1
|
Rimbert A, Duval D, Trujillano D, Kyndt F, Jobbe-Duval A, Lindenbaum P, Tucker N, Lecointe S, Labbé P, Toquet C, Karakachoff M, Roussel JC, Baufreton C, Bruneval P, Cueff C, Donal E, Redon R, Olaso R, Boland A, Deleuze JF, Estivill X, Slaugenhaupt S, Markwald RR, Norris RA, Verhoye JP, Probst V, Hagège A, Levine R, Jeunemaitre X, Marec HL, Capoulade R, Bouatia-Naji N, Dina C, Milan D, Ossowski S, Schott JJ, Mérot J, Scouarnec SL, Tourneau TL. Isolated prolapse of the posterior mitral valve leaflet: phenotypic refinement, heritability and genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315096. [PMID: 39484266 PMCID: PMC11527059 DOI: 10.1101/2024.10.16.24315096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Isolated posterior leaflet mitral valve prolapse (PostMVP), a common form of MVP, often referred as fibroelastic deficiency, is considered a degenerative disease. PostMVP patients are usually asymptomatic and often undiagnosed until chordal rupture. The present study aims to characterize familial PostMVP phenotype and familial recurrence, its genetic background, and the pathophysiological processes involved. METHODS We prospectively enrolled 284 unrelated MVP probands, of whom 178 (63%) had bi-leaflet MVP and 106 had PostMVP (37%). Familial screening within PostMVP patients allowed the identification of 20 families with inherited forms of PostMVP for whom whole genome sequencing was carried out in probands. Functional in vivo and in vitro investigations were performed in zebrafishand in Hek293T cells. RESULTS In the 20 families with inherited form of PostMVP, 38.8% of relatives had a MVP/prodromal form, mainly of the posterior leaflet, with transmission consistent with an autosomal dominant mode of inheritance. Compared with control relatives, PostMVP family patients have clear posterior leaflet dystrophy on echocardiography. Patients with PostMVP present a burden of rare genetic variants in ARHGAP24. ARHGAP24 encodes the filamin A binding RhoGTPase-activating protein FilGAP and its silencing in zebrafish leads to atrioventricular regurgitation. In vitro functional studies showed that variants of FilGAP, found in PostMVP families, are loss-of-function variants impairing cellular adhesion and mechano-transduction capacities. CONCLUSIONS PostMVP should not only be considered an isolated degenerative pathology but as a specific heritable phenotypic trait with genetic and functional pathophysiological origins. The identification of loss-of-function variants in ARHGAP24 further reinforces the pivotal role of mechano-transduction pathways in the pathogenesis of MVP. CLINICAL PERSPECTIVE Isolated posterior mitral valve prolapse (PostMVP), often called fibro-elastic deficiency MVP, is at least in some patients, a specific inherited phenotypic traitPostMVP has both genetic and functional pathophysiological origins Genetic variants in the ARHGAP24 gene, which encodes for the FilGAP protein, cause progressive Post MVP in familial cases, and impair cell adhesion and mechano-transduction capacities.
Collapse
|
2
|
Sajib MS, Zahra FT, Lamprou M, Akwii RG, Park JH, Osorio M, Tullar P, Doci CL, Zhang C, Huveneers S, Van Buul JD, Wang MH, Markiewski MM, Srivastava SK, Zheng Y, Gutkind JS, Hu J, Bickel U, Maeda DY, Zebala JA, Lionakis MS, Trasti S, Mikelis CM. Tumor-induced endothelial RhoA activation mediates tumor cell transendothelial migration and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614304. [PMID: 39372784 PMCID: PMC11451620 DOI: 10.1101/2024.09.22.614304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact β 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
Collapse
|
3
|
Fu C, Dilasser F, Lin SZ, Karnat M, Arora A, Rajendiran H, Ong HT, Mui Hoon Brenda N, Phow SW, Hirashima T, Sheetz M, Rupprecht JF, Tlili S, Viasnoff V. Regulation of intercellular viscosity by E-cadherin-dependent phosphorylation of EGFR in collective cell migration. Proc Natl Acad Sci U S A 2024; 121:e2405560121. [PMID: 39231206 PMCID: PMC11406304 DOI: 10.1073/pnas.2405560121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/27/2024] [Indexed: 09/06/2024] Open
Abstract
Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.
Collapse
Affiliation(s)
- Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Florian Dilasser
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Aditya Arora
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Harini Rajendiran
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Nai Mui Hoon Brenda
- Department of Biomedical Engineering, National University of Singapore, Singapore117583, Singapore
| | - Sound Wai Phow
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille13009, France
| | - Sham Tlili
- Aix Marseille Univ, Institut de Biologie du developpement de Marseille (UMR 7288), Turing Centre for Living systems, Marseille13009, France
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore117411, Singapore
- CNRS International Research Lab 3639, Singapore117411, Singapore
| |
Collapse
|
4
|
Hao W, Luo D, Jiang Y, Wan S, Li X. An overview of sphingosine-1-phosphate receptor 2: Structure, biological function, and small-molecule modulators. Med Res Rev 2024; 44:2331-2362. [PMID: 38665010 DOI: 10.1002/med.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.
Collapse
Affiliation(s)
- Wanting Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Marine Biomedical Research, Institute of Qingdao, Qingdao, China
| |
Collapse
|
5
|
Ramos R, Vinyals A, Campos-Martin R, Cabré E, Bech JJ, Vaquero J, Gonzalez-Sanchez E, Bertran E, Ferreres JR, Lorenzo D, De La Torre CG, Fabregat I, Caminal JM, Fabra À. New Insights into the Exosome-Induced Migration of Uveal Melanoma Cells and the Pre-Metastatic Niche Formation in the Liver. Cancers (Basel) 2024; 16:2977. [PMID: 39272836 PMCID: PMC11394004 DOI: 10.3390/cancers16172977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
UM is an aggressive intraocular tumor characterized by high plasticity and a propensity to metastasize in the liver. However, the underlying mechanisms governing liver tropism remain poorly understood. Given the emerging significance of exosomes, we sought to investigate the contribution of UM-derived exosomes to specific steps of the metastatic process. Firstly, we isolated exosomes from UM cells sharing a common genetic background and different metastatic properties. A comparison of protein cargo reveals an overrepresentation of proteins related to cytoskeleton remodeling and actin filament-based movement in exosomes derived from the parental cells that may favor the detachment of cells from the primary site. Secondly, we assessed the role of macrophages in reprogramming the HHSCs by exosomes. The activation of HHSCs triggered a pro-inflammatory and pro-fibrotic environment through cytokine production, upregulation of extracellular matrix molecules, and the activation of signaling pathways. Finally, we found that activated HHSCs promote increased adhesion and migration of UM cells. Our findings shed light on the pivotal role of exosomes in pre-metastatic niche construction in the liver.
