1
|
Zhang Y, Fu R, Zhu C, Yuwen W, Zhang J, Duan Z, Fan D. Preparation of recombinant type I collagen (PF-I-80) and its functional characterization and biomedical applications in wound healing. Int J Biol Macromol 2024; 282:136679. [PMID: 39437939 DOI: 10.1016/j.ijbiomac.2024.136679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
This study evaluates the potential applications of recombinant PF-I-80 protein in regenerative medicine and the treatment of inflammatory diseases, focusing on its effects on cell migration, differentiation, and anti-inflammatory properties. Various in vitro assays were conducted, including scratch assays, Transwell experiments, RT-PCR and Western Blot to analyze gene and protein expression related to differentiation and inflammation, and immunofluorescence staining to observe cellular changes. The results indicated that PF-I-80 significantly promoted cell migration, highlighting its potential in tissue repair and regeneration. It also enhanced cell differentiation, demonstrating its applicability in tissue repair, and showed significant anti-inflammatory effects by reducing the expression of pro-inflammatory cytokines. In animal models, PF-I-80 notably reduced levels of inflammatory factors IL-1β and TNF-α, shortened the inflammatory phase, and accelerated wound healing. Additionally, PF-I-80 increased FGF-2 levels, which promoted the proliferation of endothelial and fibroblast cells and enhanced collagen synthesis. These in vitro and in vivo findings position PF-I-80 as a promising biomaterial for applications in regenerative medicine and inflammatory disease treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Taibai Campus, Northwest University, Xi'an 710069, China
| | - Jiangrui Zhang
- Taibai Campus, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Cremelie E, Vázquez R, Briers Y. A comparative guide to expression systems for phage lysin production. Essays Biochem 2024:EBC20240019. [PMID: 39290148 DOI: 10.1042/ebc20240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Phage lysins, bacteriophage-encoded enzymes tasked with degrading their host's cell wall, are increasingly investigated and engineered as novel antibacterials across diverse applications. Their rapid action, tuneable specificity, and low likelihood of resistance development make them particularly interesting. Despite numerous application-focused lysin studies, the art of their recombinant production remains relatively undiscussed. Here, we provide an overview of the available expression systems for phage lysin production and discuss key considerations guiding the choice of a suitable recombinant host. We systematically surveyed recent literature to evaluate the hosts used in the lysin field and cover various recombinant systems, including the well-known bacterial host Escherichia coli or yeast Saccharomyces cerevisiae, as well as plant, mammalian, and cell-free systems. Careful analysis of the limited studies expressing lysins in various hosts suggests a host-dependent effect on activity. Nonetheless, the multitude of available expression systems should be further leveraged to accommodate the growing interest in phage lysins and their expanding range of applications.
Collapse
Affiliation(s)
- Emma Cremelie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
Anaya Y, Rosario Martinez R, Goodman RE, Johnson P, Vajpeyi S, Lu X, Peterson R, Weyers SM, Breen B, Newsham K, Scottoline B, Clark AJ, Malinczak CA. Evaluation of the potential food allergy risks of human lactoferrin expressed in Komagataella phaffii. Front Immunol 2024; 15:1380028. [PMID: 39114650 PMCID: PMC11303282 DOI: 10.3389/fimmu.2024.1380028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Prior to the introduction of novel food ingredients into the food supply, safety risk assessments are required, and numerous prediction models have been developed and validated to evaluate safety. Methods The allergenic risk potential of Helaina recombinant human lactoferrin (rhLF, Effera™), produced in Komagataella phaffii (K. phaffii) was assessed by literature search, bioinformatics sequence comparisons to known allergens, glycan allergenicity assessment, and a simulated pepsin digestion model. Results The literature search identified no allergenic risk for Helaina rhLF, K. phaffii, or its glycans. Bioinformatics search strategies showed no significant risk for cross-reactivity or allergenicity between rhLF or the 36 residual host proteins and known human allergens. Helaina rhLF was also rapidly digested in simulated gastric fluid and its digestibility profile was comparable to human milk lactoferrin (hmLF), further demonstrating a low allergenic risk and similarity to the hmLF protein. Conclusion Collectively, these results demonstrate a low allergenic risk potential of Helaina rhLF and do not indicate the need for further clinical testing or serum IgE binding to evaluate Helaina rhLF for risk of food allergy prior to introduction into the food supply.
