1
|
Vuong N, Alomia M, Byne A, Gade P, Philipson TR, Alhammad RI, Skislak CJ, Alruwaili I, Alsaab FM, Zhou W, Howard M, Brothers A, Still AH, Araujo RP, Van Hoek M, Birkaya B, Espina V, Hoefer RA, Liotta L, Luchini A. Lactobacillus rhamnosus-derived extracellular vesicles influence calcium deposition in a model of breast cancer intraductal calcium stress. iScience 2025; 28:112538. [PMID: 40491474 PMCID: PMC12148604 DOI: 10.1016/j.isci.2025.112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 06/11/2025] Open
Abstract
Extracellular calcium export by the breast ductal epithelium is crucial during lactation and plays a significant role in breast cancer progression. Intraductal calcium deposition is a hallmark of aggressive premalignant lesions. This study tested the hypothesis that microbiome-derived extracellular vesicles (EVs) influence calcium modulation in premalignant breast cancer lesions. Based on the analysis of plasma, serum, saliva, and tissue collected from breast cancer patients and controls (N = 150), Lactobacillus rhamnosus (Lr) was chosen as the model microbiota. In a BT-474 human breast cancer cell line monolayer culture under acute calcium stress, Lr EVs enhanced intracellular calcium intake. In a BT474 3D spheroid model under chronic calcium stress, Lr EVs increased extracellular calcium deposition and mRNA expression of calcium export channel plasma membrane calcium-transporting ATPase 2 (PMCA2) and stromal interaction molecule 1 (STIM1) in a dose-dependent manner. We propose that Lr EVs influence calcium regulation and mineral deposition, thereby affecting premalignant breast cancer progression.
Collapse
Affiliation(s)
- Ngoc Vuong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Melany Alomia
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Ahana Byne
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Purva Gade
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Thomas Raymond Philipson
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Rayan Ibrahim Alhammad
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
- Clinical Laboratory Department, College of Applied Medical Science, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia
| | - Cade J. Skislak
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Intisar Alruwaili
- School of Systems Biology, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Fahad M. Alsaab
- School of Systems Biology, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Marissa Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Andrea Brothers
- College Dean’s Office, American University, 4400 Massachusetts Avenue, Washington, DC 20016, USA
| | - Amanda Haymond Still
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Robyn P. Araujo
- The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Monique Van Hoek
- School of Systems Biology, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Barbara Birkaya
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Richard A. Hoefer
- Dorothy G. Hoefer Comprehensive Breast Center, 11803 Jefferson Avenue, Suite 130, Newport News, VA 23606, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA 20110, USA
| |
Collapse
|
2
|
Hu H, Fan Y, Wang J, Zhang J, Lyu Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025; 381:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Huang J, Zhu H, Li S, Qiu J, Yang H, Zheng F, Luo Z, Yan Q, Liu F, Yin L, Tang D, Dai Y. Proteomic Insights into IgA Nephropathy: A Comprehensive Analysis of Differentially Expressed Proteins in the Kidney. ACS OMEGA 2025; 10:17208-17220. [PMID: 40352523 PMCID: PMC12059920 DOI: 10.1021/acsomega.4c07827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
IgA nephropathy represents a significant challenge in nephrology research, and an understanding of its underlying molecular mechanisms is crucial. In this study, we conducted a comprehensive proteomic investigation of IgA nephropathy utilizing microdissection techniques combined with data-independent acquisition technology. Our analysis focused on differentially expressed proteins in the glomeruli, interstitium, and tubules of the kidney. Functional enrichment analysis revealed distinct pathway enrichment patterns, with fatty acid synthesis predominating in the glomerulus and complement and coagulation pathways predominantly enriched in the tubules. These pathway enrichments suggest potential key contributors to the pathogenesis of IgA nephropathy. Furthermore, our study identified ATP1B1 and COX4I1 in the glomerulus and SLC22A13 in the tubules as promising diagnostic markers for the disease. Meanwhile, C4A and APEX1 proteins were identified as valuable biomarkers for assessing disease progression. This research could provide valuable insights into the proteomic alterations associated with IgA nephropathy and offer potential targets for further therapeutic exploration.
Collapse
Affiliation(s)
- Jingxian Huang
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hongguo Zhu
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Comprehensive
Health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317000, China
| | - Shanshan Li
- Clinical
Medical Research Center, The Second Clinical
Medical College, Jinan University, Shenzhen People’ s Hospital, Shenzhen 518020, China
| | - Jing Qiu
- Clinical
Medical Research Center, The Second Clinical
Medical College, Jinan University, Shenzhen People’ s Hospital, Shenzhen 518020, China
| | - Hougang Yang
- Comprehensive
Health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317000, China
| | - Fengping Zheng
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department
of Organ Transplantation, The 924th Hospital
of the Chinese People’s Liberation Army Joint Logistic Support
Force, Guilin 541002, China
| | - Zhifeng Luo
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department
of Organ Transplantation, The 924th Hospital
of the Chinese People’s Liberation Army Joint Logistic Support
Force, Guilin 541002, China
| | - Qiang Yan
- Department
of Organ Transplantation, The 924th Hospital
of the Chinese People’s Liberation Army Joint Logistic Support
Force, Guilin 541002, China
| | - Fanna Liu
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lianghong Yin
- Institute
of Kidney Disease and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Donge Tang
- Clinical
Medical Research Center, The Second Clinical
Medical College, Jinan University, Shenzhen People’ s Hospital, Shenzhen 518020, China
| | - Yong Dai
- Clinical
Medical Research Center, The Second Clinical
Medical College, Jinan University, Shenzhen People’ s Hospital, Shenzhen 518020, China
- Department
of Organ Transplantation, The 924th Hospital
of the Chinese People’s Liberation Army Joint Logistic Support
Force, Guilin 541002, China
- School
of Medicine, The First Affiliated Hospital,
Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
4
|
Omiya S, Dalo J, Ueda Y, Shankavaram U, Baldelli E, Calvert V, Bylicky M, Petricoin EF, Aryankalayil MJ. The EGFR Pathway as a Potential Therapeutic Target for Modulation of Radiation-induced Liver Injury. Radiat Res 2025; 203:293-303. [PMID: 40194772 PMCID: PMC12165277 DOI: 10.1667/rade-24-00203.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Radiation exposure can result in various complications influenced by factors such as dose, the amount of tissue exposed, and the type of tissue exposed. Radiation-induced liver injury (RILI) is a concern in cancer patients receiving thoracic and upper abdominal radiation, but it can also be a risk for civilians exposed to radiation in a nuclear event. RILI can lead to organ dysfunction or death; a deeper understanding of how radiation causes damage to normal tissue could pave the way for new treatments. In our study, we focused on the effects of radiation on the two main liver cell types: liver sinusoidal endothelial cells (LSECs) and hepatocytes. We exposed these cells to different doses of radiation (2, 4 or 8 Gy) as well as a sham irradiation (0 Gy) control. Proteins were extracted at 30 min, 6 h and 24 h postirradiation and analyzed using reverse phase protein array (RPPA). We observed changes to the Hepatic fibrosis signaling pathway, IL-8 signaling, and S100 family signaling pathways across multiple doses and time points in LSECs. In hepatocytes, radiation affected different pathways; we see changes in the Th1 and Th2 signaling pathways and the IL-10 signaling pathway. These pathways are critical in mediating the immune response, with Th1 being associated with pro-inflammatory responses and Th2 with anti-inflammatory responses. Hub proteins from protein-protein interaction (PPI) networks across all time points for both LSECs and hepatocytes highlighted EGFR as a top-ranked protein, indicating the potential role in mitigating radiation damage in liver cells. Herein, we showed alterations in protein expression after RILI using RPPA at early time points (hours to days) to determine potentially targetable molecular pathways. We further highlighted potential therapeutic protein markers, including EGFR, as an example of the potential utility of RPPA in target discovery.
