1
|
Werle Y, Kovermann M. Fluorine Labeling and 19F NMR Spectroscopy to Study Biological Molecules and Molecular Complexes. Chemistry 2025; 31:e202402820. [PMID: 39466678 DOI: 10.1002/chem.202402820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy represents a key methodology for studying biomolecules and their interplay with other molecules. Recent developments in labeling strategies have made it possible to incorporate fluorine into proteins and peptides reliably, with manageable efforts and, importantly, in a highly site-specific manner. Paired with its excellent NMR spectroscopic properties and absence in most biological systems, fluorine has enabled scientists to investigate a rather wide range of scientific objectives, including protein folding, protein dynamics and drug discovery. Furthermore, NMR spectroscopic experiments can be conducted in complex environments, such as cell lysate or directly inside living cells. This review presents selected studies demonstrating how 19F NMR spectroscopic approaches enable to contribute to the understanding of biomolecular processes. Thereby the focus has been set to labeling strategies available and specific NMR experiments performed to answer the underlying scientific objective.
Collapse
Affiliation(s)
- Yannick Werle
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Elena-Real CA, Urbanek A, Sagar A, Mohanty P, Levy G, Morató A, Fournet A, Allemand F, Sibille N, Mittal J, Sinnaeve D, Bernadó P. Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues. Chemistry 2024:e202403718. [PMID: 39661394 DOI: 10.1002/chem.202403718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The incorporation of fluorinated amino acids into proteins provides new opportunities to study biomolecular structure-function relationships in an elegant manner. The available strategies to incorporate the majority of fluorinated amino acids are not site-specific or imply important structural modifications. Here, we present a chemical biology approach for the site-specific incorporation of three commercially available Cγ-modified fluoroprolines that has been validated using a non-pathogenic version of huntingtin exon-1 (HttExon-1). 19F, 1H and 15N NMR chemical shifts measured for multiple variants of HttExon-1 indicated that the trans/cis ratio was strongly dependent on the fluoroproline variant and the sequence context. By isotopically labelling the rest of the protein, we have shown that the extent of spectroscopic perturbations to the neighbouring residues depends on the number of fluorine atoms and the stereochemistry at Cγ, as well as the isomeric form of the fluoroproline. We have rationalized these observations by means of extensive molecular dynamics simulations, indicating that the observed atomic chemical shift perturbations correlate with the distance to fluorine atoms and that the effect remains very local. These results validate the site-specific incorporation of fluoroprolines as an excellent strategy to monitor intra- and intermolecular interactions in disordered proline-rich proteins.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843, USA
| | - Geraldine Levy
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000, Lille, France
- CNRS EMR9002 - Integrative Structural Biology, 59000, Lille, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, USA
| | - Davy Sinnaeve
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000, Lille, France
- CNRS EMR9002 - Integrative Structural Biology, 59000, Lille, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
3
|
Li Q, Kang C. Perspectives on Applications of 19F-NMR in Fragment-Based Drug Discovery. Molecules 2024; 29:5748. [PMID: 39683906 DOI: 10.3390/molecules29235748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Fragment-based drug discovery is a powerful approach in drug discovery, applicable to a wide range of targets. This method enables the discovery of potent compounds that can modulate target functions, starting from fragment compounds that bind weakly to the targets. While biochemical, biophysical, and cell-based assays are commonly used to identify fragments, 19F-NMR spectroscopy has emerged as a powerful tool for exploring interactions between biomolecules and ligands. Because fluorine atoms are not naturally present in biological systems, 19F-NMR serves as a sensitive method for fragment screening against diverse targets. Herein, we reviewed the applications of 19F-NMR in fragment screening, highlighting its effectiveness in identifying fragments that bind weakly to various targets such as proteins and RNA. The accumulated evidence suggests that 19F-NMR will continue to be a crucial tool in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore 138670, Singapore
| |
Collapse
|
4
|
Toscano G, Rosati M, Barbieri L, Maier K, Banci L, Luchinat E, Konrat R, Lichtenecker RJ. The synthesis of specifically isotope labelled fluorotryptophan and its use in mammalian cell-based protein expression for 19F-NMR applications. Chem Commun (Camb) 2024; 60:14188-14191. [PMID: 39512115 DOI: 10.1039/d4cc04789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
19F nuclei serve as versatile sensors for detecting protein interactions and dynamics in biomolecular NMR spectroscopy. Although various methods have been developed to incorporate fluorine-containing aromatic residues into proteins using E. coli or cell-free expression techniques, similar approaches for protein production in mammalian cell lines remain limited. Here, we present a cost-effective synthetic route to obtain selectively deuterated, carbon-13 labeled fluorotryptophan and demonstrate its use in introducing 19F-13C spin pairs into carbonic anhydrase 2 and superoxide dismutase, following an expression protocol utilizing HEK cells.
Collapse
Affiliation(s)
- Giorgia Toscano
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Martina Rosati
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
| | - Katharina Maier
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
| | - Lucia Banci
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Enrico Luchinat
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030-Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
5
|
Phan M, Chandrashekaran IR, Akhtar N, Konstantinidou E, Devine SM, Doak BC, Nebl T, Creek DJ, Scanlon MJ, Norton RS. Multiplexed Native Mass Spectrometry Determination of Ligand Selectivity for Fatty Acid-Binding Proteins. ACS Med Chem Lett 2024; 15:1071-1079. [PMID: 39015264 PMCID: PMC11247632 DOI: 10.1021/acsmedchemlett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Although multiple approaches for characterizing protein-ligand interactions are available in target-based drug discovery, their throughput for determining selectivity is quite limited. Herein, we describe the application of native mass spectrometry for rapid, multiplexed screening of the selectivity of eight small-molecule ligands for five fatty acid-binding protein isoforms. Using high-resolution mass spectrometry, we were able to identify and quantify up to 20 different protein species in a single spectrum. We show that selectivity profiles generated by native mass spectrometry are in good agreement with those of traditional solution-phase techniques such as isothermal titration calorimetry and fluorescence polarization. Furthermore, we propose strategies for effective investigation of selectivity by native mass spectrometry, thus highlighting the potential of this technique to be used as an orthogonal method to traditional biophysical approaches for rapid, multiplexed screening of protein-ligand complexes.
