1
|
Marrone L, Di Giacomo V, Malasomma C, Vecchione MA, Hausch F, Cacace M, D'Esposito L, Tufano M, D'Arrigo P, Romano MF, Romano S. Exploring the potential of selective FKBP51 inhibitors on melanoma: an investigation of their in vitro and in vivo effects. Cell Death Discov 2025; 11:138. [PMID: 40180895 PMCID: PMC11969000 DOI: 10.1038/s41420-025-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
FKBP51 is a marker of melanocyte malignancy, correlating with vertical growth phase and lesion thickness. It promotes the typical features of epithelial to mesenchymal transition and sustains apoptosis resistance. The present study aimed to assess in vitro and in vivo the efficacy against melanoma of selective small molecules targeting FKBP51, called SAFits. Our findings reveal differing outcomes for SAFits in vitro compared to in vivo. SAFit increased the doxorubicin and dacarbazine cytotoxicity of cultured melanoma cells and was effective in impairing NF-κB activity and related pro-survival genes. Moreover, SAFit affected TGF-β-signaling and reduced the capability of melanoma cells to migrate through transwell filters and invade the matrigel. Unexpectedly, SAFit was ineffective in reducing tumor growth in a syngeneic melanoma mouse model. A study of the tumor microenvironment revealed an enrichment of M2 macrophages in SAFit-treated mice. Western blot assay showed reduced levels of perforin in protein extracted from SAFit-treated tumor samples. Ex-vivo experiments showed that M1 and M2 macrophages exerted an opposite effect on the cytotoxic capacity of CD8 T cells, supporting the hypothesis that enrichment in M2 macrophages induced by SAFit could accelerate the exhaustion of CD8 lymphocytes. In conclusion, our study shows that selective FKBP51 targeting agents hinder the intrinsic pro-survival pathways of melanoma cells but simultaneously exacerbate immune suppression within the tumor microenvironment, and, therefore, they have not proven to be effective in vivo to counteract melanoma growth.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | | | - Felix Hausch
- Technical University Darmstadt Institute of Organic Chemistry and Biochemistry, Darmstadt, Germany
| | | | - Lucia D'Esposito
- Centro Servizi Veterinari, Federico II University, Naples, Italy
| | - Martina Tufano
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Lei KF, Bai KC, Pai PC. Study of cell migration trajectory on two-dimensional continuous stiffness gradient surface edited by grayscale photopolymerization. Talanta 2025; 281:126899. [PMID: 39298803 DOI: 10.1016/j.talanta.2024.126899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
In native tissues, cells encounter a diverse range of stiffness, which can significantly affect their behavior and function. The ability of cells to sense and respond to these mechanical cues is essential for various physiological processes, including cell migration. Cell migration is a complex process influenced by multiple factors, with substrate stiffness emerging as a critical determinant. This study developed a technique to edit the stiffness of polyacrylamide (PAA) hydrogel substrates by adjusting the grayscale level of a photomask during photopolymerization. By analyzing cell morphologies on the hydrogel, we confirmed the development of a single PAA hydrogel substrate with continuous stiffness gradients. This method was used to explore the correlation between substrate stiffness and cell migration dynamics. The study found that cells typically migrated from softer to stiffer surfaces. When the cells initially located on stiffer surfaces, they were able to travel longer distances. Additionally, a continuous 2D stiffness gradient surface was fabricated to explore how cells migrate on smoother versus steeper stiffness gradients. The results showed that cells tended to migrate more readily on smoother stiffness gradient surfaces compared to steeper ones. This study provides valuable insights into cell migration dynamics on substrates with varying stiffness gradients. The results underscore the importance of the mechanical environment in cancer cell migration and offer promising directions for developing interventions to prevent cancer spread.
Collapse
Affiliation(s)
- Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| | - Kuo-Cheng Bai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| |
Collapse
|
3
|
Ren X, Zhang F, Gao G, Gao D, Su P. Biophysical and Morphological Cell Features Retrieved by Digital Holographic Microscopy Correlate with Drug-Induced Changes in Cell Migration Behavior. Anal Chem 2024; 96:20526-20534. [PMID: 39513947 DOI: 10.1021/acs.analchem.4c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Quantitative analysis of cancer cell migration is critical for developing effective therapies to curb cancer metastasis. However, traditional methods are time-consuming and labor-intensive and lack quantitative capabilities. Cell volume change, a key physiological indicator of cell migration, is directly linked to phase change. In this work, we have developed a model that connects phase features from digital holographic microscopy (DHM) with cell healrate values from the wound healing assay. This approach aims to provide a rapid and quantitative evaluation of the breast cancer cell migration capability. Using DHM, six phase features of 231 cells treated with varying drug concentrations were extracted. It was observed that the rate of change of these phase features, termed characteristic parameters, showed a high linear correlation with cell healrate values from wound healing assays. Based on these linear correlations, a composite coefficient was derived by linearly combining the characteristic parameters of the six phase features. This composite coefficient was then linearly correlated with the cell healrate values to create a correlation model. This model establishes a strong connection between DHM-extracted morphological/biophysical features and cell migration metrics from a complementary assay. It provides a new, rapid, and quantitative method for assessing cancer cell migration in vitro and delivering valuable insights for cancer research.
Collapse
Affiliation(s)
- Xiaoxi Ren
- The State Key Laboratory of Chemical Oncogenomics and Open FIESTA, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, P. R. China
| | - Feiyang Zhang
- Chongqing Normal University, University Town Campus, 401331 Chongqing, P. R. China
| | - Ge Gao
- The State Key Laboratory of Chemical Oncogenomics and Open FIESTA, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, P. R. China
| | - Dan Gao
- The State Key Laboratory of Chemical Oncogenomics and Open FIESTA, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, P. R. China
| | - Ping Su
- The State Key Laboratory of Chemical Oncogenomics and Open FIESTA, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, P. R. China
| |
Collapse
|
4
|
Santacroce L, Bottalico L, Charitos IA, Castellaneta F, Gaxhja E, Topi S, Palmirotta R, Jirillo E. Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota. Antioxidants (Basel) 2024; 13:796. [PMID: 39061865 PMCID: PMC11273986 DOI: 10.3390/antiox13070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
5
|
Khalil HH, El-Sheshtawy MM, Khattab SN, Abu-Serie MM, Shehat MG, Teleb M, Haiba NS. Chemosensitization of non-small cell lung cancer to sorafenib via non-hydroxamate s-triazinedione-based MMP-9/10 inhibitors. Bioorg Chem 2024; 144:107155. [PMID: 38306827 DOI: 10.1016/j.bioorg.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) continues to be a leading cause of cancer death. Its fatality is associated with angiogenesis and metastasis. While VEGFR inhibitors are expected to be the central pillar for halting lung cancer, several clinical reports declared their subpar activities as monotherapy. These results directed combination studies of VEGFR inhibitors, especially sorafenib (Nexavar®), with various chemotherapeutic agents. Matrix metalloproteinase (MMP) inhibitors are seldom utilized in such combinations despite the expected complementary therapeutic outcome. This could be attributed to the clinical unsuitability of MMP inhibitors from the hydroxamate family. Herein, we report new non-hydroxamate s-triazinedione-based inhibitors of MMP-9 (6b; IC50 = 0.112 μM), and MMP-10 (6e; IC50 = 0.076 μM) surpassing the hydroxamate inhibitor NNGH for chemosensitization of NSCLC to sorafenib. MMPs inhibition profiling of the hits revealed MMP-9 over -2 and MMP-10 over -13 selectivity. 6b and 6e were potent (IC50 = 0.139 and 0.136 µM), safe (SI up to 6.77) and superior to sorafenib (IC50 = 0.506 µM, SI = 6.27) against A549 cells. When combined with sorafenib, the studied MMP inhibitors enhanced its cytotoxic efficacy up to 26 folds as confirmed by CI and DRI values for 6b (CI = 0.160 and DRI = 22.175) and 6e (CI = 0.096 and DRI = 29.060). 6b and 6e exerted anti-invasive activities in A549 cells as single agents (22.66 and 39.67 %) and in sorafenib combinations (29.96 and 91.83 %) compared to untreated control. Both compounds downregulated VEGF in A549 cells by approximately 70 % when combined with sorafenib, highlighting enhanced anti-angiogenic activities. Collectively, combinations of 6b and 6e with sorafenib demonstrated synergistic NSCLC cytotoxicity with pronounced anti-invasive and anti-angiogenic activities introducing a promising start point for preclinical studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed M El-Sheshtawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
6
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
7
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
8
|
Abstract
Angiogenesis is the formation of new blood vessels from the existing vasculature. It is a fundamental process in developmental biology but also a pathological event that initiates or aggravates many diseases. In this complex multistep process, endothelial cells are activated by angiogenic stimuli; undergo specialization in response to VEGF/Notch signaling; degrade the basement membrane of the parent vessel; sprout, migrate, and proliferate to form capillary tubes that branch; and ultimately anastomose with adjacent vessels. Here we describe an assay that mimics the invasion step in vitro. Human microvascular endothelial cells are confronted by a VEGF-enriched basement membrane material in a three-dimensional environment that promotes endothelial cell sprouting, tube formation, and anastomosis. After a few hours, endothelial cells have become tip cells, and vascular sprouts can be observed by phase contrast, fluorescence, or time-lapse microscopy. Sprouting endothelial cells express tip cell markers, display podosomes and filopodia, and exhibit cell dynamics similar to those of angiogenic endothelial cells in vivo. This model provides a system that can be manipulated genetically to study physiological or pathological angiogenesis and that can be used to screen compounds for pro-/anti-angiogenic properties. In this chapter, we describe the key steps in setting up this assay.