Collapse
Affiliation(s)
- Raquel Ramos
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Antònia Vinyals
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Eduard Cabré
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Joan Josep Bech
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Physiological Sciences, Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Josep Ramon Ferreres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- Dermatology Service, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Daniel Lorenzo
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Carolina G De La Torre
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Jose Maria Caminal
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Àngels Fabra
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
6
|
Kim JY, Hwang HG, Jeon HJ, Kim SI, Kim MK, Kim JY. ARHGEF5 binds Drebrin and affects α-tubulin acetylation to direct neuronal morphogenesis and migration during mouse brain development. Front Mol Neurosci 2024; 17:1421932. [PMID: 38932934 PMCID: PMC11199874 DOI: 10.3389/fnmol.2024.1421932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Rho guanine nucleotide exchange factors (Rho GEFs) activate Rho GTPases, which act as molecular switches regulating various essential cellular functions. This study investigated the role of ARHGEF5, a Rho GEF known for its involvement in cell migration and invasion processes, in the context of brain development. We found that ARHGEF5 is essential for dendrite development during the early stages of neuronal growth. We also discovered that ARHGEF5 binds to Drebrin E, which is vital for coordinating actin and microtubule dynamics, and facilitates the interaction between Drebrin E and Cyclin-dependent kinase 5, which phosphorylates Drebrin E. Notably, ARHGEF5 deficiency resulted in a decrease in acetylated α-tubulin levels, and the expression of an α-tubulin acetylation mimetic mutant (K40Q) rescued the defects in dendrite development and neuronal migration, suggesting ARHGEF5's role in modulating microtubule stability. Additionally, ARHGEF5 was shown to influence Golgi positioning in the leading processes of migrating cortical neurons during brain development. Our study suggests that ARHGEF5 plays a crucial role in integrating cytoskeletal dynamics with neuronal morphogenesis and migration processes during brain development.
Collapse
Affiliation(s)
- Ji-ye Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Jin Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Min-kyu Kim
- Divison of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Ulferts S, Lopes M, Miyamoto K, Grosse R. Nuclear actin dynamics and functions at a glance. J Cell Sci 2024; 137:jcs261630. [PMID: 38563209 DOI: 10.1242/jcs.261630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), 79104 Freiburg, Germany
| |
Collapse
|
8
|
Huang X, Xing Y, Cui Y, Ji B, Ding B, Zhong J, Jiu Y. Actomyosin-dependent cell contractility orchestrates Zika virus infection. J Cell Sci 2023; 136:jcs261301. [PMID: 37622381 DOI: 10.1242/jcs.261301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Emerging pathogen infections, such as Zika virus (ZIKV), pose an increasing threat to human health, but the role of mechanobiological attributes of host cells during ZIKV infection is largely unknown. Here, we reveal that ZIKV infection leads to increased contractility of host cells. Importantly, we investigated whether host cell contractility contributes to ZIKV infection efficacy, from both the intracellular and extracellular perspective. By performing drug perturbation and gene editing experiments, we confirmed that disruption of contractile actomyosin compromises ZIKV infection efficiency, viral genome replication and viral particle production. By culturing on compliant matrix, we further demonstrate that a softer substrate, leading to less contractility of host cells, compromises ZIKV infection, which resembles the effects of disrupting intracellular actomyosin organization. Together, our work provides evidence to support a positive correlation between host cell contractility and ZIKV infection efficacy, thus unveiling an unprecedented layer of interplay between ZIKV and the host cell.
Collapse
Affiliation(s)
- Xinyi Huang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Xing
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yanqin Cui
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Baohua Ji
- Biomechanics and Mechanomedicine Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
9
|
Qian L, Li N, Lu XC, Xu M, Liu Y, Li K, Zhang Y, Hu K, Qi YT, Yao J, Wu YL, Wen W, Huang S, Chen ZJ, Yin M, Lei QY. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat Metab 2023; 5:1159-1173. [PMID: 37337119 DOI: 10.1038/s42255-023-00818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Chen Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center; Institute of Pathology, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kewen Hu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ting Qi
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Coló GP, Seiwert A, Haga RB. Lfc subcellular localization and activity is controlled by αv-class integrin. J Cell Sci 2023; 136:307374. [PMID: 37129180 DOI: 10.1242/jcs.260740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvβ3 and α5β1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvβ3 integrin, but not FN-bound α5β1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvβ3 that controls RhoA activity. Mechanistically, FN-engaged αvβ3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Andrea Seiwert
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Raquel B Haga
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
11
|
Rubin J, van Wijnen AJ, Uzer G. Architectural control of mesenchymal stem cell phenotype through nuclear actin. Nucleus 2022; 13:35-48. [PMID: 35133922 PMCID: PMC8837231 DOI: 10.1080/19491034.2022.2029297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing appreciation that architectural components of the nucleus regulate gene accessibility by altering chromatin organization. While nuclear membrane connector proteins link the mechanosensitive actin cytoskeleton to the nucleoskeleton, actin's contribution to the inner architecture of the nucleus remains enigmatic. Control of actin transport into the nucleus, plus the presence of proteins that control actin structure (the actin tool-box) within the nucleus, suggests that nuclear actin may support biomechanical regulation of gene expression. Cellular actin structure is mechanoresponsive: actin cables generated through forces experienced at the plasma membrane transmit force into the nucleus. We posit that dynamic actin remodeling in response to such biomechanical cues provides a novel level of structural control over the epigenetic landscape. We here propose to bring awareness to the fact that mechanical forces can promote actin transfer into the nucleus and control structural arrangements as illustrated in mesenchymal stem cells, thereby modulating lineage commitment.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont Medical School, Burlington, Vt, USA
| | - Gunes Uzer
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA
| |
Collapse
|
12
|
Batta SPR, Rio M, Lebot C, Baron-menguy C, Le Ruz R, Loirand G, Vion A. ARHGEF18 participates in Endothelial Cell Mechano-sensitivity in Response to Flow.. [DOI: 10.1101/2022.09.10.507283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
AbstractHemodynamic forces play an important role in vascular network development and homeostasis. In physiological condition, shear stress generated by laminar flow promotes endothelial cells (EC) health and induces their alignment in the direction of flow. In contrast, altered hemodynamic forces induce endothelial dysfunction and lead to the development of vascular disorders such as atherosclerosis and aneurysms. Following mechano-sensor activation, Rho protein-mediated cytoskeletal rearrangement is one of the first steps in transforming flow-induced forces into intracellular signals in EC via guanine nucleotide exchange factors (RhoGEFs) that mediate the spatio-temporal activation of these Rho proteins. Here we identified ARHGEF18 as a flow-sensitive RhoGEF specifically activating RhoA. Both ARHGEF18 expression and activity were controlled by shear stress level. ARHGEF18 promotes EC adhesion, focal adhesion formation and migration. ARHGEF18 localized to the tight junction by interacting with ZO-1 and participated to shear stress-induced EC elongation and alignment via its nucleotide exchange activity and the activation of p38 MAPK. Our study therefore characterized ARHGEF18 as the first flow-sensitive RhoA GEF in ECs, whose activity is essential for the maintenance of intercellular junctions and a properly organized endothelial monolayer under physiological flow conditions.
