1
|
Mina M, Wu KY, Kalevar A, Tran SD. In Situ Bioprinting. 3D BIOPRINTING FROM LAB TO INDUSTRY 2024:347-390. [DOI: 10.1002/9781119894407.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Yoon S, Fuwad A, Jeong S, Cho H, Jeon TJ, Kim SM. Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics (Basel) 2024; 9:395. [PMID: 39056836 PMCID: PMC11274418 DOI: 10.3390/biomimetics9070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The surface topography of substrates is a crucial factor that determines the interaction with biological materials in bioengineering research. Therefore, it is important to appropriately modify the surface topography according to the research purpose. Surface topography can be fabricated in various forms, such as wrinkles, creases, and ridges using surface deformation techniques, which can contribute to the performance enhancement of cell chips, organ chips, and biosensors. This review provides a comprehensive overview of the characteristics of soft, hard, and hybrid substrates used in the bioengineering field and the surface deformation techniques applied to the substrates. Furthermore, this review summarizes the cases of cell-based research and other applications, such as biosensor research, that utilize surface deformation techniques. In cell-based research, various studies have reported optimized cell behavior and differentiation through surface deformation, while, in the biosensor and biofilm fields, performance improvement cases due to surface deformation have been reported. Through these studies, we confirm the contribution of surface deformation techniques to the advancement of the bioengineering field. In the future, it is expected that the application of surface deformation techniques to the real-time interaction analysis between biological materials and dynamically deformable substrates will increase the utilization and importance of these techniques in various fields, including cell research and biosensors.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Hyeran Cho
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Khanna A, Oropeza BP, Huang NF. Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy. J Biomed Mater Res A 2024; 112:512-523. [PMID: 37668192 PMCID: PMC11089005 DOI: 10.1002/jbm.a.37602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Howard C, Joof F, Hu R, Smith JD, Zheng Y. Probing cerebral malaria inflammation in 3D human brain microvessels. Cell Rep 2023; 42:113253. [PMID: 37819760 DOI: 10.1016/j.celrep.2023.113253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation is a hallmark of cerebral malaria (CM), which leads to endothelial activation, brain swelling, and death. Here, we probed CM inflammation in a perfusable 3D human brain microvessel model. 3D brain microvessels supported in vivo-like capacities for parasite binding and maturation in situ, leading to a distinct inflammatory response from the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). By combining transcriptional analysis, imaging, and leukocyte perfusion, we showed that whereas TNF-α promotes a reversible inflammatory phenotype with widespread leukocyte recruitment, parasites induce unique stress response pathways and cause localized cell adhesivity changes, focal endothelial disruptions, and apoptosis. Furthermore, parasites modified the temporal kinetics of the TNF transcriptional response, suggesting augmented inflammatory damage with the two sequential stimuli. Our findings offer mechanistic insights into CM biology in a 3D brain microvessel mimetic platform and suggest that multiple events intersect to promote brain barrier inflammation in CM.
Collapse
Affiliation(s)
- Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Zhao N, Kulkarni S, Zhang S, Linville RM, Chung TD, Guo Z, Jamieson JJ, Norman D, Liang L, Pessell AF, Searson P. Modeling angiogenesis in the human brain in a tissue-engineered post-capillary venule. Angiogenesis 2023; 26:203-216. [PMID: 36795297 PMCID: PMC10789151 DOI: 10.1007/s10456-023-09868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Angiogenesis plays an essential role in embryonic development, organ remodeling, wound healing, and is also associated with many human diseases. The process of angiogenesis in the brain during development is well characterized in animal models, but little is known about the process in the mature brain. Here, we use a tissue-engineered post-capillary venule (PCV) model incorporating stem cell derived induced brain microvascular endothelial-like cells (iBMECs) and pericyte-like cells (iPCs) to visualize the dynamics of angiogenesis. We compare angiogenesis under two conditions: in response to perfusion of growth factors and in the presence of an external concentration gradient. We show that both iBMECs and iPCs can serve as tip cells leading angiogenic sprouts. More importantly, the growth rate for iPC-led sprouts is about twofold higher than for iBMEC-led sprouts. Under a concentration gradient, angiogenic sprouts show a small directional bias toward the high growth factor concentration. Overall, pericytes exhibited a broad range of behavior, including maintaining quiescence, co-migrating with endothelial cells in sprouts, or leading sprout growth as tip cells.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sarah Kulkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sophia Zhang
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Danielle Norman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lily Liang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
7
|
Ascheid D, Baumann M, Funke C, Volz J, Pinnecker J, Friedrich M, Höhn M, Nandigama R, Ergün S, Nieswandt B, Heinze KG, Henke E. Image-based modeling of vascular organization to evaluate anti-angiogenic therapy. Biol Direct 2023; 18:10. [PMID: 36922848 PMCID: PMC10018970 DOI: 10.1186/s13062-023-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.
Collapse
Affiliation(s)
- David Ascheid
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Magdalena Baumann
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Caroline Funke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Julia Volz
- Institute of Experimental Biomedicine I, Universitätsklinikum Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Marie Höhn
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, Universitätsklinikum Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
- Graduate School for Life Sciences, Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Jeong S, Kang HW, Kim SH, Hong GS, Nam MH, Seong J, Yoon ES, Cho IJ, Chung S, Bang S, Kim HN, Choi N. Integration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation. SCIENCE ADVANCES 2023; 9:eadf0925. [PMID: 36897938 PMCID: PMC10005277 DOI: 10.1126/sciadv.adf0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels' ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca2+ signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca2+ signal propagation with a speed of ~3.7 μm/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.