Collapse
Affiliation(s)
- Michelle
Q. Phan
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Indu R. Chandrashekaran
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Naureen Akhtar
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Evgenia Konstantinidou
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bradley C. Doak
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas Nebl
- Biologics
Research and Development Group, Biomedical Manufacturing Program, CSIRO, Clayton, Victoria 3168, Australia
| | - Darren J. Creek
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Tan YJ, Abdelkader EH, Tarcoveanu E, Maleckis A, Nitsche C, Otting G. (2 S,4 S)-5-Fluoroleucine, (2 S,4 R)-5-Fluoroleucine, and 5,5'-Difluoroleucine in Escherichia coli PpiB: Protein Production, 19F NMR, and Ligand Sensing Enhanced by the γ-Gauche Effect. Biochemistry 2024; 63:1376-1387. [PMID: 38753308 DOI: 10.1021/acs.biochem.4c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Global substitution of leucine for analogues containing CH2F instead of methyl groups delivers proteins with multiple sites for monitoring by 19F nuclear magnetic resonance (NMR) spectroscopy. The 19 kDa Escherichia coli peptidyl-prolyl cis-trans isomerase B (PpiB) was prepared with uniform high-level substitution of leucine by (2S,4S)-5-fluoroleucine, (2S,4R)-5-fluoroleucine, or 5,5'-difluoroleucine. The stability of the samples toward thermal denaturation was little altered compared to the wild-type protein. 19F nuclear magnetic resonance (NMR) spectra showed large chemical shift dispersions between 6 and 17 ppm. The 19F chemical shifts correlate with the three-bond 1H-19F couplings (3JHF), providing the first experimental verification of the γ-gauche effect predicted by [Feeney, J. J. Am. Chem. Soc. 1996, 118, 8700-8706] and establishing the effect as the predominant determinant of the 19F chemical shifts of CH2F groups. Individual CH2F groups can be confined to single rotameric states by the protein environment, but most CH2F groups exchange between different rotamers at a rate that is fast on the NMR chemical shift scale. Interactions between fluorine atoms in 5,5'-difluoroleucine bias the CH2F rotamers in agreement with results obtained previously for 1,3-difluoropropane. The sensitivity of the 19F chemical shift to the rotameric state of the CH2F groups potentially renders them particularly sensitive for detecting allosteric effects.
Collapse
Affiliation(s)
- Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Eliza Tarcoveanu
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ansis Maleckis
- Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Chai Z, Li C. In-Cell 19F NMR of Proteins: Recent Progress and Future Opportunities. Chemistry 2024; 30:e202303988. [PMID: 38269421 DOI: 10.1002/chem.202303988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In vitro, 19F NMR methodology is preferably selected as a complementary and straightforward method for unveiling the conformations, dynamics, and interactions of biological molecules. Its effectiveness in vivo has seen continuous improvement, addressing challenges faced by conventional heteronuclear NMR experiments on structured proteins, such as severe line broadening, low signal-to-noise ratio, and background signals. Herein, we summarize the distinctive advantages of 19F NMR, along with recent progress in sample preparation and applications within the realm of in-cell NMR. Additionally, we offer insights into the future directions and prospects of this methodology based on our understanding.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| |
Collapse
|
8
|
Costantino A, Pham LBT, Barbieri L, Calderone V, Ben‐Nissan G, Sharon M, Banci L, Luchinat E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein Sci 2024; 33:e4910. [PMID: 38358125 PMCID: PMC10868450 DOI: 10.1002/pro.4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.
Collapse
Affiliation(s)
- Azzurra Costantino
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Lan B. T. Pham
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Letizia Barbieri
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
| | - Vito Calderone
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Gili Ben‐Nissan
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Michal Sharon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lucia Banci
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Enrico Luchinat
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| |
Collapse
|
9
|
Britton D, Legocki J, Aristizabal O, Mishkit O, Liu C, Jia S, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Protein-Engineered Fibers For Drug Encapsulation Traceable via 19F Magnetic Resonance. ACS APPLIED NANO MATERIALS 2023; 6:21245-21257. [PMID: 38037605 PMCID: PMC10682962 DOI: 10.1021/acsanm.3c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Theranostic materials research is experiencing rapid growth driven by the interest in integrating both therapeutic and diagnostic modalities. These materials offer the unique capability to not only provide treatment but also track the progression of a disease. However, to create an ideal theranostic biomaterial without compromising drug encapsulation, diagnostic imaging must be optimized for improved sensitivity and spatial localization. Herein, we create a protein-engineered fluorinated coiled-coil fiber, Q2TFL, capable of improved sensitivity to 19F magnetic resonance spectroscopy (MRS) detection. Leveraging residue-specific noncanonical amino acid incorporation of trifluoroleucine (TFL) into the coiled-coil, Q2, which self-assembles into nanofibers, we generate Q2TFL. We demonstrate that fluorination results in a greater increase in thermostability and 19F magnetic resonance detection compared to the nonfluorinated parent, Q2. Q2TFL also exhibits linear ratiometric 19F MRS thermoresponsiveness, allowing it to act as a temperature probe. Furthermore, we explore the ability of Q2TFL to encapsulate the anti-inflammatory small molecule, curcumin (CCM), and its impact on the coiled-coil structure. Q2TFL also provides hyposignal contrast in 1H MRI, echogenic signal with high-frequency ultrasound and sensitive detection by 19F MRS in vivo illustrating fluorination of coiled-coils for supramolecular assembly and their use with 1H MRI, 19F MRS and high frequency ultrasound as multimodal theranostic agents.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Orlando Aristizabal
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Orin Mishkit
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Chengliang Liu
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sihan Jia
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Paul Douglas Renfrew
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
- Center for
Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Courant
Institute
of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, United States
| | - Youssef Z. Wadghiri
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
| |
Collapse
|
10
|
Lewis R, Huang CH, White JC, Haynes CL. Using 19F NMR to Investigate Cationic Carbon Dot Association with Per- and Polyfluoroalkyl Substances (PFAS). ACS NANOSCIENCE AU 2023; 3:408-417. [PMID: 37868224 PMCID: PMC10588439 DOI: 10.1021/acsnanoscienceau.3c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 10/24/2023]
Abstract
There is much concern about per- and polyfluoroalkyl substances (PFAS) based on their environmental persistence and toxicity, resulting in an urgent need for remediation technologies. This study focused on determining if nanoscale polymeric carbon dots are a viable sorbent material for PFAS and developing fluorine nuclear magnetic resonance spectroscopy (19F NMR) methods to probe interactions between carbon dots and PFAS at the molecular scale. Positively charged carbon dots (PEI-CDs) were synthesized using branched polyethyleneimine to target anionic PFAS by promoting electrostatic interactions. PEI-CDs were exposed to perfluorooctanoic acid (PFOA) to assess their potential as a PFAS sorbent material. After exposure to PFOA, the average size of the PEI-CDs increased (1.6 ± 0.5 to 7.8 ± 1.8 nm) and the surface charge decreased (+38.6 ± 1.1 to +26.4 ± 0.8 mV), both of which are consistent with contaminant sorption. 19F NMR methods were developed to gain further insight into PEI-CD affinity toward PFAS without any complex sample preparation. Changes in PFOA peak intensity and chemical shift were monitored at various PEI-CD concentrations to establish binding curves and determine the chemical exchange regime. 19F NMR spectral analysis indicates slow-intermediate chemical exchange between PFOA and CDs, demonstrating a high-affinity interaction. The α-fluorine had the greatest change in chemical shift and highest affinity, suggesting electrostatic interactions are the dominant sorption mechanism. PEI-CDs demonstrated affinity for a wide range of analytes when exposed to a mixture of 24-PFAS, with a slight preference toward perfluoroalkyl sulfonates. Overall, this study shows that PEI-CDs are an effective PFAS sorbent material and establishes 19F NMR as a suitable method to screen for novel sorbent materials and elucidate interaction mechanisms.