Collapse
|
13
|
Lee SH, Hou JC, Hamidzadeh A, Yousafzai MS, Ajeti V, Chang H, Odde DJ, Murrell M, Levchenko A. A molecular clock controls periodically driven cell migration in confined spaces. Cell Syst 2022; 13:514-529.e10. [PMID: 35679858 DOI: 10.1016/j.cels.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca2+ levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model. We further demonstrate that an increasing frequency of the clock translates into a faster cell migration within physically confining spaces. This work lays the foundation for a better understanding of the molecular mechanisms dynamically driving cell migration in complex environments.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay C Hou
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Archer Hamidzadeh
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - M Sulaiman Yousafzai
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Visar Ajeti
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Hao Chang
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Murrell
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Andre Levchenko
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Kumar R, Francis V, Kulasekaran G, Khan M, Armstrong GAB, McPherson PS. A cell-based GEF assay reveals new substrates for DENN domains and a role for DENND2B in primary ciliogenesis. SCIENCE ADVANCES 2022; 8:eabk3088. [PMID: 35196081 PMCID: PMC8865772 DOI: 10.1126/sciadv.abk3088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Primary cilia are sensory antennae crucial for cell and organism development, and defects in their biogenesis cause ciliopathies. Ciliogenesis involves membrane trafficking mediated by small guanosine triphosphatases (GTPases) including Rabs, molecular switches activated by guanine nucleotide exchange factors (GEFs). The largest family of Rab GEFs is the DENN domain-bearing proteins. Here, we screen all 60 Rabs against two major DENN domain families using a cellular GEF assay, uncovering 19 novel DENN/Rab pairs. The screen reveals Rab10 as a substrate for DENND2B, a protein previously implicated in cancer and severe mental retardation. Through activation of Rab10, DENND2B represses the formation of primary cilia. Through a second pathway, DENND2B functions as a GEF for RhoA to control the length of primary cilia. This work thus identifies an unexpected diversity in DENN domain-mediated activation of Rabs, a previously unidentified non-Rab substrate for a DENN domain, and a new regulatory protein in primary ciliogenesis.
Collapse
|
15
|
García-Jiménez I, Cervantes-Villagrana RD, Del-Río-Robles JE, Castillo-Kauil A, Beltrán-Navarro YM, García-Román J, Reyes-Cruz G, Vázquez-Prado J. Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression. J Biol Chem 2021; 298:101440. [PMID: 34808208 PMCID: PMC8703085 DOI: 10.1016/j.jbc.2021.101440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gβγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression–based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein–coupled LPA receptors via the Gβγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gβγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.
Collapse
|
16
|
Kalpana G, Figy C, Feng J, Tipton C, De Castro JN, Bach VN, Borile C, LaSalla A, Odeh HN, Yeung M, Garcia-Mata R, Yeung KC. The RhoA dependent anti-metastatic function of RKIP in breast cancer. Sci Rep 2021; 11:17455. [PMID: 34465801 PMCID: PMC8408146 DOI: 10.1038/s41598-021-96709-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
Raf-1 kinase inhibitor protein was initially discovered as a physiological kinase inhibitor of the MAPK signaling pathway and was later shown to suppress cancer cell invasion and metastasis. Yet, the molecular mechanism through which RKIP executes its effects is not completely defined. RhoA has both a pro- and anti-metastatic cell-context dependent functions. Given that Rho GTPases primarily function on actin cytoskeleton dynamics and cell movement regulation, it is possible that one way RKIP hinders cancer cell invasion/metastasis is by targeting these proteins. Here we show that RKIP inhibits cancer cell invasion and metastasis by stimulating RhoA anti-tumorigenic functions. Mechanistically, RKIP activates RhoA in an Erk2 and GEF-H1 dependent manner to enhance E-cadherin membrane localization and inhibit CCL5 expression.
Collapse
Affiliation(s)
- Gardiyawasam Kalpana
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Christopher Figy
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Jingwei Feng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA.,Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Claire Tipton
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Julius N De Castro
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Vu N Bach
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Clariza Borile
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Alexandria LaSalla
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Hussain N Odeh
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Miranda Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, College of Natural Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Kam C Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, 43614, USA.
| |
Collapse
|
17
|
Shi X, Wen Z, Wang Y, Liu YJ, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol 2021; 9:665919. [PMID: 33928090 PMCID: PMC8076160 DOI: 10.3389/fcell.2021.665919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Wang
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
19
|
Abstract
The small GTPase RhoA participates in actin and microtubule machinery, cell migration and invasion, gene expression, vesicular trafficking and cell cycle, and its dysregulation is a determining factor in many pathological conditions. Similar to other Rho GTPases, RhoA is a key component of the wound-healing process, regulating the activity of different participating cell types. RhoA gets activated upon binding to guanine nucleotide exchange factors (GEFs), which catalyze the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP). GTPase-activating proteins (GAPs) mediate the exchange of GTP to GDP, inactivating RhoA, whereas guanine nucleotide dissociation inhibitors (GDIs) preserve the inactive pool of RhoA proteins in the cytosol. RhoA and Rho GEF activation is detected by protein pull-down assays, which use chimeric proteins with Rhotekin and G17A mutant RhoA as "bait" to pull down active RhoA and RhoA GEFs, respectively. In this chapter, we describe an optimized protocol for performing RhoA and GEF pull-down assays.
Collapse
|
20
|
Cervantes-Villagrana RD, Beltrán-Navarro YM, García-Jiménez I, Adame-García SR, Olguín-Olguín A, Reyes-Cruz G, Vázquez-Prado J. Gβγ recruits and activates P-Rex1 via two independent binding interfaces. Biochem Biophys Res Commun 2021; 539:20-27. [PMID: 33412417 DOI: 10.1016/j.bbrc.2020.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Gβγ marks the inner side of the plasma membrane where chemotactic GPCRs activate Rac to lead the assembly of actin filaments that push the cell to move forward. Upon dissociation from heterotrimeric Gi, Gβγ recruits and activates P-Rex1, a Rac guanine nucleotide exchange factor (RacGEF). This cytosolic chemotactic effector is kept inactive by intramolecular interactions. The mechanism by which Gβγ stimulates P-Rex1 has been debated. We hypothesized that Gβγ activates P-Rex1 by a two-step mechanism based on independent interaction interfaces to recruit and unroll this RacGEF. Using pulldown assays, we found that Gβγ binds P-Rex1-DH/PH as well as PDZ-PDZ domains. These domains and the DEP-DEP tandem interact among them and dissociate upon binding with Gβγ, arguing for a stimulatory allosteric effect. In addition, P-Rex1 catalytic activity is inhibited by its C-terminal domain. To discern P-Rex1 recruitment from activation, we studied Q-Rhox, a synthetic RhoGEF having the PDZ-RhoGEF catalytic DH/PH module, insensitive to Gβγ, swapped into P-Rex1. Gβγ recruited Q-Rhox to the plasma membrane, indicating that Gβγ/PDZ-PDZ interaction interface plays a role on P-Rex1 recruitment. In conclusion, we reconcile previous findings and propose a mechanistic model of P-Rex1 activation; accordingly, Gβγ recruits P-Rex1 via the Gβγ/PDZ-PDZ interface followed by a second contact involving the Gβγ/DH/PH interface to unleash P-Rex1 RacGEF activity at the plasma membrane.
Collapse
|
21
|
Castillo-Kauil A, García-Jiménez I, Cervantes-Villagrana RD, Adame-García SR, Beltrán-Navarro YM, Gutkind JS, Reyes-Cruz G, Vázquez-Prado J. Gα s directly drives PDZ-RhoGEF signaling to Cdc42. J Biol Chem 2020; 295:16920-16928. [PMID: 33023908 PMCID: PMC7863908 DOI: 10.1074/jbc.ac120.015204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.
