1
|
Sandoval IM, Kelley CM, Bernal-Conde LD, Steece-Collier K, Marmion DJ, Davidsson M, Crosson SM, Boye SL, Boye SE, Manfredsson FP. Engineered AAV capsid transport mutants overcome transduction deficiencies in the aged CNS. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102332. [PMID: 39445231 PMCID: PMC11497394 DOI: 10.1016/j.omtn.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapy has enjoyed great successes over the past decade, with Food and Drug Administration-approved therapeutics and a robust clinical pipeline. Nonetheless, barriers to successful translation remain. For example, advanced age is associated with impaired brain transduction, with the diminution of infectivity depending on anatomical region and capsid. Given that CNS gene transfer is often associated with neurodegenerative diseases where age is the chief risk factor, we sought to better understand the causes of this impediment. We assessed two AAV variants hypothesized to overcome factors negatively impacting transduction in the aged brain; specifically, changes in extracellular and cell-surface glycans, and intracellular transport. We evaluated a heparin sulfate proteoglycan null variant with or without mutations enhancing intracellular transport. Vectors were injected into the striatum of young adult or aged rats to address whether improving extracellular diffusion, removing glycan receptor dependence, or improving intracellular transport are important factors in transducing the aged brain. We found that, regardless of the viral capsid, there was a reduction in many of our metrics of transduction in the aged brain. However, the transport mutant was less sensitive to age, suggesting that changes in the cellular transport of AAV capsids are a key factor in age-related transduction deficiency.
Collapse
Affiliation(s)
- Ivette M. Sandoval
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christy M. Kelley
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Luis Daniel Bernal-Conde
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49506, USA
| | - David J. Marmion
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Marcus Davidsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sean M. Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Fredric P. Manfredsson
- Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| |
Collapse
|
2
|
Calton MA, Croze RH, Burns C, Beliakoff G, Vazin T, Szymanski P, Schmitt C, Klein A, Leong M, Quezada M, Holt J, Bolender G, Barglow K, Khoday D, Mason T, Delaria K, Hassanipour M, Kotterman M, Khanani AM, Schaffer D, Francis P, Kirn D. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39620832 PMCID: PMC11614000 DOI: 10.1167/iovs.65.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Intravitreal delivery of therapeutic transgenes to the retina via engineered viral vectors can provide sustained local concentrations of therapeutic proteins and thus potentially reduce the treatment burden and improve long-term vision outcomes for patients with neovascular (wet) age-related macular degeneration (AMD), diabetic macular edema (DME), and diabetic retinopathy. Methods We performed directed evolution in nonhuman primates (NHP) to invent an adeno-associated viral (AAV) variant (R100) with the capacity to cross vitreoretinal barriers and transduce all regions and layers of the retina following intravitreal injection. We then engineered 4D-150, an R100-based genetic medicine carrying 2 therapeutic transgenes: a codon-optimized sequence encoding aflibercept, a recombinant protein that inhibits VEGF-A, VEGF-B, and PlGF, and a microRNA sequence that inhibits expression of VEGF-C. Transduction, transgene expression, and biological activity were characterized in human retinal cells in vitro and in NHPs. Results R100 demonstrated superior retinal cell transduction in vitro and in vivo compared to AAV2, a commonly used wild-type AAV serotype in retinal gene therapies. Transduction of human retinal pigment epithelial cells in vitro by 4D-150 resulted in dose-dependent transgene expression and corresponding reductions in VEGF-A and VEGF-C. Intravitreal administration of 4D-150 to NHPs was well tolerated and led to robust retinal expression of both transgenes. In a primate model of laser-induced choroidal neovascularization, 4D-150 completely prevented clinically relevant angiogenic lesions at all tested doses. Conclusions These findings support further development of 4D-150. Clinical trials are underway to establish the safety and efficacy of 4D-150 in individuals with wet AMD and DME.
Collapse
Affiliation(s)
| | - Roxanne H. Croze
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Christian Burns
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Ghezal Beliakoff
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Tandis Vazin
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Paul Szymanski
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Austin Klein
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Meredith Leong
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Melissa Quezada
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Jenny Holt
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Gabe Bolender
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Devi Khoday
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Thomas Mason
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | | | | | - Arshad M. Khanani
- Sierra Eye Associates, Reno, Nevada, United States
- University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - David Schaffer
- University of California, Berkeley, California, United States
| | - Peter Francis
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - David Kirn
- 4D Molecular Therapeutics, Emeryville, California, United States
- University of California, Berkeley, California, United States
| |
Collapse
|
3
|
Pham Q, Glicksman J, Chatterjee A. Chemical approaches to probe and engineer AAV vectors. NANOSCALE 2024; 16:13820-13833. [PMID: 38978480 PMCID: PMC11271820 DOI: 10.1039/d4nr01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Adeno-associated virus (AAV) has emerged as the most promising vector for in vivo human gene therapy, with several therapeutic approvals in the last few years and countless more under development. Underlying this remarkable success are several attractive features that AAV offers, including lack of pathogenicity, low immunogenicity, long-term gene expression without genomic integration, the ability to infect both dividing and non-dividing cells, etc. However, the commonly used wild-type AAV capsids in therapeutic development present significant challenges, including inadequate tissue specificity and the need for large doses to attain therapeutic effectiveness, raising safety concerns. Additionally, significant preexisting adaptive immunity against most natural capsids, and the development of such anti-capsid immunity after the first treatment, represent major challenges. Strategies to engineer the AAV capsid are critically needed to address these challenges and unlock the full promise of AAV gene therapy. Chemical modification of the AAV capsid has recently emerged as a powerful new approach to engineer its properties. Unlike genetic strategies, which can be more disruptive to the delicate capsid assembly and packaging processes, "late-stage" chemical modification of the assembled capsid-whether at natural amino acid residues or site-specifically installed noncanonical amino acid residues-often enables a versatile approach to introducing new properties to the capsid. This review summarizes the significant recent progress in AAV capsid engineering strategies, with a particular focus on chemical modifications in advancing the next generation of AAV-based gene therapies.