Collapse
Affiliation(s)
- Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- MEPSGEN Co. Ltd., Seoul 05836, Korea
| | - Hyun Wook Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
| | - So Hyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- SK Biopharmaceuticals Co. Ltd., Seongnam 13494, Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Eui-Sung Yoon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seok Chung
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Oliinyk D, Eigenberger A, Felthaus O, Haerteis S, Prantl L. Chorioallantoic Membrane Assay at the Cross-Roads of Adipose-Tissue-Derived Stem Cell Research. Cells 2023; 12:cells12040592. [PMID: 36831259 PMCID: PMC9953848 DOI: 10.3390/cells12040592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
With a history of more than 100 years of different applications in various scientific fields, the chicken chorioallantoic membrane (CAM) assay has proven itself to be an exceptional scientific model that meets the requirements of the replacement, reduction, and refinement principle (3R principle). As one of three extraembryonic avian membranes, the CAM is responsible for fetal respiration, metabolism, and protection. The model provides a unique constellation of immunological, vascular, and extracellular properties while being affordable and reliable at the same time. It can be utilized for research purposes in cancer biology, angiogenesis, virology, and toxicology and has recently been used for biochemistry, pharmaceutical research, and stem cell biology. Stem cells and, in particular, mesenchymal stem cells derived from adipose tissue (ADSCs) are emerging subjects for novel therapeutic strategies in the fields of tissue regeneration and personalized medicine. Because of their easy accessibility, differentiation profile, immunomodulatory properties, and cytokine repertoire, ADSCs have already been established for different preclinical applications in the files mentioned above. In this review, we aim to highlight and identify some of the cross-sections for the potential utilization of the CAM model for ADSC studies with a focus on wound healing and tissue engineering, as well as oncological research, e.g., sarcomas. Hereby, the focus lies on the combination of existing evidence and experience of such intersections with a potential utilization of the CAM model for further research on ADSCs.
Collapse
Affiliation(s)
- Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| | - Andreas Eigenberger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Collagen-Based Biomimetic Systems to Study the Biophysical Tumour Microenvironment. Cancers (Basel) 2022; 14:cancers14235939. [PMID: 36497421 PMCID: PMC9739814 DOI: 10.3390/cancers14235939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is a pericellular network of proteins and other molecules that provides mechanical support to organs and tissues. ECM biophysical properties such as topography, elasticity and porosity strongly influence cell proliferation, differentiation and migration. The cell's perception of the biophysical microenvironment (mechanosensing) leads to altered gene expression or contractility status (mechanotransduction). Mechanosensing and mechanotransduction have profound implications in both tissue homeostasis and cancer. Many solid tumours are surrounded by a dense and aberrant ECM that disturbs normal cell functions and makes certain areas of the tumour inaccessible to therapeutic drugs. Understanding the cell-ECM interplay may therefore lead to novel and more effective therapies. Controllable and reproducible cell culturing systems mimicking the ECM enable detailed investigation of mechanosensing and mechanotransduction pathways. Here, we discuss ECM biomimetic systems. Mainly focusing on collagen, we compare and contrast structural and molecular complexity as well as biophysical properties of simple 2D substrates, 3D fibrillar collagen gels, cell-derived matrices and complex decellularized organs. Finally, we emphasize how the integration of advanced methodologies and computational methods with collagen-based biomimetics will improve the design of novel therapies aimed at targeting the biophysical and mechanical features of the tumour ECM to increase therapy efficacy.
Collapse
|
11
|
Bender RJ, Askinas C, Vernice NA, Dong X, Harris J, Shih S, Spector JA. Perfuse and Reuse: A Low-Cost Three-Dimensional-Printed Perfusion Bioreactor for Tissue Engineering. Tissue Eng Part C Methods 2022; 28:623-633. [PMID: 36094108 PMCID: PMC9805868 DOI: 10.1089/ten.tec.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023] Open
Abstract
This article describes fabrication of a customizable bioreactor, which comprises a perfusion system and coverslip-based tissue culture chamber that allow centimeter-scale vascularized or otherwise canalized tissue constructs to be maintained in weeks long static and/or perfusion culture at an exceptionally low cost, with intermittent live imaging and media sampling capabilities. The perfusion system includes a reusable polydimethylsiloxane (PDMS) lid generated from a three-dimensional (3D)-printed poly-lactic acid (PLA) mold and several lengths of perfusion tubing. The coverslip tissue culture chamber includes PDMS components built with 3D-printed PLA molds, as well as 3D-printed PLA frames and glass coverslips that house perfusable hydrogel constructs. As proof of concept, we fabricated a vascularized hydrogel construct, which was subjected to static and perfusion tissue culture, as well as flow studies using fluorescent beads and widefield fluorescent microscopy. This system can be readily reproduced, promoting the advancement of tissue engineering and regenerative medicine research.
Collapse
Affiliation(s)
- Ryan J. Bender
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Carly Askinas
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Nicholas A. Vernice
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Xue Dong
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jason Harris
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Sabrina Shih
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Jason A. Spector
- Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
- Department of Biomedical Engineering, Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
13
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
14
|
Gao F, Sun H, Li X, He P. Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks. Am J Physiol Heart Circ Physiol 2022; 322:H71-H86. [PMID: 34767485 PMCID: PMC8698539 DOI: 10.1152/ajpheart.00478.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microvessels-on-a-chip have enabled in vitro studies to closely simulate in vivo microvessel environment. However, assessing microvessel permeability, a functional measure of microvascular exchange, has not been attainable in nonpermeable microfluidic platforms. This study developed a new approach that enables permeability coefficients (Ps) to be quantified in microvessels developed in nonpermeable chip platforms by integrating avidin-biotin technology. Microvessels were developed on biotinylated fibronectin-coated microfluidic channels. Solute transport was assessed by perfusing microvessels with fluorescence-labeled avidin. Avidin molecules that crossed endothelium were captured by substrate biotin and recorded with real-time confocal images. The Ps was derived from the rate of avidin-biotin accumulation at the substrate relative to solute concentration difference across microvessel wall. Avidin tracers with different physiochemical properties were used to characterize the barrier properties of the microvessel wall. The measured baseline Ps and inflammatory mediator-induced increases in Ps and endothelial cell (EC) [Ca2+]i resembled those observed in intact microvessels. Importantly, the spatial accumulation of avidin-biotin at substrate defines the transport pathways. Glycocalyx layer is well formed on endothelium and its degradation increased transcellular transport without affecting EC junctions. This study demonstrated that in vitro microvessels developed in this simply designed microfluidics structurally possess in vivo-like glycocalyx layer and EC junctions and functionally recapitulate basal barrier properties and stimuli-induced responses observed in intact microvessels. This new approach overcomes the limitations of nonpermeable microfluidics and provides an easily executed highly reproducible in vitro microvessel model with in vivo microvessel functionality, suitable for a wide range of applications in blood and vascular research and drug development.NEW & NOTEWORTHY Our study developed a novel method that allows permeability coefficient to be measured in microvessels developed in nonpermeable microfluidic platforms using avidin-biotin technology. It overcomes the major limitation of nonpermeable microfluidic system and provides a simply designed easily executed and highly reproducible in vitro microvessel model with permeability accessibility. This model with in vivo-like endothelial junctions, glycocalyx, and permeability properties advances microfluidics in microvascular research, suitable for a wide range of biomedical and clinical applications.
