1
|
Ende Z, Mishina M, Kauffman RC, Kumar A, Kumari R, Knight PR, Sambhara S. Human monoclonal antibody cloning and expression with overlap extension PCR and short DNA fragments. J Immunol Methods 2024; 534:113768. [PMID: 39447635 DOI: 10.1016/j.jim.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Monoclonal antibodies are powerful therapeutic, diagnostic, and research tools. Methods utilized to generate monoclonal antibodies are evolving rapidly. We created a transfectable linear antibody expression cassette from a 2-h high-fidelity overlapping PCR reaction from synthesized DNA fragments. We coupled heavy and light chains into a single linear sequence with a promoter, self-cleaving peptide, and poly(A) signal to increase the flexibility of swapping variable regions from any sequence available in silico. Transfection of the linear cassette tended to generate similar levels to the two-plasmid system and generated an average of 47 μg (14-98 μg) after 5 days in 2 ml cultures with 15 unique antibody sequences. The levels of antibodies produced were sufficient for most downstream applications in less than a week. The method presented here reduces the time, cost, and complexity of cloning steps.
Collapse
Affiliation(s)
- Zachary Ende
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Margarita Mishina
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rashmi Kumari
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Paul R Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
2
|
Fu M, Wang X, Tang S, Bai S, Ding L, Hu Y, Cao K, Yang T, Zhao C, Zhang X, Xu J. Protocol for isolating antigen-specific monoclonal antibodies from immunized mice utilizing the Beacon platform. STAR Protoc 2024; 5:103389. [PMID: 39396232 DOI: 10.1016/j.xpro.2024.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Isolation of antigen-specific plasma B cells had been challenging until the recent arrival of the Beacon platform. Leveraging light-sorting technology, Beacon can perform high-throughput screening of plasma B cells on a chip to sort single cells with the desired antigen specificity. Here, we present a protocol for isolating antigen-specific plasma B cells from immunized mice using Beacon, sequencing the encoded B cell receptors (BCRs), and cloning and expressing the resulting antibodies. This protocol can easily be extended to human samples.
Collapse
Affiliation(s)
- Meilan Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiangwei Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Shubing Tang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of Investigational New Drug, Shanghai Reinovax Biologics Co., Ltd., Shanghai, China
| | - Shimeng Bai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Bio-therapeutic Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yangyang Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Kangli Cao
- Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Xiamen Key Laboratory of Biotherapy, Xiammen, China; Clinical Center for Biotherapy, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China.
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Xiamen Key Laboratory of Biotherapy, Xiammen, China; Clinical Center for Biotherapy, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China.
| |
Collapse
|
3
|
Zhang L, Yang X, Shi H, Zhang J, Feng T, Liu D, Zhang X, Chen J, Shi D, Feng L. Identification of two novel B-cell epitopes located on the spike protein of swine acute diarrhea syndrome coronavirus. Int J Biol Macromol 2024; 278:135049. [PMID: 39182883 DOI: 10.1016/j.ijbiomac.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging alpha-coronavirus that causes diarrhea in piglets and results in serious economic losses. During SADS-CoV infection, the spike protein (S) serves as a crucial structural component of the virion, interacting with receptors and eliciting the production of neutralizing antibodies. Due to the potential risk of zoonotic transmission of SADS-CoV, the identification and screening of epitopes on the S glycoproteins will be crucial for development of sensitive and specific diagnostic tools. In this study, we immunized BALB/c mice with recombinant SADS-CoV S trimer protein and generated two S1-specific monoclonal antibodies (mAbs): 8D6 and 6E9, which recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 8D6 was mapped to 311NPDQRD316, the minimal fragment recognized by mAb 6E9 was mapped to 492ARFVDRL498. Homology analysis of the regions corresponding to 13 typical strains of different SADS-CoV subtypes showed high conservation of these two epitopes. These findings contribute to a deeper understanding of the structure of the SADS-CoV S protein, which is valuable for vaccine design and holds potential for developing diagnostic methods to detect SADS-CoV.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
4
|
Slavny P, Hegde M, Doerner A, Parthiban K, McCafferty J, Zielonka S, Hoet R. Advancements in mammalian display technology for therapeutic antibody development and beyond: current landscape, challenges, and future prospects. Front Immunol 2024; 15:1469329. [PMID: 39381002 PMCID: PMC11459229 DOI: 10.3389/fimmu.2024.1469329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering. The review delves into the mechanisms underpinning developability-driven selection via mammalian display and their broader implications. Applications beyond antibody discovery are also explored, alongside advancements towards function-first screening technologies, precision genome engineering and AI/ML-enhanced libraries, situating them in the context of mammalian display. Overall, the review provides a comprehensive overview of the current mammalian display technology landscape, underscores the expansive potential of the technology for biotherapeutic development, addresses the critical challenges for the full realisation of this potential, and examines advances in related disciplines that might impact the future application of mammalian display technologies.
