology of pathological gambling is pervasive. However, there is little to no direct evidence for a categorical difference between pathological gamblers and healthy control subjects in terms of dopamine transmission in a drug-free state. Here we provide evidence for this hypothesis by comparing dopamine synthesis capacity in the dorsal and ventral parts of the striatum in 13 pathological gamblers and 15 healthy control subjects. METHODS This was achieved using [18F]fluoro-levo-dihydroxyphenylalanine dynamic positron emission tomography scans and striatal regions of interest that were hand-drawn based on visual inspection of individual structural magnetic resonance imaging scans. RESULTS Our results show that dopamine synthesis capacity was increased in pathological gamblers compared with healthy control subjects. Dopamine synthesis was 16% higher in the caudate body, 17% higher in the dorsal putamen, and 17% higher in the ventral striatum in pathological gamblers compared with control subjects. Moreover, dopamine synthesis capacity in the dorsal putamen and caudate head was positively correlated with gambling distortions in pathological gamblers. CONCLUSIONS Taken together, these results provide empirical evidence for increased striatal dopamine synthesis in pathological gambling.
Collapse
|
25
|
Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M, Turkheimer F, McGuire P, Young AH, Howes OD. A Test of the Transdiagnostic Dopamine Hypothesis of Psychosis Using Positron Emission Tomographic Imaging in Bipolar Affective Disorder and Schizophrenia. JAMA Psychiatry 2017; 74:1206-1213. [PMID: 29049482 PMCID: PMC6059355 DOI: 10.1001/jamapsychiatry.2017.2943] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The dopamine hypothesis suggests that dopamine abnormalities underlie psychosis, irrespective of diagnosis, implicating dopamine dysregulation in bipolar affective disorder and schizophrenia, in line with the research domain criteria approach. However, this hypothesis has not been directly examined in individuals diagnosed with bipolar disorder with psychosis. Objectives To test whether dopamine synthesis capacity is elevated in bipolar disorder with psychosis and how this compares with schizophrenia and matched controls and to examine whether dopamine synthesis capacity is associated with psychotic symptom severity, irrespective of diagnostic class. Design, Setting, and Participants This cross-sectional case-control positron emission tomographic study was performed in the setting of first-episode psychosis services in an inner-city area (London, England). Sixty individuals participated in the study (22 with bipolar psychosis [18 antipsychotic naive or free], 16 with schizophrenia [14 antipsychotic naive or free], and 22 matched controls) and underwent fluorodihydroxyphenyl-l-alanine ([18F]-DOPA) positron emission tomography to examine dopamine synthesis capacity. Standardized clinical measures, including the Positive and Negative Syndrome Scale, Young Mania Rating Scale, and Global Assessment of Functioning, were administered. The study dates were March 2013 to November 2016. Main Outcomes and Measures Dopamine synthesis capacity (Kicer) and clinical measures (Positive and Negative Syndrome Scale, Young Mania Rating Scale, and Global Assessment of Functioning). Results The mean (SD) ages of participants were 23.6 (3.6) years in 22 individuals with bipolar psychosis (13 male), 26.3 (4.4) years in 16 individuals with schizophrenia (14 male), and 24.5 (4.5) years in controls (14 male). There was a significant group difference in striatal dopamine synthesis capacity (Kicer) (F2,57 = 6.80, P = .002). Kicer was significantly elevated in both the bipolar group (mean [SD], 13.18 [1.08] × 10-3 min-1; P = .002) and the schizophrenia group (mean [SD], 12.94 [0.79] × 10-3 min-1; P = .04) compared with controls (mean [SD], 12.16 [0.92] × 10-3 min-1). There was no significant difference in striatal Kicer between the bipolar and schizophrenia groups. Kicer was significantly positively correlated with positive psychotic symptom severity in the combined bipolar and schizophrenia sample experiencing a current psychotic episode, explaining 27% of the variance in symptom severity (n = 32, r = 0.52, P = .003). There was a significant positive association between Kicer and positive psychotic symptom severity in individuals with bipolar disorder experiencing a current psychotic episode (n = 16, r = 0.60, P = .01), which remained significant after adjusting for manic symptom severity. Conclusions and Relevance These findings are consistent with a transdiagnostic role for dopamine dysfunction in the pathoetiology of psychosis and suggest dopamine synthesis capacity as a potential novel drug target for bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