Collapse
Affiliation(s)
- Alejandro Castillo-Kauil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Irving García-Jiménez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Sendi Rafael Adame-García
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - J Silvio Gutkind
- Moores Cancer Center and Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
22
|
Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization. Mol Biol Rep 2020; 47:3867-3883. [PMID: 32372170 DOI: 10.1007/s11033-020-05476-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Here, we document changes in cell motility and organization of the contractile apparatus of human umbilical cord Wharton's jelly mesenchymal stem cells (MSCWJ-1) in the process of replicative senescence. Colocalization dynamics of F-actin and actin-binding proteins (myosin-9, α-actinin-4, RhoA) were examined in the MSCWJ-1 cell line. The results show that nuclear-cytoplasmic redistribution of RhoA occurs during replicative senescence, with maximal RhoA/nucleus colocalization evident at passage 15. At that time point, decreases in colocalization, namely myosin-9/F-actin and α-actinin-4/F-actin, were seen and myosin-9 was found in cytosolic extracts in the assembly-incompetent form. Using an automated intravital confocal cytometry system and quantitative analysis of MSCWJ-1 movements, we found that changes in cytoskeletal organization correlate with cell motility characteristics over a time period from passages 9 to 38. The factors examined (cytoskeleton structure, cell motility) indicate that the process by which cells transition to replicative senescence is best represented as three stages. The first stage lasts from cell culture isolation to passage 15 and is characterized by: accumulation of actin-binding proteins in assembly-incompetent forms; nuclear RhoA accumulation; and an increase in movement tortuosity. The second stage extends from passages 15 to 28 and is characterized by: an increase in the structural integrity of the actin cytoskeleton; exit of RhoA and alpha-actinin-4 from the nucleus; and a decrease in path tortuosity. The third stage extends from passage 28 to 38 and is marked by: a plateau in actin cytoskeleton structural integrity; significant decreases in nuclear RhoA levels; and decreases in cell speed.
Collapse
|
23
|
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci 2020; 133:jcs239186. [PMID: 32107290 DOI: 10.1242/jcs.239186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Actin polymerization is a crucial process during sperm capacitation. We have recently described the participation of FAK during actin polymerization in guinea pig spermatozoa. However, the mechanism by which FAK mediates these processes is unknown. Our previous data have shown that MAPK1 (hereafter referred to as ERK2) is activated during the first minutes of capacitation, and inhibition of ERK2 blocked actin polymerization and the acrosome reaction. In this current study, we found that FAK is involved in ERK2 activation - as FAK was phosphorylated at tyrosine residue 925 and bound to Grb2 - and that inhibition of FAK results in a significant decrease of ERK2 activation. We also confirmed the presence of Rho guanine nucleotide exchange factor 2 (ARHGEF2, hereafter referred to as GEF-H1), which is able to associate with RhoA during capacitation. RhoA activation and its participation in actin polymerization were also analyzed. Inhibition of FAK or ERK1/2 impeded GEF-H1 phosphorylation, RhoA activation, and the association between GEF-H1 and RhoA. Finally, we observed the presence of fibronectin on the sperm surface, its role in sperm-sperm interaction as well as participation of β-integrin in the activation of ERK2. Our results show that the signaling pathway downstream of fibronectin, via integrin, FAK, Grb2, MEK1/2, ERK2, GEF-H1 and RhoA regulates the actin polymerization associated with spermatozoa capacitation.
Collapse
Affiliation(s)
- Monica L Salgado-Lucio
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Danelia Ramírez-Ramírez
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Coral Y Jorge-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Ana L Roa-Espitia
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| | - Enrique O Hernández-González
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, CDMX 07360, México
| |
Collapse
|
24
|
Color-Aparicio VM, Cervantes-Villagrana RD, García-Jiménez I, Beltrán-Navarro YM, Castillo-Kauil A, Escobar-Islas E, Reyes-Cruz G, Vázquez-Prado J. Endothelial cell sprouting driven by RhoJ directly activated by a membrane-anchored Intersectin 1 (ITSN1) RhoGEF module. Biochem Biophys Res Commun 2020; 524:109-116. [PMID: 31980169 DOI: 10.1016/j.bbrc.2020.01.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.
Collapse
|
25
|
Fray MA, Charpentier JC, Sylvain NR, Seminario MC, Bunnell SC. Vav2 lacks Ca 2+ entry-promoting scaffolding functions unique to Vav1 and inhibits T cell activation via Cdc42. J Cell Sci 2020; 133:jcs238337. [PMID: 31974114 PMCID: PMC7075049 DOI: 10.1242/jcs.238337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vav family guanine nucleotide exchange factors (GEFs) are essential regulators of immune function. Despite their structural similarity, Vav1 promotes and Vav2 opposes T cell receptor (TCR)-induced Ca2+ entry. By using a Vav1-deficient Jurkat T cell line, we find that Vav1 facilitates Ca2+ entry via non-catalytic scaffolding functions that are encoded by the catalytic core of Vav1 and flanking linker regions. We implicate, in this scaffolding function, a previously undescribed polybasic motif that is strictly conserved in Vav1 and absent from Vav2 in tetrapods. Conversely, the catalytic activity of Vav2 contributes to the suppression of TCR-mediated Ca2+ entry. By performing an in vivo 'GEF trapping' assay in intact cells, we demonstrate that Cdc42 interacts with the catalytic surface of Vav2 but not Vav1, and that Vav1 discriminates Cdc42 from Rac1 via F56 (W56 in Rac1). Finally, the Cdc42-specific inhibitor ZCL278 and the shRNA-mediated suppression of Cdc42 each prevent the inhibition of TCR-induced Ca2+ entry by Vav2. These findings define stark differences in the functions of Vav1 and Vav2, and provide an explanation for the differential usage of these Vav isoforms by immune subpopulations.
Collapse
Affiliation(s)
- Michael A Fray
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - John C Charpentier
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicholas R Sylvain
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Maria-Cristina Seminario
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen C Bunnell
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
26
|
Zhao S, Shi X, Zhang Y, Wen Z, Cai J, Gao W, Xu J, Zheng Y, Ji B, Cui Y, Shi K, Liu Y, Li H, Jiu Y. Myosin-18B Promotes Mechanosensitive CaMKK2-AMPK-VASP Regulation of Contractile Actin Stress Fibers. iScience 2020; 23:100975. [PMID: 32222698 PMCID: PMC7109629 DOI: 10.1016/j.isci.2020.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Actin stress fibers guide cell migration and morphogenesis. During centripetal flow, actin transverse arcs fuse accompanied by the formation of myosin II stacks to generate mechanosensitive actomyosin bundles. However, whether myosin II stack formation plays a role in cell mechano-sensing has remained elusive. Myosin-18B is a “glue” molecule for assembling myosin II stacks. By examining actin networks and traction forces, we find that cells abolishing myosin-18B resemble Ca2+∕calmodulin-dependent kinase kinase 2 (CaMKK2)-defective cells. Inhibition of CaMKK2 activity reverses the strong actin network to thin filaments in myosin-18B-overexpressing cells. Moreover, AMP-activated protein kinase (AMPK) activation is able to relieve the thin stress fibers by myosin-18B knockout. Importantly, lack of myosin-18B compromises AMPK-vasodilator-stimulated phosphoprotein and RhoA-myosin signaling, thereby leading to defective persistent migration, which can be rescued only by full-length and C-extension-less myosin-18B. Together, these results reveal a critical role of myosin-18B in the mechanosensitive regulation of migrating cells. Myosin-18B knockout cells resemble cells dampening mechano-sensing signaling pathway Myosin-18B depletion decreases the phosphorylation level of AMPK-VASP and MLC Myosin-18B knockout cells show compromised persistent migration The N-extension and coiled-coil domain of myosin-18B is indispensable in cell migration
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jinping Cai
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jiayi Xu
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yifei Zheng
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Baohua Ji
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Li
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
27
|
Bery N, Keller L, Soulié M, Gence R, Iscache AL, Cherier J, Cabantous S, Sordet O, Lajoie-Mazenc I, Pedelacq JD, Favre G, Olichon A. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chem Biol 2019; 26:1544-1558.e6. [PMID: 31522999 DOI: 10.1016/j.chembiol.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.