Collapse
Affiliation(s)
- Peter Slavny
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - Manjunath Hegde
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Kothai Parthiban
- Discovery & Engineering Division, Iontas Ltd./FairJourney Biologics, Cambridge, United Kingdom
| | - John McCafferty
- Maxion Therapeutics, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rene Hoet
- Technology Division, Iontas/FairJourney Biologics, Cambridge, United Kingdom
- Technology Division, FairJourney Biologics, Porto, Portugal
| |
Collapse
|
5
|
Berndsen ZT, Akhtar M, Thapa M, Vickers TJ, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoon N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. PLoS Pathog 2024; 20:e1012241. [PMID: 39283948 PMCID: PMC11463764 DOI: 10.1371/journal.ppat.1012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Nazia Khatoon
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Salvador Martinez-Bartolome
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Renee M. Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Chad K. Porter
- Translational and Clinical Research Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis, Missouri, United States of America
| |
Collapse
|
6
|
Zhou D, Cheng R, Yao Y, Zhang G, Li X, Wang B, Wang Y, Yu F, Yang S, Liu H, Gao G, Peng Y, Chen M, Deng Z, Zhao H. An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection. NPJ Vaccines 2024; 9:158. [PMID: 39217188 PMCID: PMC11365981 DOI: 10.1038/s41541-024-00954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic emergent paramyxovirus that can cause severe encephalitis and respiratory infections in humans, with a high fatality rate ranging from 40% to 75%. Currently, there are no approved human vaccines or antiviral drugs against NiV. Here, we designed a ferritin-based self-assembling nanoparticle displaying the NiV G head domain on the surface (NiV G-ferritin) and assessed immune responses elicited by the soluble NiV G head domain (NiV sG) or NiV G-ferritin. Immunization with NiV G-ferritin or NiV sG conferred complete protection against lethal NiV challenge without detection of viral RNA in Syrian golden hamsters. Compared to NiV sG, NiV G-ferritin induced significantly faster, broader, and higher serum neutralizing responses against three pathogenic henipaviruses (NiV-Malaysia, NiV-Bangladesh, and Hendra virus). Moreover, NiV G-ferritin induced a durable neutralizing immunity in mice as antisera potently inhibited NiV infection even after six months of the third immunization. Additionally, we isolated a panel of 27 NiV G-binding monoclonal antibodies (mAbs) from NiV G-ferritin immunized mice and found that these mAbs targeted four distinct antigenic sites on NiV G head domain with two sites that have not been defined previously. Notably, 25 isolated mAbs have potent neutralizing activity with 50% inhibitory concentrations less than 10 ng/mL against NiV pseudovirus. Collectively, these findings provide new insights into the immunogenicity of NiV G protein and reveal that NiV G-ferritin is a safe and highly effective vaccine candidate against Nipah virus infection.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Gan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Caniels TG, Medina-Ramìrez M, Zhang S, Kratochvil S, Xian Y, Koo JH, Derking R, Samsel J, van Schooten J, Pecetta S, Lamperti E, Yuan M, Carrasco MR, Del Moral Sánchez I, Allen JD, Bouhuijs JH, Yasmeen A, Ketas TJ, Snitselaar JL, Bijl TPL, Martin IC, Torres JL, Cupo A, Shirreff L, Rogers K, Mason RD, Roederer M, Greene KM, Gao H, Silva CM, Baken IJL, Tian M, Alt FW, Pulendran B, Seaman MS, Crispin M, van Gils MJ, Montefiori DC, McDermott AB, Villinger FJ, Koup RA, Moore JP, Klasse PJ, Ozorowski G, Batista FD, Wilson IA, Ward AB, Sanders RW. Germline-targeting HIV vaccination induces neutralizing antibodies to the CD4 binding site. Sci Immunol 2024; 9:eadk9550. [PMID: 39213338 DOI: 10.1126/sciimmunol.adk9550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Eliciting potent and broadly neutralizing antibodies (bnAbs) is a major goal in HIV-1 vaccine development. Here, we describe how germline-targeting immunogen BG505 SOSIP germline trimer 1.1 (GT1.1), generated through structure-based design, engages a diverse range of VRC01-class bnAb precursors. A single immunization with GT1.1 expands CD4 binding