Collapse
Affiliation(s)
- Yanisa Anaya
- Nutritional Biology & Safety, Helaina, Inc, New York, NY, United States
| | | | | | - Philip Johnson
- University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Xiaoning Lu
- Nutritional Biology & Safety, Helaina, Inc, New York, NY, United States
| | - Ross Peterson
- Regulatory Affairs, Helaina, Inc, New York, NY, United States
| | | | - Bella Breen
- Late Stage R&D, Helaina, Inc, New York, NY, United States
| | - Kahler Newsham
- Late Stage R&D, Helaina, Inc, New York, NY, United States
| | - Brian Scottoline
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Anthony J. Clark
- Late Stage R&D, Helaina, Inc, New York, NY, United States
- Regulatory Affairs, Helaina, Inc, New York, NY, United States
| | | |
Collapse
|
5
|
Peterson R, Crawford RB, Blevins LK, Kaminski NE, Sass JS, Ferraro B, Vishwanath-Deutsch R, Clark AJ, Malinczak CA. Dose Range-Finding Toxicity Study in Rats With Recombinant Human Lactoferrin Produced in Komagataella phaffii. Int J Toxicol 2024; 43:407-420. [PMID: 38647416 DOI: 10.1177/10915818241247013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The oral toxicity of recombinant human lactoferrin (rhLF, Helaina rhLF, Effera™) produced in Komagataella phaffii was investigated in adult Sprague Dawley rats by once daily oral gavage for 14 consecutive days. The study used groups of 3-6 rats/sex/dose. The vehicle control group received sodium citrate buffer, and the test groups received daily doses of 200, 1000, and 2000 mg of rhLF in sodium citrate buffer per kg body weight. Bovine LF at 2000 mg/kg body weight per day was used as a comparative control. Clinical observations, body weight, hematology, clinical chemistry, iron parameters, immunophenotyping, and gross examination at necropsy were used as criteria for detecting the effects of treatment in all groups and to help select dose levels for future toxicology studies. Quantitative LF levels were also analyzed as an indication of bioavailability. Overall, administration of Helaina rhLF by once daily oral gavage for 14 days was well tolerated in rats at levels up to 2000 mg/kg/day, or 57 × Helaina's intended commercial use in adults, and indicating that a high dose of 2000 mg/kg/day is appropriate for future definitive toxicology studies.
Collapse
|
6
|
Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi C. Immobilized enzyme cascade for targeted glycosylation. Nat Chem Biol 2024; 20:732-741. [PMID: 38321209 PMCID: PMC11142912 DOI: 10.1038/s41589-023-01539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Roberto Donini
- Department of Life Sciences, Imperial College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Kate Royle
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Moya Ramirez
- Department of Chemical Engineering, Imperial College London, London, UK
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David R Rose
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
7
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
9
|
Elsäßer G, Seidl T, Pfannstiel J, Schaller A, Stührwohldt N. Characterization of Prolyl-4-Hydroxylase Substrate Specificity Using Pichia pastoris as an Efficient Eukaryotic Expression System. Methods Mol Biol 2024; 2731:59-80. [PMID: 38019426 DOI: 10.1007/978-1-0716-3511-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The use of eukaryotic expression systems facilitates the heterologous expression of complex eukaryotic proteins in their post-translationally modified and biologically active state, as a prerequisite for subsequent biochemical characterization and functional analysis. Here we describe the complete workflow for the expression of Arabidopsis thaliana prolyl-4-hydroxylases (P4Hs) in the methylotrophic yeast Pichia pastoris (renamed as Komagataella phaffii), for the extraction of the recombinant enzymes, purification by affinity chromatography, and characterization of P4H activity and specificity toward oligopeptide substrates by mass spectrometry. We expressed eight of the 13 Arabidopsis P4Hs and show that they are all active against proline-rich extensin-derived peptides. However, three of them differed in substrate specificity and were also able to hydroxylate the CLEL9 signaling peptide, featuring a single proline within its mature peptide sequence.
Collapse
Affiliation(s)
- Gerith Elsäßer
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Tim Seidl
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
10
|
Clarke EC. Considerations for Glycoprotein Production. Methods Mol Biol 2024; 2762:329-351. [PMID: 38315375 DOI: 10.1007/978-1-0716-3666-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This chapter is intended to provide insights for researchers aiming to choose an appropriate expression system for the production of recombinant glycoproteins. Producing glycoproteins is complex, as glycosylation patterns are determined by the availability and abundance of specific enzymes rather than a direct genetic blueprint. Furthermore, the cell systems often employed for protein production are evolutionarily distinct, leading to significantly different glycosylation when utilized for glycoprotein production. The selection of an appropriate production system depends on the intended applications and desired characteristics of the protein. Whether the goal is to produce glycoproteins mimicking native conditions or to intentionally alter glycan structures for specific purposes, such as enhancing immunogenicity in vaccines, understanding glycosylation present in the different systems and in different growth conditions is essential. This chapter will cover Escherichia coli, baculovirus/insect cell systems, Pichia pastoris, as well as different mammalian cell culture systems including Chinese hamster ovary (CHO) cells, human endothelial kidney (HEK) cell lines, and baby hamster kidney (BHK) cells.
