1
|
Mansuri A, Trivedi C, Kumar A. Impact of virgin and weathered microplastics on zebrafish: Bioaccumulation, developmental toxicity and molecular pathway disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177510. [PMID: 39536872 DOI: 10.1016/j.scitotenv.2024.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants with significant ecological risks, particularly due to their potential for bioaccumulation and toxicity. This study examines the effects of virgin spherical MPs and environmentally weathered MPs, specifically polystyrene (PS) and polyethylene (PE), on zebrafish larvae to enhance the environmental relevance of the findings. MP concentrations used were 105-106 particles/L for the virgin MP group and 104 particles/L for the weathered MP group, reflecting levels commonly observed in natural environments. Weathered MPs were produced through mechanical grinding followed by one month of exposure to water and sunlight to simulate environmental aging. MP characterization was performed using advanced microscopy techniques, including Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The results indicated significantly higher mortality in the weathered MP group (80%) compared to the virgin MP group (20%). Zebrafish larvae ingested MPs and exhibited disruptions in key molecular pathways, including those involved in oxidative stress response, apoptosis, and DNA damage repair. Notably, this study is among the first to evaluate the impact of MPs on the complete homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways. Our findings highlight the enhanced toxicity of weathered MPs and emphasize the importance of considering MP aging in toxicological assessments. These results contribute to a deeper understanding of MP pollution and provide valuable insights for the development of regulatory measures to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Charvi Trivedi
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
2
|
Ge C, Ye Z, Hu W, Tang J, Li H, Liu F, Liao X, Chen J, Zhang S, Cao Z. Effects of pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117552. [PMID: 39705973 DOI: 10.1016/j.ecoenv.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
With the widespread application of pesticides, water pollution problems are becoming more and more serious, which is very likely to cause harm to fish. Lower vertebrates, including fish, have the ability to repair damaged tissues. The spread of pesticides in the water may affect their regeneration process after injury, leading to their death, thereby affecting the survival rate of the population. Therefore, we used zebrafish as a model animal to evaluate the effect of the pesticide pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. We exposed zebrafish larvae to 0, 5, 15, and 25 mg/L pyrazosulfuron-ethyl at 3 days after caudal fin amputation. It was found that exposure to pyrazosulfuron-ethyl significantly inhibited caudal fin regeneration and affected the behavior of zebrafish larvae. After exposure to pyrazosulfuron-ethyl, proliferating cells decreased and apoptotic cells increased in the caudal fin of zebrafish larvae. Pyrazosulfuron-ethyl exposure resulted in the decreased number of neutrophils and macrophages, and the downregulation of immune related gene expression levels during caudal fin. Using LPS to activate inflammation can effectively rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. However, inhibiting the Notch signaling pathway and inhibiting reactive oxygen cannot rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. Our results indicate that pyrazosulfuron-ethyl can inhibit zebrafish caudal fin regeneration by reducing the number of innate immune cells and affecting the normal process of inflammation, thereby inhibiting caudal fin regeneration. This study expands our understanding of the potential effects of the pesticide pyrazosulfuron-ethyl on injured fish, highlights the link between the immune system and the regeneration process, and demonstrates the potential application of fin regeneration in risk assessments of environmental toxicology to assess drug toxicity.
Collapse
Affiliation(s)
- Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jingrong Tang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
3
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Zheng L. Developmental Toxicity and Apoptosis in Zebrafish: The Impact of Lithium Hexafluorophosphate (LiPF 6) from Lithium-Ion Battery Electrolytes. Int J Mol Sci 2024; 25:9307. [PMID: 39273255 PMCID: PMC11395654 DOI: 10.3390/ijms25179307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
With the growing dependence on lithium-ion batteries, there is an urgent need to understand the potential developmental toxicity of LiPF6, a key component of these batteries. Although lithium's toxicity is well-established, the biological toxicity of LiPF6 has been minimally explored. This study leverages the zebrafish model to investigate the developmental impact of LiPF6 exposure. We observed morphological abnormalities, reduced spontaneous movement, and decreased hatching and swim bladder inflation rates in zebrafish embryos, effects that intensified with higher LiPF6 concentrations. Whole-mount in situ hybridization demonstrated that the specific expression of the swim bladder outer mesothelium marker anxa5b was suppressed in the swim bladder region under LiPF6 exposure. Transcriptomic analysis disclosed an upregulation of apoptosis-related gene sets. Acridine orange staining further supported significant induction of apoptosis. These findings underscore the environmental and health risks of LiPF6 exposure and highlight the necessity for improved waste management strategies for lithium-ion batteries.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
4
|
Adashev VE, Kotov AA, Bazylev SS, Kombarov IA, Olenkina OM, Shatskikh AS, Olenina LV. Essential functions of RNA helicase Vasa in maintaining germline stem cells and piRNA-guided Stellate silencing in Drosophila spermatogenesis. Front Cell Dev Biol 2024; 12:1450227. [PMID: 39184915 PMCID: PMC11341464 DOI: 10.3389/fcell.2024.1450227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box RNA helicase Vasa is required for gonad development and fertility in multiple animals. Vasa is implicated in many crucial aspects of Drosophila oogenesis, including translation regulation, primordial germ cell specification, piRNA silencing of transposable elements, and maintenance of germline stem cells (GSCs). However, data about Vasa functions in Drosophila spermatogenesis remain controversial. Here we showed that loss-of-function vasa mutations led to failures of GSC maintenance in the testes, a severe loss of total germ cell content, and a cessation of male fertility over time. Defects in GSC maintenance in vasa mutant testes were not associated with an increasing frequency of programmed cell death, indicating that a premature loss of GSCs occurred via entering differentiation. We found that Vasa is implicated in the positive regulation of rhino expression both in the testes and ovaries. The introduction of a transgene copy of rhino, encoding a nuclear component of piRNA pathway machinery, in vasa mutant background allowed us to restore premeiotic stages of spermatogenesis, including the maintenance of GSCs and the development of spermatogonia and spermatocytes. However, piRNA-guided repression of Stellate genes in spermatocytes of vasa mutant testes with additional rhino copy was not restored, and male fertility was disrupted. Our study uncovered a novel mechanistic link involving Vasa and Rhino in a regulatory network that mediates GSC maintenance but is dispensable for the perfect biogenesis of Su(Ste) piRNAs in testes. Thus, we have shown that Vasa functions in spermatogenesis are essential at two distinct developmental stages: in GSCs for their maintenance and in spermatocytes for piRNA-mediated silencing of Stellate genes.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilia A. Kombarov
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oxana M. Olenkina
- Department of Molecular Mechanisms for Realization of Genetic Information, National Research Centre Kurchatov Institute, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Olenina
- Laboratory of Functional Genomics, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Wang JY, Ren P, Cui LY, Duan JY, Chen HL, Zeng ZR, Li YF. Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation. Brain Behav Immun 2024; 120:256-274. [PMID: 38852761 DOI: 10.1016/j.bbi.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
6
|
Kaur R, McGarry A, Shropshire JD, Leigh BA, Bordenstein SR. Prophage proteins alter long noncoding RNA and DNA of developing sperm to induce a paternal-effect lethality. Science 2024; 383:1111-1117. [PMID: 38452081 PMCID: PMC11187695 DOI: 10.1126/science.adk9469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Angelina McGarry
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - J. Dylan Shropshire
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, PA 16802, USA
- One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Nishida H, Albero AB, Onoue K, Ikegawa Y, Sulekh S, Sakizli U, Minami Y, Yonemura S, Wang YC, Yoo SK. Necrosensor: a genetically encoded fluorescent sensor for visualizing necrosis in Drosophila. Biol Open 2024; 13:bio060104. [PMID: 38156558 PMCID: PMC10836653 DOI: 10.1242/bio.060104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Historically, necrosis has been considered a passive process, which is induced by extreme stress or damage. However, recent findings of necroptosis, a programmed form of necrosis, shed a new light on necrosis. It has been challenging to detect necrosis reliably in vivo, partly due to the lack of genetically encoded sensors to detect necrosis. This is in stark contrast with the availability of many genetically encoded biosensors for apoptosis. Here we developed Necrosensor, a genetically encoded fluorescent sensor that detects necrosis in Drosophila, by utilizing HMGB1, which is released from the nucleus as a damage-associated molecular pattern (DAMP). We demonstrate that Necrosensor is able to detect necrosis induced by various stresses in multiple tissues in both live and fixed conditions. Necrosensor also detects physiological necrosis that occurs during spermatogenesis in the testis. Using Necrosensor, we discovered previously unidentified, physiological necrosis of hemocyte progenitors in the hematopoietic lymph gland of developing larvae. This work provides a new transgenic system that enables in vivo detection of necrosis in real time without any intervention.