Collapse
Affiliation(s)
- Riley
E. Lewis
- Department
of Chemistry, University of Minnesota-Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Cheng-Hsin Huang
- Department
of Chemistry, University of Minnesota-Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jason C. White
- The
Connecticut Agricultural Experiment Station, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota-Twin
Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
12
|
Synthesis of Trifluoromethylated Monoterpene Amino Alcohols. Molecules 2022; 27:molecules27207068. [PMID: 36296661 PMCID: PMC9607099 DOI: 10.3390/molecules27207068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
For the first time, monoterpene trifluoromethylated β-hydroxy-benzyl-O-oximes were synthesized in 81–95% yields by nucleophilic addition of the Ruppert–Prakash reagent (TMSCF3) to the corresponding β-keto-benzyl-O-oximes based on (+)-nopinone, (−)-verbanone and (+)-camphoroquinone. Trifluoromethylation has been determined to entirely proceed chemo- and stereoselective at the C=O rather than C=N bond. Trifluoromethylated benzyl-O-oximes were reduced to the corresponding α-trifluoromethyl-β-amino alcohols in 82–88% yields. The structure and configuration of the compounds obtained have been established.
Collapse
|
13
|
Olson NM, Johnson JA, Peterson KE, Henisch SC, Marshall AP, Smanski MJ, Carlson EE, Pomerantz WC. Development of a single culture E. coli expression system for the enzymatic synthesis of fluorinated tyrosine and its incorporation into proteins. J Fluor Chem 2022; 261-262. [PMID: 37197608 PMCID: PMC10187777 DOI: 10.1016/j.jfluchem.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current experiments that rely on biosynthetic metabolic protein labeling with 19F often require fluorinated amino acids, which in the case of 2- and 3-fluorotyrosine can be expensive. However, using these amino acids has provided valuable insight into protein dynamics, structure, and function. Here, we develop a new in-cell method for fluorinated tyrosine generation from readily available substituted phenols and subsequent metabolic labeling of proteins in a single bacterial expression culture. This approach uses a dual-gene plasmid encoding for a model protein BRD4(D1) and a tyrosine phenol lyase from Citrobacter freundii, which catalyzes the formation of tyrosine from phenol, pyruvate, and ammonium. Our system demonstrated both enzymatic fluorotyrosine production and expression of 19F-labeled proteins as analyzed by 19F NMR and LC-MS methods. Further optimization of our system should provide a cost-effective alternative to a variety of traditional protein-labeling strategies.
Collapse
|
14
|
Interactions between S100A9 and Alpha-Synuclein: Insight from NMR Spectroscopy. Int J Mol Sci 2022; 23:ijms23126781. [PMID: 35743221 PMCID: PMC9224231 DOI: 10.3390/ijms23126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
S100A9 is a pro-inflammatory protein that co-aggregates with other proteins in amyloid fibril plaques. S100A9 can influence the aggregation kinetics and amyloid fibril structure of alpha-synuclein (α-syn), which is involved in Parkinson's disease. Currently, there are limited data regarding their cross-interaction and how it influences the aggregation process. In this work, we analyzed this interaction using solution 19F and 2D 15N-1H HSQC NMR spectroscopy and studied the aggregation properties of these two proteins. Here, we show that α-syn interacts with S100A9 at specific regions, which are also essential in the first step of aggregation. We also demonstrate that the 4-fluorophenylalanine label in alpha-synuclein is a sensitive probe to study interaction and aggregation using 19F NMR spectroscopy.
Collapse
|
15
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Allosterische, Wirkstoff‐zugängliche Bindestellen in β‐Propeller‐Lektinen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Department of Biochemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
- Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kanhaya Lal
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Dipartimento di Chimica via Golgi 19 Università degli Studi di Milano 20133 Milano Italien
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anne Imberty
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| |
Collapse
|
16
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Druggable Allosteric Sites in β-Propeller Lectins. Angew Chem Int Ed Engl 2022; 61:e202109339. [PMID: 34713573 PMCID: PMC9298952 DOI: 10.1002/anie.202109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrate‐binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non‐carbohydrate drug‐like inhibitors are still unavailable. Here, we present a druggable pocket in a β‐propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure–activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol−1 HA−1 that affected the orthosteric site. This effect was substantiated by site‐directed mutagenesis in the orthosteric and secondary pockets. Future drug‐discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic‐resistant pathogens.