- Psychosis Clinical Academic Group, South London and Maudsley National Health Service Foundation Trust, London, England
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
- Medical Research Council London Institute of Medical Sciences, Imperial College, London, England
| | - Mattia Veronese
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
| | - Maria Rogdaki
- Medical Research Council London Institute of Medical Sciences, Imperial College, London, England
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
- Psychosis Clinical Academic Group, South London and Maudsley National Health Service Foundation Trust, London, England
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
| | - Federico Turkheimer
- Centre for Neuroimaging Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
- Psychosis Clinical Academic Group, South London and Maudsley National Health Service Foundation Trust, London, England
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, England
- Psychosis Clinical Academic Group, South London and Maudsley National Health Service Foundation Trust, London, England
- Medical Research Council London Institute of Medical Sciences, Imperial College, London, England
| |
Collapse
|
26
|
Lee Y, Oh JS, Chung SJ, Chung SJ, Kim SJ, Nam CM, Lee PH, Kim JS, Sohn YH. Does smoking impact dopamine neuronal loss in de novo Parkinson disease? Ann Neurol 2017; 82:850-854. [DOI: 10.1002/ana.25082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yoonju Lee
- Department of Neurology; Yonsei University College of Medicine; Seoul South Korea
| | - Jungsu S. Oh
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine; University of Ulsan; Seoul South Korea
| | - Seok Jong Chung
- Department of Neurology; Yonsei University College of Medicine; Seoul South Korea
| | - Su Jin Chung
- Department of Neurology; Yonsei University College of Medicine; Seoul South Korea
| | - Soo-Jong Kim
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine; University of Ulsan; Seoul South Korea
| | - Chung Mo Nam
- Department of Preventive Medicine; Yonsei University College of Medicine; Seoul South Korea
| | - Phil Hyu Lee
- Department of Neurology; Yonsei University College of Medicine; Seoul South Korea
- Severance Biomedical Science Institute; Yonsei University College of Medicine; Seoul South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine; University of Ulsan; Seoul South Korea
| | - Young H. Sohn
- Department of Neurology; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
27
|
Bonsall DR, Kokkinou M, Veronese M, Coello C, Wells LA, Howes OD. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [ 18 F]-FDOPA PET study. J Neurochem 2017; 143:551-560. [PMID: 28921596 DOI: 10.1111/jnc.14223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/14/2023]
Abstract
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug.
Collapse
Affiliation(s)
- David R Bonsall
- Psychiatric Imaging, Medical Research Council, London Institute of Medical Sciences, Imperial College London, London, UK
| | - Michelle Kokkinou
- Psychiatric Imaging, Medical Research Council, London Institute of Medical Sciences, Imperial College London, London, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Lisa A Wells
- Imanova Centre for Imaging Sciences, White City, London, UK
| | - Oliver D Howes
- Psychiatric Imaging, Medical Research Council, London Institute of Medical Sciences, Imperial College London, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
28
|
Naylor JE, Hiranita T, Matazel KS, Zhang X, Paule MG, Goodwin AK. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [ 18F]Fallypride. Drug Alcohol Depend 2017; 179:254-259. [PMID: 28818716 DOI: 10.1016/j.drugalcdep.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D2/D3 receptor availability in the nonhuman primate brain with the use of the radioligand [18F]fallypride and positron emission tomography (PET). METHODS Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D2/D3 antagonist, [18F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUVROI/SUVcerebellum) were calculated to compare saline and nicotine effects in each ROI. RESULTS Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. CONCLUSIONS Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [18F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine.