Collapse
Affiliation(s)
- Satoshi Omiya
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Ueda
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Michelle Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Molykutty J. Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Paul S, Saha P, Mitra A. Use of polyethylene glycol as an alternative to optimal cutting temperature medium in freeze sectioning for plant histochemical studies. PROTOPLASMA 2025; 262:721-737. [PMID: 39692865 DOI: 10.1007/s00709-024-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Plant anatomical and histochemical studies are concerned with the structural organization of tissues as well as localization of various metabolites and enzyme activity inside cells and tissues. Traditionally, rotary microtomes are used for paraffin and resin-embedded samples which provide excellent preservation of tissue morphology but removes enzymes, lipid components, and various specialized metabolites. Freeze sectioning apparently remained unexplored in plant histology because of the presence of rigid cell walls and highly vacuolated cytoplasm in plant tissues. In this study, we have described a simple cryostat-based sectioning technique using polyethylene glycol (PEG) as embedding medium after glycerol infiltration that protects the plant tissues from freezing and thawing damage. We have also compared the suitability of inexpensive aqueous PEG solution as compared to commercially available optimal cutting temperature (OCT) medium and obtained identical microscopic images. Diverse plant organs from different genera were sectioned to check the application of this method in plant anatomical studies. In all the cases, cross sections were shown to be well preserved similar to paraffin-embedded plant tissues. In addition, histochemical analyses showed retention of metabolites and even enzymes in the tissues, which can make this method an alternate choice in cryo-microtomy replacing the expensive OCT medium.
Collapse
Affiliation(s)
- Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Pallabi Saha
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| |
Collapse
|
6
|
Xu Q, Chen H. Applications of spatial transcriptomics in studying spermatogenesis. Andrology 2025. [PMID: 40202007 DOI: 10.1111/andr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Spermatogenesis is a complex differentiation process that is facilitated by a series of cellular and molecular events. High-throughput genomics approaches, such as single-cell RNA sequencing, have begun to enable the systematic characterization of these events. However, the loss of tissue context because of tissue disassociations in the single-cell isolation protocols limits our ability to understand the regulation of spermatogenesis and how defects in spermatogenesis lead to infertility. The recent advancement of spatial transcriptomics technologies enables the studying of the molecular signatures of various cell types and their interactions in the native tissue context. In this review, we discuss how spatial transcriptomics has been leveraged to identify spatially variable genes, characterize cellular neighborhood, delineate cell‒cell communications, and detect molecular changes under pathological conditions in the mammalian testis. We believe that spatial transcriptomics, along with other emerging spatially resolved omics assays, can be utilized to further our understanding of the underlying causes of male infertility, and to facilitate the development of new treatment approaches.
Collapse
Affiliation(s)
- Qianlan Xu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Liu C. Acoustic ejection mass spectrometry: the potential for personalized medicine. Expert Rev Proteomics 2025; 22:141-147. [PMID: 40205846 DOI: 10.1080/14789450.2025.2491356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION The emergence of personalized medicine (PM) has shifted the focus of healthcare from the traditional 'one-size-fits-all' approach to strategies tailored to individual patients, accounting for genetic, environmental, and lifestyle factors. Acoustic ejection mass spectrometry (AEMS) is a novel technology that offers a robust and scalable platform for high-throughput MS readout. AEMS achieves analytical speeds of one sample per second while maintaining high data quality, broad compound coverage, and minimal sample preparation, making it an invaluable tool for PM. AREAS COVERED This article explores the potential of AEMS in critical PM applications, including therapeutic drug monitoring (TDM), proteomics, metabolomics, and mass spectrometry imaging. AEMS simplifies conventional workflows by minimizing sample preparation, enhancing automation compatibility, and enabling direct analysis of complex biological matrices. EXPERT OPINION Integrating AEMS with orthogonal separation techniques such as differential mobility spectrometry (DMS) further addresses challenges in isomer discrimination, expanding the platform's analytical capabilities. Additionally, the development of high-throughput data processing tools could further enable AEMS to accelerate the development of personalized medicine.
Collapse
|
8
|
Davies JWA, Bredy TW, Marshall PR. Cutting-edge RNA technologies to advance the understanding of learning and memory. Neurobiol Learn Mem 2025; 219:108050. [PMID: 40147812 DOI: 10.1016/j.nlm.2025.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Following the recent emergence of RNA as a therapeutic tool, and coupled with an explosion in the development of new RNA technologies, it is rapidly becoming clear that the 21st century is the era of RNA. Neuroscience as a discipline has a long history of embracing new technology to advance the understanding of brain function, particularly in the context of learning and memory. In this short review, we highlight four broad categories of emerging RNA technologies, namely: imaging, isolation, identification and manipulation, and discuss their potential to advance the fundamental understanding of how RNA impacts experience-dependent plasticity, learning, and memory.
Collapse
Affiliation(s)
- Joshua William Ashley Davies
- UQ Centre for RNA in Neuroscience, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Genomic Plasticity Laboratory, Genome Sciences and Cancer Division & Eccles Institute of Neuroscience, John Curtain School of Medical Research, Australian National University, Canberra 2601, Australia.
| | - Timothy William Bredy
- UQ Centre for RNA in Neuroscience, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Paul Robert Marshall
- Genomic Plasticity Laboratory, Genome Sciences and Cancer Division & Eccles Institute of Neuroscience, John Curtain School of Medical Research, Australian National University, Canberra 2601, Australia.
| |
Collapse
|
9
|
Mulvey JF, Meyer EL, Svenningsen MS, Lundby A. Integrating -Omic Technologies across Modality, Space, and Time to Decipher Remodeling in Cardiac Disease. Curr Cardiol Rep 2025; 27:74. [PMID: 40116972 PMCID: PMC11928419 DOI: 10.1007/s11886-025-02226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE OF REVIEW Despite significant efforts to understand pathophysiological processes underlying cardiac diseases, the molecular causes for the most part remain unresolved. Rapid advancements in -omics technologies, and their application in cardiac research, offer new insight into cardiac remodeling in disease states. This review aims to provide an accessible overview of recent advances in omics approaches for studying cardiac remodeling, catering to readers without extensive prior expertise. RECENT FINDINGS We provide a methodologically focused overview of current methods for performing transcriptomics and proteomics, including their extensions for single-cell and spatial measurements. We discuss approaches to integrate data across modalities, resolutions and time. Key recent applications within the cardiac field are highlighted. Each -omics modality can provide insight, yet each existing experimental method has technical or conceptual limitations. Integrating data across multiple modalities can leverage strengths and mitigate weaknesses, ultimately enhancing our understanding of cardiac pathophysiology.
Collapse
Affiliation(s)
- John F Mulvey
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily L Meyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Skjoldan Svenningsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Sang T, Zhang Z, Liu G, Wang P. Navigating the landscape of plant proteomics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:740-761. [PMID: 39812500 DOI: 10.1111/jipb.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
In plants, proteins are fundamental to virtually all biological processes, such as photosynthesis, signal transduction, metabolic regulation, and stress responses. Studying protein distribution, function, modifications, and interactions at the cellular and tissue levels is critical for unraveling the complexities of these biological pathways. Protein abundance and localization are highly dynamic and vary widely across the proteome, presenting a challenge for global protein quantification and analysis. Mass spectrometry-based proteomics approaches have proven to be powerful tools for addressing this complex issue. In this review, we summarize recent advancements in proteomics research and their applications in plant biology, with an emphasis on the current state and challenges of studying post-translational modifications, single-cell proteomics, and protein-protein interactions. Additionally, we discuss future prospects for plant proteomics, highlighting potential opportunities that proteomics technologies offer in advancing plant biology research.