site (CD4bs)-specific VRC01-class B cells in knock-in mice and drives VRC01-class maturation. In nonhuman primates (NHPs), GT1.1 primes CD4bs-specific neutralizing serum responses. Selected monoclonal antibodies (mAbs) isolated from GT1.1-immunized NHPs neutralize fully glycosylated BG505 virus. Two mAbs, 12C11 and 21N13, neutralize subsets of diverse heterologous neutralization-resistant viruses. High-resolution structures revealed that 21N13 targets the same conserved residues in the CD4bs as VRC01-class and CH235-class bnAbs despite its low sequence similarity (~40%), whereas mAb 12C11 binds predominantly through its heavy chain complementarity-determining region 3. These preclinical data underpin the ongoing evaluation of GT1.1 in a phase 1 clinical trial in healthy volunteers.
Collapse
Affiliation(s)
- Tom G Caniels
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Max Medina-Ramìrez
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Shiyu Zhang
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Sven Kratochvil
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Ja-Hyun Koo
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Ronald Derking
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Jakob Samsel
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Jelle van Schooten
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Simone Pecetta
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Edward Lamperti
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - María Ríos Carrasco
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Iván Del Moral Sánchez
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Joey H Bouhuijs
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Jonne L Snitselaar
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Tom P L Bijl
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Isabel Cuella Martin
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | | | - Mario Roederer
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
| | | | - Hongmei Gao
- Duke University Medical Center, Durham, NC, USA
| | - Catarina Mendes Silva
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Isabel J L Baken
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Ming Tian
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Marit J van Gils
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | | | - François J Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Richard A Koup
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, MD, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Facundo D Batista
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W Sanders
- Amsterdam UMC, location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
8
|
Ren X, Sun J, Kuang W, Yu F, Wang B, Wang Y, Deng W, Xu Z, Yang S, Wang H, Hu Y, Deng Z, Ning YJ, Zhao H. A broadly protective antibody targeting glycoprotein Gn inhibits severe fever with thrombocytopenia syndrome virus infection. Nat Commun 2024; 15:7009. [PMID: 39147753 PMCID: PMC11327358 DOI: 10.1038/s41467-024-51108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes severe viral hemorrhagic fever and thrombocytopenia syndrome with a fatality rate of up to 30%. No licensed vaccines or therapeutics are currently available for humans. Here, we develop seven monoclonal antibodies (mAbs) against SFTSV surface glycoprotein Gn. Mechanistic studies show that three neutralizing mAbs (S2A5, S1G3, and S1H7) block multiple steps during SFTSV infection, including viral attachment and membrane fusion, whereas another neutralizing mAb (B1G11) primarily inhibits the viral attachment step. Epitope binning and X-ray crystallographic analyses reveal four distinct antigenic sites on Gn, three of which have not previously been reported, corresponding to domain I, domain II, and spanning domain I and domain II. One of the most potent neutralizing mAbs, S2A5, binds to a conserved epitope on Gn domain I and broadly neutralizes infection of six SFTSV strains corresponding to genotypes A to F. A single dose treatment of S2A5 affords both pre- and post-exposure protection of mice against lethal SFTSV challenge without apparent weight loss. Our results support the importance of glycoprotein Gn for eliciting a robust humoral response and pave a path for developing prophylactic and therapeutic antibodies against SFTSV infection.