Collapse
Affiliation(s)
- Elizabeth C Clarke
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Xu Y, Zhao Z, Geng Z, Zhou H, Yang C, Wang Y, Kuerban B, Xiao Y, Luo G. Enhancement of recombinant human interleukin-22 production by fusing with human serum albumin and supplementing N-acetylcysteine in Pichia Pastoris. Protein Expr Purif 2023; 212:106360. [PMID: 37652392 DOI: 10.1016/j.pep.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Interleukin-22 (IL-22) plays an important role in the treatment of organ failure, which can induce anti-apoptotic and proliferative signaling pathways; Nevertheless, the practical utilization of IL-22 is hindered by the restricted efficacy of its production. Pichia pastoris presents a viable platform for both industrial and pharmaceutical applications. In this study, we successfully generated a fusion protein consisting of truncated human serum albumin and human IL-22 (HSA-hIL-22) using P. pastoris, and examined the impact of antioxidants on HSA-hIL-22 production. We have achieved the production of HSA-hIL-22 in the culture medium at a yield of approximately 2.25 mg/ml. Moreover, 0-40 mM ascorbic acid supplementation did not significantly affect HSA-hIL-22 production or the growth rate of the recombinant strain. However, 80 mM ascorbic acid treatment had a detrimental effect on the expression of HSA-hIL-22. In addition, 5-10 mM N-acetyl-l-cysteine (NAC) resulted in an increase of HSA-hIL-22 production, accompanied by a reduction in the growth rate of the recombinant strain. Conversely, 20-80 mM NAC supplementation inhibited the growth of the recombinant strains and reduced intact HSA-hIL-22 production. However, neither NAC nor ascorbic acid exhibited any effect on superoxide dismutase (SOD) and malondialdehyde (MDA) levels, except that NAC increased GSH content. Furthermore, our findings indicate that recombinant HSA-hIL-22, which demonstrated the ability to stimulate the proliferation of HepG2 cells, possesses bioactivity. In addition, NAC did not affect HSA-hIL-22 bioactivity. In conclusion, our study demonstrates that NAC supplementation can enhance the secretion of functional HSA-hIL-22 proteins produced in P. pastoris without compromising their activity.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Ziming Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yimeng Xiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
13
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
14
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
15
|
Zhu Q, Jia Z, Song Y, Dou W, Scharf DH, Wu X, Xu Z, Guan W. Impact of PpSpi1, a glycosylphosphatidylinositol-anchored cell wall glycoprotein, on cell wall defects of N-glycosylation-engineered Pichia pastoris. mBio 2023; 14:e0061723. [PMID: 37606451 PMCID: PMC10653784 DOI: 10.1128/mbio.00617-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/14/2023] [Indexed: 08/23/2023] Open
Abstract
IMPORTANCE Engineering of biological pathways in various microorganisms is a promising direction for biotechnology. Since the existing microbial cells have evolved over a long period of time, any artificial engineering may cause some unexpected and harmful effects on them. Systematically studying and evaluating these engineered strains are very important and necessary. In order to produce therapeutic proteins with human-like N-glycan structures, much progress has been achieved toward the humanization of N-glycosylation pathways in yeasts. The properties of a P. pastoris strain with humanized N-glycosylation machinery were carefully evaluated in this study. Our work has identified a key glycoprotein (PpSpi1) responsible for the poor growth and morphological defects of this glycoengineered strain. Overexpression of PpSpi1 could significantly rescue the growth defect of the glycoengineered P. pastoris and facilitate its future industrial applications.
Collapse
Affiliation(s)
- Quanchao Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Jia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchao Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwang Dou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel Henry Scharf
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Science of Zhejiang University, Hangzhou, China
| | - Zhihao Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Guan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- China Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
16
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
17
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
19
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
20
|
Navone L, Moffitt K, Behrendorff J, Sadowski P, Hartley C, Speight R. Biosensor-guided rapid screening for improved recombinant protein secretion in Pichia pastoris. Microb Cell Fact 2023; 22:92. [PMID: 37138331 PMCID: PMC10155391 DOI: 10.1186/s12934-023-02089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Pichia pastoris (Komagataella phaffii) is widely used for industrial production of heterologous proteins due to high secretory capabilities but selection of highly productive engineered strains remains a limiting step. Despite availability of a comprehensive molecular toolbox for construct design and gene integration, there is high clonal variability among transformants due to frequent multi-copy and off-target random integration. Therefore, functional screening of several hundreds of transformant clones is essential to identify the best protein production strains. Screening methods are commonly based on deep-well plate cultures with analysis by immunoblotting or enzyme activity assays of post-induction samples, and each heterologous protein produced may require development of bespoke assays with multiple sample processing steps. In this work, we developed a generic system based on a P. pastoris strain that uses a protein-based biosensor to identify highly productive protein secretion clones from a heterogeneous set of transformants. The biosensor uses a split green fluorescent protein where the large GFP fragment (GFP1-10) is fused to a sequence-specific protease from Tobacco Etch Virus (TEV) and is targeted to the endoplasmic reticulum. Recombinant proteins targeted for secretion are tagged with the small fragment of the split GFP (GFP11). Recombinant protein production can be measured by monitoring GFP fluorescence, which is dependent on interaction between the large and small GFP fragments. The reconstituted GFP is cleaved from the target protein by TEV protease, allowing for secretion of the untagged protein of interest and intracellular retention of the mature GFP. We demonstrate this technology with four recombinant proteins (phytase, laccase, β-casein and β-lactoglobulin) and show that the biosensor directly reports protein production levels that correlate with traditional assays. Our results confirm that the split GFP biosensor can be used for facile, generic, and rapid screening of P. pastoris clones to identify those with the highest production levels.