Collapse
Affiliation(s)
- Tian Sang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Zhang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guting Liu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Boottanun P, Fuseya S, Kuno A. Toward spatial glycomics and glycoproteomics: Innovations and applications. BBA ADVANCES 2025; 7:100146. [PMID: 40027887 PMCID: PMC11869499 DOI: 10.1016/j.bbadva.2025.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
In this mini review, we provide an overview of the challenging field of spatial glycomics/glycoproteomics. Owing to their complexity, sophisticated analytical methods and innovative technologies are needed to advance this field. An agile development approach enables unraveling aberrant glycosylations, glycobiomarkers, and glycotargets for spatial imaging, diagnosis, and therapeutic purposes. We discuss glycopathology and tissue glycomic profiling using highly sensitive lectin-based analyses and introduce deep visual proteomics for glycomic/glycoproteomic sample preparation. Additionally, we highlight the importance of leveraging laser microdissection and artificial intelligence-driven visual software for cell-type assignment and automation techniques, which are crucial for advancing glycomics/glycoproteomics.
Collapse
Affiliation(s)
- Patcharaporn Boottanun
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Sayaka Fuseya
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
12
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
13
|
Chehimi SN. Dissection of Gene Expression at the Single-Cell Level: scRNA-seq. Methods Mol Biol 2025; 2866:159-173. [PMID: 39546202 DOI: 10.1007/978-1-0716-4192-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Sequencing approaches that allowed for a better resolution of the transcriptome have been a major goal in the transcriptomics field since the development of RNA-seq techniques. While RNA-seq provides gene expression data from one entire sample in bulk, single-cell analysis allows for a better characterization of gene expression associated to specific cell types. Single-cell RNA-seq (scRNA-seq) is a reliable technique to unravel transcriptomic features of the tissues of interest dissociated at a single-cell level. The main feature of the single-cell technique is its ability to generate barcoded individual cells that allow for tracking the origin of thousands to millions of transcripts and reveal new cell types associated to diseases and different cell types and states. In this chapter, we discuss how scRNA-seq has become the gold standard to deepen the understanding of the gene expression with single-cell resolution.
Collapse
|
14
|
Gutierrez-Chavez C, Knockaert S, Dieu-Nosjean MC, Goc J. Methods for Selective Gene Expression Profiling in Single Tertiary Lymphoid Structure Using Laser Capture Microdissection. Methods Mol Biol 2025; 2864:107-126. [PMID: 39527219 DOI: 10.1007/978-1-0716-4184-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are de novo lymphoid formations that are induced within tissues during inflammatory episodes. TLS have been reported at various anatomic sites and in many different contexts like cancer, infections, autoimmunity, graft rejection, and idiopathic diseases. These inducible, ectopic, and transient lymphoid structures exhibit the prototypical architecture found within secondary lymphoid organs (SLO) and have been increasingly recognized as a major driver of local adaptive immune reaction. As TLS emerge within tissues, the isolation in situ and the molecular characterization of these structures are challenging to perform. Laser capture microdissection (LCM) is a powerful tool to isolate selective structural components and cells from frozen or paraffin-embedded tissues. We and other groups previously applied LCM to decipher the molecular network within TLS and uncover their intrinsic connection with the local microenvironment. In this chapter, we describe a detailed LCM method for selecting and isolating TLS in situ to perform comprehensive downstream molecular analyses.
Collapse
Affiliation(s)
- Claudia Gutierrez-Chavez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Vall d'Hebron Institute of Oncology, Aging and Cancer Group, Barcelona, Spain
| | - Samantha Knockaert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Institut de Recherches Servier, Center for Therapeutic Innovation in Oncology, Croissy-sur-Seine, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Jeremy Goc
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology and Immunology and The Jill Robert's Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
15
|
Kwon Y, Fulcher JM, Paša-Tolić L, Qian WJ. Spatial Proteomics towards cellular Resolution. Expert Rev Proteomics 2024:1-10. [PMID: 39710940 DOI: 10.1080/14789450.2024.2445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g. genetic mutations and epigenetic marks), multiplexed immunofluorescence, and spatial metabolomics/lipidomics have enabled high-resolution spatial profiling of gene expression, genetic variation, protein expression, and metabolites/lipids profiles in tissue. These developments contribute to a deeper understanding of the spatial organization within tissue microenvironments at the molecular level. AREAS COVERED This report provides an overview of the untargeted, bottom-up mass spectrometry (MS)-based spatial proteomics workflow. It highlights recent progress in tissue dissection, sample processing, bioinformatics, and liquid chromatography (LC)-MS technologies that are advancing spatial proteomics toward cellular resolution. EXPERT OPINION The field of untargeted MS-based spatial proteomics is rapidly evolving and holds great promise. To fully realize the potential of spatial proteomics, it is critical to advance data analysis and develop automated and intelligent tissue dissection at the cellular or subcellular level, along with high-throughput LC-MS analyses of thousands of samples. Achieving these goals will necessitate significant advancements in tissue dissection technologies, LC-MS instrumentation, and computational tools.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
16
|
Deep RNA sequencing of human dorsal root ganglion neurons reveals somatosensory mechanisms. Nat Neurosci 2024; 27:2276-2277. [PMID: 39506062 DOI: 10.1038/s41593-024-01795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
17
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024; 30:1137-1151. [PMID: 39152082 PMCID: PMC11631641 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
18
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
19
|
Kimble DC, Litzi TJ, Snyder G, Olowu V, TaQee S, Conrads KA, Loffredo J, Bateman NW, Alba C, Rice E, Shriver CD, Maxwell GL, Dalgard C, Conrads TP. A modified dual preparatory method for improved isolation of nucleic acids from laser microdissected fresh-frozen human cancer tissue specimens. Biol Methods Protoc 2024; 9:bpae066. [PMID: 39421215 PMCID: PMC11486541 DOI: 10.1093/biomethods/bpae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
A central theme in cancer research is to increase our understanding of the cancer tissue microenvironment, which is comprised of a complex and spatially heterogeneous ecosystem of malignant and non-malignant cells, both of which actively contribute to an intervening extracellular matrix. Laser microdissection (LMD) enables histology selective harvest of cellular subpopulations from the tissue microenvironment for their independent molecular investigation, such as by high-throughput DNA and RNA sequencing. Although enabling, LMD often requires a labor-intensive investment to harvest enough cells to achieve the necessary DNA and/or RNA input requirements for conventional next-generation sequencing workflows. To increase efficiencies, we sought to use a commonplace dual preparatory (DP) procedure to isolate DNA and RNA from the same LMD harvested tissue samples. While the yield of DNA from the DP protocol was satisfactory, the RNA yield from the LMD harvested tissue samples was significantly poorer compared to a dedicated RNA preparation procedure. We determined that this low yield of RNA was due to incomplete partitioning of RNA in this widely used DP protocol. Here, we describe a modified DP protocol that more equally partitions nucleic acids and results in significantly improved RNA yields from LMD-harvested cells.