Collapse
Affiliation(s)
- Hiroshi Nishida
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
| | | | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
| | - Yuko Ikegawa
- Laboratory of Molecular Cell Biology and Development, Kyoto University, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
| | - Shivakshi Sulekh
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Ugurcan Sakizli
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN BDR, Kobe, 650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima, 770-8503, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN BDR, Kobe, 650-0047, Japan
| | - Sa Kan Yoo
- Physiological Genetics Laboratory, RIKEN CPR, Kobe, 650-0047, Japan
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, 650-0047, Japan
- Division of Developmental Biology and Regenerative Medicine, Graduate School of Medicine, Kobe University, Kobe, 650-0047, Japan
| |
Collapse
|
8
|
Gershoni M, Braun T, Hauser R, Barda S, Lehavi O, Malcov M, Frumkin T, Kalma Y, Pietrokovski S, Arama E, Kleiman SE. A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure. HGG ADVANCES 2023; 4:100189. [PMID: 37124137 PMCID: PMC10133878 DOI: 10.1016/j.xhgg.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Quantitative and qualitative spermatogenic impairments are major causes of men's infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis.
Collapse
Affiliation(s)
- Moran Gershoni
- ARO-The Volcani Center Institute of Animal Science, Bet Dagan, Israel
- Corresponding author
| | - Tslil Braun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimi Barda
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mira Malcov
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tsvia Frumkin
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Sandra E. Kleiman
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Corresponding author
| |
Collapse
|
9
|
Toyoshima-Sasatani M, Imura F, Hamatake Y, Fukunaga A, Negishi T. Mutation and apoptosis are well-coordinated for protecting against DNA damage-inducing toxicity in Drosophila. Genes Environ 2023; 45:11. [PMID: 36949493 PMCID: PMC10035180 DOI: 10.1186/s41021-023-00267-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Apoptotic cell death is an important survival system for multicellular organisms because it removes damaged cells. Mutation is also a survival method for dealing with damaged cells in multicellular and also unicellular organisms, when DNA lesions are not removed. However, to the best of our knowledge, no reports have comprehensively explored the direct relationship between apoptosis and somatic cell mutations induced by various mutagenic factors. RESULTS Mutation was examined by the wing-spot test, which is used to detect somatic cell mutations, including chromosomal recombination. Apoptosis was observed in the wing discs by acridine orange staining in situ. After treatment with chemical mutagens, ultraviolet light (UV), and X-ray, both the apoptotic frequency and mutagenic activity increased in a dose-dependent manner at non-toxic doses. When we used DNA repair-deficient Drosophila strains, the correlation coefficient of the relationship between apoptosis and mutagenicity, differed from that of the wild-type. To explore how apoptosis affects the behavior of mutated cells, we determined the spot size, i.e., the number of mutated cells in a spot. In parallel with an increase in apoptosis, the spot size increased with MNU or X-ray treatment dose-dependently; however, this increase was not seen with UV irradiation. In addition, BrdU incorporation, an indicator of cell proliferation, in the wing discs was suppressed at 6 h, with peak at 12 h post-treatment with X-ray, and that it started to increase again at 24 h; however, this was not seen with UV irradiation. CONCLUSION Damage-induced apoptosis and mutation might be coordinated with each other, and the frequency of apoptosis and mutagenicity are balanced depending on the type of DNA damage. From the data of the spot size and BrdU incorporation, it is possible that mutated cells replace apoptotic cells due to their high frequency of cell division, resulting in enlargement of the spot size after MNU or X-ray treatment. We consider that the induction of mutation, apoptosis, and/or cell growth varies in multi-cellular organisms depending on the type of the mutagens, and that their balance and coordination have an important function to counter DNA damage for the survival of the organism.
Collapse
Affiliation(s)
- Megumi Toyoshima-Sasatani
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Tsushima, 700-8530, Japan
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Fumika Imura
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Tsushima, 700-8530, Japan
| | - Yuko Hamatake
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Tsushima, 700-8530, Japan
| | - Akihiro Fukunaga
- School of Nursing, Osaka City University, Abeno-Ku, Osaka, 545-0051, Japan
| | - Tomoe Negishi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Tsushima, 700-8530, Japan.
| |
Collapse
|
10
|
Wagle R, Song YH. Sensitive-stage embryo irradiation affects embryonic neuroblasts and adult motor function. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background
Cranial radiation therapy for treating childhood malignancies in the central nervous system or accidental radiation exposure may result in neurological side effects in surviving adults. As tissue homeostasis is maintained by stem cells, understanding the effect of radiation on neural stem cells will provide clues for managing the neurological effects. Drosophila embryos were used as a model system whose sensitivity to irradiation-induced cell death changes from the sensitive to resistant stage during development.
Objective
Drosophila embryos at the radiation-sensitive stage were irradiated at various doses and the radiation sensitivity was tested regarding the appearance of apoptotic cells in the embryos and the embryonic lethality. Cell fates of the neural stem cells called neuroblasts (NBs) and adult motor function after irradiation were also investigated.
Result
Irradiation of Drosophila embryos at the radiation-sensitive stage resulted in a dose-dependent increase in the number of embryos containing apoptotic cells 75 min after treatment starting at 3 Gy. Embryonic lethality assayed by hatch rate was induced by 1 Gy irradiation, which did not induce cell death. Notably, no apoptosis was detected in NBs up to 2 h after irradiation at doses as high as 40 Gy. At 3 h after irradiation, as low as 3 Gy, the number of NBs marked by Dpn and Klu was decreased by an unidentified mechanism regardless of the cell death status of the embryo. Furthermore, embryonic irradiation at 3 Gy, but not 1 Gy, resulted in locomotor defects in surviving adults.
Conclusion
Embryonic NBs survived irradiation at doses as high as 40 Gy, while cells in other parts of the embryos underwent apoptosis at doses higher than 3 Gy within 2 h after treatment. Three hours after exposure to a minimum dose of 3 Gy, the number of NBs marked by Dpn and Klu decreased, and the surviving adults exhibited defects in locomotor ability.
Collapse
|
11
|
Hwang J, Jang B, Kim A, Lee Y, Lee J, Kim C, Kim J, Moon KM, Kim K, Wagle R, Song YH, Oh ES. Syndecan Transmembrane Domain Specifically Regulates Downstream Signaling Events of the Transmembrane Receptor Cytoplasmic Domain. Int J Mol Sci 2021; 22:ijms22157918. [PMID: 34360683 PMCID: PMC8347082 DOI: 10.3390/ijms22157918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.
Collapse
Affiliation(s)
- Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Ayoung Kim
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Yejin Lee
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (J.L.); (C.K.)
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (J.L.); (C.K.)
| | - Jinmahn Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Kyeong Min Moon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.K.); (K.M.M.); (K.K.)
| | - Ram Wagle
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Anyang-si 14066, Korea; (R.W.); (Y.-H.S.)
| | - Young-Han Song
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Anyang-si 14066, Korea; (R.W.); (Y.-H.S.)
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea; (J.H.); (B.J.); (A.K.); (Y.L.)