Collapse
|
9
|
Huang CH, Lei KF. Cell marathon: long-distance cell migration and metastasis-associated gene analysis using a folding paper system. LAB ON A CHIP 2022; 22:3827-3836. [PMID: 36093980 DOI: 10.1039/d2lc00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A high mortality rate was found in cancer patients with distant metastasis. Development of targeted drugs for effectively inhibiting cancer metastasis is the key for increasing therapeutic success. In the current study, a folding paper system was developed to mimic a tumor-vascular interface for the study of long-distance cell migration. Correlation between the cell migration distance and metastasis-associated gene was successfully analyzed by disassembling the stacked paper construct. The result revealed that the migration distance and number of migrated cells were highly correlated to cell characteristics. Moreover, immunocytochemistry was directly conducted on the paper layer to study the signaling pathway. Kelch-like and protein tyrosine phosphatase families were examined and the PTPN13 gene was shown to regulate long-distance cell migration. By analyzing the phosphorylated mTOR, the PTPN13 gene was further confirmed to be a tumor suppressor gene that inhibits long-distance cell migration. The folding paper system provides an alternative approach for long-distance cell migration. Metastasis-associated gene expression can be analyzed to potentially develop targeted drugs for cancer metastasis inhibition.
Collapse
Affiliation(s)
- Chia-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333 Taiwan.
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333 Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
10
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
11
|
Zhu G, Wang L, Meng W, Lu S, Cao B, Liang X, He C, Hao Y, Du X, Wang X, Li L, Li L. LOXL2-enriched small extracellular vesicles mediate hypoxia-induced premetastatic niche and indicates poor outcome of head and neck cancer. Theranostics 2021; 11:9198-9216. [PMID: 34646366 PMCID: PMC8490529 DOI: 10.7150/thno.62455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Small extracellular vesicles (sEVs) operate as a signaling platform due to their ability to carry functional molecular cargos. However, the role of sEVs in hypoxic tumor microenvironment-mediated premetastatic niche formation remains poorly understood. Methods: Protein expression profile of sEVs derived from normoxic and hypoxic head and neck squamous cell carcinoma (HNSCC) cells were determined by Isobaric Tagging Technology for Relative Quantitation. In vitro invasion assay and in vivo colonization were performed to evaluate the role of sEV-delivering proteins. Results: We identified lysyl oxidase like 2 (LOXL2) which had the highest fold increase in hypoxic sEVs compared with normoxic sEVs. Hypoxic cell-derived sEVs delivered high amounts of LOXL2 to non-hypoxic HNSCC cells to elicit epithelial-to-mesenchymal transition (EMT) and induce the invasion of the recipient cancer cells. Moreover, LOXL2-enriched sEVs were incorporated by distant fibroblasts and activate FAK/Src signaling in recipient fibroblasts. Increased production of fibronectin mediated by FAK/Src signaling recruited myeloid-derived suppressor cells to form a premetastatic niche. Serum sEV LOXL2 can reflect a hypoxic and aggressive tumor type and can serve as an alternative to tissue LOXL2 as an independent prognostic factor of overall survival for patients with HNSCC. Conclusion: sEVs derived from the hypoxic tumor microenvironment of HNSCC can drive local invasion of non-hypoxic HNSCC cells and stimulate premetastatic niche formation by delivering LOXL2 to non-hypoxic HNSCC cells and fibroblasts to induce EMT and fibronectin production, respectively.
Collapse
Affiliation(s)
- Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Wanrong Meng
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xinhua Liang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Chuanshi He
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Yaying Hao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xueyu Du
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Longjiang Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041
| |
Collapse
|
12
|
Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 2021; 163:105876. [PMID: 33989755 DOI: 10.1016/j.ejps.2021.105876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Successful preclinical drug testing relies in part on data generated using in vitro cell culture models that recapitulate the structure and function of tumours and other tissues in vivo. The growing evidence that 3D cell models can more accurately predict the efficacy of drug responses compared to traditionally utilised 2D cell culture systems has led to continuous scientific and technological advances that enable better physiologically representative in vitro modelling of in vivo tissues. This review will provide an overview of the utility of current 3D cell models from a drug screening perspective and explore the future of 3D cell models for drug discovery applications.
Collapse
Affiliation(s)
- Lisa Belfiore
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia.
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andrew M K Law
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Lyndon J Raftery
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Angie D Tjandra
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Christine Yee
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alberto Piloni
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Cameron J Ferris
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| |
Collapse
|
13
|
Zolghadr F, Tse N, Loka D, Joun G, Meppat S, Wan V, Zoellner H, Xaymardan M, Farah CS, Lyons JG, Hau E, Patrick E, Seyedasli N. A Wnt-mediated phenotype switch along the epithelial-mesenchymal axis defines resistance and invasion downstream of ionising radiation in oral squamous cell carcinoma. Br J Cancer 2021; 124:1921-1933. [PMID: 33785878 DOI: 10.1038/s41416-021-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dynamic transitions of tumour cells along the epithelial-mesenchymal axis are important in tumorigenesis, metastasis and therapy resistance. METHODS In this study, we have used cell lines, 3D spheroids and tumour samples in a variety of cell biological and transcriptome analyses to highlight the cellular and molecular dynamics of OSCC response to ionising radiation. RESULTS Our study demonstrates a prominent hybrid epithelial-mesenchymal state in oral squamous cell carcinoma cells and tumour samples. We have further identified a key role for levels of E-cadherin in stratifying the hybrid cells to compartments with varying levels of radiation response and radiation-induced epithelial-mesenchymal transition. The response to radiation further entailed the generation of a new cell population with low expression levels of E-cadherin, and positive for Vimentin (ECADLow/Neg-VIMPos), a phenotypic signature that showed an enhanced capacity for radiation resistance and invasion. At the molecular level, transcriptome analysis of spheroids in response to radiation showed an initial burst of misregulation within the first 30 min that further declined, although still highlighting key alterations in gene signatures. Among others, pathway analysis showed an over-representation for the Wnt signalling pathway that was further confirmed to be functionally involved in the generation of ECADLow/Neg-VIMPos population, acting upstream of radiation resistance and tumour cell invasion. CONCLUSION This study highlights the functional significance and complexity of tumour cell remodelling in response to ionising radiation with links to resistance and invasive capacity. An area of less focus in conventional radiotherapy, with the potential to improve treatment outcomes and relapse-free survival.
Collapse
Affiliation(s)
- Fatemeh Zolghadr
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Nigel Tse
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Dikasya Loka
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - George Joun
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Sreelakshmi Meppat
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Victor Wan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Hans Zoellner
- Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Munira Xaymardan
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research and Education, Nedlands, WA, Australia.,Maxillofacial, Oral and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Sydney Medical School and Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Eric Hau
- Sydney West Radiation Oncology Network, Westmead, NSW, Australia.,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Naisana Seyedasli
- Discipline of Oral Biosciences, School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW, Australia. .,The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
| |
Collapse
|
14
|
Zhang GL, Gutter-Kapon L, Ilan N, Batool T, Singh K, Digre A, Luo Z, Sandler S, Shaked Y, Sanderson RD, Wang XM, Li JP, Vlodavsky I. Significance of host heparanase in promoting tumor growth and metastasis. Matrix Biol 2020; 93:25-42. [PMID: 32534153 PMCID: PMC7704762 DOI: 10.1016/j.matbio.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth and metastasis. We have utilized mice over-expressing (Hpa-tg) heparanase to reveal the role of host heparanase in tumor initiation, growth and metastasis. While in wild type mice tumor development in response to DMBA carcinogenesis was restricted to the mammary gland, Hpa-tg mice developed tumors also in their lungs and liver, associating with reduced survival of the tumor-bearing mice. Consistently, xenograft tumors (lymphoma, melanoma, lung carcinoma, pancreatic carcinoma) transplanted in Hpa-tg mice exhibited accelerated tumor growth and shorter survival of the tumor-bearing mice compared with wild type mice. Hpa-tg mice were also more prone to the development of metastases following intravenous or subcutaneous injection of tumor cells. In some models, the growth advantage was associated with infiltration of heparanase-high host cells into the tumors. However, in other models, heparanase-high host cells were not detected in the primary tumor, implying that the growth advantage in Hpa-tg mice is due to systemic factors. Indeed, we found that plasma from Hpa-tg mice enhanced tumor cell migration and invasion attributed to increased levels of pro-tumorigenic factors (i.e., RANKL, SPARC, MIP-2) in the plasma of Hpa-Tg vs. wild type mice. Furthermore, tumor aggressiveness and short survival time were demonstrated in wild type mice transplanted with bone marrow derived from Hpa-tg but not wild type mice. These results were attributed, among other factors, to upregulation of pro-tumorigenic (i.e., IL35+) and downregulation of anti-tumorigenic (i.e., IFN-γ+) T-cell subpopulations in the spleen, lymph nodes and blood of Hpa-tg vs. wild type mice and their increased infiltration into the primary tumor. Collectively, our results emphasize the significance of host heparanase in mediating the pro-tumorigenic and pro-metastatic interactions between the tumor cells and the host tumor microenvironment, immune cells and systemic factors.