Collapse
Affiliation(s)
- Danielle C Kimble
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Annandale, VA 22003, United States
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Gabrielle Snyder
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Victoria Olowu
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Sakiyah TaQee
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
| | - Camille Alba
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Elizabeth Rice
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD 20817, United States
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
| | - George L Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Annandale, VA 22003, United States
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
| | - Clifton Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
- Women’s Health Integrated Research Center, Women’s Service Line, Inova Health System, Annandale, VA 22003, United States
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, United States
| |
Collapse
|
20
|
Maciejewski K, Czerwinska P. Scoping Review: Methods and Applications of Spatial Transcriptomics in Tumor Research. Cancers (Basel) 2024; 16:3100. [PMID: 39272958 PMCID: PMC11394603 DOI: 10.3390/cancers16173100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Spatial transcriptomics (ST) examines gene expression within its spatial context on tissue, linking morphology and function. Advances in ST resolution and throughput have led to an increase in scientific interest, notably in cancer research. This scoping study reviews the challenges and practical applications of ST, summarizing current methods, trends, and data analysis techniques for ST in neoplasm research. We analyzed 41 articles published by the end of 2023 alongside public data repositories. The findings indicate cancer biology is an important focus of ST research, with a rising number of studies each year. Visium (10x Genomics, Pleasanton, CA, USA) is the leading ST platform, and SCTransform from Seurat R library is the preferred method for data normalization and integration. Many studies incorporate additional data types like single-cell sequencing and immunohistochemistry. Common ST applications include discovering the composition and function of tumor tissues in the context of their heterogeneity, characterizing the tumor microenvironment, or identifying interactions between cells, including spatial patterns of expression and co-occurrence. However, nearly half of the studies lacked comprehensive data processing protocols, hindering their reproducibility. By recommending greater transparency in sharing analysis methods and adapting single-cell analysis techniques with caution, this review aims to improve the reproducibility and reliability of future studies in cancer research.
Collapse
Affiliation(s)
- Kacper Maciejewski
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
21
|
Zhan Y, Zhang Q, Wang W, Liang W, Wang C. Single-cell RNA sequencing in tuberculosis: Application and future perspectives. Chin Med J (Engl) 2024:00029330-990000000-01167. [PMID: 39111829 DOI: 10.1097/cm9.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2025] Open
Abstract
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiran Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyang Wang
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyi Liang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Clark MJ, Moser HJ, Anand RK. Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes. ChemElectroChem 2024; 11:e202400182. [PMID: 39483376 PMCID: PMC11526340 DOI: 10.1002/celc.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis. The interlocked spiral end of the iBPE (the sensing pole) is utilized to read out an electrochemical enzyme-linked immunosorbent assay (eELISA), which quantifies the expression of a cell surface antigen, melanoma cell adhesion marker (MCAM). The opposite pole of each BPE is located in a fluidically isolated compartment containing reagents for electrogenerated chemiluminescence (ECL), such that luminescence reports iBPE current. In a preliminary device design, the ECL intensity was insufficient to detect MCAM expression on single cells. To achieve single-cell analysis, we decreased the gap size between the interlocked spirals tenfold (5.0 μm to 0.5 μm), thereby creating a more sensitive biosensor by enhanced redox cycling of the product of eELISA. This work is significant because it allows for the selective isolation and sensitive analysis of individual melanoma cells in a device amenable to point-of-care (POC) application by combining dielectrophoresis (DEP) with interdigitated bipolar electrodes (IDBPEs).
Collapse
Affiliation(s)
- Morgan J Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Hanna J Moser
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| |
Collapse
|
23
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Shahamatdar S, Saeed-Vafa D, Linsley D, Khalil F, Lovinger K, Li L, McLeod HT, Ramachandran S, Serre T. Deceptive learning in histopathology. Histopathology 2024; 85:116-132. [PMID: 38556922 PMCID: PMC11162337 DOI: 10.1111/his.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
AIMS Deep learning holds immense potential for histopathology, automating tasks that are simple for expert pathologists and revealing novel biology for tasks that were previously considered difficult or impossible to solve by eye alone. However, the extent to which the visual strategies learned by deep learning models in histopathological analysis are trustworthy or not has yet to be systematically analysed. Here, we systematically evaluate deep neural networks (DNNs) trained for histopathological analysis in order to understand if their learned strategies are trustworthy or deceptive. METHODS AND RESULTS We trained a variety of DNNs on a novel data set of 221 whole-slide images (WSIs) from lung adenocarcinoma patients, and evaluated their effectiveness at (1) molecular profiling of KRAS versus EGFR mutations, (2) determining the primary tissue of a tumour and (3) tumour detection. While DNNs achieved above-chance performance on molecular profiling, they did so by exploiting correlations between histological subtypes and mutations, and failed to generalise to a challenging test set obtained through laser capture microdissection (LCM). In contrast, DNNs learned robust and trustworthy strategies for determining the primary tissue of a tumour as well as detecting and localising tumours in tissue. CONCLUSIONS Our work demonstrates that DNNs hold immense promise for aiding pathologists in analysing tissue. However, they are also capable of achieving seemingly strong performance by learning deceptive strategies that leverage spurious correlations, and are ultimately unsuitable for research or clinical work. The framework we propose for model evaluation and interpretation is an important step towards developing reliable automated systems for histopathological analysis.
Collapse
Affiliation(s)
- Sahar Shahamatdar
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Daryoush Saeed-Vafa
- Department of Anatomic Pathology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, USA
| | - Drew Linsley
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Cognitive Linguistic & Psychological Sciences, Brown University, Providence, RI, USA
| | - Farah Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, USA
| | - Katherine Lovinger
- Department of Molecular Biology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, USA
| | - Lester Li
- University of Rochester, Rochester, NY, USA
| | | | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA
- The Data Science Initiative, Brown University, Providence, RI, USA
| | - Thomas Serre
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Cognitive Linguistic & Psychological Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Phulara NR, Seneviratne HK. Mass spectrometry imaging-based multi-omics approaches to understand drug metabolism and disposition. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5042. [PMID: 38840330 DOI: 10.1002/jms.5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Yang M, Ji B, Luo Q, Jiang T, Yang X. Laser axial scanning microdissection for high-efficiency dissection from uneven biological samples. BIOMEDICAL OPTICS EXPRESS 2024; 15:3795-3806. [PMID: 38867797 PMCID: PMC11166427 DOI: 10.1364/boe.523954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Fast and efficient separation of target samples is crucial for the application of laser-assisted microdissection in the molecular biology research field. Herein, we developed a laser axial scanning microdissection (LASM) system with an 8.6 times extended depth of focus by using an electrically tunable lens. We showed that the ablation quality of silicon wafers at different depths became homogenous after using our system. More importantly, for those uneven biological tissue sections within a height difference of no more than 19.2 µm, we have demonstrated that the targets with a size of microns at arbitrary positions can be dissected efficiently without additional focusing and dissection operations. Besides, dissection experiments on various biological samples with different embedding methods, which were widely adopted in biological experiments, also have shown the feasibility of our system.