- Correspondence: ; Tel./Fax: +82-2-3277-3761
| |
Collapse
|
12
|
Singh A, Raj A, Padmanabhan A, Shah P, Agrawal N. Combating silver nanoparticle-mediated toxicity in Drosophila melanogaster with curcumin. J Appl Toxicol 2020; 41:1188-1199. [PMID: 33146454 DOI: 10.1002/jat.4103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
Nanoscale materials display unique physical and chemical properties that enable their assimilation into a variety of industrial and consumer products. Amongst the widely used nanomaterials, silver nanoparticles (AgNPs) have gained tremendous recognition for various applications, owing to their extraordinary plasmonic and bactericidal properties. Despite of the extensive usage of AgNPs in various sectors, its impact on human health remains ambiguous. Several studies have established that higher doses of AgNPs are detrimental to organismal health. In order to attain the best from these versatile nanoparticles, a recent advent of green nanotechnology, that is, employment of metal nanoparticles synthesized using plant extracts, has emerged. Here, using Drosophila as a model system, we tested if adding curcumin, a biologically active polyphenolic compound present in turmeric, having multitudes of therapeutic properties, could mitigate AgNP-mediated biotoxicity. We found that co-administration of AgNPs with curcumin in the fly food could alleviate several harmful effects evoked by AgNPs ingestion in Drosophila model. Addition of curcumin superseded reduction in feeding, pupation, eclosion, pigmentation, and fertility caused by AgNPs ingestion. Interestingly, impairment in ovary development observed in flies reared on AgNPs-supplemented food was also partially restored by co-administration of AgNPs with curcumin. Furthermore, substantial alleviation of reactive oxygen species level and cell death was observed in larval tissues upon co-supplementation of AgNPs with curcumin. We therefore propose that curcumin, when administered with AgNPs, can abrogate the toxic manifestations of AgNPs ingestion and hence can be incorporated in various consumer products encompassing it.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, India
| | - Aishwarya Padmanabhan
- Department of Zoology, University of Delhi, Delhi, India.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Prasanna Shah
- Department of Physics, Acropolis Institute of Technology and Research, Indore, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Escobar-Chavarría O, Cossío-Bayúgar R, Ramírez-Noguera P, Prado-Ochoa MG, Velázquez-Sánchez AM, Muñoz-Guzmán MA, Angeles E, Alba-Hurtado F. In vivo and in vitro apoptosis induced by new acaricidal ethyl-carbamates in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101603. [PMID: 33221619 DOI: 10.1016/j.ttbdis.2020.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
The ability of ethyl-4-bromophenylcarbamate (LQM 919) and ethyl-4-chlorophenylcarbamate (LQM 996) to induce in vivo apoptosis of Rhipicephalus microplus ovarian cells and in vitro apoptosis of tick and mammalian cell culture was evaluated. The ovaries of engorged females treated with 1 mg mL-1 LQM 919 or LQM 996 presented more (p < 0.001) peroxidase-TUNEL-positive labeled cells (apoptotic cells) in situ than their respective control groups, and this increase was time-dependent (p < 0.001). The majority of apoptotic cells were observed in the epithelium and ovarian pedicel. HepG2, Vero and Rm-sus cells, as well as cells from primary cultures of R. microplus salivary glands, intestine and ovaries were exposed to different concentrations of the ethyl-carbamates. Both ethyl-carbamates induced a concentration-dependent reduction in the viability of all cell types (p < 0.001). Exposure to the ethyl-carbamates increased caspase 3 activity (p < 0.01) in primary cultures and cell lines, except in HepG2 cells. Fluorescent TUNEL-positive cells were observed in all cell types treated with 600 μM LQM 919 or LQM 996. These results indicate that both ethyl-carbamates induce apoptosis of the ovarian, intestinal and salivary glands cells in R. microplus and strongly suggest that this is their main mechanism of acaricidal action.
Collapse
Affiliation(s)
- O Escobar-Chavarría
- Programa de Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico
| | - R Cossío-Bayúgar
- Centro Nacional de Investigaciones Disciplinarias en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Mexico
| | - P Ramírez-Noguera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - M G Prado-Ochoa
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - A M Velázquez-Sánchez
- Laboratorio de Química Medicinal, Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - M A Muñoz-Guzmán
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - E Angeles
- Laboratorio de Química Medicinal, Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - F Alba-Hurtado
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
14
|
Rosero MA, Abdon B, Silva NJ, Cisneros Larios B, Zavaleta JA, Makunts T, Chang ES, Bashar SJ, Ramos LS, Moffatt CA, Fuse M. Divergent mechanisms for regulating growth and development after imaginal disc damage in the tobacco hornworm, Manduca sexta. J Exp Biol 2019; 222:jeb200352. [PMID: 31492818 PMCID: PMC6826002 DOI: 10.1242/jeb.200352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/29/2019] [Indexed: 01/28/2023]
Abstract
Holometabolous insects have been able to radiate to vast ecological niches as adults through the evolution of adult-specific structures such as wings, antennae and eyes. These structures arise from imaginal discs that show regenerative capacity when damaged. During imaginal disc regeneration, development has been shown to be delayed in the fruit fly Drosophila melanogaster, but how conserved the delay-inducing mechanisms are across holometabolous insects has not been assessed. The goal of this research was to develop the hornworm Manduca sexta as an alternative model organism to study such damage-induced mechanisms, with the advantage of a larger hemolymph volume enabling access to the hormonal responses to imaginal disc damage. Upon whole-body X-ray exposure, we noted that the imaginal discs were selectively damaged, as assessed by TUNEL and Acridine Orange stains. Moreover, development was delayed, predominantly at the pupal-to-adult transition, with a concomitant delay in the prepupal ecdysteroid peak. The delays to eclosion were dose dependent, with some ability for repair of damaged tissues. We noted a shift in critical weight, as assessed by the point at which starvation no longer impacted developmental timing, without a change in growth rate, which was uncoupled from juvenile hormone clearance in the body. The developmental profile was different from that of D. melanogaster, which suggests species differences may exist in the mechanisms delaying development.
Collapse
Affiliation(s)
- Manuel A Rosero
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Benedict Abdon
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Nicholas J Silva
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Brenda Cisneros Larios
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Jhony A Zavaleta
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Tigran Makunts
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Ernest S Chang
- Bodega Marine Laboratory, University of California, Davis, PO Box 247, Bodega Bay, CA 94923, USA
| | - S Janna Bashar
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Louie S Ramos
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Christopher A Moffatt
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Megumi Fuse
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
15
|
Lakra P, Aditi K, Agrawal N. Peripheral Expression of Mutant Huntingtin is a Critical Determinant of Weight Loss and Metabolic Disturbances in Huntington's Disease. Sci Rep 2019; 9:10127. [PMID: 31300691 PMCID: PMC6626032 DOI: 10.1038/s41598-019-46470-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Deteriorating weight loss in patients with Huntington's disease (HD) is a complicated peripheral manifestation and the cause remains poorly understood. Studies suggest that body weight strongly influences the clinical progression rate of HD and thereby offers a valuable target for therapeutic interventions. Mutant huntingtin (mHTT) is ubiquitously expressed and could induce toxicity by directly acting in the peripheral tissues. We investigated the effects of selective expression of mHTT exon1 in fat body (FB; functionally equivalent to human adipose tissue and liver) using transgenic Drosophila. We find that FB-autonomous expression of mHTT exon1 is intrinsically toxic and causes chronic weight loss in the flies despite progressive hyperphagia, and early adult death. Moreover, flies exhibit loss of intracellular lipid stores, and decline in the systemic levels of lipids and carbohydrates which aggravates over time, representing metabolic defects. At the cellular level, besides impairment, cell death also occurs with the formation of mHTT aggregates in the FB. These findings indicate that FB-autonomous expression of mHTT alone is sufficient to cause metabolic abnormalities and emaciation in vivo without any neurodegenerative cues.