Collapse
|
15
|
Piatti L, Howard CC, Zheng Y, Bernabeu M. Binding of Plasmodium falciparum-Infected Red Blood Cells to Engineered 3D Microvessels. Methods Mol Biol 2022; 2470:557-585. [PMID: 35881375 DOI: 10.1007/978-1-0716-2189-9_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P. falciparum-infected red blood cell (iRBC) sequestration in the microvasculature is a pivotal event in severe malaria pathogenesis. In vitro binding assays using endothelial cell monolayers under static and flow conditions have revealed key ligand-receptor interactions for iRBC sequestration. However, mechanisms remain elusive for iRBC sequestration in specific vascular locations, which prevents further development of effective therapies. New models are needed to better recapitulate the complex geometry of blood flow in human blood vessels and organ-specific vascular signatures. Recent advances in engineering 3D microvessels in vitro have emerged as promising technologies to not only model complex human vascular structures but also allow for precise and step-wise control of individual biological and biomechanical parameters. By designing networks with different branching structures and change of vessel diameter along the flow path, these models recapitulate pressure and flow changes occurring in vivo. Here, we describe the methodology employed to build 3D microvessels using soft lithography and injection molding techniques, as well as the protocol to fabricate capillary-size vessels through collagen photoablation. Furthermore, we describe the methodology of using these models to study malaria and narrate necessary steps for perfusion of P. falciparum through 3D microvessels and different options to quantify P. falciparum-iRBC binding.
Collapse
Affiliation(s)
- Livia Piatti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Caitlin C Howard
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Nagao RJ, Marcu R, Shin YJ, Lih D, Xue J, Arang N, Wei L, Akilesh S, Kaushansky A, Himmelfarb J, Zheng Y. Cyclosporine Induces Fenestra-Associated Injury in Human Renal Microvessels In Vitro. ACS Biomater Sci Eng 2021; 8:196-207. [DOI: 10.1021/acsbiomaterials.1c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Nagao
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Raluca Marcu
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Nadia Arang
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98101, United States
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Department of Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Kidney Research Institute, University of Washington, Seattle, Washington 98109, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
17
|
Ribatti D. Two new applications in the study of angiogenesis the CAM assay: Acellular scaffolds and organoids. Microvasc Res 2021; 140:104304. [PMID: 34906560 DOI: 10.1016/j.mvr.2021.104304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
The chick embryo chorioallantoic membrane (CAM) is a rich vascularized extraembryonic membrane that is commonly used as an in vivo experimental model to study molecules with angiogenic and anti-angiogenic activity, tumor growth and metastasis. Among other applications of the CAM assay, more recently this assay has been used for the study of acellular scaffolds and of organoids, and of their angiogenic capacity. The aim of this review article is to summarize the literature data concerning these two new applications of the CAM assay and to underline the advantages of this assay.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
18
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
19
|
Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021; 9:721338. [PMID: 34568333 PMCID: PMC8459628 DOI: 10.3389/fcell.2021.721338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yang Yang
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
- Department of Chemical Engineering, University of Maryland, College Park, College Park, MD, United States
| | - Parinaz Fathi
- Department of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mandy B. Esch
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
20
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
21
|
Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening. Cancers (Basel) 2021; 13:cancers13163930. [PMID: 34439103 PMCID: PMC8393390 DOI: 10.3390/cancers13163930] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in immunotherapies and molecularly targeted therapies have led to an increased interest in exploring the field of in vitro tumor mimetic platforms. An increasing need to understand the mechanisms of anti-cancer therapies has led to the development of natural tumor tissue-like in vitro platforms capable of simulating the tumor microenvironment. The incorporation of vascular structures into the in vitro platforms could be a crucial factor for functional investigation of most anti-cancer therapies, including immunotherapies, which are closely related to the circulatory system. Decellularized lung extracellular matrix (ldECM), comprised of ECM components and pro-angiogenic factors, can initiate vascularization and is ideal for mimicking the natural microenvironment. In this study, we used a ldECM-based hydrogel to develop a 3D vascularized lung cancer-on-a-chip (VLCC). We specifically encapsulated tri-cellular spheroids made from A549 cells, HUVECs, and human lung fibroblasts, for simulating solid type lung cancer. Additionally, two channels were incorporated in the hydrogel construct to mimic perfusable vessel structures that resemble arterioles or venules. Our study highlights how a more effective dose-dependent action of the anti-cancer drug Doxorubicin was observed using a VLCC over 2D screening. This observation confirmed the potential of the VLCC as a 3D in vitro drug screening tool.