Collapse
Affiliation(s)
- Gan-Lin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Lilach Gutter-Kapon
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Tahira Batool
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Kailash Singh
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Andreas Digre
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden
| | - Zhengkang Luo
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Stellan Sandler
- Department of Cell Biology, University of Uppsala, Uppsala, Sweden
| | - Yuval Shaked
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao-Min Wang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jin-Ping Li
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, P. O. Box 9649, Technion, Haifa 31096, Israel.
| |
Collapse
|
15
|
Menon M, Budhwar R, Shukla RN, Bankar K, Vasudevan M, Ranga U. The Signature Amino Acid Residue Serine 31 of HIV-1C Tat Potentiates an Activated Phenotype in Endothelial Cells. Front Immunol 2020; 11:529614. [PMID: 33101270 PMCID: PMC7546421 DOI: 10.3389/fimmu.2020.529614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
The natural cysteine to serine variation at position 31 of Tat in HIV-1C disrupts the dicysteine motif attenuating the chemokine function of Tat. We ask if there exists a trade-off in terms of a gain of function for HIV-1C Tat due to this natural variation. We constructed two Tat-expression vectors encoding Tat proteins discordant for the serine 31 residue (CS-Tat vs. CC-Tat), expressed the proteins in Jurkat cells under doxycycline control, and performed the whole transcriptome analysis to compare the early events of Tat-induced host gene expression. Our analysis delineated a significant enrichment of pathways and gene ontologies associated with the angiogenic signaling events in CS-Tat stable cells. Subsequently, we validated and compared angiogenic signaling events induced by CS- vs. CC-Tat using human umbilical vein endothelial cells (HUVEC) and the human cerebral microvascular endothelial cell line (hCMEC/D3). CS-Tat significantly enhanced the production of CCL2 from HUVEC and induced an activated phenotype in endothelial cells conferring on them enhanced migration, invasion, and in vitro morphogenesis potential. The ability of CS-Tat to induce the activated phenotype in endothelial cells could be of significance, especially in the context of HIV-associated cardiovascular and neuronal disorders. The findings from the present study are likely to help appreciate the functional significance of the SAR (signature amino acid residues) influencing the unique biological properties.
Collapse
Affiliation(s)
- Malini Menon
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | | | | | | | | | - Udaykumar Ranga
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
16
|
Huang CH, Lei KF. Impedimetric quantification of migration speed of cancer cells migrating along a Matrigel-filled microchannel. Anal Chim Acta 2020; 1121:67-73. [DOI: 10.1016/j.aca.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
17
|
Abbas Y, Turco MY, Burton GJ, Moffett A. Investigation of human trophoblast invasion in vitro. Hum Reprod Update 2020; 26:501-513. [PMID: 32441309 PMCID: PMC7473396 DOI: 10.1093/humupd/dmaa017] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In humans, inadequate trophoblast invasion into the decidua is associated with the 'great obstetrical syndromes' which include pre-eclampsia, foetal growth restriction (FGR) and stillbirth. The mechanisms regulating invasion remain poorly understood, although interactions with the uterine environment are clearly of central importance. Extravillous trophoblast (EVT) cells invade the uterus and transform the spiral arteries. Progress in understanding how they invade has been limited due to the lack of good in vitro models. Firstly, there are no non-malignant cell lines that have an EVT phenotype. Secondly, the invasion assays used are of limited use for the small numbers of primary EVT available from first-trimester placentas. We discuss recent progress in this field with the generation of new EVT lines and invasion assays using microfluidic technology. OBJECTIVE AND RATIONALE Our aim is to describe the established models used to study human trophoblast invasion in vivo and in vitro. The difficulties of obtaining primary cells and cell lines that recapitulate the phenotype of EVT are discussed together with the advantages and pitfalls of the different invasion assays. We compare these traditional end point assays to microfluidic assays where the dynamics of migration can be measured. SEARCH METHODS Relevant studies were identified by PubMed search, last updated on February 2020. A search was conducted to determine the number of journal articles published using the cell lines JEG-3, BeWo, JAR, HTR-8/Svneo, Swan-71 and primary human extravillous trophoblast in the last 5 years. OUTCOMES Deep trophoblast invasion into the maternal decidua is a particular feature of human pregnancy. This invasion needs to be finely regulated to allocate resources between mother and baby. A reliable source of EVT is needed to study in vitro how the uterine environment regulates this process. First, we critically discuss the issues with the trophoblast cell lines currently used; for example, most of them lack expression of the defining marker of EVT, HLA-G. Recently, advances in human stem cell and organoid technology have been applied to extraembryonic tissues to develop trophoblast cell lines that can grow in two (2D) and three dimensions (3D) and differentiate to EVT. This means that the 'trophoblast' cell lines currently in use should rapidly become obsolete. Second, we critically discuss the problems with assays to study trophoblast invasion. These lack physiological relevance and have simplified migration dynamics. Microfluidic assays are a powerful tool to study cell invasion because they require only a few cells, which are embedded in 3D in an extracellular matrix. Their major advantage is real-time monitoring of cell movement, enabling detailed analysis of the dynamics of trophoblast migration. WIDER IMPLICATIONS Trophoblast invasion in the first trimester of pregnancy remains poorly understood despite the importance of this process in the pathogenesis of pre-eclampsia, FGR, stillbirth and recurrent miscarriage. The new technologies described here will allow investigation into this critical process.
Collapse
Affiliation(s)
- Yassen Abbas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
18
|
Merkher Y, Horesh Y, Abramov Z, Shleifer G, Ben-Ishay O, Kluger Y, Weihs D. Rapid Cancer Diagnosis and Early Prognosis of Metastatic Risk Based on Mechanical Invasiveness of Sampled Cells. Ann Biomed Eng 2020; 48:2846-2858. [DOI: 10.1007/s10439-020-02547-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022]
|
19
|
Almeida AA, Lima GDA, Simão MVRC, Moreira GA, Siqueira RP, Zanatta AC, Vilegas W, Machado‐Neves M, Bressan GC, Leite JPV. Screening of plants from the Brazilian Atlantic Forest led to the identification of Athenaea velutina (Solanaceae) as a novel source of antimetastatic agents. Int J Exp Pathol 2020; 101:106-121. [PMID: 32452573 PMCID: PMC7370850 DOI: 10.1111/iep.12351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/22/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Plant biodiversity is a source of potential natural products for the treatment of many diseases. One of the ways of discovering new drugs is through the cytotoxic screening of extract libraries. The present study evaluated 196 extracts prepared by maceration of Brazilian Atlantic Forest trees with organic solvents and distilled water for cytotoxic and antimetastatic activity. The MTT assay was used to screen the extract activity in MCF-7, HepG2 and B16F10 cancer cells. The highest cytotoxic extract had antimetastatic activity, as determined in in vitro assays and melanoma murine model. The organic extract of the leaves of Athenaea velutina (EAv) significantly inhibited migration, adhesion, invasion and cell colony formation in B16F10 cells. The phenolic compounds and flavonoids in EAv were identified for the first time, using flow injection with electrospray negative ionization-ion trap tandem mass spectrometry analysis (FIA-ESI-IT-MSn ). EAv markedly suppressed the development of pulmonary melanomas following the intravenous injection of melanoma cells to C57BL/6 mice. Stereological analysis of the spleen cross-sections showed enlargement of the red pulp area after EAv treatment, which indicated the activation of the haematopoietic system. The treatment of melanoma-bearing mice with EAv did not result in liver damage. In conclusion, these findings suggest that A velutina is a source of natural products with potent antimetastatic activity.