Collapse
Affiliation(s)
- Laura Navone
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Kaylee Moffitt
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - James Behrendorff
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Robert Speight
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
21
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
22
|
Peng H, Wang N, Wang M, Yang C, Guo W, Li G, Huang S, Wei D, Liu D. Comparison of Activity and Safety of DSPAα1 and Its N-Glycosylation Mutants. Life (Basel) 2023; 13:life13040985. [PMID: 37109514 PMCID: PMC10145227 DOI: 10.3390/life13040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
DSPAα1 is a potent rude thrombolytic protein with high medicative value. DSPAα1 has two natural N-glycan sites (N153Q-S154-S155, N398Q-K399-T400) that may lead to immune responses when administered in vivo. We aimed to study the effect of its N-glycosylation sites on DSPAα1 in vitro and in vivo by mutating these N-glycosylation sites. In this experiment, four single mutants and one double mutant were predicted and expressed in Pichia pastoris. When the N398Q-K399-T400 site was mutated, the fibrinolytic activity of the mutant was reduced by 75%. When the N153Q-S154-S155 sites were inactivated as described above, the plasminogen activating activity of its mutant was reduced by 40%, and fibrin selectivity was significantly reduced by 21-fold. The introduction of N-glycosylation on N184-G185-A186T and K368N-S369-S370 also considerably reduced the activity and fibrin selectivity of DSPAα1. The pH tolerance and thermotolerance of all mutants did not change significantly. In vivo experiments also confirmed that N-glycosylation mutations can reduce the safety of DSPAα1, lead to prolonged bleeding time, non-physiological reduction of coagulation factor (α2-AP, PAI) concentration, and increase the risk of irregular bleeding. This study ultimately demonstrated the effect of N-glycosylation mutations on the activity and safety of DSPAα1.
Collapse
Affiliation(s)
- Huakang Peng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Caifeng Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfang Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gangqiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Ianshina T, Sidorin A, Petrova K, Shubert M, Makeeva A, Sambuk E, Govdi A, Rumyantsev A, Padkina M. Effect of Methionine on Gene Expression in Komagataella phaffii Cells. Microorganisms 2023; 11:microorganisms11040877. [PMID: 37110303 PMCID: PMC10143545 DOI: 10.3390/microorganisms11040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Komagataella phaffii yeast plays a prominent role in modern biotechnology as a recombinant protein producer. For efficient use of this yeast, it is essential to study the effects of different media components on its growth and gene expression. We investigated the effect of methionine on gene expression in K. phaffii cells using RNA-seq analysis. Several gene groups exhibited altered expression when K. phaffii cells were cultured in a medium with methanol and methionine, compared to a medium without this amino acid. Methionine primarily affects the expression of genes involved in its biosynthesis, fatty acid metabolism, and methanol utilization. The AOX1 gene promoter, which is widely used for heterologous expression in K. phaffii, is downregulated in methionine-containing media. Despite great progress in the development of K. phaffii strain engineering techniques, a sensitive adjustment of cultivation conditions is required to achieve a high yield of the target product. The revealed effect of methionine on K. phaffii gene expression is important for optimizing media recipes and cultivation strategies aimed at maximizing the efficiency of recombinant product synthesis.
Collapse
Affiliation(s)
- Tatiana Ianshina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anton Sidorin
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Kristina Petrova
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Maria Shubert
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anastasiya Makeeva
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Elena Sambuk
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
| | - Anastasiya Govdi
- Institute of Chemistry, Saint Petersburg State University (SPBU), Petergof, Saint Petersburg 198504, Russia
| | - Andrey Rumyantsev
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
- Correspondence: (A.R.); (M.P.)
| | - Marina Padkina
- Laboratory of Biochemical Genetics, Department of Genetics and Biotechnology, Saint Petersburg State University (SPBU), Saint Petersburg 199034, Russia
- Correspondence: (A.R.); (M.P.)
| |
Collapse
|
24
|
Ouadhi S, López DMV, Mohideen FI, Kwan DH. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. Protein Eng Des Sel 2023; 36:gzac010. [PMID: 36444941 DOI: 10.1093/protein/gzac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).
Collapse
Affiliation(s)
- Sara Ouadhi
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Dulce María Valdez López
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - F Ifthiha Mohideen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
26
|
Biasoto HP, Hebeda CB, Farsky SHP, Pessoa A, Costa-Silva TA, Monteiro G. Extracellular expression of Saccharomyces cerevisiae's L-asparaginase II in Pichia pastoris results in novel enzyme with better parameters. Prep Biochem Biotechnol 2022; 53:511-522. [PMID: 35981094 DOI: 10.1080/10826068.2022.2111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
L-asparaginase (ASNase) is an efficient inhibitor of tumor development, used in chemotherapy sessions against acute lymphoblastic leukemia (ALL) tumor cells; its use results in 80% complete remission of the disease in treated patients. Saccharomyces cerevisiae's L-asparaginase II (ScASNaseII) has a high potential to substitute bacteria ASNase in patients that developed hypersensitivity, but the endogenous production of it results in hypermannosylated immunogenic enzyme. Here we describe the genetic process to acquire the ScASNaseII expressed in the extracellular medium. Our strategy involved a fusion of mature sequence of protein codified by ASP3 (amino acids 26-362) with the secretion signal sequence of Pichia pastoris acid phosphatase enzyme; in addition, this DNA construction was integrated in P. pastoris Glycoswitch® strain genome, which has the cellular machinery to express and secrete high quantity of enzymes with humanized glycosylation. Our data show that the DNA construction and strain employed can express extracellular asparaginase with specific activity of 218.2 IU mg-1. The resultant enzyme is 40% more stable than commercially available Escherichia coli's ASNase (EcASNaseII) when incubated with human serum. In addition, ScASNaseII presents 50% lower cross-reaction with anti-ASNase antibody produced against EcASNaseII when compared with ASNase from Dickeya chrysanthemi.