Collapse
Affiliation(s)
- Priya Lakra
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Kumari Aditi
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
16
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
17
|
Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E. Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 2018; 9:2806. [PMID: 30022065 PMCID: PMC6052023 DOI: 10.1038/s41467-018-05204-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/22/2018] [Indexed: 11/15/2022] Open
Abstract
Maintenance of tissue integrity during development and homeostasis requires the precise coordination of several cell-based processes, including cell death. In animals, the majority of such cell death occurs by apoptosis, a process mediated by caspase proteases. To elucidate the role of caspases in tissue integrity, we investigated the behavior of Drosophila epithelial cells that are severely compromised for caspase activity. We show that these cells acquire migratory and invasive capacities, either within 1–2 days following irradiation or spontaneously during development. Importantly, low levels of effector caspase activity, which are far below the threshold required to induce apoptosis, can potently inhibit this process, as well as a distinct, developmental paradigm of primordial germ cell migration. These findings may have implications for radiation therapy in cancer treatment. Furthermore, given the presence of caspases throughout metazoa, our results could imply that preventing unwanted cell migration constitutes an ancient non-apoptotic function of these proteases. In addition to regulating programmed cell death, caspases also have non-apoptotic roles. Here, the authors show that low level caspase activity prevents cell migration to maintain tissue integrity.
Collapse
Affiliation(s)
| | - Ron Weiss
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lena Sapozhnikov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602-2607, USA
| | | | - Dima Dweik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Salimi M, Sarkar S, Fathi S, Alizadeh AM, Saber R, Moradi F, Delavari H. Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int J Nanomedicine 2018; 13:1483-1493. [PMID: 29559777 PMCID: PMC5856291 DOI: 10.2147/ijn.s157293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The possibility of using a specific nanoparticle in nanomedicine highly depends on its biodistribution profile and biocompatibility. Due to growing demand for iron oxide nanoparticles (IONPs) and dendrimers in biomedical applications, this study was performed to assess the biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles (G4@IONPs). Materials and methods IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine (PAMAM) dendrimer. To determine the biodistribution, 5 mg/mL G4@IONPs suspension was intraperitoneally injected into tumor-bearing BALB/c mice, and iron levels in blood and various organs, including the lung, liver, brain, heart, tumor, and kidney, were measured by inductively coupled plasma mass spectrometry (ICP-MS) at 4, 8, 12, and 24 h after injection. Also, to investigate the toxicity of G4@IONPs, different concentrations of G4@IONPs were injected into BALB/c mice, and blood, renal, and hepatic factors were measured. Furthermore, histopathological staining was performed to investigate the effect of G4@IONPs on the liver and kidney tissues. Results The results showed that the iron content was higher in the kidney, liver, and lung tissues 24 h after injection. Toxicity assessments revealed a significant increase in blood urea nitrogen (BUN) and direct bilirubin at the concentration of 10 mg/kg. Also, in this concentration, histopathological abnormalities were detected in liver tissue. Conclusion Although more systematic studies are still required, our results encouraged the future investigations of G4@IONPs in biomedical applications.
Collapse
Affiliation(s)
- Marzieh Salimi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center of Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Fathi
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Reza Saber
- Research Center of Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Medical Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Delavari
- Department of Materials Science and Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Schott S, Ambrosini A, Barbaste A, Benassayag C, Gracia M, Proag A, Rayer M, Monier B, Suzanne M. A fluorescent toolkit for spatiotemporal tracking of apoptotic cells in living Drosophila tissues. Development 2017; 144:3840-3846. [PMID: 28870988 DOI: 10.1242/dev.149807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023]
Abstract
Far from being passive, apoptotic cells influence their environment. For example, they promote tissue folding, myoblast fusion and modulate tumor growth. Understanding the role of apoptotic cells necessitates their efficient tracking within living tissues, a task that is currently challenging. In order to easily spot apoptotic cells in developing Drosophila tissues, we generated a series of fly lines expressing different fluorescent sensors of caspase activity. We show that three of these reporters (GFP-, Cerulean- and Venus-derived molecules) are detected specifically in apoptotic cells and throughout the whole process of programmed cell death. These reporters allow the specific visualization of apoptotic cells directly within living tissues, without any post-acquisition processing. They overcome the limitations of other apoptosis detection methods developed so far and, notably, they can be combined with any kind of fluorophore.
Collapse
Affiliation(s)
- Sonia Schott
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Arnaud Ambrosini
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Audrey Barbaste
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Corinne Benassayag
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Mélanie Gracia
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Amsha Proag
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Mégane Rayer
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Bruno Monier
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Magali Suzanne
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS/UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
20
|
Manta AK, Papadopoulou D, Polyzos AP, Fragopoulou AF, Skouroliakou AS, Thanos D, Stravopodis DJ, Margaritis LH. Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly (Austin) 2016; 11:75-95. [PMID: 27960592 DOI: 10.1080/19336934.2016.1270487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.
Collapse
Affiliation(s)
- Areti K Manta
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Deppie Papadopoulou
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Alexander P Polyzos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Adamantia F Fragopoulou
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Aikaterini S Skouroliakou
- c Department of Energy Technology Engineering , Technological Educational Institute of Athens , Athens , Greece
| | - Dimitris Thanos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Dimitrios J Stravopodis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Lukas H Margaritis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
21
|
The Relationship Between Inflammation and Impaired Wound Healing in a Diabetic Rat Burn Model. J Burn Care Res 2016; 37:e115-24. [PMID: 25407384 DOI: 10.1097/bcr.0000000000000171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inflammation, initiated by polymorphonuclear neutrophil (PMNs) infiltration, is the first step in wound healing. The aim of this study is to investigate the function of neutrophils in a diabetes-impaired wound healing model and to explore the underlying mechanisms leading to neutrophil dysfunction. Superficial second-degree burns were created in the streptozotocin (STZ)-induced diabetic rat model, and the changes in the levels of advanced glycation end products (AGE), receptor of AGE (RAGE), inflammatory cytokines and oxidative markers, as well as cell apoptosis were determined. The effects of AGE on isolated PMNs were also determined in vitro. We found that deposition of AGE in diabetic rat skin activated the neutrophils before injury. However, the dense inflammatory band failed to form in the diabetic rats after injury. Compared with the controls, enhanced expression of RAGE and accelerated cell apoptosis were observed in the burned skin of diabetic rats. The altered expression pattern of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-8) and oxidative markers (glutathione peroxidase, myeloperoxidase, hydrogen peroxide, and malondialdehyde) between burned skin of diabetic and control rats revealed delayed neutrophil chemotaxis and respiratory burst. Furthermore, the results in vitro showed that exposure to AGE inhibited the viability of PMNs, promoted RAGE production and cell apoptosis, and prevented the migration of PMNs, consistent with the findings in vivo. Besides, AGE-treated neutrophils showed increased secretion of inflammatory cytokines and increased oxidative stress. Combined, our results suggest that an interaction between AGE and its receptors inhibits neutrophil viability and function in the diabetic rat burn model.
Collapse
|
22
|
Graves HK, Wang P, Lagarde M, Chen Z, Tyler JK. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics Chromatin 2016; 9:9. [PMID: 26933451 PMCID: PMC4772521 DOI: 10.1186/s13072-016-0059-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/24/2023] Open
Abstract
Background
Understanding the function of histone post-translational modifications is the key to deciphering how genomic activities are regulated. Among the least well-understood histone modifications in vivo are those that occur on the surface of the globular domain of histones, despite their causing the most profound structural alterations of the nucleosome in vitro. We utilized a Drosophila system to replace the canonical histone genes with mutated histone transgenes. Results Mutations predicted to mimic or prevent acetylation on histone H3 lysine (K) 56, K115, K122, and both K115/K122, or to prevent or mimic phosphorylation on H3 threonine (T) 118 and T80, all caused lethality, with the exception of K122R mutants. T118 mutations caused profound growth defects within wing discs, while K115R, K115Q, K56Q, and the K115/K122 mutations caused more subtle growth defects. The H3 K56R and H3 K122R mutations caused no defects in growth, differentiation, or transcription within imaginal discs, indicating that H3 K56 acetylation and K122 acetylation are dispensable for these functions. In agreement, we found the antibody to H3 K122Ac, which was previously used to imply a role for H3 K122Ac in transcription in metazoans, to be non-specific in vivo. Conclusions Our data suggest that chromatin structural perturbations caused by acetylation of K56, K115, or K122 and phosphorylation of T80 or T118 are important for key developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hillary K Graves
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Pingping Wang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Matthew Lagarde
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhihong Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jessica K Tyler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
23
|
Kotov AA, Olenkina OM, Kibanov MV, Olenina LV. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1093-105. [PMID: 26876306 DOI: 10.1016/j.bbamcr.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.