Collapse
Affiliation(s)
- Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jake Glicksman
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
4
|
Guo J, Lin LF, Oraskovich SV, Rivera de Jesús JA, Listgarten J, Schaffer DV. Computationally guided AAV engineering for enhanced gene delivery. Trends Biochem Sci 2024; 49:457-469. [PMID: 38531696 PMCID: PMC11456259 DOI: 10.1016/j.tibs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Gene delivery vehicles based on adeno-associated viruses (AAVs) are enabling increasing success in human clinical trials, and they offer the promise of treating a broad spectrum of both genetic and non-genetic disorders. However, delivery efficiency and targeting must be improved to enable safe and effective therapies. In recent years, considerable effort has been invested in creating AAV variants with improved delivery, and computational approaches have been increasingly harnessed for AAV engineering. In this review, we discuss how computationally designed AAV libraries are enabling directed evolution. Specifically, we highlight approaches that harness sequences outputted by next-generation sequencing (NGS) coupled with machine learning (ML) to generate new functional AAV capsids and related regulatory elements, pushing the frontier of what vector engineering and gene therapy may achieve.
Collapse
Affiliation(s)
- Jingxuan Guo
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Li F Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sydney V Oraskovich
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA
| | - Julio A Rivera de Jesús
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA 94720, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
| | - David V Schaffer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Feng X, Cui X, Zhang LS, Ye C, Wang P, Zhong Y, Wu T, Zheng Z, He C. Sequencing of N 6-methyl-deoxyadenosine at single-base resolution across the mammalian genome. Mol Cell 2024; 84:596-610.e6. [PMID: 38215754 PMCID: PMC10872247 DOI: 10.1016/j.molcel.2023.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA; Department of Chemistry, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chang Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuhao Zhong
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Nemoto T, Ocari T, Planul A, Tekinsoy M, Zin EA, Dalkara D, Ferrari U. ACIDES: on-line monitoring of forward genetic screens for protein engineering. Nat Commun 2023; 14:8504. [PMID: 38148337 PMCID: PMC10751290 DOI: 10.1038/s41467-023-43967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Forward genetic screens of mutated variants are a versatile strategy for protein engineering and investigation, which has been successfully applied to various studies like directed evolution (DE) and deep mutational scanning (DMS). While next-generation sequencing can track millions of variants during the screening rounds, the vast and noisy nature of the sequencing data impedes the estimation of the performance of individual variants. Here, we propose ACIDES that combines statistical inference and in-silico simulations to improve performance estimation in the library selection process by attributing accurate statistical scores to individual variants. We tested ACIDES first on a random-peptide-insertion experiment and then on multiple public datasets from DE and DMS studies. ACIDES allows experimentalists to reliably estimate variant performance on the fly and can aid protein engineering and research pipelines in a range of applications, including gene therapy.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France.
- Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto, 606-8501, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tommaso Ocari
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France
| | - Arthur Planul
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France
| | - Muge Tekinsoy
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France
| | - Emilia A Zin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France
| | - Deniz Dalkara
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France.
| | - Ulisse Ferrari
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
7
|
Huang Q, Chan KY, Lou S, Keyes C, Wu J, Botticello-Romero NR, Zheng Q, Johnston J, Mills A, Brauer PP, Clouse G, Pacouret S, Harvey JW, Beddow T, Hurley JK, Tobey IG, Powell M, Chen AT, Barry AJ, Eid FE, Chan YA, Deverman BE. An AAV capsid reprogrammed to bind human Transferrin Receptor mediates brain-wide gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572615. [PMID: 38187643 PMCID: PMC10769326 DOI: 10.1101/2023.12.20.572615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Shan Lou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Casey Keyes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | | | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jencilin Johnston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Allan Mills
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Gabrielle Clouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jenna K. Hurley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Megan Powell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Andrew J. Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
- Department of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University; Cairo, Egypt
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| |
Collapse
|
8
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
9
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
10
|
Öztürk BE, Johnson ME, Kleyman M, Turunç S, He J, Jabalameli S, Xi Z, Visel M, Dufour VL, Iwabe S, Pompeo Marinho LFL, Aguirre GD, Sahel JA, Schaffer DV, Pfenning AR, Flannery JG, Beltran WA, Stauffer WR, Byrne LC. scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution. eLife 2021; 10:64175. [PMID: 34664552 PMCID: PMC8612735 DOI: 10.7554/elife.64175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Adeno-associated virus (AAV)-mediated gene therapies are rapidly advancing to the clinic, and AAV engineering has resulted in vectors with increased ability to deliver therapeutic genes. Although the choice of vector is critical, quantitative comparison of AAVs, especially in large animals, remains challenging. Methods Here, we developed an efficient single-cell AAV engineering pipeline (scAAVengr) to simultaneously quantify and rank efficiency of competing AAV vectors across all cell types in the same animal. Results To demonstrate proof-of-concept for the scAAVengr workflow, we quantified - with cell-type resolution - the abilities of naturally occurring and newly engineered AAVs to mediate gene expression in primate retina following intravitreal injection. A top performing variant identified using this pipeline, K912, was used to deliver SaCas9 and edit the rhodopsin gene in macaque retina, resulting in editing efficiency similar to infection rates detected by the scAAVengr workflow. scAAVengr was then used to identify top-performing AAV variants in mouse brain, heart, and liver following systemic injection. Conclusions These results validate scAAVengr as a powerful method for development of AAV vectors. Funding This work was supported by funding from the Ford Foundation, NEI/NIH, Research to Prevent Blindness, Foundation Fighting Blindness, UPMC Immune Transplant and Therapy Center, and the Van Sloun fund for canine genetic research.