Collapse
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanhaya Lal
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Dipartimento di Chimica via Golgi 19, Universita" degli Studi di Milano, 20133, Milano, Italy
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1080, Vienna, Austria.,Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
17
|
Sinnaeve D, Ben Bouzayene A, Ottoy E, Hofman GJ, Erdmann E, Linclau B, Kuprov I, Martins J, Torbeev V, Kieffer B. Fluorine NMR study of proline-rich sequences using fluoroprolines. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:795-813. [PMID: 37905223 PMCID: PMC10539733 DOI: 10.5194/mr-2-795-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/01/2023]
Abstract
Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering - they introduce conformational and dynamical biases - but their use as 19 F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ -fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R )-fluoroproline and (4S )-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19 F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Collapse
Affiliation(s)
- Davy Sinnaeve
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167 – Risk Factors and Molecular Determinants of
Aging-Related Diseases (RID-AGE), 59000 Lille, France
- CNRS, ERL9002 – Integrative Structural Biology, 59000 Lille, France
| | - Abir Ben Bouzayene
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| | - Emile Ottoy
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Gert-Jan Hofman
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - Eva Erdmann
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ,
United Kingdom
| | - José C. Martins
- Department of Organic and Macromolecular Chemistry, Ghent University,
Campus Sterre, S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Vladimir Torbeev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS),
International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg,
CNRS UMR 7006, 67000 Strasbourg, France
| | - Bruno Kieffer
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, Inserm U1258, CNRS UMR 7104, 1 rue Laurent Fries, 67404
Illkirch, France
| |
Collapse
|
18
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
19
|
Quinn CM, Zadorozhnyi R, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Fast 19F Magic-Angle Spinning Nuclear Magnetic Resonance for the Structural Characterization of Active Pharmaceutical Ingredients in Blockbuster Drugs. Anal Chem 2021; 93:13029-13037. [PMID: 34517697 DOI: 10.1021/acs.analchem.1c02917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorinated drugs occupy a large and growing share of the pharmaceutical market. Here, we explore high-frequency, 60 to 111 kHz, 19F magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for the structural characterization of fluorinated active pharmaceutical ingredients in commercial formulations of seven blockbuster drugs: Celebrex, Cipro, Crestor, Levaquin, Lipitor, Prozac, and Zyvox. 19F signals can be observed in a single scan, and spectra with high signal-to-noise ratios can be acquired in minutes. 19F spectral parameters, such as chemical shifts and line widths, are sensitive to both the nature of the fluorine moiety and the formulation. We anticipate that the fast 19F MAS NMR-based approach presented here will be valuable for the rapid analysis of fluorine-containing drugs in a wide variety of formulations.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States.,Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
20
|
Hintzen JCJ, Luo Y, Porzberg MRB, White PB, Jian J, Proietti G, Mecinović J. γ-Difluorolysine as a 19F NMR probe for histone lysine methyltransferases and acetyltransferases. Chem Commun (Camb) 2021; 57:6788-6791. [PMID: 34137401 DOI: 10.1039/d1cc02589a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone lysine methylation and acetylation are important posttranslational modifications that regulate gene expression in humans. Due to the interplay of these two modifications, new chemical methods to study lysine posttranslational modifications are highly desired. Here, we report the use of γ-difluorolysine as a lysine mimic and 19F NMR probe for examinations of histone methylation and acetylation.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Yan Luo
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark. and College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Miriam R B Porzberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jie Jian
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| |
Collapse
|
21
|
Jones JC, Banerjee R, Shi K, Semonis MM, Aihara H, Pomerantz WCK, Lipscomb JD. Soluble Methane Monooxygenase Component Interactions Monitored by 19F NMR. Biochemistry 2021; 60:1995-2010. [PMID: 34100595 PMCID: PMC8345336 DOI: 10.1021/acs.biochem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O2 to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood. Here, the two tryptophan residues in MMOB and the single tryptophan residue in MMOR are converted to 5-fluorotryptophan (5FW) by expression in defined media containing 5-fluoroindole. In addition, the mechanistically significant N-terminal region of MMOB is 19F-labeled by reaction of the K15C variant with 3-bromo-1,1,1-trifluoroacetone (BTFA). The 5FW and BTFA modifications cause minimal structural perturbation, allowing detailed studies of the interactions with sMMOH using 19F NMR. Resonances from the 275 kDa complexes of sMMOH with 5FW-MMOB and BTFA-K15C-5FW-MMOB are readily detected at 5 μM labeled protein concentration. This approach shows directly that MMOR and MMOB competitively bind to sMMOH with similar KD values, independent of the oxidation state of the sMMOH diiron cluster. These findings suggest a new model for regulation in which the dynamic equilibration of MMOR and MMOB with sMMOH allows a transient formation of key reactive complexes that irreversibly pull the reaction cycle forward. The slow kinetics of exchange of the sMMOH:MMOB complex is proposed to prevent MMOR-mediated reductive quenching of the high-valent reaction cycle intermediate Q before it can react with methane.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Manny M. Semonis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Bur SK, Pomerantz WCK, Bade ML, Gee CT. Fragment-Based Ligand Discovery Using Protein-Observed 19F NMR: A Second Semester Organic Chemistry CURE Project. JOURNAL OF CHEMICAL EDUCATION 2021; 98:1963-1973. [PMID: 37274366 PMCID: PMC10237086 DOI: 10.1021/acs.jchemed.1c00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curriculum-based undergraduate research experiences (CUREs) have been shown to increase student retention in STEM fields and are starting to become more widely adopted in chemistry curricula. Here we describe a 10-week CURE that is suitable for a second-semester organic chemistry laboratory course. Students synthesize small molecules and use protein-observed 19F (PrOF) NMR to assess the small molecule's binding affinity to a target protein. The research project introduced students to multistep organic synthesis, structure-activity relationship studies, quantitative biophysical measurements (measuring Kd from PrOF NMR experiments), and scientific literacy. Docking experiments could be added to help students understand how changes in a ligand structure may affect binding to a protein. Assessment using the CURE survey indicates self-perceived skill gains from the course that exceed gains measured in a traditional and an inquiry-based laboratory experience. Given the speed of the binding experiment and the alignment of the synthetic methods with a second-semester organic chemistry laboratory course, a PrOF NMR fragment-based ligand discovery lab can be readily implemented in the undergraduate chemistry curriculum.