Collapse
Affiliation(s)
- Henrique P Biasoto
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina B Hebeda
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Tales A Costa-Silva
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Piirainen MA, Frey AD. The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts. Front Mol Biosci 2022; 9:910709. [PMID: 35720120 PMCID: PMC9201249 DOI: 10.3389/fmolb.2022.910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.
Collapse
Affiliation(s)
- Mari A. Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D. Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Kemistintie 1, Aalto University, Otakaari, Finland
- *Correspondence: Alexander D. Frey,
| |
Collapse
|
28
|
Faba-Rodriguez R, Gu Y, Salmon M, Dionisio G, Brinch-Pedersen H, Brearley CA, Hemmings AM. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. PLANT COMMUNICATIONS 2022; 3:100305. [PMID: 35529950 PMCID: PMC9073318 DOI: 10.1016/j.xplc.2022.100305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Grain phytate, a mixed metal ion salt of inositol hexakisphosphate, accounts for 60%-80% of stored phosphorus in plants and is a potent antinutrient of non-ruminant animals including humans. Through neofunctionalization of purple acid phytases (PAPhy), some cereals such as wheat and rye have acquired particularly high mature grain phytase activity. As PAPhy activity supplies phosphate, liberates metal ions necessary for seedling emergence, and obviates antinutrient effects of phytate, its manipulation and control are targeted crop traits. Here we show the X-ray crystal structure of the b2 isoform of wheat PAPhy induced during germination. This high-resolution crystal structure suggests a model for phytate recognition that, validated by molecular dynamics simulations, implicates elements of two sequence inserts (termed PAPhy motifs) relative to a canonical metallophosphoesterase (MPE) domain in forming phytate-specific substrate specificity pockets. These motifs are well conserved in PAPhys from monocot cereals, enzymes which are characterized by high specificity for phytate. Tested by mutagenesis, residues His229 in PAPhy motif 4 and Lys410 in the MPE domain, both conserved in PAPhys, are found to strongly influence phytase activity. These results explain the observed phytase activity of cereal PAPhys and open the way to the rational engineering of phytase activity in planta.
Collapse
Affiliation(s)
- Raquel Faba-Rodriguez
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yinghong Gu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Melissa Salmon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Giuseppe Dionisio
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Charles A. Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew M. Hemmings
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
29
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
30
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
31
|
Sun Y, Qian Y, Zhang J, Yao C, Wang Y, Liu H, Zhong Y. Development of a novel expression platform for heterologous protein production via deleting the p53-like regulator Vib1 in Trichoderma reesei. Enzyme Microb Technol 2022; 155:109993. [DOI: 10.1016/j.enzmictec.2022.109993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
|
32
|
Piirainen MA, Salminen H, Frey AD. Production of galactosylated complex-type N-glycans in glycoengineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 106:301-315. [PMID: 34910238 PMCID: PMC8720083 DOI: 10.1007/s00253-021-11727-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022]
Abstract
Abstract N-glycosylation is an important posttranslational modification affecting the properties and quality of therapeutic proteins. Glycoengineering in yeast aims to produce proteins carrying human-compatible glycosylation, enabling the production of therapeutic proteins in yeasts. In this work, we demonstrate further development and characterization of a glycoengineering strategy in a Saccharomyces cerevisiae Δalg3 Δalg11 strain where a truncated Man3GlcNAc2 glycan precursor is formed due to a disrupted lipid-linked oligosaccharide synthesis pathway. We produced galactosylated complex-type and hybrid-like N-glycans by expressing a human galactosyltransferase fusion protein both with and without a UDP-glucose 4-epimerase domain from Schizosaccharomyces pombe. Our results showed that the presence of the UDP-glucose 4-epimerase domain was beneficial for the production of digalactosylated complex-type glycans also when extracellular galactose was supplied, suggesting that the positive impact of the UDP-glucose 4-epimerase domain on the galactosylation process can be linked to other processes than its catalytic activity. Moreover, optimization of the expression of human GlcNAc transferases I and II and supplementation of glucosamine in the growth medium increased the formation of galactosylated complex-type glycans. Additionally, we provide further characterization of the interfering mannosylation taking place in the glycoengineered yeast strain. Key points • Glycoengineered Saccharomyces cerevisiae can form galactosylated N-glycans. • Genetic constructs impact the activities of the expressed glycosyltransferases. • Growth medium supplementation increases formation of target N-glycan structure. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11727-8.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
33
|