Collapse
Affiliation(s)
- Bilge E Öztürk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Molly E Johnson
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Michael Kleyman
- Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, United States
| | - Serhan Turunç
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Jing He
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Sara Jabalameli
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Meike Visel
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Valérie L Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Simone Iwabe
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Luis Felipe L Pompeo Marinho
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Chemical Engineering, University of California, Berkeley, Berkeley, United States
| | - Andreas R Pfenning
- Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Vision Science, Herbert Wertheim School of Optometry, University of California Berkeley, Berkeley, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
11
|
Wang Q, Nambiar K, Wilson JM. Isolating Natural Adeno-Associated Viruses from Primate Tissues with a High-Fidelity Polymerase. Hum Gene Ther 2021; 32:1439-1449. [PMID: 34448594 DOI: 10.1089/hum.2021.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viruses (AAVs) are advantageous as gene-transfer vectors due to their favorable biological and safety characteristics, with discovering novel AAV variants being key to improving this treatment platform. To date, researchers have isolated over 200 AAVs from natural sources using PCR-based methods. We compared two modern DNA polymerases and their utility for isolating and amplifying the AAV genome. Compared to the HotStar polymerase, the higher-fidelity Q5 Hot Start High-Fidelity DNA Polymerase provided more precise and accurate amplification of the input AAV sequences. The lower-fidelity HotStar DNA polymerase introduced mutations during the isolation and amplification processes, thus generating multiple mutant capsids with variable bioactivity compared to the input AAV gene. The Q5 polymerase enabled the successful discovery of novel AAV capsid sequences from human and nonhuman primate tissue sources. Novel AAV sequences from these sources showed evidence of positive evolutionary selection. This study highlights the importance of using the highest fidelity DNA polymerases available to accurately isolate and characterize AAV genomes from natural sources to ultimately develop more effective gene therapy vectors.
Collapse
Affiliation(s)
- Qiang Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kalyani Nambiar
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Gallo G, Conceicao C, Tsirigoti C, Willett B, Graham SC, Bailey D. Application of error-prone PCR to functionally probe the morbillivirus Haemagglutinin protein. J Gen Virol 2021; 102. [PMID: 33739251 PMCID: PMC8290269 DOI: 10.1099/jgv.0.001580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The enveloped morbilliviruses utilise conserved proteinaceous receptors to enter host cells: SLAMF1 or Nectin-4. Receptor binding is initiated by the viral attachment protein Haemagglutinin (H), with the viral Fusion protein (F) driving membrane fusion. Crystal structures of the prototypic morbillivirus measles virus H with either SLAMF1 or Nectin-4 are available and have served as the basis for improved understanding of this interaction. However, whether these interactions remain conserved throughout the morbillivirus genus requires further characterisation. Using a random mutagenesis approach, based on error-prone PCR, we targeted the putative receptor binding site for SLAMF1 interaction on peste des petits ruminants virus (PPRV) H, identifying mutations that inhibited virus-induced cell-cell fusion. These data, combined with structural modelling of the PPRV H and ovine SLAMF1 interaction, indicate this region is functionally conserved across all morbilliviruses. Error-prone PCR provides a powerful tool for functionally characterising functional domains within viral proteins.
Collapse
Affiliation(s)
- Giulia Gallo
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | | | | | - Brian Willett
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| |
Collapse
|
13
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
14
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
15
|
O'Carroll SJ, Cook WH, Young D. AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy. Front Mol Neurosci 2021; 13:618020. [PMID: 33505247 PMCID: PMC7829478 DOI: 10.3389/fnmol.2020.618020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Different glial cell types are found throughout the central (CNS) and peripheral nervous system (PNS), where they have important functions. These cell types are also involved in nervous system pathology, playing roles in neurodegenerative disease and following trauma in the brain and spinal cord (astrocytes, microglia, oligodendrocytes), nerve degeneration and development of pain in peripheral nerves (Schwann cells, satellite cells), retinal diseases (Müller glia) and gut dysbiosis (enteric glia). These cell type have all been proposed as potential targets for treating these conditions. One approach to target these cell types is the use of gene therapy to modify gene expression. Adeno-associated virus (AAV) vectors have been shown to be safe and effective in targeting cells in the nervous system and have been used in a number of clinical trials. To date, a number of studies have tested the use of different AAV serotypes and cell-specific promoters to increase glial cell tropism and expression. However, true glial-cell specific targeting for a particular glial cell type remains elusive. This review provides an overview of research into developing glial specific gene therapy and discusses some of the issues that still need to be addressed to make glial cell gene therapy a clinical reality.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Spinal Cord Injury Research Group, Department of Anatomy and Medical Imaging, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William H Cook
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah Young
- Molecular Neurotherapeutics Group, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Byrne LC, Day TP, Visel M, Strazzeri JA, Fortuny C, Dalkara D, Merigan WH, Schaffer DV, Flannery JG. In vivo-directed evolution of adeno-associated virus in the primate retina. JCI Insight 2020; 5:135112. [PMID: 32271719 DOI: 10.1172/jci.insight.135112] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Efficient adeno-associated virus-mediated (AAV-mediated) gene delivery remains a significant obstacle to effective retinal gene therapies. Here, we apply directed evolution - guided by deep sequencing and followed by direct in vivo secondary selection of high-performing vectors with a GFP-barcoded library - to create AAV viral capsids with the capability to deliver genes to the outer retina in primates. A replication-incompetent library, produced via providing rep in trans, was created to mitigate risk of AAV propagation. Six rounds of in vivo selection with this library in primates - involving intravitreal library administration, recovery of genomes from outer retina, and extensive next-generation sequencing of each round - resulted in vectors with redirected tropism to the outer retina and increased gene delivery efficiency to retinal cells. These viral vectors expand the toolbox of vectors available for primate retina, and they may enable less invasive delivery of therapeutic genes to patients, potentially offering retina-wide infection at a similar dosage to vectors currently in clinical use.
Collapse
Affiliation(s)
- Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Timothy P Day
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Meike Visel
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer A Strazzeri
- Center for Visual Science, David and Ilene Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Cécile Fortuny
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Deniz Dalkara
- INSERM U968, Institut de la Vision, Paris, France; UMRS968, Institut de la Vision, Sorbonne Universités, Pierre et Marie Curie University/University Paris 6, Centre National de la Recherche Scientifique UMR7210, Paris, France
| | - William H Merigan
- Center for Visual Science, David and Ilene Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
Schmit PF, Pacouret S, Zinn E, Telford E, Nicolaou F, Broucque F, Andres-Mateos E, Xiao R, Penaud-Budloo M, Bouzelha M, Jaulin N, Adjali O, Ayuso E, Vandenberghe LH. Cross-Packaging and Capsid Mosaic Formation in Multiplexed AAV Libraries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:107-121. [PMID: 31909084 PMCID: PMC6938944 DOI: 10.1016/j.omtm.2019.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
Abstract
Generation and screening of libraries of adeno-associated virus (AAV) variants have emerged as a powerful method for identifying novel capsids for gene therapy applications. For the majority of libraries, vast population diversity requires multiplexed production, in which a library of inverted terminal repeat (ITR)-containing plasmid variants is transfected together into cells to generate the viral library. This process has the potential to be confounded by cross-packaging and mosaicism, in which particles are comprised of genomes and capsid monomers derived from different library members. Here, we investigate the prevalence of cross-packaging and mosaicism in simplified, minimal libraries using novel assays designed to assess capsid composition and packaging fidelity. We show that AAV library variants are prone to cross-packaging and capsid mosaic formation when produced at high plasmid levels, although to a lesser extent than in a recombinant context. We also provide experimental evidence that dilution of input library DNA significantly increases capsid monomer homogeneity and increases capsid:genome correlation in AAV libraries. Lastly, we determine that similar dilution methods yield higher-quality libraries when used for in vivo screens. Together, these findings quantitatively characterized the prevalence of cross-packaging and mosaicism in AAV libraries and established conditions that minimize related noise in subsequent screens.