Collapse
Affiliation(s)
- Scott K Bur
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56028, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Morgan L Bade
- Department of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56028, United States
| | - Clifford T Gee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Diethelm-Varela B. Using NMR Spectroscopy in the Fragment-Based Drug Discovery of Small-Molecule Anticancer Targeted Therapies. ChemMedChem 2020; 16:725-742. [PMID: 33236493 DOI: 10.1002/cmdc.202000756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Against the challenge of providing personalized cancer care, the development of targeted therapies stands as a promising approach. The discovery of these agents can benefit from fragment-based drug discovery (FBDD) methods that help guide ligand design and provide key structural information on the targets of interest. In particular, nuclear magnetic resonance spectroscopy is a promising biophysical tool in fragment discovery due to its detection capabilities and versatility. This review provides an overview of FBDD, describes the basis of NMR-based fragment screening, summarizes some exciting technical advances reported over the past decades, and closes with a discussion of selected case studies where this technique has been used as part of drug discovery campaigns to produce lead compounds towards the design of anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Kalra P, McGraw L, Kimbrough JR, Pandey AK, Solberg J, Cui H, Divakaran A, John K, Hawkinson JE, Pomerantz WCK. Quantifying the Selectivity of Protein-Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins. ACS Chem Biol 2020; 15:3038-3049. [PMID: 33138352 PMCID: PMC8185897 DOI: 10.1021/acschembio.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Logan McGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jonathan Solberg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Orlandi S, Cavazzini M, Capuani S, Ciardello A, Pozzi G. Synthesis and 19F NMR parameters of a perfluoro-tert-butoxy tagged L-DOPA analogue. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Combined Protein- and Ligand-Observed NMR Workflow to Screen Fragment Cocktails against Multiple Proteins: A Case Study Using Bromodomains. Molecules 2020; 25:molecules25173949. [PMID: 32872491 PMCID: PMC7504435 DOI: 10.3390/molecules25173949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
As fragment-based drug discovery has become mainstream, there has been an increase in various screening methodologies. Protein-observed 19F (PrOF) NMR and 1H CPMG NMR are two fragment screening assays that have complementary advantages. Here, we sought to combine these two NMR-based assays into a new screening workflow. This combination of protein- and ligand-observed experiments allows for a time- and resource-efficient multiplexed screen of mixtures of fragments and proteins. PrOF NMR is first used to screen mixtures against two proteins. Hit mixtures for each protein are identified then deconvoluted using 1H CPMG NMR. We demonstrate the benefit of this fragment screening method by conducting the first reported fragment screens against the bromodomains of BPTF and Plasmodium falciparum (Pf) GCN5 using 467 3D-enriched fragments. The hit rates were 6%, 5% and 4% for fragments binding BPTF, PfGCN5, and fragments binding both proteins, respectively. Select hits were characterized, revealing a broad range of affinities from low µM to mM dissociation constants. Follow-up experiments supported a low-affinity second binding site on PfGCN5. This approach can be used to bias fragment screens towards more selective hits at the onset of inhibitor development in a resource- and time-efficient manner.
Collapse
|
27
|
Li Q. Application of Fragment-Based Drug Discovery to Versatile Targets. Front Mol Biosci 2020; 7:180. [PMID: 32850968 PMCID: PMC7419598 DOI: 10.3389/fmolb.2020.00180] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful method to develop potent small-molecule compounds starting from fragments binding weakly to targets. As FBDD exhibits several advantages over high-throughput screening campaigns, it becomes an attractive strategy in target-based drug discovery. Many potent compounds/inhibitors of diverse targets have been developed using this approach. Methods used in fragment screening and understanding fragment-binding modes are critical in FBDD. This review elucidates fragment libraries, methods utilized in fragment identification/confirmation, strategies applied in growing the identified fragments into drug-like lead compounds, and applications of FBDD to different targets. As FBDD can be readily carried out through different biophysical and computer-based methods, it will play more important roles in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Ycas PD, Zahid H, Chan A, Olson NM, Johnson JA, Talluri SK, Schonbrunn E, Pomerantz WCK. New inhibitors for the BPTF bromodomain enabled by structural biology and biophysical assay development. Org Biomol Chem 2020; 18:5174-5182. [PMID: 32588860 PMCID: PMC7393680 DOI: 10.1039/d0ob00506a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing proteins regulate transcription through protein-protein interactions with chromatin and serve as scaffolding proteins for recruiting essential members of the transcriptional machinery. One such protein is the bromodomain and PHD-containing transcription factor (BPTF), the largest member of the nucleosome remodeling complex, NURF. Despite an emerging role for BPTF in regulating a diverse set of cancers, small molecule development for inhibiting the BPTF bromodomain has been lacking. Here we cross-validate three complementary biophysical assays to further the discovery of BPTF bromodomain inhibitors for chemical probe development: two direct binding assays (protein-observed 19F (PrOF) NMR and surface plasmon resonance (SPR)) and a competitive inhibition assay (AlphaScreen). We first compare the assays using three small molecules and acetylated histone peptides with reported affinity for the BPTF bromodomain. Using SPR with both unlabeled and fluorinated BPTF, we further determine that there is a minimal effect of 19F incorporation on ligand binding for future PrOF NMR experiments. To guide medicinal chemistry efforts towards chemical probe development, we subsequently evaluate two new BPTF inhibitor scaffolds with our suite of biophysical assays and rank-order compound affinities which could not otherwise be determined by PrOF NMR. Finally, we cocrystallize a subset of small molecule inhibitors and present the first published small molecule-protein structures with the BPTF bromodomain. We envision the biophysical assays described here and the structural insights from the crystallography will guide researchers towards developing selective and potent BPTF bromodomain inhibitors.
Collapse
Affiliation(s)
- Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Noelle M Olson
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Siva K Talluri
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| | - Ernst Schonbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
29
|
Shanina E, Siebs E, Zhang H, Varón Silva D, Joachim I, Titz A, Rademacher C. Protein-observed 19F NMR of LecA from Pseudomonas aeruginosa. Glycobiology 2020; 31:159-165. [PMID: 32573695 PMCID: PMC7874386 DOI: 10.1093/glycob/cwaa057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
The carbohydrate-binding protein LecA (PA-IL) from Pseudomonas aeruginosa plays an important role in the formation of biofilms in chronic infections. Development of inhibitors to disrupt LecA-mediated biofilms is desired but it is limited to carbohydrate-based ligands. Moreover, discovery of drug-like ligands for LecA is challenging because of its weak affinities. Therefore, we established a protein-observed 19F (PrOF) nuclear magnetic resonance (NMR) to probe ligand binding to LecA. LecA was labeled with 5-fluoroindole to incorporate 5-fluorotryptophanes and the resonances were assigned by site-directed mutagenesis. This incorporation did not disrupt LecA preference for natural ligands, Ca2+ and d-galactose. Following NMR perturbation of W42, which is located in the carbohydrate-binding region of LecA, allowed to monitor binding of low-affinity ligands such as N-acetyl d-galactosamine (d-GalNAc, Kd = 780 ± 97 μM). Moreover, PrOF NMR titration with glycomimetic of LecA p-nitrophenyl β-d-galactoside (pNPGal, Kd = 54 ± 6 μM) demonstrated a 6-fold improved binding of d-Gal proving this approach to be valuable for ligand design in future drug discovery campaigns that aim to generate inhibitors of LecA.