Collapse
|
22
|
van Velthoven MJJ, Ramadan R, Zügel FS, Klotz BJ, Gawlitta D, Costa PF, Malda J, Castilho MD, de Kort LMO, de Graaf P. Gel Casting as an Approach for Tissue Engineering of Multilayered Tubular Structures. Tissue Eng Part C Methods 2021; 26:190-198. [PMID: 32089096 DOI: 10.1089/ten.tec.2019.0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several urological structures, such as the male urethra, have a tubular organization consisting of different layers. However, in severe urethral disease, urologists are limited to replacing solely the epithelial layer. In case of severe hypospadias and urethral stricture disease, the underlying supporting structure (the corpus spongiosum) is either absent or fibrotic, causing suboptimal vascularization and therefore increasing the risk of graft failure. Recapitulating the multilayered architecture of the urethra, including supporting structure with tissue engineering, might minimize urethral graft failure. However, current tissue engineering applications for complex multilayered tubular constructs are limited. We describe a gel casting method to tissue engineer multilayered tubular constructs based on fiber-reinforced cell-laden hydrogels. For this, a multichambered polydimethylsiloxane mold was casted with fiber-reinforced hydrogels containing smooth muscle cells (SMCs) and a coculture of endothelial cells and pericytes. The cell-loaded hydrogels were rolled, with the fiber mesh as guidance, into a tubular construct. In the lumen, urothelial cells were seeded and survived for 2 weeks. In the tubular construct, the cells showed good viability and functionality: endothelial cells formed capillary-like structures supported by pericytes and SMCs expressed elastin. With a graft produced by this technique, supported with subepithelial vascularization, urethral reconstructive surgery can be improved. This approach toward tissue engineering of multilayered tubular structures can also be applied to other multilayered tubular structures found in the human body. Impact Statement Recapitulating the multilayered architecture of tubular structures found in the human body might minimize graft failure. Current tissue engineering applications for complex multilayered tubular constructs are limited. Here we describe a gel casting approach based on fiber-reinforced cell-laden hydrogels. A multichambered polydimethylsiloxane mold was casted with cell-loaded, fiber-reinforced hydrogels, with the fiber mesh as guidance, into a tubular construct. A graft produced by this technique can improve reconstructive surgery by providing subepithelial vascularization and thereby can reduce graft failure.
Collapse
Affiliation(s)
- Melissa J J van Velthoven
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Rana Ramadan
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Franziska S Zügel
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Barbara J Klotz
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery & Special Dental Care and University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery & Special Dental Care and University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pedro F Costa
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Miguel D Castilho
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Laetitia M O de Kort
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Petra de Graaf
- Department of Urology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
24
|
Seo S, Choi CH, Yi KS, Kim SU, Lee K, Choi N, Lee HJ, Cha SH, Kim HN. An engineered neurovascular unit for modeling neuroinflammation. Biofabrication 2021; 13. [PMID: 33849004 DOI: 10.1088/1758-5090/abf741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
The neurovascular unit (NVU) comprises multiple types of brain cells, including brain endothelial cells, astrocytes, pericytes, neurons, microglia, and oligodendrocytes. Each cell type contributes to the maintenance of the molecular transport barrier and brain tissue homeostasis. Several disorders and diseases of the central nervous system, including neuroinflammation, Alzheimer's disease, stroke, and multiple sclerosis, have been associated with dysfunction of the NVU. As a result, there has been increased demand for the development of NVUin vitromodels. Here, we present a three-dimensional (3D) immortalized human cell-based NVU model generated by organizing the brain microvasculature in a collagen matrix embedded with six different types of cells that comprise the NVU. By surrounding a perfusable brain endothelium with six types of NVU-composing cells, we demonstrated a significant impact of the 3D co-culture on the maturation of barrier function, which is supported by cytokines secreted from NVU-composing cells. Furthermore, NVU-composing cells alleviated the inflammatory responses induced by lipopolysaccharides. Our human cell-based NVUin vitromodel could enable elucidation of both physiological and pathological mechanisms in the human brain and evaluation of safety and efficacy in the context of high-content analysis during the process of drug development.
Collapse
Affiliation(s)
- Suyeong Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.,These authors contributed equally to this work
| | - Chi-Hoon Choi
- Department of Radiology, Chung Buk National University Hospital, Cheongju, Chung Buk, Republic of Korea.,College of Medicine, Chung Buk National University, Cheongju, Chung Buk 28644, Republic of Korea.,These authors contributed equally to this work
| | - Kyung Sik Yi
- Department of Radiology, Chung Buk National University Hospital, Cheongju, Chung Buk, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chung Buk National University, Cheongju, Chung Buk 28644, Republic of Korea.,Research Institute, eBiogen Inc., Seoul, Republic of Korea
| | - Sang-Hoon Cha
- Department of Radiology, Chung Buk National University Hospital, Cheongju, Chung Buk, Republic of Korea.,College of Medicine, Chung Buk National University, Cheongju, Chung Buk 28644, Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
25
|
Haymet AB, Bartnikowski N, Wood ES, Vallely MP, McBride A, Yacoub S, Biering SB, Harris E, Suen JY, Fraser JF. Studying the Endothelial Glycocalyx in vitro: What Is Missing? Front Cardiovasc Med 2021; 8:647086. [PMID: 33937360 PMCID: PMC8079726 DOI: 10.3389/fcvm.2021.647086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
All human cells are coated by a surface layer of proteoglycans, glycosaminoglycans (GAGs) and plasma proteins, called the glycocalyx. The glycocalyx transmits shear stress to the cytoskeleton of endothelial cells, maintains a selective permeability barrier, and modulates adhesion of blood leukocytes and platelets. Major components of the glycocalyx, including syndecans, heparan sulfate, and hyaluronan, are shed from the endothelial surface layer during conditions including ischaemia and hypoxia, sepsis, atherosclerosis, diabetes, renal disease, and some viral infections. Studying mechanisms of glycocalyx damage in vivo can be challenging due to the complexity of immuno-inflammatory responses which are inextricably involved. Previously, both static as well as perfused in vitro models have studied the glycocalyx, and have reported either imaging data, assessment of barrier function, or interactions of blood components with the endothelial monolayer. To date, no model has simultaneously incorporated all these features at once, however such a model would arguably enhance the study of vasculopathic processes. This review compiles a series of current in vitro models described in the literature that have targeted the glycocalyx layer, their limitations, and potential opportunities for further developments in this field.