Liao X, Li L, Jameel A, Xing XH, Zhang C. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris. Appl Microbiol Biotechnol 2021; 105:9211-9218. [PMID: 34773154 DOI: 10.1007/s00253-021-11688-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Pichia pastoris has gained much attention as a popular microbial cell factory for the production of recombinant proteins and high-value chemicals from laboratory to industrial scale. However, the lack of convenient and efficient genome engineering tools has impeded further applications of Pichia pastoris towards metabolic engineering and synthetic biology. Here, we report a CRISPR-based toolbox for gene editing and transcriptional regulation in P. pastoris. Based on the previous attempts in P. pastoris, we constructed a CRISPR/Cas9 system for gene editing using the RNA Pol-III-driven expression of sgRNA. The system was used to rapidly recycle the selectable marker with an eliminable episomal plasmid and achieved up to 100% knockout efficiency. Via dCas9 fused with transcriptional repressor (Mix1/RD1152) or activator (VPR), a flexible toolbox for regulation of gene expression was developed. The reporter gene eGFP driven by yeast pGAP or pCYC1 promoter showed strong inhibition (above 70%) and up to ~ 3.5-fold activation. To implement the combinatorial genetic engineering strategy, the CRISPR system contained a single Cas9-VPR protein, and engineered gRNA was introduced in P. pastoris for simultaneous gene activation, repression, and editing (CRISPR-ARE). We demonstrated that CRISPR-ARE was highly efficient for eGFP activation, mCherry repression, and ADE2 disruption, individually or in a combinatorial manner with a stable expression of multiplex sgRNAs. The simple and multifunctional toolkit demonstrated in this study will accelerate the application of P. pastoris in metabolic engineering and synthetic biology. KEY POINTS: • An eliminable CRISPR/Cas9 system yielded a highly efficient knockout of genes. • Simplified CRISPR/dCas9-based tools enabled transcriptional regulation of targeted genes. • CRISPR-ARE system achieved simultaneous gene activation, repression, and editing in P. pastoris.
Collapse
Affiliation(s)
- Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Lu Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
34
|
de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris ( Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Bioengineering (Basel) 2021; 8:119. [PMID: 34562941 PMCID: PMC8468848 DOI: 10.3390/bioengineering8090119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.
Collapse
Affiliation(s)
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| |
Collapse
|
35
|
Abstract
The methylotrophic yeast Pichia pastoris is currently one of the most versatile and popular hosts for the production of heterologous proteins, including industrial enzymes. The popularity of P. pastoris stems from its ability to grow to high cell densities, producing high titers of secreted heterologous protein with very low amounts of endogenous proteins. Its ability to express correctly folded proteins with post-translational modifications makes it an excellent candidate for the production of biopharmaceuticals. In addition, production in P. pastoris typically uses the strong, methanol-inducible and tightly regulated promoter (PAOX1), which can result in heterologous protein that constitutes up to 30% of total cell protein upon growth in methanol. In this chapter, we present methodology for the production of secreted recombinant proteins in P. pastoris, and we discuss alternatives to enhance protein production with the desired yield and quality.
Collapse
|
36
|
Bonaccorsi di Patti MC, Cutone A, Nemčovič M, Pakanová Z, Baráth P, Musci G. Production of Recombinant Human Ceruloplasmin: Improvements and Perspectives. Int J Mol Sci 2021; 22:ijms22158228. [PMID: 34360993 PMCID: PMC8347646 DOI: 10.3390/ijms22158228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
The ferroxidase ceruloplasmin (CP) plays a crucial role in iron homeostasis in vertebrates together with the iron exporter ferroportin. Mutations in the CP gene give rise to aceruloplasminemia, a rare neurodegenerative disease for which no cure is available. Many aspects of the (patho)physiology of CP are still unclear and would benefit from the availability of recombinant protein for structural and functional studies. Furthermore, recombinant CP could be evaluated for enzyme replacement therapy for the treatment of aceruloplasminemia. We report the production and preliminary characterization of high-quality recombinant human CP in glycoengineered Pichia pastoris SuperMan5. A modified yeast strain lacking the endogenous ferroxidase has been generated and employed as host for heterologous expression of the secreted isoform of human CP. Highly pure biologically active protein has been obtained by an improved two-step purification procedure. Glycan analysis indicates that predominant glycoforms HexNAc2Hex8 and HexNAc2Hex11 are found at Asn119, Asn378, and Asn743, three of the canonical four N-glycosylation sites of human CP. The availability of high-quality recombinant human CP represents a significant advancement in the field of CP biology. However, productivity needs to be increased and further careful glycoengineering of the SM5 strain is mandatory in order to evaluate the possible therapeutic use of the recombinant protein for enzyme replacement therapy of aceruloplasminemia patients.