Collapse
Affiliation(s)
- Elena Shanina
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Eike Siebs
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Hengxi Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Daniel Varón Silva
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| | - Ines Joachim
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,Saarland University, Department of Pharmacy, 66123 Saarbrücken, Germany.,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg, 14424 Potsdam, Germany.,Free University of Berlin, Department of Biochemistry and Chemistry, 14195 Berlin, Germany
| |
Collapse
|
30
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
31
|
Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Biophys J 2020; 118:2537-2548. [PMID: 32348722 PMCID: PMC7231920 DOI: 10.1016/j.bpj.2020.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorine incorporation is ideally suited to many NMR techniques, and incorporation of fluorine into proteins and fragment libraries for drug discovery has become increasingly common. Here, we use one-dimensional 19F NMR lineshape analysis to quantify the kinetics and equilibrium thermodynamics for the binding of a fluorine-labeled Src homology 3 (SH3) protein domain to four proline-rich peptides. SH3 domains are one of the largest and most well-characterized families of protein recognition domains and have a multitude of functions in eukaryotic cell signaling. First, we showe that fluorine incorporation into SH3 causes only minor structural changes to both the free and bound states using amide proton temperature coefficients. We then compare the results from lineshape analysis of one-dimensional 19F spectra to those from two-dimensional 1H-15N heteronuclear single quantum coherence spectra. Their agreement demonstrates that one-dimensional 19F lineshape analysis is a robust, low-cost, and fast alternative to traditional heteronuclear single quantum coherence-based experiments. The data show that binding is diffusion limited and indicate that the transition state is highly similar to the free state. We also measured binding as a function of temperature. At equilibrium, binding is enthalpically driven and arises from a highly positive activation enthalpy for association with small entropic contributions. Our results agree with those from studies using different techniques, providing additional evidence for the utility of 19F NMR lineshape analysis, and we anticipate that this analysis will be an effective tool for rapidly characterizing the energetics of protein interactions.
Collapse
Affiliation(s)
| | - Jhoan S Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher A Waudby
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
32
|
Pandey AK, Kirberger SE, Johnson JA, Kimbrough JR, Partridge DKD, Pomerantz WCK. Efficient Synthesis of 1,4-Thiazepanones and 1,4-Thiazepanes as 3D Fragments for Screening Libraries. Org Lett 2020; 22:3946-3950. [PMID: 32347732 PMCID: PMC8324318 DOI: 10.1021/acs.orglett.0c01230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1,4-Thiazepanes and 1,4-thiazepanones represent seven-membered ring systems with highly 3D character and are currently underrepresented in fragment screening libraries. A nuclear magnetic resonance (NMR) fragment screen identified 1,4-acylthiazepanes as new BET (bromodomain and extraterminal domain) bromodomain ligands; however, an efficient and readily diversified synthesis for library development has not been reported. Here we report a one-pot synthesis using α,β-unsaturated esters and 1,2-amino thiols to form 1,4-thiazepanones as precursors to 1,4-thiazepanes with high 3D character. This reaction proceeds in reasonable time (0.5-3 h) and in good yield and tolerates a broad scope of α,β-unsaturated esters. Several 1,4-thiazepanes were synthesized by a two-step transformation and were characterized as new BET bromodomain ligands using protein-observed 19F NMR. This synthesis should provide ready access to diverse 3D fragments for screening libraries.
Collapse
Affiliation(s)
- Anil K Pandey
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danika K D Partridge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Olson NM, Kroc S, Johnson JA, Zahid H, Ycas PD, Chan A, Kimbrough JR, Kalra P, Schönbrunn E, Pomerantz WCK. NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex. Biochemistry 2020; 59:1871-1880. [PMID: 32356653 DOI: 10.1021/acs.biochem.0c00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene specific recruitment of bromodomain-containing proteins to chromatin is affected by post-translational acetylation of lysine on histones. Whereas interactions of the bromodomain with acetylation patterns of native histones (H2A, H2B, H3, and H4) have been well characterized, the motif for recognition for histone variants H2A.Z I and H2A.Z II by bromodomains has yet to be fully investigated. Elucidating these molecular mechanisms is crucial for understanding transcriptional regulation in cellular processes involved in both development and disease. Here, we have used protein-observed fluorine NMR to fully characterize the affinities of H2A.Z I and II acetylation patterns for BPTF's bromodomain and found the diacetylated mark of lysine 7 and 13 on H2A.Z II to have the strongest interaction with K7ac preferentially engaging the binding site. We further examined the selectivity of H2A.Z histones against a variety of bromodomains, revealing that the bromodomain of CECR2 binds with the highest affinity and specificity for acetylated H2A.Z I over isoform II. These results support a possible role for different H2A.Z transcriptional activation mechanisms that involve recruitment of chromatin remodeling complexes.