Collapse
Affiliation(s)
- Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Marjorie Soulié
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Laure Iscache
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Julia Cherier
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Sordet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France.
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
28
|
Distinctive requirement of PKCε in the control of Rho GTPases in epithelial and mesenchymally transformed lung cancer cells. Oncogene 2019; 38:5396-5412. [PMID: 30923343 PMCID: PMC6609469 DOI: 10.1038/s41388-019-0796-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Diacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival and migration; however its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied. Silencing experiments in non-small lung cancer (NSCLC) cells revealed that PKCε or other DAG-regulated PKCs (PKCα and PKCδ) were dispensable for the acquisition of a mesenchymal phenotype induced by transforming growth factor beta (TGF-β). Unexpectedly, we found a nearly complete down-regulation of PKCε expression in TGF-β-mesenchymally transformed NSCLC cells. PMA and AJH-836 (a DAG-mimetic that preferentially activates PKCε) promote ruffle formation in NSCLC cells via Rac1, however they fail to induce these morphological changes in TGF-β-mesenchymally transformed cells despite their elevated Rac1 activity. Several Rac Guanine nucleotide Exchange-Factors (Rac-GEFs) were also up-regulated in TGF-β-treated NSCLC cells, including Trio and Tiam2, which were required for cell motility. Lastly, we found that silencing or inhibiting PKCε enhances RhoA activity and stress fiber formation, a phenotype also observed in TGF-β-transformed cells. Our studies established a distinctive involvement of PKCε in epithelial and mesenchymal NSCLC cells, and identified a complex interplay between PKCε and small GTPases that contributes to regulation of NSCLC cell morphology and motile activity.
Collapse
|
29
|
Adame-García SR, Cervantes-Villagrana RD, Orduña-Castillo LB, Del Rio JC, Gutkind JS, Reyes-Cruz G, Taylor SS, Vázquez-Prado J. cAMP-dependent activation of the Rac guanine exchange factor P-REX1 by type I protein kinase A (PKA) regulatory subunits. J Biol Chem 2019; 294:2232-2246. [PMID: 30530493 PMCID: PMC6378977 DOI: 10.1074/jbc.ra118.006691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory subunits of protein kinase A (PKA) inhibit its kinase subunits. Intriguingly, their potential as cAMP-dependent signal transducers remains uncharacterized. We recently reported that type I PKA regulatory subunits (RIα) interact with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a chemotactic Rac guanine exchange factor (RacGEF). Because P-REX1 is known to be phosphorylated and inhibited by PKA, its interaction with RIα suggests that PKA regulatory and catalytic subunits may fine-tune P-REX1 activity or those of its target pools. Here, we tested whether RIα acts as a cAMP-dependent factor promoting P-REX1-mediated Rac activation and cell migration. We observed that Gs-coupled EP2 receptors indeed promote endothelial cell migration via RIα-activated P-REX1. Expression of the P-REX1-PDZ1 domain prevented RIα/P-REX1 interaction, P-REX1 activation, and EP2-dependent cell migration, and P-REX1 silencing abrogated RIα-dependent Rac activation. RIα-specific cAMP analogs activated P-REX1, but lost this activity in RIα-knockdown cells, and cAMP pulldown assays revealed that P-REX1 preferentially interacts with free RIα. Moreover, purified RIα directly activated P-REX1 in vitro We also found that the RIα CNB-B domain is critical for the interaction with P-REX1, which was increased in RIα mutants, such as the acrodysostosis-associated mutant, that activate P-REX1 at basal cAMP levels. RIα and Cα PKA subunits targeted distinct P-REX1 molecules, indicated by an absence of phosphorylation in the active fraction of P-REX1. This was in contrast to the inactive fraction in which phosphorylated P-REX1 was present, suggesting co-existence of dual stimulatory and inhibitory effects. We conclude that PKA's regulatory subunits are cAMP-dependent signal transducers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan S Taylor
- the Departments of Pharmacology
- Chemistry and
- Biochemistry, University of California San Diego, La Jolla, California 92093
| | - José Vázquez-Prado
- Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico and
| |
Collapse
|
30
|
Huff LP, Kikuchi DS, Faidley E, Forrester SJ, Tsai MZ, Lassègue B, Griendling KK. Polymerase-δ-interacting protein 2 activates the RhoGEF epithelial cell transforming sequence 2 in vascular smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C621-C631. [PMID: 30726115 DOI: 10.1152/ajpcell.00208.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polymerase-δ-interacting protein 2 (Poldip2) controls a wide variety of cellular functions and vascular pathologies. To mediate these effects, Poldip2 interacts with numerous proteins and generates reactive oxygen species via the enzyme NADPH oxidase 4 (Nox4). We have previously shown that Poldip2 can activate the Rho family GTPase RhoA, another signaling node within the cell. In this study, we aimed to better understand how Poldip2 activates Rho family GTPases and the functions of the involved proteins in vascular smooth muscle cells (VSMCs). RhoA is activated by guanine nucleotide exchange factors. Using nucleotide-free RhoA (isolated from bacteria) to pulldown active RhoGEFs, we found that the RhoGEF epithelial cell transforming sequence 2 (Ect2) is activated by Poldip2. Ect2 is a critical RhoGEF for Poldip2-mediated RhoA activation, because siRNA against Ect2 prevented Poldip2-mediated RhoA activity (measured by rhotekin pulldowns). Surprisingly, we were unable to detect a direct interaction between Poldip2 and Ect2, as they did not coimmunoprecipitate. Nox4 is not required for Poldip2-driven Ect2 activation, as Poldip2 overexpression induced Ect2 activation in Nox4 knockout VSMCs similar to wild-type cells. However, antioxidant treatment blocked Poldip2-induced Ect2 activation. This indicates a novel reactive oxygen species-driven mechanism by which Poldip2 regulates Rho family GTPases. Finally, we examined the function of these proteins in VSMCs, using siRNA against Poldip2 or Ect2 and determined that Poldip2 and Ect2 are both essential for vascular smooth muscle cell cytokinesis and proliferation.