Collapse
Affiliation(s)
- Jennifer E Naylor
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States
| | - Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States
| | - Katelin S Matazel
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States
| | - Xuan Zhang
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States
| | - Amy K Goodwin
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, United States.
| |
Collapse
|
29
|
Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers. Neuropsychopharmacology 2017; 42:1640-1646. [PMID: 28120933 PMCID: PMC5518897 DOI: 10.1038/npp.2017.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023]
Abstract
The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.
Collapse
|
30
|
Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, Lahti T, Alho H, Hirvonen J, Arponen E, Forsback S, Kaasinen V. Dopamine and Opioid Neurotransmission in Behavioral Addictions: A Comparative PET Study in Pathological Gambling and Binge Eating. Neuropsychopharmacology 2017; 42:1169-1177. [PMID: 27882998 PMCID: PMC5357051 DOI: 10.1038/npp.2016.265] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Although behavioral addictions share many clinical features with drug addictions, they show strikingly large variation in their behavioral phenotypes (such as in uncontrollable gambling or eating). Neurotransmitter function in behavioral addictions is poorly understood, but has important implications in understanding its relationship with substance use disorders and underlying mechanisms of therapeutic efficacy. Here, we compare opioid and dopamine function between two behavioral addiction phenotypes: pathological gambling (PG) and binge eating disorder (BED). Thirty-nine participants (15 PG, 7 BED, and 17 controls) were scanned with [11C]carfentanil and [18F]fluorodopa positron emission tomography using a high-resolution scanner. Binding potentials relative to non-displaceable binding (BPND) for [11C]carfentanil and influx rate constant (Ki) values for [18F]fluorodopa were analyzed with region-of-interest and whole-brain voxel-by-voxel analyses. BED subjects showed widespread reductions in [11C]carfentanil BPND in multiple subcortical and cortical brain regions and in striatal [18F]fluorodopa Ki compared with controls. In PG patients, [11C]carfentanil BPND was reduced in the anterior cingulate with no differences in [18F]fluorodopa Ki compared with controls. In the nucleus accumbens, a key region involved in reward processing, [11C]Carfentanil BPND was 30-34% lower and [18F]fluorodopa Ki was 20% lower in BED compared with PG and controls (p<0.002). BED and PG are thus dissociable as a function of dopaminergic and opioidergic neurotransmission. Compared with PG, BED patients show widespread losses of mu-opioid receptor availability together with presynaptic dopaminergic defects. These findings highlight the heterogeneity underlying the subtypes of addiction and indicate differential mechanisms in the expression of pathological behaviors and responses to treatment.
Collapse
Affiliation(s)
- Joonas Majuri
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland,Department of Neurology, University of Turku, Turku, Finland,Turku PET Centre, University of Turku, Turku, Finland,Turku PET Centre, University of Turku, POB 52, Turku 20521, Finland, Tel: +358-2-3130000, Fax: +358-2-2318191, E-mail:
| | - Juho Joutsa
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland,Department of Neurology, University of Turku, Turku, Finland,Turku PET Centre, University of Turku, Turku, Finland
| | | | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Kati Alakurtti
- Turku PET Centre, University of Turku, Turku, Finland,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuuli Lahti
- Department of Health, Unit of Tobacco, Alcohol and Gambling, National Institute of Health and Welfare, Helsinki, Finland
| | - Hannu Alho
- Department of Health, Unit of Tobacco, Alcohol and Gambling, National Institute of Health and Welfare, Helsinki, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Eveliina Arponen
- Turku PET Centre, University of Turku, Turku, Finland,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Sarita Forsback
- Turku PET Centre, University of Turku, Turku, Finland,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland,Department of Neurology, University of Turku, Turku, Finland,Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
31
|
Kim E, Howes OD, Veronese M, Beck K, Seo S, Park JW, Lee JS, Lee YS, Kwon JS. Presynaptic Dopamine Capacity in Patients with Treatment-Resistant Schizophrenia Taking Clozapine: An [ 18F]DOPA PET Study. Neuropsychopharmacology 2017; 42:941-950. [PMID: 27857125 PMCID: PMC5312074 DOI: 10.1038/npp.2016.258] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/20/2023]
Abstract