Collapse
Affiliation(s)
- Andrew B Haymet
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily S Wood
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Michael P Vallely
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Angela McBride
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom.,Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
26
|
Vera D, García-Díaz M, Torras N, Álvarez M, Villa R, Martinez E. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13920-13933. [PMID: 33739812 DOI: 10.1021/acsami.0c21573] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. At the interface between the extracellular matrix (ECM) and flowing fluids, epithelial and endothelial barriers are responsible for solute and gas exchange. In the past decade, microfluidic technologies and organ-on-chip devices became popular as in vitro models able to recapitulate these biological barriers. However, in conventional microfluidic devices, cell barriers are primarily grown on hard polymeric membranes within polydimethylsiloxane (PDMS) channels that do not mimic the cell-ECM interactions nor allow the incorporation of other cellular compartments such as stromal tissue or vascular structures. To develop models that accurately account for the different cellular and acellular compartments of tissue barriers, researchers have integrated hydrogels into microfluidic setups for tissue barrier-on-chips, either as cell substrates inside the chip, or as self-contained devices. These biomaterials provide the soft mechanical properties of tissue barriers and allow the embedding of stromal cells. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.
Collapse
Affiliation(s)
- Daniel Vera
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - María García-Díaz
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Torras
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Mar Álvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red (CIBER), Madrid 28029, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona 08028, Spain
| |
Collapse
|
27
|
Cham TC, Chen X, Honaramooz A. Current progress, challenges, and future prospects of testis organoids†. Biol Reprod 2021; 104:942-961. [PMID: 33550399 DOI: 10.1093/biolre/ioab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Spermatogenic failure is believed to be a major cause of male infertility. The establishment of a testis organoid model would facilitate the study of such pathological mechanisms and open the possibility of male fertility preservation. Because of the complex structures and cellular events occurring within the testis, the establishment of a compartmentalized testis organoid with a complete spermatogenic cycle remains a challenge in all species. Since the late 20th century, a great variety of scaffold-based and scaffold-free testis cell culture systems have been established to recapitulate de novo testis organogenesis and in vitro spermatogenesis. The utilization of the hydrogel scaffolds provides a 3D microenvironment for testis cell growth and development, facilitating the reconstruction of de novo testis tissue-like structures and spermatogenic differentiation. Using a combination of different strategies, including the use of various scaffolding biomaterials, the incorporation of the living cells with high self-assembling capacity, and the integration of the advanced fabrication techniques, a scaffold-based testis organoid with a compartmentalized structure that supports in vitro spermatogenesis may be achieved. This article briefly reviews the current progress in the development of scaffold-based testis organoids while focusing on the scaffolding biomaterials (hydrogels), cell sources, and scaffolding approaches. Key challenges in current organoid studies are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
28
|
Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Mol Hum Reprod 2021; 26:179-192. [PMID: 31977028 DOI: 10.1093/molehr/gaaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.
Collapse
Affiliation(s)
- Swati Sharma
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Bastien Venzac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Thomas Burgers
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Yue T, Zhao D, Phan DTT, Wang X, Park JJ, Biviji Z, Hughes CCW, Lee AP. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. MICROSYSTEMS & NANOENGINEERING 2021; 7:4. [PMID: 33456784 PMCID: PMC7787972 DOI: 10.1038/s41378-020-00229-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
The vascular network of the circulatory system plays a vital role in maintaining homeostasis in the human body. In this paper, a novel modular microfluidic system with a vertical two-layered configuration is developed to generate large-scale perfused microvascular networks in vitro. The two-layer polydimethylsiloxane (PDMS) configuration allows the tissue chambers and medium channels not only to be designed and fabricated independently but also to be aligned and bonded accordingly. This method can produce a modular microfluidic system that has high flexibility and scalability to design an integrated platform with multiple perfused vascularized tissues with high densities. The medium channel was designed with a rhombic shape and fabricated to be semiclosed to form a capillary burst valve in the vertical direction, serving as the interface between the medium channels and tissue chambers. Angiogenesis and anastomosis at the vertical interface were successfully achieved by using different combinations of tissue chambers and medium channels. Various large-scale microvascular networks were generated and quantified in terms of vessel length and density. Minimal leakage of the perfused 70-kDa FITC-dextran confirmed the lumenization of the microvascular networks and the formation of tight vertical interconnections between the microvascular networks and medium channels in different structural layers. This platform enables the culturing of interconnected, large-scale perfused vascularized tissue networks with high density and scalability for a wide range of multiorgan-on-a-chip applications, including basic biological studies and drug screening.
Collapse
Affiliation(s)
- Tao Yue
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Da Zhao
- Department of Biomedical Engineering, University of California, Irvine, CA USA
| | - Duc T. T. Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA USA
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Science and Technology for Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Joshua Jonghyun Park
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA USA
| | - Zayn Biviji
- Department of Applied Mathematics - Biology, Brown University, Providence, RI USA
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA USA
| |
Collapse
|
31
|
Koo KI, Lenshof A, Huong LT, Laurell T. Acoustic Cell Patterning in Hydrogel for Three-Dimensional Cell Network Formation. MICROMACHINES 2020; 12:mi12010003. [PMID: 33375050 PMCID: PMC7822044 DOI: 10.3390/mi12010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023]
Abstract
In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Kyo-in Koo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea; (K.-i.K.); (L.T.H.)