Collapse
Affiliation(s)
- Xuanxiu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jiawen Sun
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Yangbo Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
10
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
11
|
Schiffner T, Phung I, Ray R, Irimia A, Tian M, Swanson O, Lee JH, Lee CCD, Marina-Zárate E, Cho SY, Huang J, Ozorowski G, Skog PD, Serra AM, Rantalainen K, Allen JD, Baboo S, Rodriguez OL, Himansu S, Zhou J, Hurtado J, Flynn CT, McKenney K, Havenar-Daughton C, Saha S, Shields K, Schultze S, Smith ML, Liang CH, Toy L, Pecetta S, Lin YC, Willis JR, Sesterhenn F, Kulp DW, Hu X, Cottrell CA, Zhou X, Ruiz J, Wang X, Nair U, Kirsch KH, Cheng HL, Davis J, Kalyuzhniy O, Liguori A, Diedrich JK, Ngo JT, Lewis V, Phelps N, Tingle RD, Spencer S, Georgeson E, Adachi Y, Kubitz M, Eskandarzadeh S, Elsliger MA, Amara RR, Landais E, Briney B, Burton DR, Carnathan DG, Silvestri G, Watson CT, Yates JR, Paulson JC, Crispin M, Grigoryan G, Ward AB, Sok D, Alt FW, Wilson IA, Batista FD, Crotty S, Schief WR. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat Immunol 2024; 25:1073-1082. [PMID: 38816615 PMCID: PMC11147780 DOI: 10.1038/s41590-024-01833-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.
Collapse
Affiliation(s)
- Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Adriana Irimia
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun D Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - So Yeon Cho
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jiachen Huang
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Skog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Andreia M Serra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia T Flynn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine McKenney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chi-Hui Liang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Laura Toy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Fabian Sesterhenn
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xiaoya Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jennifer Ruiz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jillian Davis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Julia T Ngo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Vanessa Lewis
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan D Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Skye Spencer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Marc A Elsliger
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Diane G Carnathan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Generate Biomedicines, Inc., Somerville, MA, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| |
Collapse
|
12
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Ray R, Schiffner T, Wang X, Yan Y, Rantalainen K, Lee CCD, Parikh S, Reyes RA, Dale GA, Lin YC, Pecetta S, Giguere S, Swanson O, Kratochvil S, Melzi E, Phung I, Madungwe L, Kalyuzhniy O, Warner J, Weldon SR, Tingle R, Lamperti E, Kirsch KH, Phelps N, Georgeson E, Adachi Y, Kubitz M, Nair U, Crotty S, Wilson IA, Schief WR, Batista FD. Affinity gaps among B cells in germinal centers drive the selection of MPER precursors. Nat Immunol 2024; 25:1083-1096. [PMID: 38816616 PMCID: PMC11147770 DOI: 10.1038/s41590-024-01844-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.
Collapse
Affiliation(s)
- Rashmi Ray
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Institute for Drug Discovery, Leipzig University Medical Faculty, Leipzig, Germany
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yu Yan
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kimmo Rantalainen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Chang-Chun David Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shivang Parikh
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Raphael A Reyes
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Gordon A Dale
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Simone Pecetta
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | - Sophie Giguere
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Olivia Swanson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Eleonora Melzi
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ivy Phung
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Madungwe
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - John Warner
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Stephanie R Weldon
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Edward Lamperti
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.
- Moderna, Inc., Cambridge, MA, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Xie Z, Lin YC, Steichen JM, Ozorowski G, Kratochvil S, Ray R, Torres JL, Liguori A, Kalyuzhniy O, Wang X, Warner JE, Weldon SR, Dale GA, Kirsch KH, Nair U, Baboo S, Georgeson E, Adachi Y, Kubitz M, Jackson AM, Richey ST, Volk RM, Lee JH, Diedrich JK, Prum T, Falcone S, Himansu S, Carfi A, Yates JR, Paulson JC, Sok D, Ward AB, Schief WR, Batista FD. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 2024; 384:eadk0582. [PMID: 38753770 PMCID: PMC11488660 DOI: 10.1126/science.adk0582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.