Collapse
Affiliation(s)
- Alisson A. Almeida
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaMinas GeraisBrazil
| | - Graziela D. A. Lima
- Departamento de Biologia GeralUniversidade Federal de ViçosaMinas GeraisBrazil
| | | | - Gabriela A. Moreira
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaMinas GeraisBrazil
| | - Raoni P. Siqueira
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaMinas GeraisBrazil
| | | | | | | | - Gustavo C. Bressan
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaMinas GeraisBrazil
| | - João P. V. Leite
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaMinas GeraisBrazil
| |
Collapse
|
20
|
Rajan SAP, Skardal A, Hall AR. Multi-Domain Photopatterned 3D Tumor Constructs in a Micro-Physiological System for Analysis, Quantification, and Isolation of Infiltrating Cells. ADVANCED BIOSYSTEMS 2020; 4:e1900273. [PMID: 32293164 PMCID: PMC7323471 DOI: 10.1002/adbi.201900273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer cell motility plays a central role in metastasis and tumor invasion but can be difficult to study accurately in vitro. A simple approach to address this challenge through the production of monolithic, photopatterned 3D tumor constructs in situ in a microfluidic device is described here. Through step-wise fabrication of adjoining hydrogel regions with and without incorporated cells, multidomain structures with defined boundaries are produced. By imaging cells over time, cellular activity with arbitrary control over medium conditions, including drug concentration and flow rate, is studied. First, malignant human colon carcinoma cells (HCT116) are studied for 10 days, comparing invasion dynamics and viability of cells in normal media to those exposed to two independent chemotherapeutic drugs: anti-proliferative 5-fluorouracil and anti-migratory Marimastat. Cytotoxicity is measured and significant differences are observed in cellular dynamics (migrating cell count, distance traveled, and rate) that correlate with the mechanism of each drug. Then, the platform is applied to the selective isolation of infiltrated cells through the photopatterning and subsequent dissolution of cleavable hydrogel domains. As a demonstration, the preferential collection of highly migratory cells (HCT116) over a comparable cell line with low malignancy and migratory potential (Caco-2) is shown.
Collapse
Affiliation(s)
- Shiny A P Rajan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
| | - Aleksander Skardal
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Biomedical Engineering, The Ohio State University and The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
21
|
Ros E, Encina M, González F, Contreras R, Luz-Crawford P, Khoury M, Acevedo JP. Single cell migration profiling on a microenvironmentally tunable hydrogel microstructure device that enables stem cell potency evaluation. LAB ON A CHIP 2020; 20:958-972. [PMID: 31990283 DOI: 10.1039/c9lc00988d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell migration is a key function in a myriad of physiological events and disease conditions. Efficient, quick and descriptive profiling of migration behaviour in response to different treatments or conditions is highly desirable in a series of applications, ranging from fundamental studies of the migration mechanism to drug discovery and cell therapy. This investigation applied the use of methacrylamide gelatin (GelMA) to microfabricate migration lanes based on GelMA hydrogel with encapsulated migration stimuli and structural stability under culture medium conditions, providing the possibility of tailoring the microenvironment during cell-based assays. The actual device provides 3D topography, cell localization and a few step protocol, allowing the quick evaluation and quantification of individual migrated distances of a cell sample by an ImageJ plugin for automated microscopy processing. The detailed profiling of migration behaviour given by the new device has demonstrated a broader assay sensitivity compared to other migration assays and higher versatility to study cell migration in different settings of applications. In this study, parametric information extracted from the migration profiling was successfully used to develop predictive models of immunosuppressive cell function that could be applied as a potency test for mesenchymal stem cells.
Collapse
Affiliation(s)
- Enrique Ros
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Matías Encina
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fabián González
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Rafael Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | - Juan Pablo Acevedo
- Cells for Cells, Santiago, Chile and Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile and Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
22
|
A Targeted Quantitative Proteomic Method Revealed a Substantial Reprogramming of Kinome during Melanoma Metastasis. Sci Rep 2020; 10:2485. [PMID: 32051510 PMCID: PMC7015909 DOI: 10.1038/s41598-020-59572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Kinases are involved in numerous critical cell signaling processes, and dysregulation in kinase signaling is implicated in many types of human cancers. In this study, we applied a parallel-reaction monitoring (PRM)-based targeted proteomic method to assess kinome reprogramming during melanoma metastasis in three pairs of matched primary/metastatic human melanoma cell lines. Around 300 kinases were detected in each pair of cell lines, and the results showed that Janus kinase 3 (JAK3) was with reduced expression in the metastatic lines of all three pairs of melanoma cells. Interrogation of The Cancer Genome Atlas (TCGA) data showed that reduced expression of JAK3 is correlated with poorer prognosis in melanoma patients. Additionally, metastatic human melanoma cells/tissues exhibited diminished levels of JAK3 mRNA relative to primary melanoma cells/tissues. Moreover, JAK3 suppresses the migration and invasion of cultured melanoma cells by modulating the activities of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). In summary, our targeted kinome profiling method provided by far the most comprehensive dataset for kinome reprogramming associated with melanoma progression, which builds a solid foundation for examining the functions of other kinases in melanoma metastasis. Moreover, our results reveal a role of JAK3 as a potential suppressor for melanoma metastasis.
Collapse
|
23
|
Liu H, Lu T, Kremers GJ, Seynhaeve ALB, Ten Hagen TLM. A microcarrier-based spheroid 3D invasion assay to monitor dynamic cell movement in extracellular matrix. Biol Proced Online 2020; 22:3. [PMID: 32021568 PMCID: PMC6995242 DOI: 10.1186/s12575-019-0114-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cell invasion through extracellular matrix (ECM) is a critical step in tumor metastasis. To study cell invasion in vitro, the internal microenvironment can be simulated via the application of 3D models. Results This study presents a method for 3D invasion examination using microcarrier-based spheroids. Cell invasiveness can be evaluated by quantifying cell dispersion in matrices or tracking cell movement through time-lapse imaging. It allows measuring of cell invasion and monitoring of dynamic cell behavior in three dimensions. Here we show different invasive capacities of several cell types using this method. The content and concentration of matrices can influence cell invasion, which should be optimized before large scale experiments. We also introduce further analysis methods of this 3D invasion assay, including manual measurements and homemade semi-automatic quantification. Finally, our results indicate that the position of spheroids in a matrix has a strong impact on cell moving paths, which may be easily overlooked by researchers and may generate false invasion results. Conclusions In all, the microcarrier-based spheroids 3D model allows exploration of adherent cell invasion in a fast and highly reproducible way, and provides informative results on dynamic cell behavior in vitro.
Collapse
Affiliation(s)
- Hui Liu
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tao Lu
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- 2Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann L B Seynhaeve
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Zhu S, Liu Z, Yuan C, Lin Y, Yang Y, Wang H, Zhang C, Wang P, Gu M. Bidirectional ephrinB2‑EphB4 signaling regulates the osteogenic differentiation of canine periodontal ligament stem cells. Int J Mol Med 2020; 45:897-909. [PMID: 31985015 PMCID: PMC7015143 DOI: 10.3892/ijmm.2020.4473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to evaluate the effect of ephrinB2 gene-transfected canine periodontal ligament stem cells (cPDLSCs) on the regulation of osteogenic differentiation. cPDLSCs were transfected with a transgenic null-control green fluorescent protein (GFP) vector (termed Vector-cPDLSCs) or with NFNB2 GFP-Blasticidin (termed EfnB2-cPDLSCs). Subsequently, the osteogenic differentiation of Vector-cPDLSCs and EfnB2-cPDLSCs was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), alkaline phosphatase (ALP) assay and Alizarin Red S staining. The migratory abilities of cPDLSCs, Vector-cPDLSCs and EfnB2-cPDLSCs were also assessed. Following osteogenic induction of Vector-cPDLSCs and EfnB2-cPDLSCs, the protein expression levels of collagen I, Runt-related transcription factor 2, osteocalcin, ephrin type-B receptor 4 (EphB4), phospho-EphB4, ephrinB2 and phosphoephrinB2 were analyzed by western blot assays. Following gene transfection, the RT-qPCR and western blotting results revealed that the mRNA and protein expression levels of ephrinB2, respectively, were significantly increased in EfnB2-cPDLSCs compared with that in Vector-cPDLSCs (P<0.05). ALP and Alizarin Red S staining assays revealed increased ALP activity and mineralization nodules, respectively, in EfnB2-cPDLSCs. Cell proliferation and migration assays revealed that EfnB2-cPDLSCs exhibited enhanced proliferation and migration compared with Vector-cPDLSCs (P<0.05). In conclusion, the findings of the current study indicated that ephrinB2 gene-modified cPDLSCs exhibited enhanced osteogenic differentiation, with the ephrinB2 reverse signaling and EphB4 forward signaling pathways serving a key role in this process. Furthermore, ephrinB2 gene modification was observed to promote the migration and proliferation of cPDLSCs.