Collapse
Affiliation(s)
- Minjun Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - BingQing Ji
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| |
Collapse
|
27
|
Thambugala KM, Daranagama DA, Tennakoon DS, Jayatunga DPW, Hongsanan S, Xie N. Humans vs. Fungi: An Overview of Fungal Pathogens against Humans. Pathogens 2024; 13:426. [PMID: 38787278 PMCID: PMC11124197 DOI: 10.3390/pathogens13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent decades, the reported cases of invasive fungal infections have increased substantially and research progress in this field has also been rapidly boosted. This review provides a comprehensive list of human fungal pathogens extracted from over 850 recent case reports, and a summary of the relevant disease conditions and their origins. Details of 281 human fungal pathogens belonging to 12 classes and 104 genera in the divisions ascomycota, basidiomycota, entomophthoromycota, and mucoromycota are listed. Among these, Aspergillus stands out as the genus with the greatest potential of infecting humans, comprising 16 species known to infect humans. Additionally, three other genera, Curvularia, Exophiala, and Trichophyton, are recognized as significant genera, each comprising 10 or more known human pathogenic species. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of human fungal pathogens was performed to show their phylogenetic relationships and clarify their taxonomies. In addition, this review summarizes the recent advancements in fungal disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; (K.M.T.); (D.P.W.J.)
- Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Dinushani A. Daranagama
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya 11300, Sri Lanka;
| | - Danushka S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Dona Pamoda W. Jayatunga
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; (K.M.T.); (D.P.W.J.)
- Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sinang Hongsanan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
28
|
Raj-Kumar PK, Lin X, Liu T, Sturtz LA, Gritsenko MA, Petyuk VA, Sagendorf TJ, Deyarmin B, Liu J, Praveen-Kumar A, Wang G, McDermott JE, Shukla AK, Moore RJ, Monroe ME, Webb-Robertson BJM, Hooke JA, Fantacone-Campbell L, Mostoller B, Kvecher L, Kane J, Melley J, Somiari S, Soon-Shiong P, Smith RD, Mural RJ, Rodland KD, Shriver CD, Kovatich AJ, Hu H. Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection. Breast Cancer Res 2024; 26:76. [PMID: 38745208 PMCID: PMC11094977 DOI: 10.1186/s13058-024-01835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.
Collapse
Affiliation(s)
- Praveen-Kumar Raj-Kumar
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoying Lin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lori A Sturtz
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | - Brenda Deyarmin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Guisong Wang
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | | | - Anil K Shukla
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Jeffrey A Hooke
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Fantacone-Campbell
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Brad Mostoller
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Leonid Kvecher
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Kane
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Jennifer Melley
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Stella Somiari
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | | | - Richard J Mural
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | | | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Albert J Kovatich
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA.
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
29
|
Zhao Y, Cai L, Zhang X, Zhang H, Cai L, Zhou L, Huang B, Qian J. Hematoxylin and Eosin Staining Helps Reduce Maternal Contamination in Short Tandem Repeat Genotyping for Hydatidiform Mole Diagnosis. Int J Gynecol Pathol 2024; 43:253-263. [PMID: 37566880 PMCID: PMC11022989 DOI: 10.1097/pgp.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Short tandem repeat (STR) genotyping provides parental origin information about aneuploidy pregnancy loss and has become the current gold standard for hydatidiform mole diagnosis. STR genotyping diagnostic support most commonly relies on formalin-fixed paraffin-embedded samples, but maternal contamination is one of the most common issues based on traditional unstained sections. To evaluate the influence of hematoxylin and eosin (H&E) staining on DNA quality and STR genotyping, DNA was isolated from unstained, deparaffinized hydrated, and H&E-stained tissue sections (i.e. 3 groups) from each of 6 formalin-fixed paraffin-embedded placentas. The macrodissected view field, DNA quality, and polymerase chain reaction amplification efficiency were compared among groups. STR genotyping analysis was performed in both the test cohort (n = 6) and the validation cohort (n = 149). H&E staining not only did not interfere with molecular DNA testing of formalin-fixed paraffin-embedded tissue but also had a clearer macrodissected field of vision. In the test cohort, H&E-stained sections were the only group that did not exhibit maternal miscellaneous peaks in STR genotyping results. In the validation cohort, 138 (92.62%) cases yielded satisfactory amplification results without maternal contamination. Thus, H&E staining helped to reduce maternal contamination in STR genotyping for hydatidiform mole diagnosis, suggesting that H&E-stained sections can be incorporated into the hydatidiform mole molecular diagnostic workflow.
Collapse
|
30
|
Li H, Huo S, He X, Guo D, Liu Y, Zheng L, Zhou X. LncRNA CARMN facilitates odontogenic differentiation of dental pulp cells by impairing EZH2. Oral Dis 2024; 30:2387-2397. [PMID: 37222221 DOI: 10.1111/odi.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE This study aimed to reveal the potential role of CARMN in odontogenic differentiation of dental pulp cells (DPCs). METHODS Laser capture microdissection was used to detect Carmn in DPCs and odontoblasts in P0 mice. After manipulating CARMN expression in odontogenic differentiation induced hDPCs, the state of odontogenic differentiation was evaluated by ALP staining, ARS, and related marker expression in qRT-PCR and western blotting. The subcutaneous transplantation of HA/β-TCP loaded with hDPCs was performed to verify CARMN's role in promoting odontogenic differentiation in vivo. RNAplex and RIP were employed to reveal potential mechanism of CARMN in hDPCs. RESULTS CARMN expressed more abundantly in odontoblasts than DPCs in P0 mice. CARMN expression boosted during in vitro odontogenic differentiation of hDPCs. CARMN overexpression enhanced odontogenic differentiation of hDPCs in vitro, while inhibition impaired the process. CARMN overexpression in HA/β-TCP composites promoted more mineralized nodule formation in vivo. CARMN knockdown led to soared EZH2, while CARMN overexpression brought about EZH2 inhibition. CARMN functioned via direct interaction with EZH2. CONCLUSIONS The results uncovered CARMN as a modulator during the odontogenic differentiation of DPCs. CARMN promoted odontogenic differentiation of DPCs by impairing EZH2.
Collapse
Affiliation(s)
- Hongyu Li
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Sibei Huo
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xinyu He
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Daimo Guo
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yingling Liu
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Chen F, Liu K, Shang L, Wang Y, Tang X, Liang P, Li B. Precision isolation and cultivation of single cells by vortex and flat-top laser ejection. Front Microbiol 2024; 15:1369506. [PMID: 38659989 PMCID: PMC11039905 DOI: 10.3389/fmicb.2024.1369506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Single-cell isolation stands as a critical step in single-cell studies, and single-cell ejection technology based on laser induced forward transfer technology (LIFT) is considered one of the most promising methods in this regard for its ability of visible isolating single cell from complex samples. In this study, we improve the LIFT technology and introduce optical vortex laser-induced forward transfer (OV-LIFT) and flat-top laser-induced forward transfer (FT-LIFT) by utilizing spatial light modulator (SLM), aiming to enhance the precision of single-cell sorting and the cell's viability after ejection. Experimental results demonstrate that applying vortex and flat-top beams during the sorting and collection process enables precise retrieval of single cells within diameter ranges of 50 μm and 100 μm, respectively. The recovery rates of Saccharomyces cerevisiae and Escherichia coli DH5α single cell ejected by vortex beam are 89 and 78%, by flat-top beam are 85 and 57%. When employing Gaussian beam sorting, the receiving range extends to 400 μm, with cultivation success rates of S. cerevisiae and E. coli DH5α single cell are 48 and 19%, respectively. This marks the first application of different mode beams in the ejection and cultivation of single cells, providing a novel and effective approach for the precise isolation and improving the viability of single cells.