Collapse
Affiliation(s)
- Zhenfei Xie
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- These authors contributed equally
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jon M. Steichen
- These authors contributed equally
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- These authors contributed equally
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sven Kratochvil
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jonathan L. Torres
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - John E. Warner
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Gordon A. Dale
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Abigail M. Jackson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T. Richey
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M Volk
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C. Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Moderna Inc., Cambridge, MA 02139, USA
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Ray R, Nait Mohamed FA, Maurer DP, Huang J, Alpay BA, Ronsard L, Xie Z, Han J, Fernandez-Quintero M, Phan QA, Ursin RL, Vu M, Kirsch KH, Prum T, Rosado VC, Bracamonte-Moreno T, Okonkwo V, Bals J, McCarthy C, Nair U, Kanekiyo M, Ward AB, Schmidt AG, Batista FD, Lingwood D. Eliciting a single amino acid change by vaccination generates antibody protection against group 1 and group 2 influenza A viruses. Immunity 2024; 57:1141-1159.e11. [PMID: 38670113 PMCID: PMC11096021 DOI: 10.1016/j.immuni.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.
Collapse
Affiliation(s)
- Rashmi Ray
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Faez Amokrane Nait Mohamed
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Daniel P Maurer
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Jiachen Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Berk A Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Monica Fernandez-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020 Innsbruck, Austria
| | - Quynh Anh Phan
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Rebecca L Ursin
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Mya Vu
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thavaleak Prum
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Victoria C Rosado
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte-Moreno
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Julia Bals
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron G Schmidt
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Facundo D Batista
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Department of Biology, The Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Hu X, Zhang M, Liu Y, Li YT, Li W, Li T, Li J, Xiao X, He Q, Zhang ZY, Zhang GJ. A portable transistor immunosensor for fast identification of porcine epidemic diarrhea virus. J Nanobiotechnology 2024; 22:239. [PMID: 38735951 PMCID: PMC11089749 DOI: 10.1186/s12951-024-02440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.
Collapse
Affiliation(s)
- Xiao Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Yiwei Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, P. R. China
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China
| | - Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, P. R. China.
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, P.R. China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, P.R. China.
| |
Collapse
|
17
|
Wang X, Cottrell CA, Hu X, Ray R, Bottermann M, Villavicencio PM, Yan Y, Xie Z, Warner JE, Ellis-Pugh JR, Kalyuzhniy O, Liguori A, Willis JR, Menis S, Rämisch S, Eskandarzadeh S, Kubitz M, Tingle R, Phelps N, Groschel B, Himansu S, Carfi A, Kirsch KH, Weldon SR, Nair U, Schief WR, Batista FD. mRNA-LNP prime boost evolves precursors toward VRC01-like broadly neutralizing antibodies in preclinical humanized mouse models. Sci Immunol 2024; 9:eadn0622. [PMID: 38753808 PMCID: PMC11488661 DOI: 10.1126/sciimmunol.adn0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.
Collapse
Affiliation(s)
- Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
- Moderna Inc.; Cambridge, 02139, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Maria Bottermann
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | | | - Yu Yan
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - John E. Warner
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | | | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Jordan R. Willis
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Sebastian Rämisch
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | | | | | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - William R. Schief
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
- Moderna Inc.; Cambridge, 02139, USA
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| |
Collapse
|
18
|
Berndsen ZT, Akhtar M, Thapa M, Vickers T, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoom N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593125. [PMID: 38766097 PMCID: PMC11100705 DOI: 10.1101/2024.05.08.593125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Tim Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Nazia Khatoom
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Patrick T Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Chad K Porter
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis Missouri, USA
| |
Collapse
|
19
|
Shingai M, Iida S, Kawai N, Kawahara M, Sekiya T, Ohno M, Nomura N, Handabile C, Kawakita T, Omori R, Yamagishi J, Sano K, Ainai A, Suzuki T, Ohnishi K, Ito K, Kida H. Extraction of the CDRH3 sequence of the mouse antibody repertoire selected upon influenza virus infection by subtraction of the background antibody repertoire. J Virol 2024; 98:e0199523. [PMID: 38323813 PMCID: PMC10949447 DOI: 10.1128/jvi.01995-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.