Collapse
Affiliation(s)
- Maria Carmela Bonaccorsi di Patti
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (M.C.B.d.P.); (G.M.)
| | - Antimo Cutone
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Giovanni Musci
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (M.C.B.d.P.); (G.M.)
| |
Collapse
|
37
|
Karki R, Rimal S, Rieth MD. Predicted N-terminal N-linked glycosylation sites may underlie membrane protein expression patterns in Saccharomyces cerevisiae. Yeast 2021; 38:497-506. [PMID: 34182612 DOI: 10.1002/yea.3657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
N-linked glycosylation is one type of posttranslational modification that proteins undergo during expression. The following describes the effects of N-linked glycosylation on high-level membrane protein expression in yeast with an emphasis on Saccharomyces cerevisiae. N-linked glycosylation is highlighted here as an important consideration when preparing membrane protein gene constructs for expression in S. cerevisiae, which continues to be used as a workhorse in both research and industrial applications. Non-native N-linked glycosylation commonly occurs during the heterologous expression of mammalian proteins in many yeast species which can have important immunological consequences when used in the production of biotherapeutic proteins or peptides. Further, non-native N-linked glycosylation can lead to improper protein folding and premature degradation, which can impede high-level expression yields and hinder downstream analysis. Multiple strategies are presented in this article, which suggest different methods that can be implemented to circumvent the unwanted consequences of N-linked glycosylation during the expression process. These considerations may have long-term benefits for high-level protein production in S. cerevisiae across a broad spectrum of expression targets with special emphasis placed on G-protein coupled receptors, one of the largest families of membrane proteins.
Collapse
Affiliation(s)
- Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Swechha Rimal
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Monica D Rieth
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| |
Collapse
|
38
|
Robert M, Waldhauer J, Stritt F, Yang B, Pauly M, Voiniciuc C. Modular biosynthesis of plant hemicellulose and its impact on yeast cells. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:140. [PMID: 34147122 PMCID: PMC8214268 DOI: 10.1186/s13068-021-01985-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. RESULTS Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made β-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. CONCLUSION The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as β-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins.
Collapse
Affiliation(s)
- Madalen Robert
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Julian Waldhauer
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Bo Yang
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany.
| |
Collapse
|
39
|
Therapeutic Antibodies Targeting Potassium Ion Channels. Handb Exp Pharmacol 2021; 267:507-545. [PMID: 33963460 DOI: 10.1007/164_2021_464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
40
|
Leng JX, Ren WW, Li Y, Yang G, Gao XD, Fujita M. Cell engineering for the production of hybrid-type N-glycans in HEK293 cells. J Biochem 2021; 170:139-151. [PMID: 33878161 DOI: 10.1093/jb/mvab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glycoprotein therapeutics are among the leading products in the biopharmaceutical industry. The heterogeneity of glycans in therapeutic proteins is an issue for maintaining quality, activity, and safety during bioprocessing. In this study, we knocked out genes encoding Golgi α-mannosidase-II, MAN2A1 and MAN2A2 in human embryonic kidney 293 (HEK293) cells, establishing an M2D-KO cell line that can produce recombinant proteins mainly with hybrid-type N-glycans. Furthermore, FUT8, which encodes α1,6-fucosyltransferase, was knocked out in the M2D-KO cell line, establishing a DF-KO cell line that can express non-core fucosylated hybrid-type N-glycans. Two recombinant proteins, lysosomal acid lipase (LIPA) and constant fragment (Fc) of human IgG1, were expressed in the M2D-KO and DF-KO cell lines. Glycan structural analysis revealed that complex-type N-glycans were removed in both M2D-KO and DF-KO cells. Our results suggest that these cell lines are suitable for the production of therapeutic proteins with hybrid-type N-glycans. Moreover, KO cell lines would be useful as models for researching the mechanism of antimetastatic effects in human tumors by swainsonine treatment.
Collapse
Affiliation(s)
- Ji-Xiong Leng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
41
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
42
|
Kielkopf CL, Bauer W, Urbatsch IL. Expressing Cloned Genes for Protein Production, Purification, and Analysis. Cold Spring Harb Protoc 2021; 2021:pdb.top102129. [PMID: 33272973 DOI: 10.1101/pdb.top102129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obtaining high quantities of a specific protein directly from native sources is often challenging, particularly when dealing with human proteins. To overcome this obstacle, many researchers take advantage of heterologous expression systems by cloning genes into artificial vectors designed to operate within easily cultured cells, such as Escherichia coli, Pichia pastoris (yeast), and several varieties of insect and mammalian cells. Heterologous expression systems also allow for easy modification of the protein to optimize expression, mutational analysis of specific sites within the protein and facilitate their purification with engineered affinity tags. Some degree of purification of the target protein is usually required for functional analysis. Purification to near homogeneity is essential for characterization of protein structure by X-ray crystallography or nuclear magnetic resonance (NMR) and characterization of the biochemical and biophysical properties of a protein, because contaminating proteins almost always adversely affect the results. Methods for producing and purifying proteins in several different expression platforms and using a variety of vectors are introduced here.