Some patients with schizophrenia show poor response to first-line antipsychotic treatments and this is termed treatment-resistant schizophrenia. The differential response to first-line antipsychotic drugs may reflect a different underlying neurobiology. Indeed, a previous study found dopamine synthesis capacity was significantly lower in patients with treatment-resistant schizophrenia. However, in this study, the treatment-resistant patients were highly symptomatic, whereas the responsive patients showed no or minimal symptoms. The study could not distinguish whether this was a trait effect or reflected the difference in symptom levels. Thus, we aimed to test whether dopaminergic function is altered in patients with a history of treatment resistance to first-line drugs relative to treatment responders when both groups are matched for symptom severity levels by recruiting treatment-resistant patients currently showed low symptom severity with the clozapine treatment. Healthy controls (n=12), patients treated with clozapine (n=12) who had not responded to first-line antipsychotics, and patients who had responded to first-line antipsychotics (n=12) were recruited. Participants were matched for age and sex and symptomatic severity level in patient groups. Participants' dopamine synthesis capacity was measured by using [18F]DOPA PET. We found that patients treated with clozapine show lower dopamine synthesis capacity than patients who have responded to first-line treatment (Cohen's d=0.9191 (whole striatum), 0.7781 (associative striatum), 1.0344 (limbic striatum), and 1.0189 (sensorimotor striatum) in line with the hypothesis that the dopaminergic function is linked to treatment response. This suggests that a different neurobiology may underlie treatment-resistant schizophrenia and that dopamine synthesis capacity may be a useful biomarker to predict treatment responsiveness.
Collapse
Affiliation(s)
- Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Oliver D Howes
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katherine Beck
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Seongho Seo
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Woo Park
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Lee
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea,Department of Psychiatry, Seoul National University College of Medicine and Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, 28 Yeongon-dong, Chongno-gu, Seoul 110-744, Korea, Tel: +82 2 2072 2972, Fax: +82 2 747 9063, E-mail:
| |
Collapse
|
32
|
Jauhar S, Veronese M, Rogdaki M, Bloomfield M, Natesan S, Turkheimer F, Kapur S, Howes OD. Regulation of dopaminergic function: an [ 18F]-DOPA PET apomorphine challenge study in humans. Transl Psychiatry 2017; 7:e1027. [PMID: 28170002 PMCID: PMC5438020 DOI: 10.1038/tp.2016.270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023] Open
Abstract
Dopaminergic function has a key role in normal brain function, dopaminergic dysfunction being implicated in numerous neuropsychiatric disorders. Animal studies show that dopaminergic stimulation regulates dopaminergic function, but it is not known whether this exists in humans. In the first study (study 1), we measured dopamine synthesis capacity (indexed as Kicer) to identify the relationship between baseline and change in Kicer under resting conditions for comparison with effects of dopaminergic stimulation. In the second study (study 2), we used a within-subjects design to test effects of dopaminergic stimulation on dopamine synthesis capacity. In study 1, eight volunteers received two 18F-DOPA scans on separate days, both at rest. In study 2, 12 healthy male volunteers received two 18F-DOPA positron emission tomographic (PET) scans after treatment with either the dopamine partial agonist apomorphine (0.03 or 0.005 mg kg-1) or placebo. In study 1, no significant correlation was found between baseline and change in dopamine synthesis capacity between scans (r=-0.57, n=8, P=0.17, two-tailed). In study 2, a significant negative correlation was found between baseline dopamine synthesis capacity and percentage change in dopamine synthesis capacity after apomorphine challenge (r=-0.71, n=12, P=0.01, two-tailed). This correlation was significantly different (P<0.01) from the correlation between baseline and change in dopamine synthesis capacity under unstimulated conditions. One-way repeated-measures analysis of variance showed a significant group (study 1/study 2) × time interaction (F(1,18)=11.5, P=0.003). Our findings suggest that regulation of dopamine synthesis capacity by apomorphine depends on baseline dopamine function, consistent with dopamine stimulation stabilizing dopaminergic function. Loss of this autoregulation may contribute to dopaminergic dysfunction in brain disorders such as schizophrenia, substance dependence, and Parkinson's disease.