Collapse
Affiliation(s)
- Masashi Shingai
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sayaka Iida
- Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mamiko Kawahara
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Chimuka Handabile
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Tomomi Kawakita
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kimihito Ito
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Weinfurter JT, Bennett SN, Reynolds MR. A SMART method for isolating monoclonal antibodies from individual rhesus macaque memory B cells. J Immunol Methods 2024; 525:113602. [PMID: 38103783 PMCID: PMC10842827 DOI: 10.1016/j.jim.2023.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells to capture Ig heavy and light chain pairs. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, the nested PCR primer mixes are simplified by employing universal 5' primers, eliminating the need for complex 5' MTPX primer sets. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.
Collapse
Affiliation(s)
- Jason T Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Sarah N Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Matthew R Reynolds
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States of America; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States of America.
| |
Collapse
|
21
|
Li X, Zeng F, Yue R, Ma D, Meng Z, Li Q, Zhang Z, Zhang H, Liao Y, Liao Y, Jiang G, Zhao H, Yu L, Li D, Zhang Y, Liu L, Li Q. Heterologous Booster Immunization Based on Inactivated SARS-CoV-2 Vaccine Enhances Humoral Immunity and Promotes BCR Repertoire Development. Vaccines (Basel) 2024; 12:120. [PMID: 38400104 PMCID: PMC10891849 DOI: 10.3390/vaccines12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have indicated that sequentially administering SARS-CoV-2 vaccines can result in increased antibody and cellular immune responses. In this study, we compared homologous and heterologous immunization strategies following two doses of inactivated vaccines in a mouse model. Our research demonstrates that heterologous sequential immunization resulted in more immune responses displayed in the lymph node germinal center, which induced a greater number of antibody-secreting cells (ASCs), resulting in enhanced humoral and cellular immune responses and increased cross-protection against five variant strains. In further single B-cell analysis, the above findings were supported by the presence of unique B-cell receptor (BCR) repertoires and diversity in CDR3 sequence profiles elicited by a heterologous booster immunization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| |
Collapse
|
22
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
23
|
Gupta P, Horspool AM, Trivedi G, Moretti G, Datar A, Huang ZF, Chiecko J, Kenny CH, Marlow MS. Matrixed CDR grafting: A neoclassical framework for antibody humanization and developability. J Biol Chem 2024; 300:105555. [PMID: 38072062 PMCID: PMC10805677 DOI: 10.1016/j.jbc.2023.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024] Open
Abstract
Discovery and optimization of a biotherapeutic monoclonal antibody requires a careful balance of target engagement and physicochemical developability properties. To take full advantage of the sequence diversity provided by different antibody discovery platforms, a rapid and reliable process for humanization of antibodies from nonhuman sources is required. Canonically, maximizing homology of the human variable region (V-region) to the original germline was believed to result in preservation of binding, often without much consideration for inherent molecular properties. We expand on this approach by grafting the complementary determining regions (CDRs) of a mouse anti-LAG3 antibody into an extensive matrix of human variable heavy chain (VH) and variable light chain (VL) framework regions with substantially broader sequence homology to assess the impact on complementary determining region-framework compatibility through progressive evaluation of expression, affinity, biophysical developability, and function. Specific VH and VL framework sequences were associated with major expression and purification phenotypes. Greater VL sequence conservation was correlated with retained or improved affinity. Analysis of grafts that bound the target demonstrated that initial developability criteria were significantly impacted by VH, but not VL. In contrast, cell binding and functional characteristics were significantly impacted by VL, but not VH. Principal component analysis of all factors identified multiple grafts that exhibited more favorable antibody properties, notably with nonoptimal sequence conservation. Overall, this study demonstrates that modern throughput systems enable a more thorough, customizable, and systematic analysis of graft-framework combinations, resulting in humanized antibodies with improved global properties that may progress through development more quickly and with a greater probability of success.