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden;
| | - Le Thi Huong
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea; (K.-i.K.); (L.T.H.)
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, S-221 00 Lund, Sweden;
- Correspondence: ; Tel.: +46-46-222-7540
| |
Collapse
|
32
|
Udayasuryan B, Nguyen TT, Slade DJ, Verbridge SS. Harnessing Tissue Engineering Tools to Interrogate Host-Microbiota Crosstalk in Cancer. iScience 2020; 23:101878. [PMID: 33344921 PMCID: PMC7736992 DOI: 10.1016/j.isci.2020.101878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have begun to highlight the diverse and tumor-specific microbiomes across multiple cancer types. We believe this work raises the important question of whether the classical "Hallmarks of Cancer" should be expanded to include tumor microbiomes. To answer this question, the causal relationships and co-evolution of these microbiotic tumor ecosystems must be better understood. Because host-microbe interactions should be studied in a physiologically relevant context, animal models have been preferred. Yet these models are often poor mimics of human tumors and are difficult to interrogate at high spatiotemporal resolution. We believe that in vitro tissue engineered platforms could provide a powerful alternative approach that combines the high-resolution of in vitro studies with a high degree of physiological relevance. This review will focus on tissue engineered approaches to study host-microbe interactions and to establish their role as an emerging hallmark of cancer with potential as a therapeutic target.
Collapse
Affiliation(s)
- Barath Udayasuryan
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| | - Tam T.D. Nguyen
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
Hall MS, Decker JT, Shea LD. Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials 2020; 255:120189. [PMID: 32569865 PMCID: PMC7396312 DOI: 10.1016/j.biomaterials.2020.120189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Biomaterial systems have enabled the in vitro production of complex, emergent tissue behaviors that were not possible with conventional two-dimensional culture systems, allowing for analysis of both normal development and disease processes. We propose that the path towards developing the design parameters for biomaterial systems lies with identifying the molecular drivers of emergent behavior through leveraging technological advances in systems biology, including single cell omics, genetic engineering, and high content imaging. This growing research opportunity at the intersection of the fields of tissue engineering and systems biology - systems tissue engineering - can uniquely interrogate the mechanisms by which complex tissue behaviors emerge with the potential to capture the contribution of i) dynamic regulation of tissue development and dysregulation, ii) single cell heterogeneity and the function of rare cell types, and iii) the spatial distribution and structure of individual cells and cell types within a tissue. By leveraging advances in both biological and materials data science, systems tissue engineering can facilitate the identification of biomaterial design parameters that will accelerate basic science discovery and translation.
Collapse
Affiliation(s)
- Matthew S Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 2020; 111:1-19. [PMID: 32464269 DOI: 10.1016/j.actbio.2020.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Biomedical engineers are at the forefront of developing novel treatments to improve human health, however, many products fail to translate to clinical implementation. In vivo pre-clinical animal models, although the current best approximation of complex disease conditions, are limited by reproducibility, ethical concerns, and poor accurate prediction of human response. Hence, there is a need to develop physiologically relevant, low cost, scalable, and reproducible in vitro platforms to provide reliable means for testing drugs, biomaterials, and tissue engineered products for successful clinical translation. One emerging approach of developing physiologically relevant in vitro models utilizes decellularized tissues/organs as biomaterial platforms for 2D and 3D models of healthy and diseased tissue. Decellularization is a process that removes cellular content and produces tissue-specific extracellular matrix scaffolds that can more accurately recapitulate an organ/tissue's native microenvironment compared to other natural or synthetic materials. Decellularized tissues hold enormous potential for in vitro modeling of various disease phenotypes and tissue responses to drugs or external conditions such as aging, toxin exposure, or even implantation. In this review, we highlight the need for in vitro models, the advantages and limitations of implementing decellularized tissues, and considerations of the decellularization process. We discuss current research efforts towards applying decellularized tissues as platforms to generate in vitro models of healthy and diseased tissues, and where we foresee the field progressing. A variety of organs/tissues are discussed, including brain, heart, kidney, large intestine, liver, lung, skeletal muscle, skin, and tongue. STATEMENT OF SIGNIFICANCE: Many biomedical products fail to reach clinical translation due to animal model limitations. Development of physiologically relevant in vitro models can provide a more economic, scalable, and reproducible means of testing drugs/therapeutics for successful clinical translation. The use of decellularized tissues as platforms for in vitro models holds promise, as these scaffolds can effectively replicate native tissue complexity, but is not widely explored. This review discusses the need for in vitro models, the promise of decellularized tissues as biomaterial substrates, and the current research applying decellularized tissues towards the creation of in vitro models. Further, this review provides insights into the current limitations and future of such in vitro models.
Collapse
Affiliation(s)
- Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Instituto de Micro y Nanotechnología, IMN-CNM, CSIC (CEI UAM+CSIC), Calle Isaac Newton 8, 28760 Madrid, Tres Cantos, Spain; Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Calle Nicolás Cabrera, 28049 Madrid, Spain.