Collapse
Affiliation(s)
- Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Oxana M Olenkina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia.
| |
Collapse
|
24
|
Elenbaas JS, Mouawad R, Henry RW, Arnosti DN, Payankaulam S. Role of Drosophila retinoblastoma protein instability element in cell growth and proliferation. Cell Cycle 2015; 14:589-97. [PMID: 25496208 DOI: 10.4161/15384101.2014.991182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RB tumor suppressor, a regulator of the cell cycle, apoptosis, senescence, and differentiation, is frequently mutated in human cancers. We recently described an evolutionarily conserved C-terminal "instability element" (IE) of the Drosophila Rbf1 retinoblastoma protein that regulates its turnover. Misexpression of wild-type or non-phosphorylatable forms of the Rbf1 protein leads to repression of cell cycle genes. In contrast, overexpression of a defective form of Rbf1 lacking the IE (ΔIE), a stabilized but transcriptionally less active form of the protein, induced ectopic S phase in cell culture. To determine how mutations in the Rbf1 IE may induce dominant effects in a developmental context, we assessed the impact of in vivo expression of mutant Rbf1 proteins on wing development. ΔIE expression resulted in overgrowth of larval wing imaginal discs and larger adult wings containing larger cells. In contrast, a point mutation in a conserved lysine of the IE (K774A) generated severely disrupted, reduced wings. These contrasting effects appear to correlate with control of apoptosis; expression of the pro-apoptotic reaper gene and DNA fragmentation measured by acridine orange stain increased in flies expressing the K774A isoform and was suppressed by expression of Rbf1ΔIE. Intriguingly, cancer associated mutations affecting RB homologs p130 and p107 may similarly induce dominant phenotypes.
Collapse
Key Words
- Apaf-1, Apoptotic protease activating factor 1
- Ark, Apaf-1 related killer
- CDK, Cyclin-dependent kinase
- COP9, Constitutive photomorphogenic 9
- Dpp, Decapentaplegic
- Drosophila
- E2F, E2 promoter binding factor
- Hid, Head involution defective
- IE, Instability element
- PCNA, Proliferating cell nuclear antigen
- Polα, DNA polymerase α
- Rb, Retinoblastoma
- Wnt, Wingless
- apoptosis
- cell size
- retinoblastoma
- transcriptional regulation
- tumor suppressor
- wing size
Collapse
Affiliation(s)
- Jared S Elenbaas
- a Department of Biochemistry and Molecular Biology ; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
25
|
Hameed LS, Berg DA, Belnoue L, Jensen LD, Cao Y, Simon A. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. eLife 2015; 4. [PMID: 26485032 PMCID: PMC4635398 DOI: 10.7554/elife.08422] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/19/2015] [Indexed: 01/31/2023] Open
Abstract
Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. DOI:http://dx.doi.org/10.7554/eLife.08422.001 During the winter, red-spotted newts remain active in water that is covered by ice. The oxygen levels under the ice tend to drop and so the newts adjust their metabolism to cope with these conditions. However, when oxygen levels return to normal, this may result in the newts producing larger amounts of chemically reactive molecules called reactive oxygen species (ROS). These molecules form naturally as a by-product of oxygen metabolism, but in high quantities they can damage cells and tissues. It has been proposed that red-spotted newts and other animals that experience periods of low oxygen may have evolved processes to repair such damage. Unlike us, red-spotted newts are able to replace nerve cells in the brain that have died or been injured. This regeneration is fuelled by stem cells called ependymoglia cells, which divide to produce new nerve cells. Here, Hameed et al. investigated whether the return of oxygen to normal levels after a period of low oxygen can damage nerve cells in the newts, and whether this is followed by regeneration. The experiments show that nerve cells in the newt brain do indeed die when oxygen levels return to normal. Also, the brain activates an injury response that triggers the ependymoglia cells to divide. During this process, the ependymoglia cells accumulate ROS and their ability to divide is impaired if the production of ROS is blocked. The replacement of injured brain cells in normal oxygen conditions also depends on increased ROS levels. Together, Hameed et al.'s findings demonstrate a key role for ROS production in controlling the regeneration of damaged nerve cells in the red-spotted newt. A future challenge is to identify the genes that control the survival and activation of ependymoglia cells in response to increased ROS levels in the brain. DOI:http://dx.doi.org/10.7554/eLife.08422.002
Collapse
Affiliation(s)
- L Shahul Hameed
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Daniel A Berg
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Laure Belnoue
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Lasse D Jensen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Tousled-like kinase mediated a new type of cell death pathway in Drosophila. Cell Death Differ 2015; 23:146-57. [PMID: 26088162 DOI: 10.1038/cdd.2015.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) has an important role in sculpting organisms during development. However, much remains to be learned about the molecular mechanism of PCD. We found that ectopic expression of tousled-like kinase (tlk) in Drosophila initiated a new type of cell death. Furthermore, the TLK-induced cell death is likely to be independent of the canonical caspase pathway and other known caspase-independent pathways. Genetically, atg2 RNAi could rescue the TLK-induced cell death, and this function of atg2 was likely distinct from its role in autophagy. In the developing retina, loss of tlk resulted in reduced PCD in the interommatidial cells (IOCs). Similarly, an increased number of IOCs was present in the atg2 deletion mutant clones. However, double knockdown of tlk and atg2 by RNAi did not have a synergistic effect. These results suggested that ATG2 may function downstream of TLK. In addition to a role in development, tlk and atg2 RNAi could rescue calcium overload-induced cell death. Together, our results suggest that TLK mediates a new type of cell death pathway that occurs in both development and calcium cytotoxicity.
Collapse
|
27
|
Denton D, Kumar S. Using the vital dye acridine orange to detect dying cells in Drosophila. Cold Spring Harb Protoc 2015; 2015:572-575. [PMID: 26034308 DOI: 10.1101/pdb.prot086207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acridine orange is a cell-permeable fluorescent dye that binds to nucleic acids, resulting in an altered spectral emission. Acridine orange staining has been shown to be highly selective for apoptotic cells in Drosophila; however, the precise mechanism underlying this effect is not known. Advantages of acridine orange staining include the speed and ease of the staining. But there are disadvantages: It should be performed on unfixed tissue that therefore must be examined immediately, and multiple labeling cannot be performed. Slightly different protocols for the uptake of acridine orange are required for different developmental stages. Here, we present protocols for use of acridine orange to detect apoptosis in Drosophila embryos and in larval tissue. Slight modifications might be required for other Drosophila tissues.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
28
|
Denton D, Kumar S. Terminal Deoxynucleotidyl Transferase (TdT)-Mediated dUTP Nick-End Labeling (TUNEL) for Detection of Apoptotic Cells in Drosophila. Cold Spring Harb Protoc 2015; 2015:568-71. [PMID: 26034307 DOI: 10.1101/pdb.prot086199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A characteristic feature of apoptosis is DNA fragmentation. This fragmentation can be detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) of DNA in dying cells. Here, we present a protocol for TUNEL detection of apoptosis in Drosophila larval tissue, but these techniques can be adapted for other tissues and developmental stages.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
29
|
Lavista-Llanos S, Svatoš A, Kai M, Riemensperger T, Birman S, Stensmyr MC, Hansson BS. Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife 2014; 3. [PMID: 25487989 DOI: 10.7554/elife.03785.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/01/2014] [Indexed: 05/27/2023] Open
Abstract
Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development.