Collapse
Affiliation(s)
- Pauline F Schmit
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Simon Pacouret
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA.,INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Elizabeth Telford
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Fotini Nicolaou
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Frédéric Broucque
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Mohammed Bouzelha
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Oumeya Adjali
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
Hanlon KS, Meltzer JC, Buzhdygan T, Cheng MJ, Sena-Esteves M, Bennett RE, Sullivan TP, Razmpour R, Gong Y, Ng C, Nammour J, Maiz D, Dujardin S, Ramirez SH, Hudry E, Maguire CA. Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:320-332. [PMID: 31788496 PMCID: PMC6881693 DOI: 10.1016/j.omtm.2019.10.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent and sustained in two mouse strains (C57BL/6 and BALB/c), making it a highly useful capsid for CNS transduction of mice. Future work in large animal models will test the translation potential of AAV-F.
Collapse
Affiliation(s)
- Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Jonah C Meltzer
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Tetyana Buzhdygan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming J Cheng
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | | | - Rachel E Bennett
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Timothy P Sullivan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Roshanak Razmpour
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yi Gong
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Carrie Ng
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Josette Nammour
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Maiz
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Simon Dujardin
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Shriners Hospital's Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Eloise Hudry
- Harvard Medical School, Boston, MA 02115, USA.,Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17:641-659. [DOI: 10.1038/nrd.2018.110] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Vaccinia Virus Shuffling: deVV5, a Novel Chimeric Poxvirus with Improved Oncolytic Potency. Cancers (Basel) 2018; 10:cancers10070231. [PMID: 29996551 PMCID: PMC6070928 DOI: 10.3390/cancers10070231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/04/2023] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising approach for cancer treatment with the potential to be less toxic and more efficient than classic cancer therapies. Various types of OVs in clinical development, including Vaccinia virus (VACV)-derived OVs, have shown good safety profiles, but limited therapeutic efficacy as monotherapy in some cancer models. Many different methods have been employed to improve the oncolytic potency of OVs. In this study, we used a directed evolution process, pooling different strains of VACV, including Copenhagen, Western Reserve and Wyeth strains and the attenuated modified vaccinia virus Ankara (MVA), to generate a new recombinant poxvirus with increased oncolytic properties. Through selective pressure, a chimeric VACV, deVV5, with increased cancer cell killing capacity and tumor selectivity in vitro was derived. The chimeric viral genome contains sequences of all parental strains. To further improve the tumor selectivity and anti-tumor activity of deVV5, we generated a thymidine kinase (TK)-deleted chimeric virus armed with the suicide gene FCU1. This TK-deleted virus, deVV5-fcu1 replicated efficiently in human tumor cells, and was notably attenuated in normal primary cells. These studies demonstrate the potential of directed evolution as an efficient way to generate recombinant poxviruses with increased oncolytic potency, and with high therapeutic index to improve cancer therapy.
Collapse
|
21
|
Sun S, Schaffer DV. Engineered viral vectors for functional interrogation, deconvolution, and manipulation of neural circuits. Curr Opin Neurobiol 2018; 50:163-170. [PMID: 29614429 PMCID: PMC5984719 DOI: 10.1016/j.conb.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022]
Abstract
Optimization of traditional replication-competent viral tracers has granted access to immediate synaptic partners of target neuronal populations, enabling the dissection of complex brain circuits into functional neural pathways. The excessive virulence of most conventional tracers, however, impedes their utility in revealing and genetically perturbing cellular function on long time scales. As a promising alternative, the natural capacity of adeno-associated viral (AAV) vectors to safely mediate persistent and robust gene expression has stimulated strong interest in adapting them for sparse neuronal labeling and physiological studies. Furthermore, increasingly refined engineering strategies have yielded novel AAV variants with enhanced target specificity, transduction, and retrograde trafficking in the CNS. These potent vectors offer new opportunities for characterizing the identity and connectivity of single neurons within immense networks and modulating their activity via robust delivery of functional genetic tools.
Collapse
Affiliation(s)
- Sabrina Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
22
|
Herrmann AK, Grimm D. High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious. J Mol Biol 2018; 430:2626-2640. [PMID: 29782834 DOI: 10.1016/j.jmb.2018.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Over 50 years after its initial description, adeno-associated virus (AAV) remains the most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology but, combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity, also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While items i/ii are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, item iii exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use.
Collapse
Affiliation(s)
- Anne-Kathrin Herrmann
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Cluster of Excellence CellNetworks,Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord 2018; 10:16. [PMID: 29776328 PMCID: PMC5960126 DOI: 10.1186/s11689-018-9234-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders, as a class of diseases, have been particularly difficult to treat even when the underlying cause(s), such as genetic alterations, are understood. What treatments do exist are generally not curative and instead seek to improve quality of life for affected individuals. The advent of gene therapy via gene replacement offers the potential for transformative therapies to slow or even stop disease progression for current patients and perhaps minimize or prevent the appearance of symptoms in future patients. MAIN BODY This review focuses on adeno-associated virus (AAV) gene therapies for diseases of the central nervous system. An overview of advances in AAV vector design for therapy is provided, along with a description of current strategies to develop AAV vectors with tailored tropism. Next, progress towards treatment of neurodegenerative diseases is presented at both the pre-clinical and clinical stages, focusing on a few select diseases to highlight broad categories of therapeutic parameters. Special considerations for more challenging cases are then discussed in addition to the immunological aspects of gene therapy. CONCLUSION With the promising clinical trial results that have been observed for the latest AAV gene therapies and continued pre-clinical successes, the question is no longer whether a therapy can be developed for certain neurodevelopmental disorders, but rather, how quickly.