Collapse
Affiliation(s)
- Noelle M Olson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Samantha Kroc
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Shcherbakov AA, Roos M, Kwon B, Hong M. Two-dimensional 19F- 13C correlation NMR for 19F resonance assignment of fluorinated proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:193-204. [PMID: 32088840 PMCID: PMC7445029 DOI: 10.1007/s10858-020-00306-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
19F solid-state NMR is an excellent approach for measuring long-range distances for structure determination and for studying molecular motion. For multi-fluorinated proteins, assignment of 19F chemical shifts has been traditionally carried out using mutagenesis. Here we show 2D 19F-13C correlation experiments that allow efficient assignment of the 19F chemical shifts. We have compared several rotational-echo double-resonance-based pulse sequences and 19F-13C cross polarization (CP) for 2D 19F-13C correlation. We found that direct transferred-echo double-resonance (TEDOR) transfer from 19F to 13C and vice versa outperforms out-and-back coherence transfer schemes. 19F detection gives twofold higher sensitivity over 13C detection for the 2D correlation experiment. At MAS frequencies of 25-35 kHz, double-quantum 19F-13C CP has higher coherence transfer efficiencies than zero-quantum CP. The most efficient TEDOR transfer experiment has higher sensitivity than the most efficient double-quantum CP experiment. We demonstrate these 2D 19F-13C correlation experiments on the model compounds t-Boc-4F-phenylalanine and GB1. Application of the 2D 19F-13C TEDOR correlation experiment to the tetrameric influenza BM2 transmembrane peptide shows intermolecular 13C-19F cross peaks that indicate that the BM2 tetramers cluster in the lipid bilayer in an antiparallel fashion. This clustering may be relevant for the virus budding function of this protein.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Matthias Roos
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Zhang M. Recent developments of methyl-labeling strategies in Pichia pastoris for NMR spectroscopy. Protein Expr Purif 2020; 166:105521. [DOI: 10.1016/j.pep.2019.105521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
|
36
|
Ycas PD, Wagner N, Olsen NM, Fu R, Pomerantz WCK. 2-Fluorotyrosine is a valuable but understudied amino acid for protein-observed 19F NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:61-69. [PMID: 31760571 DOI: 10.1007/s10858-019-00290-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Incorporation of 19F into proteins allows for the study of their molecular interactions via NMR. The study of 19F labeled aromatic amino acids has largely focused on 4-,5-, or 6-fluorotryptophan, 4-fluorophenylalanine, (4,5, or 6FW) or 3-fluorotyrosine (3FY), whereas 2-fluorotyrosine (2FY) has remained largely understudied. Here we report a comparative analysis with different fluorinated amino acids. We first report the NMR chemical shift responsiveness of five aromatic amino acid mimics to changes in solvent polarity and find that the most responsive, a mimic of 3FY, has a 2.9-fold greater change in chemical shift compared to the other amino acid mimics in aprotic solvents including the 2FY mimic. We also probed the utility of 2FY for 19F NMR by measuring its NMR relaxation properties in solution and the chemical shift anisotropy (CSA) of a polycrystalline sample of the amino acid by magic angle spinning. Using protein-observed fluorine NMR (PrOF NMR), we compared the influence of 2FY and 3FY incorporation on stability and pKa perturbation when incorporated into the KIX domain of CBP/p300. Lastly, we investigated the 19F NMR response of both 2FY and 3FY-labeled proteins to a protein-protein interaction partner, MLL, and discovered that 2FY can report on allosteric interactions that are not observed with 3FY-labeling in this protein complex. The reduced perturbation to pKa and similar but reduced CSA of 2FY to 3FY supports 2FY as a suitable alternative amino acid for incorporation into large proteins for 19F NMR analysis.
Collapse
Affiliation(s)
- Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Nicole Wagner
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Noelle M Olsen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Riqiang Fu
- National High Magnetic Field Lab, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Abstract
Inhibitor discovery for protein-protein interactions has proven difficult due to the large protein surface areas and dynamic interfaces involved. This is particularly the case when targeting transcription-factor-protein interactions. To address this challenge, structural biology approaches for ligand discovery using X-ray crystallography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy have had a significant impact on advancing small molecule inhibitors into the clinic, including the U.S. Food and Drug Administration approved drug, Venetoclax. Inspired by the protein-observed NMR approach using 1H-15N-HSQC NMR which detects chemical shift perturbations of 15N-labeled amides, we have applied a complementary protein-observed 19F NMR approach using 19F-labeled side-chains that are enriched at protein-protein-interaction interfaces. This protein-observed 19F NMR assay is abbreviated PrOF NMR to distinguish the experiment from the more commonly employed ligand-observed 19F NMR methods. In this Account, we describe our efforts using PrOF NMR as a ligand discovery tool, particularly for fragment-based ligand discovery (FBLD). We metabolically label the aromatic amino acids on proteins due to the enrichment of aromatic residues at protein interfaces. We choose the 19F nucleus due to its high signal sensitivity and the hyperresponsiveness of 19F to changes in chemical environment. Simultaneous labeling with two different types of fluorinated aromatic amino acids for PrOF NMR has also been achieved. We first describe the technical aspects of considering the application of PrOF NMR for characterizing native protein-protein interactions and for ligand screening. Several test cases are further described with a focus on a transcription factor coactivator interaction with the KIX domain of CBP/p300 and two epigenetic regulatory domains, the bromodomains of BRD4 and BPTF. Through these case studies, we highlight medicinal chemistry applications in FBLD, selectivity screens, structure-activity relationship (SAR) studies, and ligand deconstruction approaches. These studies have led to the discovery of some of the first inhibitors for BPTF and a novel inhibitor class for the N-terminal bromodomain of BRD4. The speed, ease of interpretation, and relatively low concentration of protein needed for NMR-based binding experiments affords a rapid, structural biology-based method to discover and characterize both native and new ligands for bromodomains, and it may find utility in the study of additional epigenetic proteins and transcription-factor-protein interactions.
Collapse
Affiliation(s)
- Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
| | - Steven E. Kirberger
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Johnson JA, Nicolaou CA, Kirberger SE, Pandey AK, Hu H, Pomerantz WCK. Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains. ACS Med Chem Lett 2019; 10:1648-1654. [PMID: 31857841 DOI: 10.1021/acsmedchemlett.9b00414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023] Open
Abstract
Fragment-based ligand discovery has been successful in targeting diverse proteins. Despite drug-like molecules having more 3D character, traditional fragment libraries are largely composed of flat, aromatic fragments. The use of 3D-enriched fragments for enhancing library diversity is underexplored especially against protein-protein interactions. Here, we evaluate using 3D-enriched fragments against bromodomains. Bromodomains are highly ligandable, but selectivity remains challenging, particularly for bromodomain and extraterminal (BET) family bromodomains. We screened a 3D-enriched fragment library against BRD4(D1) via 1H CPMG NMR with a protein-observed 19F NMR secondary assay. The screen led to 29% of the hits that are selective over two related bromodomains, BRDT(D1) and BPTF, and the identification of underrepresented chemical bromodomain inhibitor scaffolds. Initial structure-activity relationship studies guided by X-ray crystallography led to a ligand-efficient thiazepane, with good selectivity and affinity for BET bromodomains. These results suggest that the incorporation of 3D-enriched fragments to increase library diversity can benefit bromodomain screening.
Collapse
Affiliation(s)
- Jorden A. Johnson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christos A. Nicolaou
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steven E. Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anil K. Pandey
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haitao Hu
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
40
|
Mann MK, Franzoni I, de Freitas RF, Tempel W, Houliston S, Smith L, Vedadi M, Arrowsmith CH, Harding RJ, Schapira M. Discovery of Small Molecule Antagonists of the USP5 Zinc Finger Ubiquitin-Binding Domain. J Med Chem 2019; 62:10144-10155. [PMID: 31663737 DOI: 10.1021/acs.jmedchem.9b00988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
USP5 disassembles unanchored polyubiquitin chains to recycle free monoubiquitin, and is one of the 12 ubiquitin specific proteases featuring a zinc finger ubiquitin-binding domain (ZnF-UBD). This distinct structural module has been associated with substrate positioning or allosteric modulation of catalytic activity, but its cellular function remains unclear. We screened a chemical library focused on the ZnF-UBD of USP5, crystallized hits in complex with the protein, and generated a preliminary structure-activity relationship, which enables the development of more potent and selective compounds. This work serves as a framework for the discovery of a chemical probe to delineate the function of USP5 ZnF-UBD in proteasomal degradation and other ubiquitin signaling pathways in health and disease.