Collapse
Affiliation(s)
- S Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - M Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - M Rogdaki
- MRC London Institute of Medical Sciences, London, UK
| | - M Bloomfield
- MRC London Institute of Medical Sciences, London, UK
| | - S Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - F Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - S Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
33
|
Thiruchselvam T, Malik S, Le Foll B. A review of positron emission tomography studies exploring the dopaminergic system in substance use with a focus on tobacco as a co-variate. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:197-214. [PMID: 27901585 DOI: 10.1080/00952990.2016.1257633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the evolving sensitivity of positron emission tomography (PET) and the emergence of novel radiotracers, greater insight has been gained into the dopaminergic system as it relates to substance use. In this review, we summarize PET investigations from the last ten years that explore the dopaminergic system in tobacco, alcohol, stimulant, opiates, and cannabis addiction. In light of the prevalence of substance co-use, this review will also explore the effect of tobacco and other substance abuse co-morbidity on the dopaminergic system across study samples in the reviewed literature. In non-dependence, increased DA transmission following acute stimulant administration is a robust and consistent observation but is less detectable following acute alcohol and tobacco, where it likely represents a conditioned effect mediating reward expectation. Chronic drug exposure is generally associated with a hypo-functioning pre-synaptic dopamine system and lower D2/D3 receptor availability relative to healthy controls. Emerging evidence also shows that stimulant use disorders in particular may also be associated with greater D3 receptor availability relative to controls. A defined role for the dopaminergic system in cannabis and opiate use is yet to be elucidated. Future work is also needed to delineate the potential interactive effects of acute and chronic tobacco and substance co-use on the dopaminergic system.
Collapse
Affiliation(s)
- Thulasi Thiruchselvam
- b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Saima Malik
- b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Bernard Le Foll
- a Addiction Medicine Service, Ambulatory Care and Structured Treatments , Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute , Centre for Addiction and Mental Health , Toronto , ON , Canada.,c Department of Family and Community Medicine , Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto , Toronto , ON , Canada.,d Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health , Toronto , ON , Canada
| |
Collapse
|
34
|
Rademacher L, Prinz S, Winz O, Henkel K, Dietrich CA, Schmaljohann J, Mohammadkhani Shali S, Schabram I, Stoppe C, Cumming P, Hilgers RD, Kumakura Y, Coburn M, Mottaghy FM, Gründer G, Vernaleken I. Effects of Smoking Cessation on Presynaptic Dopamine Function of Addicted Male Smokers. Biol Psychiatry 2016; 80:198-206. [PMID: 26803340 DOI: 10.1016/j.biopsych.2015.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is evidence of abnormal cerebral dopamine transmission in nicotine-dependent smokers, but it is unclear whether dopaminergic abnormalities are due to acute nicotine abuse or whether they persist with abstinence. We addressed this question by conducting longitudinal positron emission tomography (PET) examination of smokers before and after 3 months of abstinence. METHODS We obtained baseline 6-[(18)F]fluoro-L-DOPA (FDOPA)-PET scans in 15 nonsmokers and 30 nicotine-dependent smokers, who either smoked as per their usual habit or were in acute withdrawal. All smokers then underwent cessation treatment, and successful abstainers were re-examined by FDOPA-PET after 3 months of abstinence (n = 15). Uptake of FDOPA was analyzed using a steady-state model yielding estimates of the dopamine synthesis capacity (K); the turnover of tracer dopamine formed in living brain (kloss); and the tracer distribution volume (Vd), which is an index of dopamine storage capacity. RESULTS Compared with nonsmokers, K was 15% to 20% lower in the caudate nuclei of consuming smokers. Intraindividual comparisons of consumption and long-term abstinence revealed significant increases in K in the right dorsal and left ventral caudate nuclei. Relative to acute withdrawal, Vd significantly decreased in the right ventral and dorsal caudate after prolonged abstinence. Severity of nicotine dependence significantly correlated with dopamine synthesis capacity and dopamine turnover in the bilateral ventral putamen of consuming smokers. CONCLUSIONS The results suggest a lower dopamine synthesis capacity in nicotine-dependent smokers that appears to normalize with abstinence. Further investigations are needed to clarify the role of dopamine in nicotine addiction to help develop smoking prevention and cessation treatments.