Collapse
Affiliation(s)
- Erik Allen Lykken
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Charles Shyng
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Reginald James Edwards
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Alejandra Rozenberg
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Steven James Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
24
|
Wooley DP, Sharma P, Weinstein JR, Kotha Lakshmi Narayan P, Schaffer DV, Excoffon KJDA. A directed evolution approach to select for novel Adeno-associated virus capsids on an HIV-1 producer T cell line. J Virol Methods 2017; 250:47-54. [PMID: 28918073 PMCID: PMC6112236 DOI: 10.1016/j.jviromet.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022]
Abstract
A directed evolution approach was used to select for Adeno-associated virus (AAV) capsids that would exhibit more tropism toward an HIV-1 producer T cell line with the long-term goal of developing improved gene transfer vectors. A library of AAV variants was used to infect H9 T cells previously infected or uninfected by HIV-1 followed by AAV amplification with wild-type adenovirus. Six rounds of biological selection were performed, including negative selection and diversification after round three. The H9 T cells were successfully infected with all three wild-type viruses (AAV, adenovirus, and HIV-1). Four AAV cap mutants best representing the small number of variants emerging after six rounds of selection were chosen for further study. These mutant capsids were used to package an AAV vector and subsequently used to infect H9 cells that were previously infected or uninfected by HIV-1. A quantitative polymerase chain reaction assay was performed to measure cell-associated AAV genomes. Two of the four cap mutants showed a significant increase in the amount of cell-associated genomes as compared to wild-type AAV2. This study shows that directed evolution can be performed successfully to select for mutants with improved tropism for a T cell line in the presence of HIV-1.
Collapse
Affiliation(s)
- Dawn P Wooley
- Neuroscience, Cell Biology, and Physiology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Priyanka Sharma
- Biological Sciences, Wright State University, Dayton, OH, 45435, USA.
| | - John R Weinstein
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | | - David V Schaffer
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
| | | |
Collapse
|
25
|
In Vivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Mol Ther 2017; 26:304-319. [PMID: 28988711 DOI: 10.1016/j.ymthe.2017.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/17/2023] Open
Abstract
Directed evolution continues to expand the capabilities of complex biomolecules for a range of applications, such as adeno-associated virus vectors for gene therapy; however, advances in library design and selection strategies are key to develop variants that overcome barriers to clinical translation. To address this need, we applied structure-guided SCHEMA recombination of the multimeric adeno-associated virus (AAV) capsid to generate a highly diversified chimeric library with minimal structural disruption. A stringent in vivo Cre-dependent selection strategy was implemented to identify variants that transduce adult neural stem cells (NSCs) in the subventricular zone. A novel variant, SCH9, infected 60% of NSCs and mediated 24-fold higher GFP expression and a 12-fold greater transduction volume than AAV9. SCH9 utilizes both galactose and heparan sulfate as cell surface receptors and exhibits increased resistance to neutralizing antibodies. These results establish the SCHEMA library as a valuable tool for directed evolution and SCH9 as an effective gene delivery vector to investigate subventricular NSCs.
Collapse
|
26
|
Sinn PL, Hwang BY, Li N, Ortiz JLS, Shirazi E, Parekh KR, Cooney AL, Schaffer DV, McCray PB. Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther 2017; 24:674-679. [PMID: 28880020 DOI: 10.1038/gt.2017.78] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Lentiviral vectors pseudotyped with the baculovirus envelope protein GP64 transduce primary cultures of human airway epithelia (HAE) at their apical surface. Our goal in this study was to harness a directed evolution approach to develop a novel envelope glycoprotein with increased transduction properties for HAE. Using error-prone PCR, a library of GP64 mutants was generated and used to prepare a diverse pool of lentiviral virions pseudotyped with GP64 variants. The library was serially passaged on HAE and three GP64 mutations were recovered. Single-, double- and the triple-combination mutant envelope glycoproteins were compared with wild-type GP64 for their ability to transduce HAE. Our results suggest that lentiviral vectors pseudotyped with evolved GP64 transduced HAE with greater efficiency than wild-type GP64. This effect was not observed in primary cultures of porcine airway epithelial cells, suggesting that the directed evolution protocol was species specific. In summary, our studies indicate that serial passage of a GP64 mutant library yielded specific variants with improved HAE cell tropism, yielding tools with the potential to improve the success of gene therapy for airway diseases.
Collapse
Affiliation(s)
- P L Sinn
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - B-Y Hwang
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - N Li
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA
| | - J L S Ortiz
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - E Shirazi
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K R Parekh
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A L Cooney
- Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - D V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - P B McCray
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Kim SH, Lee M, Cho M, Kim IS, Park KI, Lee H, Jang JH. Inverted Quasi-Spherical Droplets on Polydopamine-TiO2
Substrates for Enhancing Gene Delivery. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/18/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Mihyun Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
- Department of Health Sciences and Technology; ETH Zürich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Il-Sun Kim
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Kook In Park
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
28
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
29
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
30
|
Tervo DGR, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 2016; 92:372-382. [PMID: 27720486 PMCID: PMC5872824 DOI: 10.1016/j.neuron.2016.09.021] [Citation(s) in RCA: 873] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- D Gowanlock R Tervo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bum-Yeol Hwang
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarada Viswanathan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Thomas Gaj
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maria Lavzin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Technion Medical School, Bat-Galim, Haifa 3525433, Israel
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Susan Michael
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Elena Kuleshova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia
| | - David Ojala
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cheng-Chiu Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Charles R Gerfen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jackie Schiller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Technion Medical School, Bat-Galim, Haifa 3525433, Israel
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David V Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Alla Y Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
31
|
Abstract
Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.
Collapse
|
32
|
Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, Powers LS, Gansemer ND, Ostedgaard LS, Engelhardt JF, Stoltz DA, Welsh MJ, Sinn PL, Schaffer DV, Zabner J. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 2016; 1:e88728. [PMID: 27699238 DOI: 10.1172/jci.insight.88728] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl- transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.