Collapse
Affiliation(s)
- Shaoyue Zhu
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Zongxiang Liu
- Discipline of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Changyong Yuan
- Discipline of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yifan Lin
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Yanqi Yang
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Haiming Wang
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Chengfei Zhang
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Penglai Wang
- Dental Implant Center, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Min Gu
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| |
Collapse
|
25
|
Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A, Noonan DM. Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:464. [PMID: 31718684 PMCID: PMC6852951 DOI: 10.1186/s13046-019-1461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023]
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy
| | - Antonino Bruno
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Caterina Cascini
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Matteo Gallazzi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy. .,Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
26
|
Almeida N, Carrara G, Palmeira CM, Fernandes AS, Parsons M, Smith GL, Saraiva N. Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H 2O 2-Dependent Mechanism. Redox Biol 2019; 28:101361. [PMID: 31693977 PMCID: PMC6838802 DOI: 10.1016/j.redox.2019.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms by which the Golgi apparatus (GA) impacts on cell invasion are poorly understood. The human Golgi Anti-Apoptotic Protein (hGAAP, also known as TMBIM4) is a highly conserved Golgi cation channel that modulates intracellular Ca2+ fluxes. Human GAAP is expressed in all human tissues, is essential for cell viability and provides resistance against a range of apoptotic stresses. Furthermore, hGAAP enhances adhesion and cell migration by increasing the turnover of focal adhesions due to activation of store-operated Ca2+ entry. Here, we describe a GA-derived mechanism that controls cell invasion. The overexpression of hGAAP stimulates 3-dimensional proteolytic cell invasion by a mechanism that is dependent on the accumulation of intracellular hydrogen peroxide, which might be produced by the hGAAP-dependent stimulation of mitochondrial respiration. These findings provide new insight into the complex mechanisms by which Ca2+ and reactive oxygen species signaling contribute to cell invasion and to the role of the GA in these processes.
Collapse
Affiliation(s)
- Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal.
| |
Collapse
|
27
|
Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP 5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8100490. [PMID: 31627290 PMCID: PMC6826590 DOI: 10.3390/antiox8100490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
Clear-cell renal carcinoma (ccRCC) is the most common type of renal cancer. The importance of oxidative stress in the context of this disease has been described, although there is only little information concerning the role of superoxide dismutase (SOD) enzymes. The importance of SOD in different pathological conditions promoted the development of SOD mimics (SODm). As such, manganese(III) porphyrins can mimic the natural SOD enzymes and scavenge different reactive oxygen species (ROS), thus modulating the cellular redox status. In this study, the exposure of 786-O human renal cancer cells to MnTnHex-2-PyP5+ (MnP), a very promising SODm, led to a concentration and time-dependent decrease in cell viability and in the cell proliferation indices, as well as to an increase in apoptosis. No relevant effects in terms of micronuclei formation were observed. Moreover, the exposure to MnP resulted in a concentration-dependent increase in intracellular ROS, presumably due to the generation of H2O2 by the inherent redox mechanisms of MnP, along with the limited ability of cancer cells to detoxify this species. Although the MnP treatment did not result in a reduction in the collective cell migration, a significant decrease in chemotactic migration was observed. Overall, these results suggest that MnP has a beneficial impact on reducing renal cancer cell viability and migration and warrant further studies regarding SODm-based therapeutic strategies against human renal cancer.
Collapse
Affiliation(s)
- João G Costa
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno Saraiva
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana S Fernandes
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| |
Collapse
|
28
|
Sadeghi A, Behdani M, Muyldermans S, Habibi-Anbouhi M, Kazemi-Lomedasht F. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal 2019; 12:92-100. [PMID: 31476257 DOI: 10.1002/dta.2693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis within solid cancers. Thus, targeting VEGF might be part of a feasible therapy for treating pathological neovascularization, and nanobodies - derived from heavy chain-only antibodies occurring within Camelidae - are a novel class of nanometer-sized antibodies possessing unique properties that could be developed into a promising therapeutic. However, nanobodies have a very short half-life in vivo due to their small size. Development of a bivalent nanobody is one way to remediate the half-life problem of nanobodies. Two identical anti-VEGF nanobodies were connected using the hinge region of llama IgG2c. The recombinant plasmid (pHEN6c-bivalent nanobody) was transformed into E.coli WK6 cells and expression of the bivalent nanobody construct was induced with 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). Recombinant bivalent nanobody was purified using nickel affinity chromatography and its activity on human endothelial cells was assessed using 3-(4,5-Dimethylthiazol-2-yr)-2,5-diphenyltetrazolium bromide (MTT), tube formation, and cell migration assays. The pharmacokinetic study was performed after intravenous (i.v.) injection of recombinant bivalent nanobody into six-week-old C57BL/6 mice. Recombinant bivalent nanobody performed significantly better than monovalent nanobody in inhibiting proliferation, tube formation, and migration of human endothelial cells. Pharmacokinetic results showed a 1.8-fold longer half-life of bivalent nanobody in comparison with the monovalent nanobody. These results underscore the potential of recombinant anti-VEGF bivalent nanobody as a promising tool for development of a novel therapeutic with an extended plasma half-life for VEGF-related diseases.
Collapse
Affiliation(s)
- Amir Sadeghi
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Mollica H, Palomba R, Primavera R, Decuzzi P. Two-Channel Compartmentalized Microfluidic Chip for Real-Time Monitoring of the Metastatic Cascade. ACS Biomater Sci Eng 2019; 5:4834-4843. [DOI: 10.1021/acsbiomaterials.9b00697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hilaria Mollica
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
- DIBRIS, University of Genova, Via Opera Pia 13, Genoa 16145, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| | - Rosita Primavera
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
30
|
Miao W, Yuan J, Li L, Wang Y. Parallel-Reaction-Monitoring-Based Proteome-Wide Profiling of Differential Kinase Protein Expression during Prostate Cancer Metastasis in Vitro. Anal Chem 2019; 91:9893-9900. [PMID: 31241916 DOI: 10.1021/acs.analchem.9b01561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prostate cancer is the most common type of cancer in men, and kinases are heavily pursued as drug targets for anticancer therapy. In this study, we applied our recently reported parallel-reaction-monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the human kinome associated with bone metastasis of prostate cancer in vitro. The method displayed superior sensitivity over the shotgun-proteomic approach, and it facilitated the quantification of the relative expression of 276 kinase proteins in a pair of bone metastatic prostate cancer cells. Among the differentially expressed kinases, mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) stimulates the migration and invasion of cultured prostate cancer cells, partially by modulating the activity of secreted matrix metalloproteinases 9 (MMP-9). We also found that the upregulation of MAP4K4 in metastatic prostate cancer cells is driven by the MYC proto-oncogene. Cumulatively, we identify MAP4K4 as a potential promoter for prostate cancer metastasis in vitro.
Collapse
|
31
|
MacKeil JL, Brzezinska P, Burke-Kleinman J, Theilmann AL, Nicol CJB, Ormiston ML, Maurice DH. Phosphodiesterase 3B (PDE3B) antagonizes the anti-angiogenic actions of PKA in human and murine endothelial cells. Cell Signal 2019; 62:109342. [PMID: 31176020 DOI: 10.1016/j.cellsig.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Recent reports show that protein kinase A (PKA), but not exchange protein activated by cAMP (EPAC), acts in a cell autonomous manner to constitutively reduce the angiogenic sprouting capacity of murine and human endothelial cells. Specificity in the cellular actions of individual cAMP-effectors can be achieved when a cyclic nucleotide phosphodiesterase (PDE) enzyme acts locally to control the "pool" of cAMP that activates the cAMP-effector. Here, we examined whether PDEs coordinate the actions of PKA during endothelial cell sprouting. Inhibiting each of the cAMP-hydrolyzing PDEs expressed in human endothelial cells revealed that phosphodiesterase 3 (PDE3) inhibition with cilostamide reduced angiogenic sprouting in vitro, while inhibitors of PDE2 and PDE4 family enzymes had no such effect. Identifying a critical role for PDE3B in the anti-angiogenic effects of cilostamide, silencing this PDE3 variant, but not PDE3A, markedly impaired sprouting. Importantly, using both in vitro and ex vivo models of angiogenesis, we show the hypo-sprouting phenotype induced by PDE3 inhibition or PDE3B silencing was reversed by PKA inhibition. Examination of the individual cellular events required for sprouting revealed that PDE3B and PKA each regulated angiogenic sprouting by controlling the invasive capacity of endothelial cells, more specifically, by regulating podosome rosette biogenesis and matrix degradation. In support of the idea that PDE3B acts to inhibit angiogenic sprouting by limiting PKA-mediated reductions in active cdc42, the effects of PDE3B and/or PKA on angiogenic sprouting were negated in cells with reduced cdc42 expression or activity. Since PDE3B and PKA were co-localized in a perinuclear region in human ECs, could be co-immunoprecipitated from lysates of these cells, and silencing PDE3B activated the perinuclear pool of PKA in these cells, we conclude that PDE3B-mediated hydrolysis of cAMP acts to limit the anti-angiogenic potential of PKA in ECs.