Collapse
Affiliation(s)
- Lena Rademacher
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen; Department of Psychiatry and Psychotherapy, Social Neuroscience Laboratory, University of Lübeck, Lübeck, Germany.
| | - Susanne Prinz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen; Department of Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University of Zürich, Rheinau, Switzerland
| | - Oliver Winz
- Department of Nuclear Medicine, RWTH Aachen University, Aachen
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen
| | - Claudia A Dietrich
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen
| | | | | | - Ina Schabram
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen
| | - Christian Stoppe
- Department of Anesthesiology, RWTH Aachen University, Aachen; Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen
| | - Paul Cumming
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Yoshitaka Kumakura
- Department of Pharmacology and Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University, Aachen
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, Aachen; Jülich/Aachen Research Alliance, Aachen, Germany; Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gerhard Gründer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen; Jülich/Aachen Research Alliance, Aachen, Germany
| | - Ingo Vernaleken
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen; Jülich/Aachen Research Alliance, Aachen, Germany
| |
Collapse
|
35
|
Wiers CE, Cabrera E, Skarda E, Volkow ND, Wang GJ. PET imaging for addiction medicine: From neural mechanisms to clinical considerations. PROGRESS IN BRAIN RESEARCH 2015; 224:175-201. [PMID: 26822359 DOI: 10.1016/bs.pbr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Positron emission tomography (PET) has been shown to be an effective imaging technique to study neurometabolic and neurochemical processes involved in addiction. That is, PET has been used to research neurobiological differences in substance abusers versus healthy controls and the pharmacokinetics and pharmacodynamics of abused drugs. Over the past years, the research scope has shifted to investigating neurobiological effects of abstinence and treatment, and their predictive power for relapse and other clinical outcomes. This chapter provides an overview of PET methodology, recent human PET studies on drug addiction and their implications for clinical treatment.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emily Skarda
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Wulff S, Pinborg LH, Svarer C, Jensen LT, Nielsen MØ, Allerup P, Bak N, Rasmussen H, Frandsen E, Rostrup E, Glenthøj BY. Striatal D(2/3) Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome. Schizophr Bull 2015; 41:1143-52. [PMID: 25698711 PMCID: PMC4535636 DOI: 10.1093/schbul/sbu220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D(2/3) receptor binding potential (BP(p)) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D(2/3) receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [(123)I]iodobenzamide ([(123)I]-IBZM) was used to examine striatal D(2/3) receptor BP(p). Patients were examined before and after 6 weeks of treatment with the D(2/3) receptor antagonist amisulpride. There was a significant negative correlation between striatal D(2/3) receptor BP(p) at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BP(p) in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BP(p) of dopamine D(2/3) receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BP(p) have a better treatment response than patients with a high BP(p). The results further suggest that functioning may decline at high levels of dopamine receptor blockade.
Collapse
Affiliation(s)
- Sanne Wulff
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Denmark;
| | - Lars Hageman Pinborg
- Neurobiology Research Unit (NRU), Rigshospitalet, University of Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit (NRU), Rigshospitalet, University of Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Peter Allerup
- Department of Education, Centre for Research in Compulsory Schooling, Aarhus University, Denmark
| | - Nikolaj Bak
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Hans Rasmussen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- Department of Diagnostics, Functional Imaging Unit and Section of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Denmark
| | - Egill Rostrup
- Department of Diagnostics, Functional Imaging Unit and Section of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Psychiatric Center Glostrup, University of Copenhagen, Copenhagen, Denmark;,Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Denmark
| |
Collapse
|
37
|
de Kloet SF, Mansvelder HD, De Vries TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015. [PMID: 26208783 DOI: 10.1016/j.bcp.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit.
Collapse
Affiliation(s)
- Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|