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Department of Biomedical Engineering, University of Arkansas, 134 White Hall, Fayetteville, AR 72701, United States.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| |
Collapse
|
35
|
Jalilian E, Elkin K, Shin SR. Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3496. [PMID: 32429094 PMCID: PMC7278952 DOI: 10.3390/ijms21103496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of long-term diabetes and the most common cause of blindness, increasing morbidity in the working-age population. The most effective therapies for these complications include laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections. However, laser and anti-VEGF drugs are untenable as a final solution as they fail to address the underlying neurovascular degeneration and ischemia. Regenerative medicine may be a more promising approach, aimed at the repair of blood vessels and reversal of retinal ischemia. Stem cell therapy has introduced a novel way to reverse the underlying ischemia present in microvascular complications in diseases such as diabetes. The present review discusses current treatments, their side effects, and novel cell-based and tissue engineering approaches as a potential alternative therapeutic approach.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth Elkin
- Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA;
| |
Collapse
|
36
|
Luque‐González MA, Reis RL, Kundu SC, Caballero D. Human Microcirculation‐on‐Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. ACTA ACUST UNITED AC 2020; 4:e2000045. [DOI: 10.1002/adbi.202000045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Angélica Luque‐González
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Rui Luis Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Subhas Chandra Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| |
Collapse
|
37
|
Li Z, Pollack GH. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. SCIENCE ADVANCES 2020; 6:eaba0941. [PMID: 32494720 PMCID: PMC7210001 DOI: 10.1126/sciadv.aba0941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Fluid commonly flows in response to an external pressure gradient. However, when a tunnel-containing hydrogel is immersed in water, spontaneous flow occurs through the tunnel without any pressure gradient. We confirmed this flow in a wide range of plant- and animal-derived hydrogels. The flow appears to be driven by axial concentration gradients originating from surface activities of the tunnel wall. Those activities include (i) hydrogel-water interaction and (ii) material exchange across the tunnel boundary. Unlike pressure-driven flow, this surface-induced flow has two distinct features: incident infrared energy substantially increases flow velocity, and narrower tunnels generate faster flow. Thus, surface activities in hydrogel-lined tunnels may confer kinetic energy on the enclosed fluid, with infrared as an energy source.
Collapse
Affiliation(s)
- Zheng Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
38
|
Organoids of Human Endometrium: A Powerful In Vitro Model for the Endometrium-Embryo Cross-Talk at the Implantation Site. Cells 2020; 9:cells9051121. [PMID: 32366044 PMCID: PMC7291023 DOI: 10.3390/cells9051121] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation has been defined as the “black box” of human reproduction. Most of the knowledge on mechanisms underlining this process derives from animal models, but they cannot always be translated to humans. Therefore, the development of an in vitro/ex vivo model recapitulating as closely and precisely as possible the fundamental functional features of the human endometrial tissue is very much desirable. Here, we have validated endometrial organoids as a suitable 3D-model to studying epithelial endometrial interface for embryo implantation. Transmission and scanning electron microscopy analyses showed that organoids preserve the glandular organization and cell ultrastructural characteristics. They also retain the responsiveness to hormonal treatment specific to the corresponding phase of the menstrual cycle, mimicking the in vivo glandular-like aspect and functions. Noteworthy, organoids mirroring the early secretive phase show the development of pinopodes, large cytoplasmic apical protrusions of the epithelial cells, traditionally considered as reliable key features of the implantation window. Moreover, organoids express glycodelin A (GdA), a cycle-dependent marker of the endometrial receptivity, with its quantitative and qualitative features accounting well for the profile detected in the endometrium in vivo. Accordingly, organoids deriving from the eutopic endometrium of women with endometriosis show a GdA glycosylation pattern significantly different from healthy organoids, confirming our prior data on endometrial tissues. The present results strongly support the idea that organoids may closely recapitulate the molecular and functional characteristics of their cells/tissue of origin.
Collapse
|
39
|
Designing vascular supportive albumen-rich composite bioink for organ 3D printing. J Mech Behav Biomed Mater 2020; 104:103642. [DOI: 10.1016/j.jmbbm.2020.103642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
40
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
41
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
42
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Nagao RJ, Marcu R, Wang Y, Wang L, Arakawa C, DeForest C, Chen J, López JA, Zheng Y. Transforming Endothelium with Platelet-Rich Plasma in Engineered Microvessels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901725. [PMID: 31871858 PMCID: PMC6918119 DOI: 10.1002/advs.201901725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Indexed: 05/09/2023]
Abstract
Vascularization remains an obstacle when engineering complex tissues for regeneration and disease modeling. Although progress has been made in recreating 3D vascular structures, challenges exist in generating a mature, functional endothelium. It is demonstrated that perfusing engineered microvessels with platelet-rich plasma, a critical homeostatic component in vivo that is often overlooked in vitro, substantially transforms the endothelium, both maturing endothelial cells and improving functionality in 24 h. Platelets readily adhered to the exposed collagen-I substrate through small gaps within engineered vessels without forming thrombi. The adherent platelets improve barrier function, enhance endothelial glycolysis, reduce thrombogenicity, and enrich smooth muscle cell growth surrounding the endothelium. These findings demonstrate that platelets are essential to the function of endothelium during vascular maturation and remodeling. This study sheds light on a potential strategy to engineer stable, implantable vascular networks.
Collapse
Affiliation(s)
- Ryan J. Nagao
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Raluca Marcu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yuliang Wang
- Department of Computer Science and EngineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
| | - Lu Wang
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWA98105‐6099USA
| | - Chris Arakawa
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Cole DeForest
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - Junmei Chen
- Bloodworks Northwest Research InstituteSeattleWA98102USA
| | - José A. López
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98195USA
- Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Ying Zheng
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
44
|
|
45
|
DelNero P, Hopkins BD, Cantley LC, Fischbach C. Cancer metabolism gets physical. Sci Transl Med 2019; 10:10/442/eaaq1011. [PMID: 29794058 DOI: 10.1126/scitranslmed.aaq1011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Patient-derived culture models enable assessment of drug sensitivity and can connect personalized genomics with therapeutic options. However, their clinical translation is constrained by limited fidelity. We outline how the physical microenvironment regulates cell metabolism and describe how engineered culture systems could enhance the predictive power for precision medicine.