Collapse
Affiliation(s)
- Benjamin Steines
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David D Dickey
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and
| | - Jamie Bergen
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | - John R Weinstein
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Xiaopeng Li
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Viral S Shah
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Lynda S Ostedgaard
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David A Stoltz
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Michael J Welsh
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Molecular Physiology and Biophysics
| | - Patrick L Sinn
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Howard Hughes Medical Institute, and
| | - David V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Joseph Zabner
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
33
|
Abstract
Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated.
Collapse
Affiliation(s)
- Damien Marsic
- Department of Pediatrics, College of Medicine, University of Florida, 2033 Mowry Road, CGRC 235, Gainesville, FL, 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, College of Medicine, University of Florida, 2033 Mowry Road, CGRC 235, Gainesville, FL, 32610, USA.
| |
Collapse
|
34
|
Wang L, Bell P, Somanathan S, Wang Q, He Z, Yu H, McMenamin D, Goode T, Calcedo R, Wilson JM. Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Mol Ther 2015; 23:1877-87. [PMID: 26412589 PMCID: PMC4700115 DOI: 10.1038/mt.2015.179] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Vectors based on the clade E family member adeno-associated virus (AAV) serotype 8 have shown promise in patients with hemophilia B and have emerged as best in class for human liver gene therapies. We conducted a thorough evaluation of liver-directed gene therapy using vectors based on several natural and engineered capsids including the clade E AAVrh10 and the largely uncharacterized and phylogenically distinct AAV3B. Included in this study was a putatively superior hepatotropic capsid, AAVLK03, which is very similar to AAV3B. Vectors based on these capsids were benchmarked against AAV8 and AAV2 in a number of in vitro and in vivo model systems including C57BL/6 mice, immune-deficient mice that are partially repopulated with human hepatocytes, and nonhuman primates. Our studies in nonhuman primates and human hepatocytes demonstrated high level transduction of the clade E-derived vectors and equally high transduction with vectors based on AAV3B. In contrast to previous reports, AAVLK03 vectors are not superior to either AAV3B or AAV8. Vectors based on AAV3B should be considered for liver-directed gene therapy when administered following, or before, treatment with the serologically distinct clade E vectors.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Suryanarayan Somanathan
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenning He
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Deirdre McMenamin
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tamara Goode
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Santiago-Ortiz J, Ojala DS, Westesson O, Weinstein JR, Wong SY, Steinsapir A, Kumar S, Holmes I, Schaffer DV. AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther 2015; 22:934-46. [PMID: 26186661 PMCID: PMC4509550 DOI: 10.1038/gt.2015.74] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023]
Abstract
Adeno-associated virus (AAV) vectors have achieved clinical efficacy in treating several diseases. However, enhanced vectors are required to extend these landmark successes to other indications and protein engineering approaches may provide the necessary vector improvements to address such unmet medical needs. To generate new capsid variants with potentially enhanced infectious properties and to gain insights into AAV's evolutionary history, we computationally designed and experimentally constructed a putative ancestral AAV library. Combinatorial variations at 32 amino acid sites were introduced to account for uncertainty in their identities. We then analyzed the evolutionary flexibility of these residues, the majority of which have not been previously studied, by subjecting the library to iterative selection on a representative cell line panel. The resulting variants exhibited transduction efficiencies comparable to the most efficient extant serotypes and, in general, ancestral libraries were broadly infectious across the cell line panel, indicating that they favored promiscuity over specificity. Interestingly, putative ancestral AAVs were more thermostable than modern serotypes and did not use sialic acids, galactose or heparan sulfate proteoglycans for cellular entry. Finally, variants mediated 19- to 31-fold higher gene expression in the muscle compared with AAV1, a clinically used serotype for muscle delivery, highlighting their promise for gene therapy.
Collapse
Affiliation(s)
- J Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - D S Ojala
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - O Westesson
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - J R Weinstein
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - S Y Wong
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - A Steinsapir
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - S Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - I Holmes
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - D V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
36
|
Application of chemokine receptor antagonist with stents reduces local inflammation and suppresses cancer growth. Tumour Biol 2015; 36:8637-43. [DOI: 10.1007/s13277-015-3557-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
|
37
|
Zhao Z, Xi H, Xu D, Li C. Transforming growth factor β receptor signaling restrains growth of pancreatic carcinoma cells. Tumour Biol 2015; 36:7711-6. [PMID: 25934336 DOI: 10.1007/s13277-015-3466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/15/2015] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant. Efficient control of cancer growth may substantially improve the survival of PDAC patients. However, no efficient treatments are so far available. Here, we inhibited transforming growth factor β (TGFβ) receptor signaling by overexpression of a key inhibitor of this pathway, SMAD7, in the mouse pancreas, using a recently developed intraductal infusion method. Overexpression of SMAD7 significantly increased growth of both implanted PDAC and PDAC by K-ras modification. Our data thus suggest that TGFβ receptor signaling restrains growth of PDAC, and modulation of TGFβ receptor signaling may be an effective treatment for PDAC.
Collapse
Affiliation(s)
- Zhiming Zhao
- Department of Surgical Oncology, Chinese PLA General Hospital, Beijing, 100853, China. .,Department of Surgical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Hao Xi
- Department of Hepatobiliary Surgery, The Hospital of Shunyi District, Beijing, 101300, China
| | - Dabin Xu
- Department of Surgical Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenggang Li
- Department of Surgical Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
38
|
Xiao X, Guo P, Prasadan K, Shiota C, Peirish L, Fischbach S, Song Z, Gaffar I, Wiersch J, El-Gohary Y, Husain SZ, Gittes GK. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes. Nat Protoc 2014; 9:2719-24. [PMID: 25356582 PMCID: PMC4734891 DOI: 10.1038/nprot.2014.183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ping Guo
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lauren Peirish
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shane Fischbach
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zewen Song
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iljana Gaffar
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John Wiersch
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yousef El-Gohary
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sohail Z Husain
- Division of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Abstract
Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted 30 years ago for use as a gene transfer vehicle. It is capable of transducing a wide range of species and tissues in vivo with no evidence of toxicity, and it generates relatively mild innate and adaptive immune responses. We review the basic biology of AAV, the history of progress in AAV vector technology, and some of the clinical and research applications where AAV has shown success.