Collapse
Affiliation(s)
- Fuyuan Chen
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunxiang Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lindong Shang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuntong Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xusheng Tang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Bylicky MA, Shankavaram U, Aryankalayil MJ, Chopra S, Naz S, Sowers AL, Choudhuri R, Calvert V, Petricoin EF, Eke I, Mitchell JB, Coleman CN. Multiomic-Based Molecular Landscape of FaDu Xenograft Tumors in Mice after a Combinatorial Treatment with Radiation and an HSP90 Inhibitor Identifies Adaptation-Induced Targets of Resistance and Therapeutic Intervention. Mol Cancer Ther 2024; 23:577-588. [PMID: 38359816 PMCID: PMC10985469 DOI: 10.1158/1535-7163.mct-23-0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Treatments involving radiation and chemotherapy alone or in combination have improved patient survival and quality of life. However, cancers frequently evade these therapies due to adaptation and tumor evolution. Given the complexity of predicting response based solely on the initial genetic profile of a patient, a predetermined treatment course may miss critical adaptation that can cause resistance or induce new targets for drug and immunotherapy. To address the timescale for these evasive mechanisms, using a mouse xenograft tumor model, we investigated the rapidity of gene expression (mRNA), molecular pathway, and phosphoproteome changes after radiation, an HSP90 inhibitor, or combination. Animals received radiation, drug, or combination treatment for 1 or 2 weeks and were then euthanized along with a time-matched untreated group for comparison. Changes in gene expression occur as early as 1 week after treatment initiation. Apoptosis and cell death pathways were activated in irradiated tumor samples. For the HSP90 inhibitor and combination treatment at weeks 1 and 2 compared with Control Day 1, gene-expression changes induced inhibition of pathways including invasion of cells, vasculogenesis, and viral infection among others. The combination group included both drug-alone and radiation-alone changes. Our data demonstrate the rapidity of gene expression and functional pathway changes in the evolving tumor as it responds to treatment. Discovering these phenotypic adaptations may help elucidate the challenges in using sustained treatment regimens and could also define evolving targets for therapeutic efficacy.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Molykutty J. Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sarwat Naz
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rajani Choudhuri
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Iris Eke
- Department of Radiation Oncology, Stanford University Medical School, Stanford, California
| | - James B. Mitchell
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - C. Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, NIH, Rockville, Maryland
| |
Collapse
|
33
|
Liu AY. Prostate cancer research: tools, cell types, and molecular targets. Front Oncol 2024; 14:1321694. [PMID: 38595814 PMCID: PMC11002103 DOI: 10.3389/fonc.2024.1321694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Multiple cancer cell types are found in prostate tumors. They are either luminal-like adenocarcinoma or less luminal-like and more stem-like non-adenocarcinoma and small cell carcinoma. These types are lineage related through differentiation. Loss of cancer differentiation from luminal-like to stem-like is mediated by the activation of stem cell transcription factors (scTF) such as LIN28A, NANOG, POU5F1 and SOX2. scTF expression leads to down-regulation of β2-microglobulin (B2M). Thus, cancer cells can change from the scT F ˜ B 2 M hi phenotype of differentiated to that of scT F ˙ B 2 M lo of dedifferentiated in the disease course. In development, epithelial cell differentiation is induced by stromal signaling and cell contact. One of the stromal factors specific to prostate encodes proenkephalin (PENK). PENK can down-regulate scTF and up-regulate B2M in stem-like small cell carcinoma LuCaP 145.1 cells indicative of exit from the stem state and differentiation. In fact, prostate cancer cells can be made to undergo dedifferentiation or reprogramming by scTF transfection and then to differentiate by PENK transfection. Therapies need to be designed for treating the different cancer cell types. Extracellular anterior gradient 2 (eAGR2) is an adenocarcinoma antigen associated with cancer differentiation that can be targeted by antibodies to lyse tumor cells with immune system components. eAGR2 is specific to cancer as normal cells express only the intracellular form (iAGR2). For AGR2-negative stem-like cancer cells, factors like PENK that can target scTF could be effective in differentiation therapy.
Collapse
Affiliation(s)
- Alvin Y. Liu
- Department of Urology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
35
|
Truong JXM, Rao SR, Ryan FJ, Lynn DJ, Snel MF, Butler LM, Trim PJ. Spatial MS multiomics on clinical prostate cancer tissues. Anal Bioanal Chem 2024; 416:1745-1757. [PMID: 38324070 DOI: 10.1007/s00216-024-05178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.
Collapse
Affiliation(s)
- Jacob X M Truong
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sushma R Rao
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Feargal J Ryan
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - David J Lynn
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Marten F Snel
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Lisa M Butler
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Paul J Trim
- The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
36
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
37
|
Camunas-Soler J. Integrating single-cell transcriptomics with cellular phenotypes: cell morphology, Ca 2+ imaging and electrophysiology. Biophys Rev 2024; 16:89-107. [PMID: 38495444 PMCID: PMC10937895 DOI: 10.1007/s12551-023-01174-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/29/2023] [Indexed: 03/19/2024] Open
Abstract
I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiological insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pancreatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the need for a shift towards broader accessibility through increased throughput.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
38
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
39
|
Shin IJ, Tangrea M, Emmert-Buck M, Johann DJ. A Microdissection Protocol for Proteogenomic Analysis of Histological Sections to Advance Drug Development. Methods Mol Biol 2024; 2823:55-75. [PMID: 39052214 DOI: 10.1007/978-1-0716-3922-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Combining proteogenomics with laser capture microdissection (LCM) in cancer research offers a targeted way to explore the intricate interactions between tumor cells and the different microenvironment components. This is especially important for immuno-oncology (IO) research where improvements in the predictability of IO-based drugs are sorely needed, and depends on a better understanding of the spatial relationships involving the tumor, blood supply, and immune cell interactions, in the context of their associated microenvironments. LCM is used to isolate and obtain distinct histological cell types, which may be routinely performed on complex and heterogeneous solid tumor specimens. Once cells have been captured, nucleic acids and proteins may be extracted for in-depth multimodality molecular profiling assays. Optimizing the minute tissue quantities from LCM captured cells is challenging. Following the isolation of nucleic acids, RNA-seq may be performed for gene expression and DNA sequencing performed for the discovery and analysis of actionable mutations, copy number variation, methylation profiles, etc. However, there remains a need for highly sensitive proteomic methods targeting small-sized samples. A significant part of this protocol is an enhanced liquid chromatography mass spectrometry (LC-MS) analysis of micro-scale and/or nano-scale tissue sections. This is achieved with a silver-stained one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) approach developed for LC-MS analysis of fresh-frozen tissue specimens obtained via LCM. Included is a detailed in-gel digestion method adjusted and specifically designed to maximize the proteome coverage from amount-limited LCM samples to better facilitate in-depth molecular profiling. Described is a proteogenomic approach leveraged from microdissected fresh frozen tissue. The protocols may also be applicable to other types of specimens having limited nucleic acids, protein quantity, and/or sample volume.