Collapse
Affiliation(s)
- Peter DelNero
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Benjamin D Hopkins
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA. .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
46
|
Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019; 95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/03/2023]
Abstract
Due to increasing life expectancy incidence of neurological disorders is rapidly rising, thus adding urgency to develop effective strategies for treatment. Stem cell-based therapies were considered highly promising and while progress in this field is evident, outcomes of clinical trials are rather disappointing. Suboptimal engraftment, poor cell survival and uncontrolled differentiation may be the reasons behind dismal results. Clearly, new direction is needed and we postulate that with recent progress in biomaterials and bioprinting, regenerative approaches for neurological applications may be finally successful. The use of biomaterials aids engraftment of stem cells, protects them from harmful microenvironment and importantly, it facilitates the incorporation of cell-supporting molecules. The biomaterials used in bioprinting (the bioinks) form a scaffold for embedding the cells/biomolecules of interest, but also could be exploited as a source of endogenous contrast or supplemented with contrast agents for imaging. Additionally, bioprinting enables patient-specific customization with shape/size tailored for actual needs. In stroke or traumatic brain injury for example lesions are localized and focal, and usually progress with significant loss of tissue volume creating space that could be filled with artificial tissue using bioprinting modalities. The value of imaging for bioprinting technology is advantageous on many levels including design of custom shapes scaffolds based on anatomical 3D scans, assessment of performance and integration after scaffold implantation, or to learn about the degradation over time. In this review, we focus on bioprinting technology describing different printing techniques and properties of biomaterials in the context of requirements for neurological applications. We also discuss the need for in vivo imaging of implanted materials and tissue constructs reviewing applicable imaging modalities and type of information they can provide. STATEMENT OF SIGNIFICANCE: Current stem cell-based regenerative strategies for neurological diseases are ineffective due to inaccurate engraftment, low cell viability and suboptimal differentiation. Bioprinting and embedding stem cells within biomaterials at high precision, including building complex multi-material and multi-cell type composites may bring a breakthrough in this field. We provide here comprehensive review of bioinks, bioprinting techniques applicable to application for neurological disorders. Appreciating importance of longitudinal monitoring of implanted scaffolds, we discuss advantages of various imaging modalities available and suitable for imaging biomaterials in the central nervous system. Our goal is to inspire new experimental approaches combining imaging, biomaterials/bioinks, advanced manufacturing and tissue engineering approaches, and stimulate interest in image-guided therapies based on bioprinting.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | | | - Dominika Golubczyk
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Kwiatkowska
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Piotr Walczak
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland; Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
47
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
48
|
Cao X, Ashfaq R, Cheng F, Maharjan S, Li J, Ying G, Hassan S, Xiao H, Yue K, Zhang YS. A Tumor-on-a-Chip System with Bioprinted Blood and Lymphatic Vessel Pair. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807173. [PMID: 33041741 PMCID: PMC7546431 DOI: 10.1002/adfm.201807173] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Current in vitro anti-tumor drug screening strategies are insufficiently portrayed lacking true perfusion and draining microcirculation systems, which may post significant limitation in reproducing the transport kinetics of cancer therapeutics explicitly. Herein, we report the fabrication of an improved tumor model consisting of bioprinted hollow blood vessel and lymphatic vessel pair, hosted in a three-dimensional (3D) tumor microenvironment-mimetic hydrogel matrix, termed as the tumor-on-a-chip with bioprinted blood and lymphatic vessel pair (TOC-BBL). The bioprinted blood vessel was perfusable channel with opening on both ends while the bioprinted lymphatic vessel was blinded on one end, both of which were embedded in a hydrogel tumor mass, with vessel permeability individually tunable through optimization of the composition of the bioinks. We demonstrated that systems with different combinations of these bioprinted blood/lymphatic vessels exhibited varying levels of diffusion profiles for biomolecules and anti-cancer drugs. Our TOC-BBL platform mimicking the natural pathway of drug-tumor interactions would have the drug introduced through the perfusable blood vessel, cross the vascular wall into the tumor tissue via diffusion, and eventually drained into the lymphatic vessel along with the carrier flow. Our results suggested that this unique in vitro tumor model containing the bioprinted blood/lymphatic vessel pair may have the capacity of simulating the complex transport mechanisms of certain pharmaceutical compounds inside the tumor microenvironment, potentially providing improved accuracy in future cancer drug screening.
Collapse
Affiliation(s)
- Xia Cao
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139; Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ramla Ashfaq
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139; National Center of Excellence in Molecular Biology, University of the Punjab, 87 West Canal Bank Rd, Thokar Niaz Baig, Lahore 53700, Pakistan
| | - Feng Cheng
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Jun Li
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Guoliang Ying
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Shabir Hassan
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| | - Haiyan Xiao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women’s Hospital; Department of Medicine, Harvard Medical School Cambridge, MA, 02139
| |
Collapse
|
49
|
Sakthivel K, O'Brien A, Kim K, Hoorfar M. Microfluidic analysis of heterotypic cellular interactions: A review of techniques and applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Sakib S, Goldsmith T, Voigt A, Dobrinski I. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology 2019; 8:835-841. [PMID: 31328437 DOI: 10.1111/andr.12680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over the last ten years, three-dimensional organoid culture has garnered renewed interest, as organoids generated from primary cells or stem cells with cell associations and functions similar to organs in vivo can be a powerful tool to study tissue-specific cell-cell interactions in vitro. Very recently, a few interesting approaches have been put forth for generating testicular organoids for studying the germ cell niche microenvironment. AIM To review different model systems that have been employed to study germ cell biology and testicular cell-cell interactions and discuss how the organoid approach can address some of the shortcomings of those systems. RESULTS AND CONCLUSION Testicular organoids that bear architectural and functional similarities to their in vivo counterparts are a powerful model system to study cell-cell interactions in the germ cell niche. Organoids enable studying samples in humans and other large animals where in vivo experiments are not possible, allow modeling of testicular disease and malignancies and may provide a platform to design more precise therapeutic interventions.
Collapse
Affiliation(s)
- S Sakib
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - T Goldsmith
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - A Voigt
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| | - I Dobrinski
- Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada.,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AL, Canada
| |
Collapse
|