Collapse
Affiliation(s)
- R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas Muzyczka
- Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
40
|
Weinberg MS, Nicolson S, Bhatt AP, McLendon M, Li C, Samulski RJ. Recombinant adeno-associated virus utilizes cell-specific infectious entry mechanisms. J Virol 2014; 88:12472-84. [PMID: 25142580 PMCID: PMC4248914 DOI: 10.1128/jvi.01971-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Understanding the entry and trafficking mechanism(s) of recombinant adeno-associated virus (rAAV) into host cells can lead to evolution in capsid and vector design and delivery methods, resulting in enhanced transduction and therapeutic gene expression. Variability of findings regarding the early entry pathway of rAAV supports the possibility that rAAV, like other viruses, can utilize more than one infectious entry pathway. We tested whether inhibition of macropinocytosis impacted rAAV transduction of HeLa cells compared to hepatocellular carcinoma cell lines. We found that macropinocytosis inhibitor cytochalasin D blocked rAAV transduction of HeLa cells (>2-fold) but enhanced (10-fold) transduction in HepG2 and Huh7 lines. Similar results were obtained with another macropinocytosis inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The augmented transduction was due to neither viral binding nor promoter activity, affected multiple rAAV serotypes (rAAV2, rAAV2-R585E, and rAAV8), and influenced single-stranded and self-complementary virions to comparable extents. Follow-up studies using CDC42 inhibitor ML141 and p21-activated kinase 1 (PAK1) siRNA knockdown also resulted in enhanced HepG2 transduction. Microscopy revealed that macropinocytosis inhibition correlated with expedited nuclear entry of the rAAV virions into HepG2 cells. Enhancement of hepatocellular rAAV transduction extended to the mouse liver in vivo (4-fold enhancement) but inversely blocked heart tissue transduction (13-fold). This evidence of host cell-specific rAAV entry pathways confers a potent means for controlling and enhancing vector delivery and could help unify the divergent accounts of rAAV cellular entry mechanisms. IMPORTANCE There is a recognized need for improved rAAV vector targeting strategies that result in delivery of fewer total particles, averting untoward toxicity and/or an immune response against the vector. A critical step in rAAV transduction is entry and early trafficking through the host cellular machinery, the mechanisms of which are under continued study. However, should the early entry and trafficking mechanisms of rAAV differ across virus serotype or be dependent on host cell environment, this could expand our ability to target particular cells and tissue for selective transduction. Thus, the observation that inhibiting macropinocytosis leads to cell-specific enhancement or inhibition of rAAV transduction that extends to the organismic level exposes a new means of modulating vector targeting.
Collapse
Affiliation(s)
- Marc S Weinberg
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sarah Nicolson
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aadra P Bhatt
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael McLendon
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Kim E, Lee S, Hong S, Jin G, Kim M, Park KI, Lee H, Jang JH. Sticky "delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8288-8294. [PMID: 24827581 DOI: 10.1021/am5011095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlled release of biosuprastructures, such as viruses, from surfaces has been a challenging task in providing efficient ex vivo gene delivery. Conventional controlled viral release approaches have demonstrated low viral immobilization and burst release, inhibiting delivery efficiency. Here, a highly powerful substrate-mediated viral delivery system was designed by combining two key components that have demonstrated great potential in the fields of gene therapy and surface chemistry, respectively: adeno-associated viral (AAV) vectors and adhesive catecholamine surfaces. The introduction of a nanoscale thin coating of catecholamines, poly(norepinephrine) (pNE) or poly(dopamine) (pDA) to provide AAV adhesion followed by human neural stem cell (hNSC) culture on sticky solid surfaces exhibited unprecedented results: approximately 90% loading vs 25% (AAV_bare surface), no burst release, sustained release at constant rates, approximately 70% infection vs 20% (AAV_bare surface), and rapid internalization. Importantly, the sticky catecholamine-mediated AAV delivery system successfully induced a physiological response from hNSCs, cellular proliferation by a single-shot of AAV encoding fibroblast growth factor-2 (FGF-2), which is typically achieved by multiple treatments with expensive FGF-2 proteins. By combining the adhesive material-independent surface functionalization characters of pNE and pDA, this new sticky "delivering-from" gene delivery platform will make a significant contribution to numerous fields, including tissue engineering, gene therapy, and stem cell therapy.
Collapse
Affiliation(s)
- Eunmi Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University , 50 Yonsei-Ro, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. Neuroscientist 2014; 21:84-98. [PMID: 24557878 DOI: 10.1177/1073858414521870] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy has strong potential for treating a variety of genetic disorders, as demonstrated in recent clinical trials. There is unfortunately no scarcity of disease targets, and the grand challenge in this field has instead been the development of safe and efficient gene delivery platforms. To date, approximately two thirds of the 1800 gene therapy clinical trials completed worldwide have used viral vectors. Among these, adeno-associated virus (AAV) has emerged as particularly promising because of its impressive safety profile and efficiency in transducing a wide range of cell types. Gene delivery to the CNS involves both considerable promise and unique challenges, and better AAV vectors are thus needed to translate CNS gene therapy approaches to the clinic. This review discusses strategies for vector design, potential routes of administration, immune responses, and clinical applications of AAV in the CNS.
Collapse
Affiliation(s)
- David S Ojala
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Dominic P Amara
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA Department of Bioengineering, University of California, Berkeley, CA, USA The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
43
|
Basner-Tschakarjan E, Bijjiga E, Martino AT. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors. Front Immunol 2014; 5:28. [PMID: 24570676 PMCID: PMC3916775 DOI: 10.3389/fimmu.2014.00028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also been explored.
Collapse
Affiliation(s)
| | - Enoch Bijjiga
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, St. John's University , Queens, NY , USA
| |
Collapse
|
44
|
Tseng YS, Agbandje-McKenna M. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Front Immunol 2014; 5:9. [PMID: 24523720 PMCID: PMC3906578 DOI: 10.3389/fimmu.2014.00009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
The recombinant adeno-associated virus (rAAV) gene delivery system is entering a crucial and exciting phase with the promise of more than 20 years of intense research now realized in a number of successful human clinical trials. However, as a natural host to AAV infection, anti-AAV antibodies are prevalent in the human population. For example, ~70% of human sera samples are positive for AAV serotype 2 (AAV2). Furthermore, low levels of pre-existing neutralizing antibodies in the circulation are detrimental to the efficacy of corrective therapeutic AAV gene delivery. A key component to overcoming this obstacle is the identification of regions of the AAV capsid that participate in interactions with host immunity, especially neutralizing antibodies, to be modified for neutralization escape. Three main approaches have been utilized to map antigenic epitopes on AAV capsids. The first is directed evolution in which AAV variants are selected in the presence of monoclonal antibodies (MAbs) or pooled human sera. This results in AAV variants with mutations on important neutralizing epitopes. The second is epitope searching, achieved by peptide scanning, peptide insertion, or site-directed mutagenesis. The third, a structure biology-based approach, utilizes cryo-electron microscopy and image reconstruction of AAV capsids complexed to fragment antibodies, which are generated from MAbs, to directly visualize the epitopes. In this review, the contribution of these three approaches to the current knowledge of AAV epitopes and success in their use to create second generation vectors will be discussed.