Collapse
Affiliation(s)
- Lauren Parker Huff
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Daniel Seicho Kikuchi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Elizabeth Faidley
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Steven J Forrester
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Michelle Z Tsai
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| | - Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
31
|
Cervantes-Villagrana RD, Adame-García SR, García-Jiménez I, Color-Aparicio VM, Beltrán-Navarro YM, König GM, Kostenis E, Reyes-Cruz G, Gutkind JS, Vázquez-Prado J. Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gα q and Gα 13 proteins. J Biol Chem 2018; 294:531-546. [PMID: 30446620 DOI: 10.1074/jbc.ra118.006254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/12/2018] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors stimulate Rho guanine nucleotide exchange factors that promote mammalian cell migration. Rac and Rho GTPases exert opposing effects on cell morphology and are stimulated downstream of Gβγ and Gα12/13 or Gαq, respectively. These Gα subunits might in turn favor Rho pathways by preventing Gβγ signaling to Rac. Here, we investigated whether Gβγ signaling to phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a key Gβγ chemotactic effector, is directly controlled by Rho-activating Gα subunits. We show that pharmacological inhibition of Gαq makes P-REX1 activation by Gq/Gi-coupled lysophosphatidic acid receptors more effective. Moreover, chemogenetic control of Gi and Gq by designer receptors exclusively activated by designer drugs (DREADDs) confirmed that Gi differentially activates P-REX1. GTPase-deficient GαqQL and Gα13QL variants formed stable complexes with Gβγ, impairing its interaction with P-REX1. The N-terminal regions of these variants were essential for stable interaction with Gβγ. Pulldown assays revealed that chimeric Gα13-i2QL interacts with Gβγ unlike to Gαi2-13QL, the reciprocal chimera, which similarly to Gαi2QL could not interact with Gβγ. Moreover, Gβγ was part of tetrameric Gβγ-GαqQL-RGS2 and Gβγ-Gα13-i2QL-RGS4 complexes, whereas Gα13QL dissociated from Gβγ to interact with the PDZ-RhoGEF-RGS domain. Consistent with an integrated response, Gβγ and AKT kinase were associated with active SDF-1/CXCL12-stimulated P-REX1. This pathway was inhibited by GαqQL and Gα13QL, which also prevented CXCR4-dependent cell migration. We conclude that a coordinated mechanism prioritizes Gαq- and Gα13-mediated signaling to Rho over a Gβγ-dependent Rac pathway, attributed to heterotrimeric Gi proteins.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - Irving García-Jiménez
- Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | | | | | - Gabriele M König
- the University of Bonn, Institute of Pharmaceutical Biology, 53115 Bonn, Germany, and
| | - Evi Kostenis
- the University of Bonn, Institute of Pharmaceutical Biology, 53115 Bonn, Germany, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), 07360 Mexico City, Mexico
| | - J Silvio Gutkind
- the Moores Cancer Center and Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | | |
Collapse
|
32
|
You K, Li SY, Gong J, Fang JH, Zhang C, Zhang M, Yuan Y, Yang J, Zhuang SM. MicroRNA-125b Promotes Hepatic Stellate Cell Activation and Liver Fibrosis by Activating RhoA Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:57-66. [PMID: 30195793 PMCID: PMC6023793 DOI: 10.1016/j.omtn.2018.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 04/29/2018] [Indexed: 12/21/2022]
Abstract
miR-125b is frequently dysregulated in different diseases. Activation of hepatic stellate cells (HSCs) is a critical event during liver fibrogenesis. However, the function and its underlying mechanism of miR-125b in HSC activation and liver fibrosis are still unknown. Here, we showed that miR-125b was upregulated in HSCs, but not in hepatocytes, during hepatic fibrogenesis in vivo and upon culture activation in vitro. Inhibition of miR-125b suppressed the expression of profibrogenic genes in culture-activated primary HSCs and reduced the basal and transforming growth factor β (TGF-β)-induced alpha-smooth muscle actin (α-SMA) expression and cell contraction of the immortalized HSC cell line. In contrast, ectopic expression of miR-125b promoted α-SMA expression and HSC contraction. Moreover, antagonizing miR-125b in vivo significantly alleviated liver fibrosis in CCl4-treated mice. Mechanistically, overexpression of miR-125b in HSCs enhanced RhoA activity by directly targeting StAR-related lipid transfer (START) domain containing 13 (Stard13), a RhoA-specific GTPase-activating protein, whereas knockdown of miR-125b abrogated RhoA activation. Furthermore, inhibition of RhoA or its downstream molecules, Mrtf-A and Srf, attenuated the miR-125b-induced α-SMA expression and HSC contraction. Therefore, our findings identify a miR-125b-Stard13-RhoA-α-SMA signaling cascade in HSCs and highlight its importance in hepatic fibrosis.
Collapse
Affiliation(s)
- Kai You
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Song-Yang Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiao Gong
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hong Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Yuan
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jine Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
New nuclear and perinuclear functions of formins. Biochem Soc Trans 2017; 44:1701-1708. [PMID: 27913680 DOI: 10.1042/bst20160187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Formin family proteins (formins) represent an evolutionary conserved protein family encoded in the genome of a wide range of eukaryotes. Formins are hallmarked by a formin homology 1 (FH1) domain juxtaposed to an FH2 domain whereby they control actin and microtubule dynamics. Not surprisingly, formins are best known as key regulators of the cytoskeleton in a variety of morphogenetic processes. However, mounting evidence implicates several formins in the assembly and organization of actin within and around the nucleus. In addition, actin-independent roles for formins have recently been discovered. In this mini-review, we summarize these findings and highlight the novel nuclear and perinulcear functions of formins. In light of the emerging new biology of formins, we also discuss the fundamental principles governing the versatile activity and multimodal regulation of these proteins.
Collapse
|
34
|
Schillaci O, Fontana S, Monteleone F, Taverna S, Di Bella MA, Di Vizio D, Alessandro R. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 2017; 7:4711. [PMID: 28680152 PMCID: PMC5498501 DOI: 10.1038/s41598-017-05002-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/23/2017] [Indexed: 01/03/2023] Open
Abstract
The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.
Collapse
Affiliation(s)
- Odessa Schillaci
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Fontana
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy.
| | - Francesca Monteleone
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | | | - Dolores Di Vizio
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| |
Collapse
|
35
|
Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 2017; 114:E5750-E5759. [PMID: 28655842 DOI: 10.1073/pnas.1700054114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.
Collapse
|
36
|
Dayal S, Zhou J, Manivannan P, Siddiqui MA, Ahmad OF, Clark M, Awadia S, Garcia-Mata R, Shemshedini L, Malathi K. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. Int J Mol Sci 2017; 18:ijms18030529. [PMID: 28257035 PMCID: PMC5372545 DOI: 10.3390/ijms18030529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Shubham Dayal
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Jun Zhou
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Praveen Manivannan
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Mohammad Adnan Siddiqui
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Omaima Farid Ahmad
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Matthew Clark
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Sahezeel Awadia
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Rafael Garcia-Mata
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Lirim Shemshedini
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| | - Krishnamurthy Malathi
- Department of Biological Sciences, 2801 W. Bancroft St., University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
37
|
Jiu Y, Peränen J, Schaible N, Cheng F, Eriksson JE, Krishnan R, Lappalainen P. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci 2017; 130:892-902. [PMID: 28096473 PMCID: PMC5358333 DOI: 10.1242/jcs.196881] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous ‘unit length form’ vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells. Summary: Vimentin intermediate filaments control the activity of RhoA, and consequent stress fiber assembly and contractility by downregulating its guanine nucleotide exchange factor GEF-H1.