Collapse
Affiliation(s)
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Riemensperger
- Genetics and Physiopathology of Neurotransmission, Neurobiology Unit, CNRS, ESPCI ParisTech, Paris, France
| | - Serge Birman
- Genetics and Physiopathology of Neurotransmission, Neurobiology Unit, CNRS, ESPCI ParisTech, Paris, France
| | | | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
30
|
Lavista-Llanos S, Svatoš A, Kai M, Riemensperger T, Birman S, Stensmyr MC, Hansson BS. Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife 2014; 3. [PMID: 25487989 PMCID: PMC4270095 DOI: 10.7554/elife.03785] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/01/2014] [Indexed: 01/05/2023] Open
Abstract
Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development. DOI:http://dx.doi.org/10.7554/eLife.03785.001 Many insect species rely on another animal or plant species for their own reproduction. For example, a fruit fly called Drosophila sechellia—which is found in the Seychelles—will only feed and lay its eggs on the fruit of a species of tree called Morinda citrifolia. This pairing is particularly unusual because these fruits, commonly called morinda, are toxic to all other Drosophila species. Female Drosophila sechellia flies produce fewer eggs than other Drosophila species, which makes it difficult to raise this species in the laboratory. However providing these flies with morinda fruit, or chemicals from this fruit, was known to increase the expression of many genes involved in egg production and stimulate the flies to lay more eggs. Nevertheless, the reasons why this species of fruit fly depends on the toxic morinda fruit were unclear. Now Lavista-Llanos et al. have confirmed that feeding Drosophila sechellia flies a diet of morinda fruit—instead of a typical laboratory diet—causes these flies to produce six-times as many eggs. Furthermore, this morinda diet had effects that went beyond the previously reported stimulatory effects of acidic chemicals in the fruits triggering the flies to lay more eggs. Egg production in flies is controlled by dopamine, and a lack of this hormone is known to reduce the size of other fruit flies' ovaries and the number of eggs that they produce. Lavista-Llanos et al. went on to feed female Drosophila sechellia flies the chemical building blocks that make up the dopamine hormone, and one such chemical (called l-DOPA) caused the flies to produce more eggs. This did not occur when the flies were fed dopamine itself. Lavista-Llanos et al. discovered that Drosophila sechellia flies have very high levels of dopamine but much lower levels of l-DOPA than other Drosophila fly species; and revealed that this was because a gene called Catsup is mutated in Drosophila sechellia. When Lavista-Llanos et al. mutated the same gene in another Drosophila species, the mutant flies produced fewer eggs and abnormally accumulated an enzyme (which makes l-DOPA) inside their developing eggs—just like Drosophila sechellia. The presence of l-DOPA in morinda fruit partly compensates for the reduced fertility of Drosophila sechellia and the other flies with mutations in the Catsup gene. Lavista-Llanos et al. discovered that removing or replacing l-DOPA in the morinda fruit caused the flies to produce fewer eggs. Furthermore, the l-DOPA present in morinda increases the size of Drosophila sechellia eggs, which in turn helps them to survive their toxic environment. Lavista-Llanos et al. also discovered that feeding dopamine to vulnerable Drosophila species helps them to cope with the toxic effects of a morinda diet. One of the next challenges will be to uncover how chemicals from the morinda fruit affect the dopamine system of the flies. It is also unknown if the dopamine hormone also influences the strong attraction that Drosophila sechellia feels towards its only host, the morinda fruit. DOI:http://dx.doi.org/10.7554/eLife.03785.002
Collapse
Affiliation(s)
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Riemensperger
- Genetics and Physiopathology of Neurotransmission, Neurobiology Unit, CNRS, ESPCI ParisTech, Paris, France
| | - Serge Birman
- Genetics and Physiopathology of Neurotransmission, Neurobiology Unit, CNRS, ESPCI ParisTech, Paris, France
| | | | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
31
|
Abstract
Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression. DOI:http://dx.doi.org/10.7554/eLife.02443.001 As a cell prepares to divide, it goes through four distinct stages. First, it grows in size (G1 phase); next it copies its entire DNA content (S phase); then it grows some more (G2 phase); and, last, it splits into two new cells (M phase). During S phase, groups of histone proteins that normally stick together to tightly package the DNA are pulled apart in order to make the DNA accessible for copying. After the DNA has been duplicated, both copies of the DNA strand need to be repackaged. Therefore, after copying the DNA the cell rapidly reassembles the DNA–histone complexes (called nucleosomes), using a combination of old and newly synthesized histones to do so. A cell can adjust how quickly it copies DNA according to the availability of these histone proteins, which is important because copying DNA without the resources to package it could expose the DNA to damage. Here, Günesdogan et al. investigate how a cell controls these processes using a mutant of the fruit fly Drosophila melanogaster that completely lacks the genes required to make histones. Cells that lack histones copy their DNA very slowly but adding copies of histone genes back into these flies speeds up the rate at which DNA is copied. Günesdogan et al. ask whether the slower speed of DNA replication in cells without new histones is connected to preventing DNA damage. However, these cells can still copy all their DNA, despite being unable to package it, so the higher risk of making mistakes is not enough to stop S phase. In fact, indications suggest that DNA damage detection methods continue to work as normal in cells without histones: these cells can get all the way to the end of G2 phase without any problems. To go one step further and start splitting in two, a cell needs to switch on another gene, called string in the fruit fly and CDC25 in vertebrates, which makes an enzyme required for the cell division process. Normal cells switch on string during G2 phase, but cells that lack histones do not—and therefore do not enter M phase. Günesdogan et al. show that turning on string by a genetic trick is sufficient to overcome this cell cycle arrest and drive the cells into M phase. String could therefore form part of a surveillance mechanism that blocks cell division if DNA–histone complexes are not assembled correctly. DOI:http://dx.doi.org/10.7554/eLife.02443.002
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Herbert Jäckle
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Alf Herzig
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany Abteilung Zelluläre Mikrobiologie, Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| |
Collapse
|
32
|
Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Dev Biol 2014; 394:217-27. [PMID: 25169192 DOI: 10.1016/j.ydbio.2014.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/21/2022]
Abstract
The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells.
Collapse
|
33
|
Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway. PLoS Pathog 2014; 10:e1003956. [PMID: 24550732 PMCID: PMC3923752 DOI: 10.1371/journal.ppat.1003956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/12/2014] [Indexed: 11/19/2022] Open
Abstract
Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype. Symbiotic bacteria are ubiquitously associated with diverse insects, and affect their host biology in a variety of ways. In Drosophila fruit flies, infection with Spiroplasma symbionts often causes male-specific embryonic mortality, resulting in the production of all-female offspring. This striking phenotype is called “male-killing”, whose underlying mechanisms are of great interest. Here we investigated Drosophila melanogaster and its native Spiroplasma symbiont strain to understand how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing. Specifically in Spiroplasma-infected male embryos, pathogenic phenotypes including massive cell death throughout the body and neural malformation were observed. We unequivocally identified that the male-specific cell death preferentially occurs in the embryonic epithelium via the host's apoptotic pathway. Meanwhile, we found that, unexpectedly, the male-specific neural defects occur independently of host's apoptosis, suggesting that at least two different mechanisms may be involved in the Spiroplasma-induced male-killing. Also unexpected was the finding that Spiroplasma titers are almost constant throughout embryogenesis irrespective of sex despite the male-specific severe apoptosis. We serendipitously found Spiroplasma-infected sexual mosaic embryos, wherein apoptosis was associated with male cells, which suggests that some Spiroplasma-derived factor(s) may selectively act on male cells and cause male-killing.