Collapse
Affiliation(s)
- Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2014; 5:189ra76. [PMID: 23761039 DOI: 10.1126/scitranslmed.3005708] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inherited retinal degenerative diseases are a clinically promising focus of adeno-associated virus (AAV)-mediated gene therapy. These diseases arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), leading to cell death and structural deterioration. Because current gene delivery methods require an injurious subretinal injection to reach the photoreceptors or RPE and transduce just a fraction of the retina, they are suitable only for the treatment of rare degenerative diseases in which retinal structures remain intact. To address the need for broadly applicable gene delivery approaches, we implemented in vivo-directed evolution to engineer AAV variants that deliver the gene cargo to the outer retina after injection into the eye's easily accessible vitreous humor. This approach has general implications for situations in which dense tissue penetration poses a barrier for gene delivery. A resulting AAV variant mediated widespread delivery to the outer retina and rescued the disease phenotypes of X-linked retinoschisis and Leber's congenital amaurosis in corresponding mouse models. Furthermore, it enabled transduction of primate photoreceptors from the vitreous, expanding its therapeutic promise.
Collapse
Affiliation(s)
- Deniz Dalkara
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1462, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ, Porteus MH. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 2013; 10:74. [PMID: 23497173 PMCID: PMC3607841 DOI: 10.1186/1743-422x-10-74] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The ability to deliver a gene of interest into a specific cell type is an essential aspect of biomedical research. Viruses can be a useful tool for this delivery, particularly in difficult to transfect cell types. Adeno-associated virus (AAV) is a useful gene transfer vector because of its ability to mediate efficient gene transduction in numerous dividing and quiescent cell types, without inducing any known pathogenicity. There are now a number of natural for that designed AAV serotypes that each has a differential ability to infect a variety of cell types. Although transduction studies have been completed, the bulk of the studies have been done in vivo, and there has never been a comprehensive study of transduction ex vivo/in vitro. METHODS Each cell type was infected with each serotype at a multiplicity of infection of 100,000 viral genomes/cell and transduction was analyzed by flow cytometry + . RESULTS We found that AAV1 and AAV6 have the greatest ability to transduce a wide range of cell types, however, for particular cell types, there are specific serotypes that provide optimal transduction. CONCLUSIONS In this work, we describe the transduction efficiency of ten different AAV serotypes in thirty-four different mammalian cell lines and primary cell types. Although these results may not be universal due to numerous factors such as, culture conditions and/ or cell growth rates and cell heterogeneity, these results provide an important and unique resource for investigators who use AAV as an ex vivo gene delivery vector or who work with cells that are difficult to transfect.
Collapse
Affiliation(s)
- Brian L Ellis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny C Barker
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jon P Connelly
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Steininger
- Department of Pharmacology, Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew H Porteus
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9148, USA
| |
Collapse
|
47
|
Abstract
This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications.
Collapse
|
48
|
Gray SJ. Gene therapy and neurodevelopmental disorders. Neuropharmacology 2012; 68:136-42. [PMID: 22750077 DOI: 10.1016/j.neuropharm.2012.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 02/06/2023]
Abstract
With a number of recent clinical successes, gene therapy is quickly becoming a realistic treatment option for neurological disorders. Advancements in global central nervous system (CNS) gene delivery, in particular, have accelerated to the point that treatments for neurological disorders such as lysosomal storage diseases seem within reach. Other neurodevelopmental disorders, such as Rett Syndrome, Fragile X, and autism still face significant obstacles to overcome before a viable human gene therapy can be considered. This review focuses on the most common CNS gene delivery vehicle, adeno-associated virus (AAV), and the current state of AAV vector design and delivery for CNS gene therapy. Relevant examples of gene therapy studies for neurodevelopmental disorders, as well as outstanding challenges, are discussed. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Steven James Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, 7109 Thurston Bowles, 104 Manning Drive, Chapel Hill, NC 27599-7352, USA.
| |
Collapse
|
49
|
Wallace LM, Liu J, Domire JS, Garwick-Coppens SE, Guckes SM, Mendell JR, Flanigan KM, Harper SQ. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 2012; 20:1417-23. [PMID: 22508491 DOI: 10.1038/mt.2012.68] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
No treatment exists for facioscapulohumeral muscular dystrophy (FSHD), one of the most common inherited muscle diseases. Although FSHD can be debilitating, little effort has been made to develop targeted therapies. This lack of focus on targeted FSHD therapy perpetuated because the genes and pathways involved in the disorder were not understood. Now, more than 2 decades after efforts to decipher the root cause of FSHD began, this barrier to translation is finally lowering. Specifically, several recent studies support an FSHD pathogenesis model involving overexpression of the myopathic DUX4 gene. DUX4 inhibition has therefore emerged as a promising therapeutic strategy for FSHD. In this study, we tested a preclinical RNA interference (RNAi)-based DUX4 gene silencing approach as a prospective treatment for FSHD. We found that adeno-associated viral (AAV) vector-delivered therapeutic microRNAs corrected DUX4-associated myopathy in mouse muscle. These results provide proof-of-principle for RNAi therapy of FSHD through DUX4 inhibition.
Collapse
Affiliation(s)
- Lindsay M Wallace
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang HS, Kim E, Lee S, Ahn IS, Jang JH. Transduction of striatum and cortex tissues by adeno-associated viral vectors produced by herpes simplex virus- and baculovirus-based methods. J Virol Methods 2012; 179:276-80. [DOI: 10.1016/j.jviromet.2011.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
|