Collapse
Affiliation(s)
- Jodi L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Anne L Theilmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Christopher J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mark L Ormiston
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
32
|
Song Y, Zhang L, Liu X, Niu M, Cui J, Che S, Liu Y, An X, Cao B. Analyses of circRNA profiling during the development from pre-receptive to receptive phases in the goat endometrium. J Anim Sci Biotechnol 2019; 10:34. [PMID: 31049198 PMCID: PMC6482587 DOI: 10.1186/s40104-019-0339-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have revealed that noncoding RNAs play important regulatory roles in the formation of endometrial receptivity. Circular RNAs (circRNAs) are a universally expressed noncoding RNA species that have been recently proposed to act as miRNA sponges that directly regulate expression of target genes or parental genes. RESULTS We used Illumina Solexa technology to analyze the expression profiles of circRNAs in the endometrium from three goats at gestational day 5 (pre-receptive endometrium, PE) and three goats at gestational day 15 (receptive endometrium, RE). Overall, 21,813 circRNAs were identified, of which 5,925 circRNAs were specific to the RE and 9,078 were specific to the PE, which suggested high stage-specificity. Further analysis found 334 differentially expressed circRNAs in the RE compared with PE (P < 0.05). The analysis of the circRNA-miRNA interaction network further supported the idea that circRNAs act as miRNA sponges to regulate gene expression. Moreover, some circRNAs were regulated by estrogen (E2)/progesterone (P4) in endometrial epithelium cell lines (EECs) and endometrial stromal cell line (ESCs), and each circRNA molecule exhibited unique regulation characteristics with respect to E2 and P4. CONCLUSIONS These data provide an endometrium circRNA expression atlas corresponding to the biology of the goat receptive endometrium during embryo implantation.
Collapse
Affiliation(s)
- Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Mengxiao Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| |
Collapse
|
33
|
Miao W, Wang Y. Targeted Quantitative Kinome Analysis Identifies PRPS2 as a Promoter for Colorectal Cancer Metastasis. J Proteome Res 2019; 18:2279-2286. [PMID: 30908912 DOI: 10.1021/acs.jproteome.9b00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinases are among the most important families of enzymes involved in cell signaling. In this study, we employed a recently developed parallel-reaction monitoring (PRM)-based targeted proteomic method to examine the reprogramming of the human kinome during colorectal cancer (CRC) metastasis. We were able to quantify the relative expression of 299 kinase proteins in a pair of matched primary/metastatic CRC cell lines. We also found that, among the differentially expressed kinases, phosphoribosyl pyrophosphate synthetase 2 (PRPS2) promotes the migration and invasion of cultured CRC cells through regulating the activity of matrix metalloproteinase 9 (MMP-9) and the expression of E-cadherin. Moreover, we found that the up-regulation of PRPS2 in metastatic CRC cells could be induced by the MYC proto-oncogene. Together, our unbiased kinome profiling approach led to the identification, for the first time, of PRPS2 as a promoter for CRC metastasis.
Collapse
Affiliation(s)
- Weili Miao
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| | - Yinsheng Wang
- Department of Chemistry , University of California , Riverside , California 92521-0403 , United States
| |
Collapse
|
34
|
Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L, Frigeri A, Vescovi AL, Svelto M, Nicchia GP. AQP4 Aggregation State Is a Determinant for Glioma Cell Fate. Cancer Res 2019; 79:2182-2194. [PMID: 30877104 DOI: 10.1158/0008-5472.can-18-2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
The glial water channel protein aquaporin-4 (AQP4) forms heterotetramers in the plasma membrane made of the M23-AQP4 and M1-AQP4 isoforms. The isoform ratio controls AQP4 aggregation into supramolecular structures called orthogonal arrays of particles (AQP4-OAP). The role of AQP4 aggregation into OAP in malignant gliomas is still unclear. In this study, we demonstrate that AQP4 aggregation/disaggregation into OAP influences the biology of glioma cells. Selective expression of the OAP-forming isoform M23-AQP4 (AQP4-OAP) triggered cell shape changes in glioma cells associated with alterations to the F-actin cytoskeleton that affected apoptosis. By contrast, expression of M1-AQP4 (AQP4-tetramers), which is unable to aggregate into OAP, ameliorated glioma cell invasiveness, improved cell migration, and increased methalloproteinase-9 activity. Two prolines (254 and 296) at the C-terminus tail were shown to be important in mediating the relationship between the actin cytoskeleton and AQP4-OAP and AQP4-tetramers. In conclusion, this study demonstrates that AQP4 aggregation state might be an important determinant in orienting glioma cells to persist or perish. AQP4 disaggregation may potentiate invasiveness potential, whereas AQP4 aggregation may activate the apoptotic path. This study shows a new perspective on the role of AQP4 in brain tumors not necessarily associated with edema formation but with AQP4 aggregation/disaggregation dynamics and their link with the actin cytoskeleton. SIGNIFICANCE: This study demonstrates how AQP4 aggregation influences plasma membrane dynamics to alter cell proliferation, invasiveness, migration, and apoptotic potential in glioma cells.
Collapse
Affiliation(s)
- Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Maria G Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| | - Angelo L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia P Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy. .,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| |
Collapse
|
35
|
Meng XL, Chen CL, Liu YY, Su SJ, Gou JM, Huan FN, Wang D, Liu HS, Ben SB, Lu J. Selenoprotein SELENOK Enhances the Migration and Phagocytosis of Microglial Cells by Increasing the Cytosolic Free Ca 2+ Level Resulted from the Up-Regulation of IP 3R. Neuroscience 2019; 406:38-49. [PMID: 30849448 DOI: 10.1016/j.neuroscience.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Enhancing the migration and phagocytosis of microglial cells is of great significance for the reducing of the risk of the neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The effect of mouse selenoprotein K (mSELENOK) on the migration and phagocytosis of BV2 microglial cells and its mechanism were studied. The results showed that the over-expression of mSELENOK can increase the migratory and phagocytic abilities of the microglial cells, while the knockdown of mSELENOK can decrease the migratory and phagocytic abilities of the cells. The cytosolic free Ca2+ level and inositol trisphosphate receptor (IP3R) mRNA transcript and protein expression were also increased significantly as the consequence of the over-expression of mSELENOK in the microglial cells. On the contrary, the level of cytosolic free Ca2+ and the mRNA transcript and protein expression of IP3R in mSELENOK knockdown cells were decreased significantly. 2-aminoethoxydiphenyl borate (2-APB), an antagonist of IP3R, could prevent the increased migration, phagocytosis, and cytosolic free Ca2+ level of mSELENOK over-expressed microglial cells, and knockdown of IP3R3 could reduce the increased cytosolic Ca2+ level in mSELENOK over-expressed microglial cells. Further studies revealed that selenium supplement (Na2SeO3) can increase the expression of mSELENOK in microglial cells significantly. In summary, these data suggest that mSELENOK can increase cytosolic free Ca2+ level of microglial cells by up-regulating the expression of IP3R, thus enhancing the migration and phagocytosis of microglial cells. Our results indicated that mSELENOK is an important selenoprotein, which plays a role in trace element selenium's functions and can enhance the migration and phagocytosis of microglial cells.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| | - Ying-Ying Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Shu-Jie Su
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Feng-Ning Huan
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, China
| | - Song-Bin Ben
- School of Life Science, Liaoning University, Shenyang, China
| | - Jing Lu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| |
Collapse
|
36
|
MacKeil JL, Brzezinska P, Burke-Kleinman J, Craig AW, Nicol CJB, Maurice DH. A PKA/cdc42 Signaling Axis Restricts Angiogenic Sprouting by Regulating Podosome Rosette Biogenesis and Matrix Remodeling. Sci Rep 2019; 9:2385. [PMID: 30787359 PMCID: PMC6382826 DOI: 10.1038/s41598-018-37805-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Angiogenic sprouting can contribute adaptively, or mal-adaptively, to a myriad of conditions including ischemic heart disease and cancer. While the cellular and molecular systems that regulate tip versus stalk endothelial cell (EC) specification during angiogenesis are known, those systems that regulate their distinct actions remain poorly understood. Pre-clinical and clinical findings support sustained adrenergic signaling in promoting angiogenesis, but links between adrenergic signaling and angiogenesis are lacking; importantly, adrenergic agents alter the activation status of the cAMP signaling system. Here, we show that the cAMP effector, PKA, acts in a cell autonomous fashion to constitutively reduce the in vitro and ex vivo angiogenic sprouting capacity of ECs. At a cellular level, we observed that silencing or inhibiting PKA in human ECs increased their invasive capacity, their generation of podosome rosettes and, consequently, their ability to degrade a collagen matrix. While inhibition of either Src-family kinases or of cdc42 reduced these events in control ECs, only cdc42 inhibition, or silencing, significantly impacted them in PKA(Cα)-silenced ECs. Consistent with these findings, cell-based measurements of cdc42 activity revealed that PKA activation inhibits EC cdc42 activity, at least in part, by promoting its interaction with the inhibitory regulator, guanine nucleotide dissociation inhibitor-α (RhoGDIα).