Collapse
|
43
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
44
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front Microbiol 2021; 11:607028. [PMID: 33505376 PMCID: PMC7829337 DOI: 10.3389/fmicb.2020.607028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | - Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
- acib—Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
45
|
Ardila-Leal LD, Poutou-Piñales RA, Morales-Álvarez ED, Rivera-Hoyos CM, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE, Pérez-Flórez A. Methanol addition after glucose depletion improves rPOXA 1B production under the pGap in P. pastoris X33: breaking the habit. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe purpose of this study was to demonstrate that methanol addition after glucose depletion has a positive effect on improving rPOXA 1B production under the control of pGap in P. pastoris. Four different culture media (A, B, C and D) were used to culture P. pastoris X33/pGapZαA-LaccPost-Stop (clone 1), containing a previously optimized POXA 1B synthetic gene coding for P. ostreatus laccase, which after glucose depletion was supplemented or not with methanol. Enzyme activity in culture media without methanol (A, B, C and D) was influenced by media components, presenting activity of 1254.30 ± 182.44, 1373.70 ± 182.44, 1343.50 ± 40.30 and 8771.61 ± 218.79 U L−1, respectively. In contrast, the same culture media (A, B, C and D) with methanol addition 24 h after glucose depletion attained activity of 4280.43 ± 148.82, 3339.02 ± 64.36, 3569.39 ± 68.38 and 14,868.06 ± 461.58 U L−1 at 192 h, respectively, representing an increase of approximately 3.9-, 2.4-, 3.3- and 1.6-fold compared with culture media without methanol. Methanol supplementation had a greater impact on volumetric enzyme activity in comparison with biomass production. We demonstrated what was theoretically and biochemically expected: recombinant protein production under pGap control by methanol supplementation after glucose depletion was successful, as a feasible laboratory production strategy of sequential carbon source addition, breaking the habit of utilizing pGap with glucose.
Collapse
|
46
|
Aw R, De Wachter C, Laukens B, De Rycke R, De Bruyne M, Bell D, Callewaert N, Polizzi KM. Knockout of RSN1, TVP18 or CSC1-2 causes perturbation of Golgi cisternae in Pichia pastoris. Traffic 2020; 22:48-63. [PMID: 33263222 DOI: 10.1111/tra.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Charlot De Wachter
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Laukens
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, Ghent, Belgium
| | - David Bell
- Section for Structural Biology, Department of Medicine, Imperial College London, London, United Kingdom.,London Biofoundry, Imperial College London, London, United Kingdom
| | - Nico Callewaert
- VIB-UGent, Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
|
48
|
Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, Várnai A. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Adv 2020; 43:107583. [DOI: 10.1016/j.biotechadv.2020.107583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022]
|
49
|
Unione L, Ardá A, Jiménez-Barbero J, Millet O. NMR of glycoproteins: profiling, structure, conformation and interactions. Curr Opin Struct Biol 2020; 68:9-17. [PMID: 33129067 DOI: 10.1016/j.sbi.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
In glycoproteins, carbohydrates are responsible for the selective interaction and tight regulation of cellular processes, constituting the main information transducer interface in protein-glycoprotein interactions. Increasing experimental and computational evidence suggest that such interactions often induce allosteric changes in the host protein, underlining the importance of studying intact glycoproteins. Technical issues have precluded such studies for years but, nowadays, a promising era is emerging where NMR spectroscopy, among other techniques, allows the characterization of the composition, structure and segmental dynamics of glycoproteins. In this review, we discuss such advances and highlight some selected examples. This novel technology unravels multiple new functional mechanisms, subtly hidden within the sugar code.
Collapse
Affiliation(s)
- Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Oscar Millet
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain.
| |
Collapse
|
50
|
Radoman B, Grünwald-Gruber C, Schmelzer B, Zavec D, Gasser B, Altmann F, Mattanovich D. The Degree and Length of O-Glycosylation of Recombinant Proteins Produced in Pichia pastoris Depends on the Nature of the Protein and the Process Type. Biotechnol J 2020; 16:e2000266. [PMID: 32975831 DOI: 10.1002/biot.202000266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The methylotrophic yeast Pichia pastoris is known as an efficient host for the production of heterologous proteins. While N-linked protein glycosylation is well characterized in P. pastoris there is less knowledge of the patterns of O-glycosylation. O-glycans produced by P. pastoris consist of short linear mannose chains, which in the case of recombinant biopharmaceuticals can trigger an immune response in humans. This study aims to reveal the influence of different cultivation strategies on O-mannosylation profiles in P. pastoris. Sixteen different model proteins, produced by different P. pastoris strains, are analyzed for their O-glycosylation profile. Based on the obtained data, human serum albumin (HSA) is chosen to be produced in fast and slow growth fed batch fermentations by using common promoters, PGAP and PAOX1 . After purification and protein digestion, glycopeptides are analyzed by LC/ESI-MS. In the samples expressed with PGAP it is found that the degree of glycosylation is slightly higher when a slow growth rate is used, regardless of the efficiency of the producing strain. The highest glycosylation intensity is observed in HSA produced with PAOX1 . The results indicate that the O-glycosylation level is markedly higher when the protein is produced in a methanol-based expression system.
Collapse
Affiliation(s)
- Bojana Radoman
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Bernhard Schmelzer
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Domen Zavec
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| |
Collapse
|