Collapse
Affiliation(s)
- Yaming Jiu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, Helsinki 00014, Finland
| | - Johan Peränen
- Faculty of Medicine, P.O. Box 63, University of Helsinki, Helsinki 00014, Finland
| | - Niccole Schaible
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fang Cheng
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FI-20521 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FI-20521 Turku, Finland
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
38
|
Barrera-Chimal J, André-Grégoire G, Nguyen Dinh Cat A, Lechner SM, Cau J, Prince S, Kolkhof P, Loirand G, Sauzeau V, Hauet T, Jaisser F. Benefit of Mineralocorticoid Receptor Antagonism in AKI: Role of Vascular Smooth Muscle Rac1. J Am Soc Nephrol 2017; 28:1216-1226. [PMID: 28087726 DOI: 10.1681/asn.2016040477] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 01/22/2023] Open
Abstract
AKI is a frequent complication in hospitalized patients. Unfortunately, there is no effective pharmacologic approach for treating or preventing AKI. In rodents, mineralocorticoid receptor (MR) antagonism prevents AKI induced by ischemia-reperfusion (IR). We investigated the specific role of vascular MR in mediating AKI induced by IR. We also assessed the protective effect of MR antagonism in IR-induced AKI in the Large White pig, a model of human AKI. In mice, MR deficiency in smooth muscle cells (SMCs) protected against kidney IR injury. MR blockade by the novel nonsteroidal MR antagonist, finerenone, or genetic deletion of MR in SMCs associated with weaker oxidative stress production. Moreover, ischemic kidneys had higher levels of Rac1-GTP, required for NADPH oxidase activation, than sham control kidneys, and genetic deletion of Rac1 in SMCs protected against AKI. Furthermore, genetic deletion of MR in SMCs blunted the production of Rac1-GTP after IR. Pharmacologic inhibition of MR also prevented AKI induced by IR in the Large White pig. Altogether, we show that MR antagonism, or deletion of the MR gene in SMCs, limited the renal injury induced by IR through effects on Rac1-mediated MR signaling. The benefits of MR antagonism in the pig provide a rational basis for future clinical trials assessing the benefits of this approach in patients with IR-mediated AKI.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Gwennan André-Grégoire
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Aurelie Nguyen Dinh Cat
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Sebastian M Lechner
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Jérôme Cau
- Unité U1082 Ischemie Reperfusion en Transplantation d'Organes Mécanismes et Innovations Thérapeutiques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, Poitiers, France.,Service de Biochimie, Centre Hospitalier Universitaire de Poitiers, Pôle BIOlogie Santé publique PHARMacie, Poitiers, France
| | - Sonia Prince
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Peter Kolkhof
- Cardiology Research, BAYER Pharma AG, Wuppertal, Germany
| | - Gervaise Loirand
- Unité Mixte de Recherche Scientifique 1087, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique Unité Mixte de Recherche Scientifique 6291, l'Institut du Thorax, Nantes, France; and
| | - Vincent Sauzeau
- Unité Mixte de Recherche Scientifique 1087, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique Unité Mixte de Recherche Scientifique 6291, l'Institut du Thorax, Nantes, France; and
| | - Thierry Hauet
- Unité U1082 Ischemie Reperfusion en Transplantation d'Organes Mécanismes et Innovations Thérapeutiques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, Poitiers, France.,Service de Biochimie, Centre Hospitalier Universitaire de Poitiers, Pôle BIOlogie Santé publique PHARMacie, Poitiers, France
| | - Frédéric Jaisser
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France; .,Clinical Investigation Centre 1433, Institut National de la Santé et de la Recherche Médicale, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.
Collapse
Affiliation(s)
- Chris Givens
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | - Ellie Tzima
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.,2 Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics , Oxford, United Kingdom
| |
Collapse
|
40
|
Kelpsch DJ, Groen CM, Fagan TN, Sudhir S, Tootle TL. Fascin regulates nuclear actin during Drosophila oogenesis. Mol Biol Cell 2016; 27:2965-79. [PMID: 27535426 PMCID: PMC5042582 DOI: 10.1091/mbc.e15-09-0634] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 08/02/2016] [Indexed: 01/15/2023] Open
Abstract
Study of Drosophila oogenesis reveals that the nuclear localization of actin is controlled by both development and Fascin. Fascin regulates both endogenous nuclear actin and ectopic nuclear actin rod formation by controlling Cofilin. Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.
Collapse
Affiliation(s)
- Daniel J Kelpsch
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Christopher M Groen
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tiffany N Fagan
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Sweta Sudhir
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
41
|
Li Y, Hu Y, Che L, Jia J, Chen M. Nucleolar localization of Small G protein RhoA is associated with active RNA synthesis in human carcinoma HEp-2 cells. Oncol Lett 2016; 11:3605-3610. [PMID: 27313679 PMCID: PMC4888017 DOI: 10.3892/ol.2016.4450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 03/01/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that the nuclear localization of ras homolog family member A (RhoA), with prominent concentration in the nucleolus, is a common feature in human cancer tissues and cancer cell lines. Although a previous study has demonstrated that the nuclear translocation of RhoA occurs via active transport, a process that occurs through importin α in a nuclear factor-κB-dependent manner, the mechanism, biological function and pathological meaning of the nucleolar residency of RhoA remain to be elucidated. As the cell nucleolus is the site of ribosome biosynthesis, the aim of the present study was to investigate the association between RNA synthesis and the nucleolar localization of RhoA, as well as the molecular mechanisms underlying the residency of RhoA in the nucleolus of HEp-2 (human larynx epithelial carcinoma) cells. Indirect immunofluorescence microscopy was used to evaluate the subcellular distribution of nuclear RhoA, and immunoblotting analysis was used to determine the total cellular protein level of RhoA. Consistent with the results of previous studies, untreated HEp-2 cells exhibited bright nucleolar staining, indicating an increased concentration of RhoA in the nucleoli. Treatment with actinomycin D for the inhibition of RNA synthesis caused a redistribution of RhoA from the nucleoli to the nucleoplasm with a speckled staining pattern. Immunoblotting revealed that neither the total cellular amount of RhoA nor the integrity of RhoA was affected by treatment with actinomycin D. In cells that were treated at a decreased concentration (0.05 mg/l) of actinomycin D, the redistribution of RhoA was reversible following the removal of the drug from the culture medium. However, this reversal was not observed at an increased drug concentration (1 mg/l). Overall, to the best of our knowledge, the results of the present study provide the first in situ evidence that the inhibition of RNA synthesis induces a redistribution of nucleolar RhoA to the nucleoplasm, and additionally suggest that the nucleolar residency of RhoA in HEp-2 cells may be associated with active RNA synthesis.
Collapse
Affiliation(s)
- Yueying Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yong Hu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Lilong Che
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Junhai Jia
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
42
|
Rohrbeck A, Fühner V, Schröder A, Hagemann S, Vu XK, Berndt S, Hust M, Pich A, Just I. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Toxins (Basel) 2016; 8:100. [PMID: 27043630 PMCID: PMC4848626 DOI: 10.3390/toxins8040100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 01/03/2023] Open
Abstract
Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Viola Fühner
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Anke Schröder
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Xuan-Khang Vu
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sarah Berndt
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Michael Hust
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
43
|
Scott DW, Tolbert CE, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 2016; 27:1420-30. [PMID: 26985018 PMCID: PMC4850030 DOI: 10.1091/mbc.e15-12-0833] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
Forces on JAM-A activate RhoA to increase cell stiffness. Activation of RhoA requires GEF-H1 and p115 RhoGEF activation downstream of FAK/ERK and Src family kinases, respectively. Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.
Collapse
Affiliation(s)
- David W Scott
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
45
|
Chávez-Vargas L, Adame-García SR, Cervantes-Villagrana RD, Castillo-Kauil A, Bruystens JGH, Fukuhara S, Taylor SS, Mochizuki N, Reyes-Cruz G, Vázquez-Prado J. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING. J Biol Chem 2016; 291:6182-99. [PMID: 26797121 DOI: 10.1074/jbc.m115.712216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.