Collapse
Affiliation(s)
- Pankaj Gupta
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA.
| | - Alexander M Horspool
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Goral Trivedi
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Gina Moretti
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Akshita Datar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Zhong-Fu Huang
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Jeffrey Chiecko
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Cynthia Hess Kenny
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA.
| |
Collapse
|
24
|
Jiang M, Wang Y, Yu X, He Y, Zheng X, Qin J, Gu Y, Li X, Shi Y, Ma X, Li J, Pu K. An image-based Abplex method for high-throughput GPCRs antibody discovery. Biotechnol J 2024; 19:e2300336. [PMID: 37941478 DOI: 10.1002/biot.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
As the field of antibody therapeutics advances rapidly, membrane proteins, particularly G protein-coupled receptors (GPCRs), have emerged as highly sought-after drug targets. However, the challenges associated with extracting membrane proteins have created a demand for effective antibody screening systems targeting these proteins. In this study, we propose developing an innovative antibody screening strategy (Abplex) based on high-content imaging. This approach leverages intact cells that express target membrane proteins, facilitating the presentation of proteins in their native conformation. Furthermore, it acquires both specific and non-specific binding signals in a single well, thereby bolstering the robustness of the outcomes. The technique involves just one step and can be completed within 50 min, enabling the analysis of a single sample in just one second. The amalgamation of dependable experimental findings, a simplified workflow, reduced hands-on time, and a swift analytical pace positions our method for superior throughput and precision when juxtaposed with traditional techniques such as CbELISA and FACS. Moreover, we introduce the concept of cell barcoding, wherein cells are labeled with different fluorescence spatial patterns. This feature allows for multiplexed detection to meet the needs of various experiments. The characteristics of Abplex promise to expedite GPCR-targeting antibody discovery, advance therapeutics and enable new disease treatments.
Collapse
Affiliation(s)
- Min Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanyuan Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xinke Yu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiran He
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xuewen Zheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Jingyi Qin
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yayun Gu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xin Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ying Shi
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiong Li
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| | - Kefeng Pu
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
25
|
Gu Y, Shunmuganathan B, Qian X, Gupta R, Tan RSW, Kozma M, Purushotorman K, Murali TM, Tan NYJ, Preiser PR, Lescar J, Nasir H, Somani J, Tambyah PA, Smith KGC, Renia L, Ng LFP, Lye DC, Young BE, MacAry PA. Employment of a high throughput functional assay to define the critical factors that influence vaccine induced cross-variant neutralizing antibodies for SARS-CoV-2. Sci Rep 2023; 13:21810. [PMID: 38071323 PMCID: PMC10710454 DOI: 10.1038/s41598-023-49231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.
Collapse
Affiliation(s)
- Yue Gu
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUH-Cambridge Immune Phenotyping Centre, National University of Singapore, Singapore, Singapore
| | - Bhuvaneshwari Shunmuganathan
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rebecca S W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mary Kozma
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kiren Purushotorman
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tanusya M Murali
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nikki Y J Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), Singapore, 138602, Singapore
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551, Singapore
| | - Julien Lescar
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Haziq Nasir
- Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Jyoti Somani
- Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Paul A Tambyah
- Division of Infectious Disease, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Kenneth G C Smith
- NUH-Cambridge Immune Phenotyping Centre, National University of Singapore, Singapore, Singapore
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Laurent Renia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases (NCID), Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Barnaby E Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases (NCID), Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Paul A MacAry
- Antibody Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUH-Cambridge Immune Phenotyping Centre, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
26
|
Xu H, Xiang X, Ding W, Dong W, Hu Y. The Research Progress on Immortalization of Human B Cells. Microorganisms 2023; 11:2936. [PMID: 38138080 PMCID: PMC10746006 DOI: 10.3390/microorganisms11122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Human B cell immortalization that maintains the constant growth characteristics and antibody expression of B cells in vitro is very critical for the development of antibody drugs and products for the diagnosis and bio-therapeutics of human diseases. Human B cell immortalization methods include Epstein-Barr virus (EBV) transformation, Simian virus 40 (SV40) virus infection, in vitro genetic modification, and activating CD40, etc. Immortalized human B cells produce monoclonal antibodies (mAbs) very efficiently, and the antibodies produced in this way can overcome the immune rejection caused by heterologous antibodies. It is an effective way to prepare mAbs and an important method for developing therapeutic monoclonal antibodies. Currently, the US FDA has approved more than 100 mAbs against a wide range of illnesses such as cancer, autoimmune diseases, infectious diseases, and neurological disorders. This paper reviews the research progress of human B cell immortalization, its methods, and future directions as it is a powerful tool for the development of monoclonal antibody preparation technology.