Collapse
|
34
|
Nielsen CE, Wang X, Robinson RJ, Brooks AL, Lovaglio J, Patton KM, McComish SL, Tolmachev SY, Morgan WF. Carcinogenic and inflammatory effects of plutonium-nitrate retention in an exposed nuclear worker and beagle dogs. Int J Radiat Biol 2013; 90:60-70. [PMID: 24279338 DOI: 10.3109/09553002.2014.859765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Plutonium-nitrate has a moderately rapid translocation rate from the lung to blood stream. Previous studies have shown an unexpected retention of soluble plutonium in the beagles and human case studied here. The inflammatory responses that may be associated with long-term exposure to ionizing radiation were characterized. These pathways include tissue injury, apoptosis, and gene expression modifications. Other protein modifications related to carcinogenesis and inflammation and the various factors that may play a role in orchestrating complex interactions which influence tissue integrity following irradiation were investigated. MATERIALS AND METHODS We have examined numerous lung samples from a plutonium-exposed worker, a human control, and a variety of plutonium-exposed beagle dogs using immunohistochemistry and quantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). RESULTS The exposed human showed interstitial fibrosis in peripheral regions of the lung, but no pulmonary tumors. Beagles with similar doses were diagnosed with tumors in bronchiolo-alveolar, peripheral and sub-pleural alveolar regions of the lung. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed an elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris in the alveoli and lymph nodes of the beagles but not in the human case. In both the beagles and human there were statistically significant modifications in the expression of Fas ligand (FASLG), B-cell lymphoma 2 (BCL2), and Caspase 3 (CASP3). CONCLUSIONS The data suggests that FASLG, BCL2, CASP3 and apoptosis play a role in the inflammatory responses following prolonged plutonium exposure. Utilizing these unique tissues revealed which pathways are triggered following the internal deposition and long-term retention of plutonium-nitrate in a human and a large animal model.
Collapse
|
35
|
Hu J, Zhang G, Selzer ME. Activated caspase detection in living tissue combined with subsequent retrograde labeling, immunohistochemistry or in situ hybridization in whole-mounted lamprey brains. J Neurosci Methods 2013; 220:92-8. [PMID: 24025261 DOI: 10.1016/j.jneumeth.2013.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/22/2022]
Abstract
In the lamprey brain, there are 18 pairs of identified spinal-projecting neurons whose regenerative abilities have been characterized. The "bad-regenerating" neurons show a very delayed form of apoptosis after axotomy (Shifman et al., 2008). Theoretically, this should provide a long window of opportunity to intervene therapeutically, so it would be helpful if we could identify the early stages of this process in vivo. Until now, there has been no method to link mRNA or protein expression directly to early-stages neuronal apoptosis in vivo. Here we describe a double-labeling protocol in whole-mounted lamprey brain for simultaneous detection of early stage apoptosis, using Fluorochrome-Labeled Inhibitors of Caspases (FLICA), and either mRNA, using in situ hybridization, or protein expression, using immunohistochemistry. To improve brain preservation, the working temperature during the FLICA stage was lowered from 37°C to 4°C (Barreiro-Iglesias and Shifman, 2012). Using this method, neurofilament protein was demonstrated by immunohistochemistry in neurons previously reacted by FLICA. The method also revealed that mRNA for the receptor protein tyrosine phosphatase PTPσ is expressed selectively in FLICA-positive neurons. In addition, our study showed that a retrograde labeling technique can be used in the context of FLICA labeling. FLICA label colocalized with TUNEL staining, confirming that FLICA labeling is a reliable marker of apoptosis in lamprey brain. Our results suggested that we can combine caspase detection with other techniques in vivo to investigate the roles and mechanisms of activated caspases and other molecules in retrograde cell deaths and regenerative abilities of neurons.
Collapse
Affiliation(s)
- Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
36
|
Neuronal necrosis and spreading death in a Drosophila genetic model. Cell Death Dis 2013; 4:e723. [PMID: 23846225 PMCID: PMC3730406 DOI: 10.1038/cddis.2013.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/22/2023]
Abstract
Brain ischemia often results in neuronal necrosis, which may spread death to neighboring cells. However, the molecular events of neuronal necrosis and the mechanisms of this spreading death are poorly understood due to the limited genetic tools available for deciphering complicated responses in mammalian brains. Here, we engineered a Drosophila model of necrosis in a sub-population of neurons by expressing a leaky cation channel in the Drosophila eye. Expression of this channel caused necrosis in defined neurons as well as extensive spreading of cell death. Jun N-terminal kinase (JNK)-mediated, caspase-independent apoptosis was the primary mechanism of cell death in neurons, while caspase-dependent apoptosis was primarily involved in non-neuronal cell death. Furthermore, the JNK activation in surrounding neurons was triggered by reactive oxygen species (ROS) and Eiger (Drosophila tumor necrosis factor α (TNFα)) released from necrotic neurons. Because the Eiger/ROS/JNK signaling was also required for cell death induced by hypoxia and oxidative stress, our fly model of spreading death may be similar to brain ischemia in mammals. We performed large-scale genetic screens to search for novel genes functioning in necrosis and/or spreading death, from which we identified several classes of genes. Among them, Rho-associated kinase (ROCK) had been reported as a promising drug target for stroke treatment with undefined mechanisms. Our data indicate that ROCK and the related trafficking pathway genes regulate neuronal necrosis. We propose the suppression of the function of the trafficking system, ROS and cytokines, such as TNFα, as translational applications targeting necrosis and spreading death.
Collapse
|
37
|
Yacobi-Sharon K, Namdar Y, Arama E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 2013; 25:29-42. [PMID: 23523076 DOI: 10.1016/j.devcel.2013.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/03/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.
Collapse
Affiliation(s)
- Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
38
|
Kibanov MV, Kotov AA, Olenina LV. Multicolor fluorescence imaging of whole-mount Drosophila testes for studying spermatogenesis. Anal Biochem 2013; 436:55-64. [PMID: 23357237 DOI: 10.1016/j.ab.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 01/11/2023]
Abstract
Drosophila testes are generally considered a useful model for studying the fundamental developmental processes of heterogametic organisms. However, immunostaining of the whole Drosophila testis is often associated with insufficient resolution at the subcellular level, poor reproducibility, and incomplete staining of fixed preparations. The main problem for adequate staining is poor permeability of the organs for antibodies and antibody-coupled fluorophores. To overcome this problem we developed a protocol for whole-mount testis immunostaining yielding high-quality preparations for confocal microscopy. Many subcellular structures can be successfully resolved, such as the spectrosome, fusome, nuage granules, apoptotic bodies, and protein crystals. This method preserves the inner architecture of the testes, enabling 3D image reconstruction from a set of confocal sections. It allows one to combine the simultaneous detection of fluorescently tagged and immunostained proteins as well as TUNEL analysis for apoptosis detection.
Collapse
Affiliation(s)
- Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Science, Moscow 123182, Russia
| | | | | |
Collapse
|
39
|
Abstract
Detection of RNAs by in situ hybridization (ISH) is a well-established technique that permits the study of specific RNA expression patterns in tissues; however, not all tissues are equally amenable to staining using the same procedure. Here we describe a protocol that combines whole-mount immunofluorescence (IF) and fluorescence in situ hybridization (FISH) for the simultaneous detection of specific RNA transcripts and proteins, greatly enhancing the spatial resolution of RNA expression in complex, intact fly tissues. To date, we have successfully used this protocol in adult testis, larval male gonads, adult intestine and Malpighian tubules. IF is conducted in RNase-free solutions, prior to the harsh conditions of FISH, in order to preserve protein antigenicity within dissected tissues. Separate protocols are described for mRNA and miRNA detection, which are based on robust digoxigenin (DIG) RNA and locked nucleic acid (LNA) probes, respectively. The combined IF-FISH procedure can be completed in 2 d for miRNA detection and 4 d for mRNA detection. Although optimized for Drosophila, this IF-FISH protocol should be adaptable to a wide variety of organisms, tissues, antibodies and probes, thus providing a reliable and simple means to compare RNA and protein abundance and localization.