Collapse
Affiliation(s)
| | - Sendi Rafael Adame-García
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Alejandro Castillo-Kauil
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Susan S Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute (NCVC), Osaka, 565-8565 Japan, and
| | - Guadalupe Reyes-Cruz
- Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, 07360 Mexico
| | | |
Collapse
|
46
|
Ensign SPF, Roos A, Mathews IT, Dhruv HD, Tuncali S, Sarkaria JN, Symons MH, Loftus JC, Berens ME, Tran NL. SGEF Is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide. Mol Cancer Res 2016; 14:302-12. [PMID: 26764186 DOI: 10.1158/1541-7786.mcr-15-0183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Glioblastoma (GB) is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide, GB tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, it is necessary to identify the genetic and signaling mechanisms that promote tumor resistance to develop targeted therapies to combat this refractory disease. Previous observations indicated that SGEF (ARHGEF26), a RhoG-specific guanine nucleotide exchange factor (GEF), is overexpressed in GB tumors and plays a role in promoting TWEAK-Fn14-mediated glioma invasion. Here, further investigation revealed an important role for SGEF in glioma cell survival. SGEF expression is upregulated by TWEAK-Fn14 signaling via NF-κB activity while shRNA-mediated reduction of SGEF expression sensitizes glioma cells to temozolomide-induced apoptosis and suppresses colony formation following temozolomide treatment. Nuclear SGEF is activated following temozolomide exposure and complexes with the DNA damage repair (DDR) protein BRCA1. Moreover, BRCA1 phosphorylation in response to temozolomide treatment is hindered by SGEF knockdown. The role of SGEF in promoting chemotherapeutic resistance highlights a heretofore unappreciated driver, and suggests its candidacy for development of novel targeted therapeutics for temozolomide-refractory, invasive GB cells. IMPLICATION SGEF, as a dual process modulator of cell survival and invasion, represents a novel target for treatment refractory glioblastoma.
Collapse
Affiliation(s)
- Shannon P Fortin Ensign
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona. Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
| | - Alison Roos
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Ian T Mathews
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Serdar Tuncali
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Marc H Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Nhan L Tran
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona.
| |
Collapse
|
47
|
Li H, Wang Z, Zhang W, Qian K, Xu W, Zhang S. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett 2015; 370:39-55. [PMID: 26458995 DOI: 10.1016/j.canlet.2015.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/12/2015] [Accepted: 10/03/2015] [Indexed: 11/30/2022]
Abstract
F-box and WD repeat domain-containing7 (Fbxw7), a member of the F-box family of proteins, which are components of an E3 ubiquitin ligase complex, plays an important role as a general tumor suppressor in regulating the effects of various oncoproteins. Recently, accumulating studies have shown that Fbxw7 plays an important role in tumor cell motility, invasion and cancer metastasis. However, little is known about the signaling mechanisms that regulate tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition (EMT) in gastric cancer. In our study, we confirmed that Fbxw7 expression was decreased in gastric cancer tissues, and that Fbxw7 inhibited gastric cancer progression by inducing apoptosis and growth arrest. Furthermore, gastric cancer migration and invasion were decreased or increased following Fbxw7 overexpression or knockdown, respectively, and the expressions of various EMT markers, such as E-cadherin, N-cadherin and vimentin, were altered after Fbxw7 inhibition or overexpression. Furthermore, we demonstrated that Fbxw7 inhibits the EMT via the down-regulation of Snail 1 and ZEB 1, which are upstream transcription factors that promote this process. Additionally, RhoA showed higher expression in the same gastric cancer tissues than in normal tumor-adjacent samples. We found that Fbxw7 expression was negatively correlated with RhoA protein expression in gastric cancer tissues based on Pearson's correlation coefficient analysis. Moreover, we found that RhoA protein abundance was regulated by Fbxw7 via ubiquitination and proteasomal degradation in gastric cancer. We further demonstrated the effects of RhoA re-expression or inhibition on stable Fbxw7-overexpressing or Fbxw7-silenced cell lines in vitro and in vivo. These results suggest that Fbxw7 induces apoptosis and growth arrest and inhibits the EMT in part by down-regulating the RhoA signaling pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kun Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
48
|
Abstract
Although the genetic basis of mitral valve prolapse (MVP) has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA) was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1-8) of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST) as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P) abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM) crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP.
Collapse
|
49
|
Xu J, Li Y, Yang X, Liu Y, Chen Y, Chen M. Bilobol inhibits the lipopolysaccharide-induced expression and distribution of RhoA in HepG2 human hepatocellular carcinoma cells. Oncol Lett 2015; 10:962-966. [PMID: 26622605 DOI: 10.3892/ol.2015.3276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
Recent studies have revealed the localization of RhoA protein in the cell nucleus, in addition to its distribution in the cytosol and cell membrane. The results of previous studies by our group indicated that nuclear RhoA expression is increased, or RhoA is transported into the nucleus, when cells become cancerous or damaged. Furthermore, application of the anticancer agent Taxol appeared to reduce nuclear RhoA localization, indicating an association between the nuclear translocation of RhoA and tumor progression. Bilobol is a traditional Chinese medicine ingredient, however, its anticancer effect has remained unclear. The present study aimed to demonstrate the anticarcinogenic action of bilobol against hepatocellular carcinoma, in order to lay the foundations for subsequent research into the mechanisms underlying its anticancer effects. In the present study, HepG2 cells were treated with lipopolysaccharide (LPS), to induce inflammation, and/or bilobol. By performing an ELISA, it was observed that bilobol was able to suppress the inflammation induced by LPS. In addition, immunofluorescence and western blot analyses indicated that bilobol may reduce the expression of RhoA, suppress translocation of RhoA into the nucleus and inhibit the RhoA/Rho-associated protein kinase signaling pathway. In conclusion, the present study revealed the potential anticancer effects of bilobol.
Collapse
Affiliation(s)
- Jin Xu
- Department of Anatomy and Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yueying Li
- Department of Anatomy and Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoming Yang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yali Liu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongchang Chen
- Department of Anatomy and Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Chen
- Department of Anatomy and Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
50
|
Gayle S, Pan Y, Landrette S, Xu T. piggyBac insertional mutagenesis screen identifies a role for nuclear RHOA in human ES cell differentiation. Stem Cell Reports 2015; 4:926-38. [PMID: 25866159 PMCID: PMC4437468 DOI: 10.1016/j.stemcr.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 01/22/2023] Open
Abstract
The mechanisms regulating human embryonic stem (ES) cell self-renewal and differentiation are not well defined in part due to the lack of tools for forward genetic analysis. We present a piggyBac transposon gain of function screen in human ES cells that identifies DENND2C, which genetically cooperates with NANOG to maintain self-renewal in the presence of retinoic acid. We show that DENND2C negatively regulates RHOA activity, which cooperates with NANOG to block differentiation. It has been recently shown that RHOA exists in the nucleus and is activated by DNA damage; however, its nuclear function remains unknown. We discovered that RHOA associates with DNA and that DENND2C affects nuclear RHOA localization, activity, and DNA association. Our study illustrates the power of piggyBac as a cost-effective, efficient, and easy to use tool for forward genetic screens in human ES cells and provides insight into the role of RHOA in the nucleus. NANOG-sensitized piggyBac screen for regulators of stem cell differentiation DENND2C is a negative regulator of RHOA Genetic cooperation exists between RHOA and NANOG Nuclear RHOA associates with DNA
Collapse
Affiliation(s)
- Sophia Gayle
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yukun Pan
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sean Landrette
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tian Xu
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|