Collapse
Affiliation(s)
- Ik Jae Shin
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael Tangrea
- Department of Biology, Loyola University Maryland, Baltimore, MD, USA
| | | | - Donald J Johann
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
40
|
Varvil MS, Clark SL, Bailey TW, Ramos-Vara JA, dos Santos AP. Canine urothelial carcinoma: a pilot study of microRNA detection in formalin-fixed, paraffin-embedded tissue samples and in normal urine. J Vet Diagn Invest 2024; 36:70-77. [PMID: 38014733 PMCID: PMC10734577 DOI: 10.1177/10406387231211908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
We assessed the effects of fixation time in formalin and inclusion of surrounding tissue on microRNA (miRNA) cycle quantification (Cq) values in formalin-fixed, paraffin-embedded (FFPE) urothelial carcinoma (UC) tissue (n = 3), and the effect of conditions on miRNAs in urine from 1 healthy dog. MiRNAs were extracted using commercial kits and quantified using miRNA-specific fluorometry in normal bladder tissue scrolls, UC tissue cores, and bladder muscularis tissue cores from 4 FFPE bladder sections (3 UCs, 1 normal), plus 1 UC stored in formalin for 1, 8, 15, and 22 d before paraffin-embedding. Urine was collected from a healthy dog on 4 occasions; 1-mL aliquots were stored at 20, 4, -20, and -80°C for 4, 8, 24, and 48 h, and 1 and 2 wk. For both FFPE tissue and urine, we used reverse-transcription quantitative real-time PCR (RT-qPCR) to quantify miR-143, miR-152, miR-181a, miR-214, miR-1842, and RNU6B in each tissue or sample, using miR-39 as an exogenous control gene. The Cq values were compared with ANOVA and t-tests. The time of tissue-fixation in formalin did not alter miRNA Cq values; inclusion of the muscularis layer resulted in a statistically different miRNA Cq profile for miR-152, miR-181a, and RNU6B in bladder tissue. MiRNAs in acellular urine were stable for up to 2 wk regardless of the storage temperature. Our findings support using stored FFPE and urine samples for miRNA detection; we recommend measuring miRNA only in the tissue of interest in FFPE sections.
Collapse
Affiliation(s)
- Mara S. Varvil
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Samuel L. Clark
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Taylor W. Bailey
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - José A. Ramos-Vara
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
41
|
Cherry AD, Chu CP, Cianciolo RE, Hokamp JA, Jacobson SA, Nabity MB. MicroRNA-126 in dogs with immune complex-mediated glomerulonephritis. J Vet Intern Med 2024; 38:216-227. [PMID: 38116844 PMCID: PMC10800198 DOI: 10.1111/jvim.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Most proteinuric dogs with naturally occurring chronic kidney disease have amyloidosis (AMYL), glomerulosclerosis (GS), or immune complex-mediated glomerulonephritis (ICGN), each with different treatment and prognosis. A noninvasive and disease-specific biomarker is lacking. HYPOTHESIS We hypothesized that the expression pattern of biofluid microRNA (miRNAs and miRs) would correlate with disease progression and categorization. ANIMALS Archived serum and urine samples from 18 dogs with glomerular disease and 6 clinically healthy dogs; archived urine samples from 49 dogs with glomerular disease and 13 clinically healthy dogs. METHODS Retrospective study. Archived biofluid samples from adult dogs with biopsy-confirmed glomerular disease submitted to the International Veterinary Renal Pathology Service between 2008 and 2016 were selected. Serum and urinary miRNAs were isolated and profiled using RNA sequencing. Urinary miR-126, miR-21, miR-182, and miR-486 were quantified using quantitative reverse transcription PCR. RESULTS When comparing more advanced disease with earlier disease, no serum miRNAs were differentially expressed, but urinary miR-21 and miR-182 were 1.63 (95% CI: .86-3.1) and 1.45 (95% CI: .82-2.6) times higher in azotemic dogs, respectively (adjusted P < .05) and weakly correlated with tubulointerstitial fibrosis (miR-21: r = .32, P = .03; miR-182: r = .28, P = .05). Expression of urinary miR-126 was 10.5 (95% CI: 4.1-26.7), 28.9 (95% CI: 10.5-79.8), and 126.2 (95% CI: 44.7-356.3) times higher in dogs with ICGN compared with dogs with GS, AMYL, and healthy controls, respectively (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE The miR-126 could help identify dogs that might benefit from immunosuppressive therapy in the absence of a biopsy. MiR-21 and miR-182 are potential markers of disease severity and fibrosis.
Collapse
Affiliation(s)
- Ariana D. Cherry
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Candice P. Chu
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Rachel E. Cianciolo
- Department of Veterinary Biosciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
- Present address:
Niche Diagnostics, LLCColumbusOhioUSA
- Present address:
Zoetis Inc.ColumbusOhioUSA
| | - Jessica A. Hokamp
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Sarah A. Jacobson
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
42
|
Cartas-Cejudo P, Cortés A, Lachén-Montes M, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Mapping the human brain proteome: opportunities, challenges, and clinical potential. Expert Rev Proteomics 2024; 21:55-63. [PMID: 38299555 DOI: 10.1080/14789450.2024.2313073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases. AREAS COVERED Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification. EXPERT OPINION Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Elena Anaya-Cubero
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Erika Peral
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ramón Díaz-Peña
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
43
|
Gallagher RI, Wulfkuhle J, Wolf DM, Brown-Swigart L, Yau C, O'Grady N, Basu A, Lu R, Campbell MJ, Magbanua MJ, Coppé JP, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Pohlmann PR, Hirst GL, Esserman LJ, van 't Veer LJ, Petricoin EF. Protein signaling and drug target activation signatures to guide therapy prioritization: Therapeutic resistance and sensitivity in the I-SPY 2 Trial. Cell Rep Med 2023; 4:101312. [PMID: 38086377 PMCID: PMC10772394 DOI: 10.1016/j.xcrm.2023.101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/03/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Molecular subtyping of breast cancer is based mostly on HR/HER2 and gene expression-based immune, DNA repair deficiency, and luminal signatures. We extend this description via functional protein pathway activation mapping using pre-treatment, quantitative expression data from 139 proteins/phosphoproteins from 736 patients across 8 treatment arms of the I-SPY 2 Trial (ClinicalTrials.gov: NCT01042379). We identify predictive fit-for-purpose, mechanism-of-action-based signatures and individual predictive protein biomarker candidates by evaluating associations with pathologic complete response. Elevated levels of cyclin D1, estrogen receptor alpha, and androgen receptor S650 associate with non-response and are biomarkers for global resistance. We uncover protein/phosphoprotein-based signatures that can be utilized both for molecularly rationalized therapeutic selection and for response prediction. We introduce a dichotomous HER2 activation response predictive signature for stratifying triple-negative breast cancer patients to either HER2 or immune checkpoint therapy response as a model for how protein activation signatures provide a different lens to view the molecular landscape of breast cancer and synergize with transcriptomic-defined signatures.
Collapse
Affiliation(s)
- Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O'Grady
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey B Matthews
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Nola Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - W Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula R Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
44
|
Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis. PLANT METHODS 2023; 19:129. [PMID: 37981669 PMCID: PMC10659056 DOI: 10.1186/s13007-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.