Collapse
Affiliation(s)
- J L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - P Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - J Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - A W Craig
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - C J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - D H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. .,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
37
|
Baci D, Gallazzi M, Cascini C, Tramacere M, De Stefano D, Bruno A, Noonan DM, Albini A. Downregulation of Pro-Inflammatory and Pro-Angiogenic Pathways in Prostate Cancer Cells by a Polyphenol-Rich Extract from Olive Mill Wastewater. Int J Mol Sci 2019; 20:ijms20020307. [PMID: 30646518 PMCID: PMC6359159 DOI: 10.3390/ijms20020307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Dietary phytochemicals are particularly attractive for chemoprevention and are able to modulate several signal transduction pathways linked with cancer. Olive oil, a major component of the Mediterranean diet, is an abundant source of phenolic compounds. Olive oil production is associated with the generation of a waste material, termed 'olive mill wastewater' (OMWW) that have been reported to contain water-soluble polyphenols. Prostate cancer (PCa) is considered as an ideal cancer type for chemopreventive approaches, due to its wide incidence but relatively long latency period and progression time. Here, we investigated activities associated with potential preventive properties of a polyphenol-rich olive mill wastewater extract, OMWW (A009), on three in vitro models of PCa. A009 was able to inhibit PCa cell proliferation, adhesion, migration, and invasion. Molecularly, we found that A009 targeted NF-κB and reduced pro-angiogenic growth factor, VEGF, CXCL8, and CXCL12 production. IL-6/STAT3 axis was also regulated by the extract. A009 shows promising properties, and purified hydroxytyrosol (HyT), the major polyphenol component of A009, was also active but not always as effective as A009. Finally, our results support the idea of repositioning a food waste-derived material for nutraceutical employment, with environmental and industrial cost management benefits.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Matteo Gallazzi
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Caterina Cascini
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Matilde Tramacere
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | | | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
- Department of Biotechnology and Life Sciences, Laboratory of Immunology and General Pathology, University of Insubria, 21100 Varese, Italy.
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milano, Italy.
| |
Collapse
|
38
|
Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron 2019; 124-125:150-160. [DOI: 10.1016/j.bios.2018.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
|
39
|
Boiy R, Steenbrugge J, Van Deun J, Hendrix A, Meyer E, De Wever O. Transparent reporting of experimental parameters in assays measuring phenotypic steps in metastasis. Clin Exp Metastasis 2018; 35:715-725. [PMID: 30370460 DOI: 10.1007/s10585-018-9944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.
Collapse
Affiliation(s)
- Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
40
|
Flórido A, Saraiva N, Cerqueira S, Almeida N, Parsons M, Batinic-Haberle I, Miranda JP, Costa JG, Carrara G, Castro M, Oliveira NG, Fernandes AS. The manganese(III) porphyrin MnTnHex-2-PyP 5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol 2018; 20:367-378. [PMID: 30408752 PMCID: PMC6222139 DOI: 10.1016/j.redox.2018.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Manganese(III) porphyrins (MnPs) are superoxide dismutase (SOD) mimics with demonstrated beneficial effects in cancer treatment in combination with chemo- and radiotherapy regimens. Despite the ongoing clinical trials, little is known about the effect of MnPs on metastasis, being therefore essential to understand how MnPs affect this process. In the present work, the impact of the MnP MnTnHex-2-PyP5+ in metastasis-related processes was assessed in breast cancer cells (MCF-7 and MDA-MB-231), alone or in combination with doxorubicin (dox). The co-treatment of cells with non-cytotoxic concentrations of MnP and dox altered intracellular ROS, increasing H2O2. While MnP alone did not modify cell migration, the co-exposure led to a reduction in collective cell migration and chemotaxis. In addition, the MnP reduced the dox-induced increase in random migration of MDA-MB-231 cells. Treatment with either MnP or dox decreased the proteolytic invasion of MDA-MB-231 cells, although the effect was more pronounced upon co-exposure with both compounds. Moreover, to explore the cellular mechanisms underlying the observed effects, cell adhesion, spreading, focal adhesions, and NF-κB activation were also studied. Although differential effects were observed according to the endpoints analysed, overall, the alterations induced by MnP in dox-treated cells were consistent with a therapeutically favorable outcome. MnPs are SOD mimics with potential therapeutic applications in cancer. The impact of an MnP on breast cancer metastasis-related processes was assessed. Treatment with MnP+dox decreased collective cell migration, chemotaxis and invasion. MnP also reduced the dox-induced increase in random migration of MDA-MB-231 cells. Combination of MnP with dox revealed therapeutically favorable effects.
Collapse
Affiliation(s)
- Ana Flórido
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Sara Cerqueira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal.
| |
Collapse
|
41
|
Birnbaum MD, Zhao N, Moorthy BT, Patel DM, Kryvenko ON, Heidman L, Kumar A, Morgan WM, Ban Y, Reis IM, Chen X, Gonzalgo ML, Jorda M, Burnstein KL, Zhang F. Reduced Arginyltransferase 1 is a driver and a potential prognostic indicator of prostate cancer metastasis. Oncogene 2018; 38:838-851. [PMID: 30177837 PMCID: PMC6368462 DOI: 10.1038/s41388-018-0462-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Most prostate cancer cases remain indolent for long periods of time, but metastatic progression quickly worsens the prognosis and leads to mortality. However, little is known about what promotes the metastasis of prostate cancer and there is a lack of effective prognostic indicators, making it immensely difficult to manage options for treatment or surveillance. Arginyltransferase 1 (Ate1) is the enzyme mediating post-translational protein arginylation, which has recently been identified as a master regulator affecting many cancer-relevant pathways including stress response, cell cycle checkpoints, and cell migration/adhesion. However, the precise role of Ate1 in cancer remains unknown. In this study, we found the occurrence of metastasis of prostate cancer is inversely correlated with the levels of Ate1 protein and mRNA in the primary tumor. We also found that metastatic prostate cancer cell lines have a reduced level of Ate1 protein compared to non-metastatic cell lines, and that a depletion of Ate1 drives prostate cancer cells towards more aggressive pro-metastatic phenotypes without affecting proliferation rates. Furthermore, we demonstrated that a reduction of Ate1 can result from chronic stress, and that shRNA-reduced Ate1 increases cellular resistance to stress, and drives spontaneous and stress-induced genomic mutations. Finally, by using a prostate orthotropic xenograft mouse model, we found that a reduction of Ate1 was sufficient to enhance the metastatic phenotypes of prostate cancer cell line PC-3 in vivo. Our study revealed a novel role of Ate1 in suppressing prostate cancer metastasis, which has a profound significance for establishing metastatic indicators for prostate cancer, and for finding potential treatments to prevent its metastasis.