Collapse
Affiliation(s)
- Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - Ivan Franzoni
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , Ontario M5S 3H6 , Canada
| | - Renato Ferreira de Freitas
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada
| | - Scott Houliston
- University Health Network , 661 University Avenue , Toronto , Ontario M5G 2C4 , Canada
| | - Leanna Smith
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada.,University Health Network , 661 University Avenue , Toronto , Ontario M5G 2C4 , Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, MaRS Centre , South Tower, 101 College St., Suite 700 , Toronto , Ontario M5G 1L7 , Canada.,Department of Pharmacology and Toxicology , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| |
Collapse
|
41
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
42
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
43
|
Wood DJ, Lopez-Fernandez JD, Knight LE, Al-Khawaldeh I, Gai C, Lin S, Martin MP, Miller DC, Cano C, Endicott JA, Hardcastle IR, Noble MEM, Waring MJ. FragLites-Minimal, Halogenated Fragments Displaying Pharmacophore Doublets. An Efficient Approach to Druggability Assessment and Hit Generation. J Med Chem 2019; 62:3741-3752. [PMID: 30860382 DOI: 10.1021/acs.jmedchem.9b00304] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identifying ligand binding sites on proteins is a critical step in target-based drug discovery. Current approaches to this require resource-intensive screening of large libraries of lead-like or fragment molecules. Here, we describe an efficient and effective experimental approach to mapping interaction sites using a set of halogenated compounds expressing paired hydrogen-bonding motifs, termed FragLites. The FragLites identify productive drug-like interactions, which are identified sensitively and unambiguously by X-ray crystallography, exploiting the anomalous scattering of the halogen substituent. This mapping of protein interaction surfaces provides an assessment of druggability and can identify efficient start points for the de novo design of hit molecules incorporating the interacting motifs. The approach is illustrated by mapping cyclin-dependent kinase 2, which successfully identifies orthosteric and allosteric sites. The hits were rapidly elaborated to develop efficient lead-like molecules. Hence, the approach provides a new method of identifying ligand sites, assessing tractability and discovering new leads.
Collapse
Affiliation(s)
- Daniel J Wood
- Northern Institute for Cancer Research, Medical School , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4HH , U.K
| | - J Daniel Lopez-Fernandez
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Leanne E Knight
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Islam Al-Khawaldeh
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Conghao Gai
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Shengying Lin
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Mathew P Martin
- Northern Institute for Cancer Research, Medical School , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4HH , U.K
| | - Duncan C Miller
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Céline Cano
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Jane A Endicott
- Northern Institute for Cancer Research, Medical School , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4HH , U.K
| | - Ian R Hardcastle
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Martin E M Noble
- Northern Institute for Cancer Research, Medical School , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4HH , U.K
| | - Michael J Waring
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| |
Collapse
|
44
|
Boeszoermenyi A, Chhabra S, Dubey A, Radeva DL, Burdzhiev NT, Chanev CD, Petrov OI, Gelev VM, Zhang M, Anklin C, Kovacs H, Wagner G, Kuprov I, Takeuchi K, Arthanari H. Aromatic 19F- 13C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics. Nat Methods 2019; 16:333-340. [PMID: 30858598 PMCID: PMC6549241 DOI: 10.1038/s41592-019-0334-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandeep Chhabra
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Denitsa L Radeva
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | | | - Christo D Chanev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Ognyan I Petrov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Vladimir M Gelev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Meng Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery , National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
45
|
Hill LK, Frezzo JA, Katyal P, Hoang DM, Gironda ZBY, Xu C, Xie X, Delgado-Fukushima E, Wadghiri YZ, Montclare JK. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS NANO 2019; 13:2969-2985. [PMID: 30758189 PMCID: PMC6945506 DOI: 10.1021/acsnano.8b07481] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Joseph A. Frezzo
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dung Minh Hoang
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Zakia Ben Youss Gironda
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Cynthia Xu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
46
|
Hofman GJ, Ottoy E, Light ME, Kieffer B, Martins JC, Kuprov I, Sinnaeve D, Linclau B. Synthesis and Conformational Properties of 3,4-Difluoro-l-prolines. J Org Chem 2019; 84:3100-3120. [PMID: 30777755 DOI: 10.1021/acs.joc.8b02920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorinated proline derivatives have found diverse applications in areas ranging from medicinal chemistry over structural biochemistry to organocatalysis. Depending on the stereochemistry of monofluorination at the proline 3- or 4-position, different effects on the conformational properties of proline (ring pucker, cis/ trans isomerization) are introduced. With fluorination at both 3- and 4-positions, matching or mismatching effects can occur depending on the relative stereochemistry. Here we report, in full, the syntheses and conformational properties of three out of the four possible 3,4-difluoro-l-proline diastereoisomers. The yet unreported conformational properties are described for (3 S,4 S)- and (3 R,4 R)-difluoro-l-proline, which are shown to bias ring pucker and cis/ trans ratios on the same order of magnitude as their respective monofluorinated progenitors, although with significantly faster amide cis/ trans isomerization rates. The reported analogues thus expand the scope of available fluorinated proline analogues as tools to tailor proline's distinct conformational and dynamical properties, allowing for the interrogation of its role in, for instance, protein stability or folding.
Collapse
Affiliation(s)
- Gert-Jan Hofman
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom.,Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Emile Ottoy
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Mark E Light
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Bruno Kieffer
- Biomolecular NMR , University of Strasbourg , IGBMC, CNRS UMR 7104, INSERM U1258, 1 rue Laurent Fries/BP 10142 , Illkirch Cedex 67404 , France
| | - Jose C Martins
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Ilya Kuprov
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Davy Sinnaeve
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Bruno Linclau
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| |
Collapse
|
47
|
Robson-Tull J. Biophysical screening in fragment-based drug design: a brief overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1093/biohorizons/hzy015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jacob Robson-Tull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
50
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|