Collapse
|
40
|
Baradaran-Heravi A, Raams A, Lubieniecka J, Cho KS, DeHaai KA, Basiratnia M, Mari PO, Xue Y, Rauth M, Olney AH, Shago M, Choi K, Weksberg RA, Nowaczyk MJM, Wang W, Jaspers NGJ, Boerkoel CF. SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo. Am J Med Genet A 2012; 158A:2204-13. [PMID: 22888040 DOI: 10.1002/ajmg.a.35532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
Abstract
Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder with prominent skeletal, renal, immunological, and ectodermal abnormalities. It is caused by mutations of SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA stress response protein. To determine the relationship of this function to the SIOD phenotype, we profiled the cancer prevalence in SIOD and assessed if defects of nucleotide excision repair (NER) and nonhomologous end joining (NHEJ), respectively, explained the ectodermal and immunological features of SIOD. Finally, we determined if Smarcal1(del/del) mice had hypersensitivity to irinotecan (CPT-11), etoposide, and hydroxyurea (HU) and whether exposure to these agents induced features of SIOD. Among 71 SIOD patients, three had non-Hodgkin lymphoma (NHL) and one had osteosarcoma. We did not find evidence of defective NER or NHEJ; however, Smarcal1-deficient mice were hypersensitive to several genotoxic agents. Also, CPT-11, etoposide, and HU caused decreased growth and loss of growth plate chondrocytes. These data, which identify an increased prevalence of NHL in SIOD and confirm hypersensitivity to DNA damaging agents in vivo, provide guidance for the management of SIOD patients.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. ACTA ACUST UNITED AC 2012; 196:513-27. [PMID: 22351928 PMCID: PMC3283987 DOI: 10.1083/jcb.201107133] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Differences in expression level of the effector caspases Drice and Dcp-1 and in their intrinsic abilities to induce apoptosis and to control the rate of cell death underlie the differential sensitivities of cells to apoptosis. Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
42
|
Baradaran-Heravi A, Cho KS, Tolhuis B, Sanyal M, Morozova O, Morimoto M, Elizondo LI, Bridgewater D, Lubieniecka J, Beirnes K, Myung C, Leung D, Fam HK, Choi K, Huang Y, Dionis KY, Zonana J, Keller K, Stenzel P, Mayfield C, Lücke T, Bokenkamp A, Marra MA, van Lohuizen M, Lewis DB, Shaw C, Boerkoel CF. Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression. Hum Mol Genet 2012; 21:2572-87. [PMID: 22378147 DOI: 10.1093/hmg/dds083] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Wei HM, Lv WW, Wang DL, Sun FL. E2 ligase dRad6 regulates DMP53 turnover in Drosophila. J Biol Chem 2011; 286:9020-30. [PMID: 21205821 PMCID: PMC3058994 DOI: 10.1074/jbc.m110.190314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/27/2010] [Indexed: 11/06/2022] Open
Abstract
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Collapse
Affiliation(s)
- Su Chen
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Hui-Min Wei
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Wen-Wen Lv
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Da-Liang Wang
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Fang-Lin Sun
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J Neurosci 2010; 30:14446-57. [PMID: 20980602 DOI: 10.1523/jneurosci.1021-10.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the mammalian CNS, glial cells expressing excitatory amino acid transporters (EAATs) tightly regulate extracellular glutamate levels to control neurotransmission and protect neurons from excitotoxic damage. Dysregulated EAAT expression is associated with several CNS pathologies in humans, yet mechanisms of EAAT regulation and the importance of glutamate transport for CNS development and function in vivo remain incompletely understood. Drosophila is an advanced genetic model with only a single high-affinity glutamate transporter termed Eaat1. We found that Eaat1 expression in CNS glia is regulated by the glycosyltransferase Fringe, which promotes neuron-to-glia signaling through the Delta-Notch ligand-receptor pair during embryogenesis. We made Eaat1 loss-of-function mutations and found that homozygous larvae could not perform the rhythmic peristaltic contractions required for crawling. We found no evidence for excitotoxic cell death or overt defects in the development of neurons and glia, and the crawling defect could be induced by postembryonic inactivation of Eaat1. Eaat1 fully rescued locomotor activity when expressed in only a limited subpopulation of glial cells situated near potential glutamatergic synapses within the CNS neuropil. Eaat1 mutants had deficits in the frequency, amplitude, and kinetics of synaptic currents in motor neurons whose rhythmic patterns of activity may be regulated by glutamatergic neurotransmission among premotor interneurons; similar results were seen with pharmacological manipulations of glutamate transport. Our findings indicate that Eaat1 expression is promoted by Fringe-mediated neuron-glial communication during development and suggest that Eaat1 plays an essential role in regulating CNS neural circuits that control locomotion in Drosophila.
Collapse
|
45
|
Wong L, Weadick CJ, Kuo C, Chang BSW, Tropepe V. Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:100. [PMID: 20860823 PMCID: PMC2954992 DOI: 10.1186/1471-213x-10-100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/22/2010] [Indexed: 01/03/2023]
Abstract
Background The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. Results Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. Conclusion Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis.
Collapse
Affiliation(s)
- Loksum Wong
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
46
|
Kracklauer MP, Wiora HM, Deery WJ, Chen X, Bolival B, Romanowicz D, Simonette RA, Fuller MT, Fischer JA, Beckingham KM. The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. J Cell Sci 2010; 123:2763-72. [PMID: 20647369 DOI: 10.1242/jcs.066589] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintaining the proximity of centrosomes to nuclei is important in several cellular contexts, and LINC complexes formed by SUN and KASH proteins are crucial in this process. Here, we characterize the presumed Drosophila ortholog of the mammalian SUN protein, sperm-associated antigen 4 (Spag4, previously named Giacomo), and demonstrate that Spag4 is required for centriole and nuclear attachment during spermatogenesis. Production of spag4 mRNA is limited to the testis, and Spag4 protein shows a dynamic pattern of association with the germline nuclei, including a concentration of protein at the site of attachment of the single spermatid centriole. In the absence of Spag4, nuclei and centrioles or basal bodies (BBs) dissociate from each other after meiosis. This role of Spag4 in centriolar attachment does not involve either of the two KASH proteins of the Drosophila genome (Klarsicht and MSP-300), but does require the coiled-coil protein Yuri Gagarin. Yuri shows an identical pattern of localization at the nuclear surface to Spag4 during spermatogenesis, and epistasis studies show that the activities of Yuri and dynein-dynactin are downstream of spag4 in this centriole attachment pathway. The later defects in spermatogenesis seen for yuri and spag4 mutants are similar, suggesting they could be secondary to initial disruption of events at the nuclear surface.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Institute for Cell and Molecular Biology and Section of Cell and Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 2009; 17:534-9. [PMID: 19960024 PMCID: PMC2822068 DOI: 10.1038/cdd.2009.185] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cleaved-Caspase-3 antibody is a popular tool in apoptosis research in Drosophila. As the antibody was raised against cleaved human Caspase-3, it was assumed that it detects cleaved DRICE and DCP-1, Caspase-3-like effector caspases in Drosophila. However, as shown here, strong immunoreactivity persists in apoptotic models doubly mutant for drICE and dcp-1. In contrast, mutants of the apoptosome components DRONC (Caspase-9-like) and ARK (Apaf-1 related) do not label with the cleaved-Caspase-3 antibody. By peptide blocking experiments and further genetic studies, we provide evidence that the cleaved-Caspase-3 antibody recognizes multiple proteins including DCP-1 and likely DRICE, but also at least one additional unknown protein, all of which require DRONC for epitope exposure. The unknown substrate may be involved in non-apoptotic functions of DRONC. Because the cleaved-Caspase-3 antibody not only detects cleaved Caspase-3-like proteins in Drosophila, but also other proteins in a DRONC-dependent manner, it is more accurate to consider the cleaved-Caspase-3 antibody as a marker for DRONC activity, rather than effector caspase activity.
Collapse
|
48
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
49
|
Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16:1093-107. [PMID: 19373242 DOI: 10.1038/cdd.2009.44] [Citation(s) in RCA: 510] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
Collapse
|
50
|
Denton D, Mills K, Kumar S. Chapter 2 Methods and Protocols for Studying Cell Death in Drosophila. Methods Enzymol 2008; 446:17-37. [DOI: 10.1016/s0076-6879(08)01602-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|