Collapse
Affiliation(s)
- Michael D Birnbaum
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ning Zhao
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Balaji T Moorthy
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Devang M Patel
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Oleksandr N Kryvenko
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laine Heidman
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Akhilesh Kumar
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - William M Morgan
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isildinha M Reis
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark L Gonzalgo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merce Jorda
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
42
|
Guerrini G, Criscuoli M, Filippi I, Naldini A, Carraro F. Inhibition of smoothened in breast cancer cells reduces CAXII expression and cell migration. J Cell Physiol 2018; 233:9799-9811. [PMID: 30132883 DOI: 10.1002/jcp.26947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) relapse and metastasis are the leading cause of death and, together with drug resistance, keep mortality still high. The Hedgehog (Hh) pathway is expressed during embryogenesis, organogenesis and in adult tissue homeostasis and its aberrant activation is often associated with cancer. Carbonic anhydrase (CA) enzymes are important during development; they play a key role in controlling several cellular mechanisms, such as pH regulation, survival, and migration, and they are aberrantly expressed in cancer. The goal of this study was to investigate the interplay between the Hh pathway and CAXII in terms of BC cell migration. We here demonstrated that smoothened (SMO) silencing resulted in a reduction of CAXII expression at mRNA and protein level. This led to a decrease in cell migration, which was restored when cells were treated with an SMO agonist, Sag dihydrochloride (SAG), but not when cells were cotreated with SAG and the CAs inhibitor Acetazolamide. This suggested that the ability of SAG to promote cell migration was impaired when CAXII was inhibited. The reduction was also confirmed within hypoxic and inflammatory microenvironment, typical of BC, indicating a key role of the Hh pathway in controlling CAXII expression. Our results may contribute to further understand the physiology of BC cells and indicate that the Hh pathway controls BC cell migration and cell invasion also through CAXII, with important implications in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Giuditta Guerrini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Mattia Criscuoli
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Irene Filippi
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy
| | - Fabio Carraro
- Department of Molecular and Developmental Medicine, Cellular and Molecular Physiology Unit, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| |
Collapse
|
43
|
Amawi H, Hussein NA, Ashby CR, Alnafisah R, Sanglard LM, Manivannan E, Karthikeyan C, Trivedi P, Eisenmann KM, Robey RW, Tiwari AK. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis. Front Pharmacol 2018; 9:520. [PMID: 29875662 PMCID: PMC5974752 DOI: 10.3389/fphar.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a−15k) and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j) significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21) to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, β-catenin, c-Myc) and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, United States
| | - Rawan Alnafisah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Leticia M Sanglard
- Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | | | | | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Robert W Robey
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
44
|
Bruno A, Bassani B, D'Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 2018; 32:5365-5377. [PMID: 29763380 DOI: 10.1096/fj.201701103r] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cells are effector lymphocytes involved in tumor immunosurveillance; however, in patients with solid malignancies, NK cells have compromised functions. We have previously reported that lung tumor-associated NK cells (TANKs; peripheral blood) and tumor-infiltrating NK cells (TINKs) show proangiogenic, decidual NK-like (dNK) phenotype. In this study, we functionally and molecularly investigated TINKs and TANKs from blood and tissue samples of patients with colorectal cancer (CRC), a neoplasm in which inflammation and angiogenesis have clinical relevance, and compared them to NK cells from controls and patients with nononcologic inflammatory bowel disease. CRC TINKs/TANKs showed decreased expression for the activatory marker NKG2D, impaired degranulation activity, a decidual-like NK polarization toward the CD56brightCD16dim/-CD9+CD49+ subset. TINKs and TANKs secreted cytokines with proangiogenic activities, and induce endothelial cell proliferation, migration, adhesion, and the formation of capillary-like structures in vitro. dNK cells release specific proangiogenic factors; among which, angiogenin and invasion-associated enzymes related to the MMP9-TIMP1/2 axis. Here, we describe, for the first time, to our knowledge, the expression of angiogenin, MMP2/9, and TIMP by TANKs in patients with CRC. This phenotype could be relevant to the invasive capabilities and proangiogenic functions of CRC-NK cells and become a novel biomarker. STAT3/STAT5 activation was observed in CRC-TANKs, and treatment with pimozide, a STAT5 inhibitor, reduced endothelial cell capability to form capillary-like networks, inhibiting VEGF and angiogenin production without affecting the levels of TIMP1, TIMP2, and MMP9, indicating that STAT5 is involved in cytokine modulation but not invasion-associated molecules. Combination of Stat5 or MMP inhibitors with immunotherapy could help repolarize CRC TINKs and TANKs to anti-tumor antimetastatic ones.-Bruno, A., Bassani, B., D'Urso, D. G., Pitaku, I., Cassinotti, E., Pelosi, G., Boni, L., Dominioni, L., Noonan, D. M., Mortara, L., Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer.
Collapse
Affiliation(s)
- Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Barbara Bassani
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Davide Giuseppe D'Urso
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ilvana Pitaku
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elisa Cassinotti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Boni
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda, Polyclinic Hospital, Milan, Italy
| | - Lorenzo Dominioni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Adriana Albini
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| |
Collapse
|
45
|
Antognelli C, Cecchetti R, Riuzzi F, Peirce MJ, Talesa VN. Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via EMT control. J Cell Mol Med 2018; 22:2865-2883. [PMID: 29504694 PMCID: PMC5908125 DOI: 10.1111/jcmm.13581] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/23/2018] [Indexed: 01/07/2023] Open
Abstract
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (AP) are AGEs originating from MG-mediated post-translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR-101, MG-H1-AP and TGF-β1/Smad signalling. Moreover, circulating levels of Glo1, miR-101, MG-H1-AP and TGF-β1 in patients with metastatic compared with non-metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR-101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Rodolfo Cecchetti
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Francesca Riuzzi
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Matthew J. Peirce
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | | |
Collapse
|
46
|
Baci D, Bruno A, Bassani B, Tramacere M, Mortara L, Albini A, Noonan DM. Acetyl-l-carnitine is an anti-angiogenic agent targeting the VEGFR2 and CXCR4 pathways. Cancer Lett 2018; 429:100-116. [PMID: 29678548 DOI: 10.1016/j.canlet.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Carnitines play an important role in the energy exchange in cells, and are involved in the transport of fatty acids across the inner mitochondrial membrane. l-Acetylcarnitine (ALCAR) is an acetic acid ester of carnitine that has higher bioavailability and is considered a fat-burning energizer supplement. We previously found that in serum samples from prostate cancer (PCa) patients, 3 carnitine family members were significantly decreased, suggesting a potential protective role of carnitine against PCa. Several studies support beneficial effects of carnitines on cancer, no study has investigated the activities of carnitine on tumor angiogenesis. We examined whether ALCAR acts as an "angiopreventive" compound and studied the molecular mechanisms involved. We found that ALCAR was able to limit inflammatory angiogenesis by reducing stimulated endothelial cell and macrophage infiltration in vitro and in vivo. Molecularly, we show that ALCAR downregulates VEGF, VEGFR2, CXCL12, CXCR4 and FAK pathways. ALCAR blocked the activation of NF-κB and ICAM-1 and reduced the adhesion of a monocyte cell line to endothelial cells. This is the first study showing that ALCAR has anti-angiogenic and anti-inflammatory properties and might be an attractive candidate for cancer angioprevention.
Collapse
Affiliation(s)
- Denisa Baci
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Barbara Bassani
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Matilde Tramacere
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy; Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
47
|
Cavo M, Caria M, Pulsoni I, Beltrame F, Fato M, Scaglione S. A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed "in vivo". Sci Rep 2018; 8:5333. [PMID: 29593247 PMCID: PMC5871779 DOI: 10.1038/s41598-018-23250-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/01/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose of this study was the development of a 3D material to be used as substrate for breast cancer cell culture. We developed composite gels constituted by different concentrations of Alginate (A) and Matrigel (M) to obtain a structurally stable-in-time and biologically active substrate. Human aggressive breast cancer cells (i.e. MDA-MB-231) were cultured within the gels. Known the link between cell morphology and malignancy, cells were morphologically characterized and their invasiveness correlated through an innovative bioreactor-based invasion assay. A particular type of gel (i.e. 50% Alginate, 50% Matrigel) emerged thanks to a series of significant results: 1. cells exhibited peculiar cytoskeleton shapes and nuclear fragmentation characteristic of their malignancy; 2. cells expressed the formation of the so-called invadopodia, actin-based protrusion of the plasma membrane through which cells anchor to the extracellular matrix; 3. cells were able to migrate through the gels and attach to an engineered membrane mimicking the vascular walls hosted within bioreactor, providing a completely new 3D in vitro model of the very precursor steps of metastasis.
Collapse
Affiliation(s)
- Marta Cavo
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy.,React4life S.r.l, Genoa, 16100, Italy
| | - Marco Caria
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Ilaria Pulsoni
- Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Francesco Beltrame
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Marco Fato
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.,Department of Biophysical and Electronic Engineering (DIBRIS), University of Genoa, Genoa, 16145, Italy
| | - Silvia Scaglione
- National Research Council (CNR) - IEIIT Institute, Genoa, 16149, Italy.
| |
Collapse
|
48
|
Gallo C, Dallaglio K, Bassani B, Rossi T, Rossello A, Noonan DM, D'Uva G, Bruno A, Albini A. Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 2018; 7:59917-59931. [PMID: 27494895 PMCID: PMC5312358 DOI: 10.18632/oncotarget.10990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMKβ, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer.
Collapse
Affiliation(s)
- Cristina Gallo
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Katiuscia Dallaglio
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Barbara Bassani
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Teresa Rossi
- IRCCS "Istituto in Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | | | - Douglas M Noonan
- Department of Biotechnologies and Life Sciencies, University of Insubria, Varese, Italy
| | - Gabriele D'Uva
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
49
|
Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, Hipolito J, Zhang M, Santos S, Hillier C, de Faria RL, Liu Y, Lin F. M kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron 2018; 99:259-267. [PMID: 28772229 PMCID: PMC5585005 DOI: 10.1016/j.bios.2017.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yaoshuo Sang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community areas, Winnipeg, MB, Canada
| | | | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
50
|
van de Merbel AF, van der Horst G, Buijs JT, van der Pluijm G. Protocols for Migration and Invasion Studies in Prostate Cancer. Methods Mol Biol 2018; 1786:67-79. [PMID: 29786787 DOI: 10.1007/978-1-4939-7845-8_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.
Collapse
Affiliation(s)
| | | | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|