Collapse
Affiliation(s)
- Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
45
|
Ikeda H, Miyao S, Nagaoka S, Takashima T, Law SM, Yamamoto T, Kurimoto K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci Alliance 2023; 6:e202301929. [PMID: 37722727 PMCID: PMC10507249 DOI: 10.26508/lsa.202301929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - So Nagaoka
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Takashima
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Sze-Ming Law
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
46
|
Romanens L, Chaskar P, Marcone R, Ryser S, Tille JC, Genolet R, Heimgartner-Hu K, Heimgartner K, Moore JS, Liaudet N, Kaya G, Pittet MJ, Dietrich PY, Delorenzi M, Speiser DE, Harari A, Tsantoulis P, Labidi-Galy SI. Clonal expansion of intra-epithelial T cells in breast cancer revealed by spatial transcriptomics. Int J Cancer 2023; 153:1568-1578. [PMID: 37306359 DOI: 10.1002/ijc.34620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023]
Abstract
The spatial distribution of tumor-infiltrating lymphocytes (TIL) predicts breast cancer outcome and response to systemic therapy, highlighting the importance of an intact tissue structure for characterizing tumors. Here, we present ST-FFPE, a spatial transcriptomics method for the analysis of formalin-fixed paraffin-embedded samples, which opens the possibility of interrogating archival tissue. The method involves extraction, exome capture and sequencing of RNA from different tumor compartments microdissected by laser-capture, and can be used to study the cellular composition of tumor microenvironment. Focusing on triple-negative breast cancer (TNBC), we characterized T cells, B cells, dendritic cells, fibroblasts and endothelial cells in both stromal and intra-epithelial compartments. We found a highly variable spatial distribution of immune cell subsets among tumors. This analysis revealed that the immune repertoires of intra-epithelial T and B cells were consistently less diverse and more clonal than those of stromal T and B cells. T-cell receptor (TCR) sequencing confirmed a reduced diversity and higher clonality of intra-epithelial T cells relative to the corresponding stromal T cells. Analysis of the top 10 dominant clonotypes in the two compartments showed a majority of shared but also some unique clonotypes both in stromal and intra-epithelial T cells. Hyperexpanded clonotypes were more abundant among intra-epithelial than stromal T cells. These findings validate the ST-FFPE method and suggest an accumulation of antigen-specific T cells within tumor core. Because ST-FFPE is applicable for analysis of previously collected tissue samples, it could be useful for rapid assessment of intratumoral cellular heterogeneity in multiple disease and treatment settings.
Collapse
Affiliation(s)
- Lou Romanens
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Prasad Chaskar
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Rachel Marcone
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Ryser
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Jean-Christophe Tille
- Department of Diagnosis, Division of Clinical Pathology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Raphael Genolet
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Ketty Heimgartner-Hu
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Killian Heimgartner
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Jonathan S Moore
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
| | - Nicolas Liaudet
- Bioimaging Core Facility, Faculty of Medicine, University of Geneva, Genève, Switzerland
| | - Gürkan Kaya
- Department of Diagnosis, Division of Clinical Pathology, Hôpitaux Universitaires de Genève, Genève, Switzerland
- Department of Medicine, Division of Dermatology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Mikael J Pittet
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Genève, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Pierre-Yves Dietrich
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Swiss Cancer Center Leman, Lausanne, Switzerland
- AGORA Cancer Center, Lausanne, Switzerland
| | - Petros Tsantoulis
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Sana Intidhar Labidi-Galy
- Faculty of Medicine, Department of Medicine and Center of Translational Research in Onco-Hematology, University of Geneva, Swiss Cancer Center Leman, Genève, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Genève, Switzerland
| |
Collapse
|
47
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
48
|
Carraro C, Bonaguro L, Srinivasa R, van Uelft M, Isakzai V, Schulte-Schrepping J, Gambhir P, Elmzzahi T, Montgomery JV, Hayer H, Li Y, Theis H, Kraut M, Mahbubani KT, Aschenbrenner AC, König I, Fava E, Fried HU, De Domenico E, Beyer M, Saglam A, Schultze JL. Chromatin accessibility profiling of targeted cell populations with laser capture microdissection coupled to ATAC-seq. CELL REPORTS METHODS 2023; 3:100598. [PMID: 37776856 PMCID: PMC10626193 DOI: 10.1016/j.crmeth.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Rachana Srinivasa
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Martina van Uelft
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Victoria Isakzai
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Prerna Gambhir
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tarek Elmzzahi
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Jessica V Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Hannah Hayer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Yuanfang Li
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Heidi Theis
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Michael Kraut
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Ireen König
- Core Research Facilities and Services, Light Microscope Facility (LMF), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Eugenio Fava
- Core Research Facilities and Services, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Hans-Ulrich Fried
- Core Research Facilities and Services, Light Microscope Facility (LMF), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany; Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Adem Saglam
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany.
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| |
Collapse
|
49
|
Madhu B, Miller BM, Levy M. Single-cell analysis and spatial resolution of the gut microbiome. Front Cell Infect Microbiol 2023; 13:1271092. [PMID: 37860069 PMCID: PMC10582963 DOI: 10.3389/fcimb.2023.1271092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Over the past decade it has become clear that various aspects of host physiology, metabolism, and immunity are intimately associated with the microbiome and its interactions with the host. Specifically, the gut microbiome composition and function has been shown to play a critical role in the etiology of different intestinal and extra-intestinal diseases. While attempts to identify a common pattern of microbial dysbiosis linked with these diseases have failed, multiple studies show that bacterial communities in the gut are spatially organized and that disrupted spatial organization of the gut microbiome is often a common underlying feature of disease pathogenesis. As a result, focus over the last few years has shifted from analyzing the diversity of gut microbiome by sequencing of the entire microbial community, towards understanding the gut microbiome in spatial context. Defining the composition and spatial heterogeneity of the microbiome is critical to facilitate further understanding of the gut microbiome ecology. Development in single cell genomics approach has advanced our understanding of microbial community structure, however, limitations in approaches exist. Single cell genomics is a very powerful and rapidly growing field, primarily used to identify the genetic composition of microbes. A major challenge is to isolate single cells for genomic analyses. This review summarizes the different approaches to study microbial genomes at single-cell resolution. We will review new techniques for microbial single cell sequencing and summarize how these techniques can be applied broadly to answer many questions related to the microbiome composition and spatial heterogeneity. These methods can be used to fill the gaps in our understanding of microbial communities.
Collapse
Affiliation(s)
| | | | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Nordmann TM, Schweizer L, Metousis A, Thielert M, Rodriguez E, Rahbek-Gjerdrum LM, Stadler PC, Bzorek M, Mund A, Rosenberger FA, Mann M. A Standardized and Reproducible Workflow for Membrane Glass Slides in Routine Histology and Spatial Proteomics. Mol Cell Proteomics 2023; 22:100643. [PMID: 37683827 PMCID: PMC10565769 DOI: 10.1016/j.mcpro.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Defining the molecular phenotype of single cells in situ is key for understanding tissue architecture in health and disease. Advanced imaging platforms have recently been joined by spatial omics technologies, promising unparalleled insights into the molecular landscape of biological samples. Furthermore, high-precision laser microdissection (LMD) of tissue on membrane glass slides is a powerful method for spatial omics technologies and single-cell type spatial proteomics in particular. However, current histology protocols have not been compatible with glass membrane slides and LMD for automated staining platforms and routine histology procedures. This has prevented the combination of advanced staining procedures with LMD. In this study, we describe a novel method for handling glass membrane slides that enables automated eight-color multiplexed immunofluorescence staining and high-quality imaging followed by precise laser-guided extraction of single cells. The key advance is the glycerol-based modification of heat-induced epitope retrieval protocols, termed "G-HIER." We find that this altered antigen-retrieval solution prevents membrane distortion. Importantly, G-HIER is fully compatible with current antigen retrieval workflows and mass spectrometry-based proteomics and does not affect proteome depth or quality. To demonstrate the versatility of G-HIER for spatial proteomics, we apply the recently introduced deep visual proteomics technology to perform single-cell type analysis of adjacent suprabasal and basal keratinocytes of human skin. G-HIER overcomes previous incompatibility of standard and advanced staining protocols with membrane glass slides and enables robust integration with routine histology procedures, high-throughput multiplexed imaging, and sophisticated downstream spatial omics technologies.
Collapse
Affiliation(s)
- Thierry M Nordmann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lisa Schweizer
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Metousis
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marvin Thielert
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Edwin Rodriguez
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Andreas Mund
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|