Collapse
Affiliation(s)
- Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Xinxin Xiang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Hengyang Medical College, University of South China, Hengyang 421200, China
| | - Weizhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Peking-Tsinghua-NIBS Joint Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Tang Z, Zhong MC, Qian J, Galindo CC, Davidson D, Li J, Zhao Y, Hui E, Veillette A. CD47 masks pro-phagocytic ligands in cis on tumor cells to suppress antitumor immunity. Nat Immunol 2023; 24:2032-2041. [PMID: 37945822 DOI: 10.1038/s41590-023-01671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Cancer cells often overexpress CD47, which triggers the inhibitory receptor SIRPα expressed on macrophages, to elude phagocytosis and antitumor immunity. Pharmacological blockade of CD47 or SIRPα is showing promise as anticancer therapy, although CD47 blockade has been associated with hematological toxicities that may reflect its broad expression pattern on normal cells. Here we found that, in addition to triggering SIRPα, CD47 suppressed phagocytosis by a SIRPα-independent mechanism. This mechanism prevented phagocytosis initiated by the pro-phagocytic ligand, SLAMF7, on tumor cells, due to a cis interaction between CD47 and SLAMF7. The CD47-SLAMF7 interaction was disrupted by CD47 blockade and by a first-in-class agonist SLAMF7 antibody, but not by SIRPα blockade, thereby promoting antitumor immunity. Hence, CD47 suppresses phagocytosis not only by engaging SIRPα, but also by masking cell-intrinsic pro-phagocytic ligands on tumor cells and knowledge of this mechanism may influence the decision between CD47 blockade or SIRPα blockade for therapeutic purposes.
Collapse
Affiliation(s)
- Zhenghai Tang
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Cristian Camilo Galindo
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Jiaxin Li
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada.
- Department of Medicine, McGill University, Montréal, Québec, Canada.
- Department of Medicine, University of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
28
|
Weber T, Dähling S, Rose S, Affeldt P, Vanshylla K, Ullrich L, Gieselmann L, Teipel F, Gruell H, Di Cristanziano V, Kim DS, Georgiou G, Koch M, Kreer C, Klein F. Enhanced SARS-CoV-2 humoral immunity following breakthrough infection builds upon the preexisting memory B cell pool. Sci Immunol 2023; 8:eadk5845. [PMID: 37976348 DOI: 10.1126/sciimmunol.adk5845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
The human immune response must continuously adapt to newly emerging SARS-CoV-2 variants. To investigate how B cells respond to repeated SARS-CoV-2 antigen exposure by Wu01 booster vaccination and Omicron breakthrough infection, we performed a molecular longitudinal analysis of the memory B cell pool. We demonstrate that a subsequent breakthrough infection substantially increases the frequency of B cells encoding SARS-CoV-2-neutralizing antibodies. However, this is not primarily attributable to maturation, but to selection of preexisting B cell clones. Moreover, broadly reactive memory B cells arose early and even neutralized highly mutated variants like XBB.1.5 that the individuals had not encountered. Together, our data show that SARS-CoV-2 immunity is largely imprinted on Wu01 over the course of multiple antigen contacts but can respond to new variants through preexisting diversity.
Collapse
Affiliation(s)
- Timm Weber
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sabrina Dähling
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Svea Rose
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Patrick Affeldt
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kanika Vanshylla
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Leon Ullrich
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Finn Teipel
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering and Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Oncology, University of Texas Dell Medical School, Austin, Texas, USA
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty and University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Keitany GJ, Rubin BER, Garrett ME, Musa A, Tracy J, Liang Y, Ebert P, Moore AJ, Guan J, Eggers E, Lescano N, Brown R, Carbo A, Al-Asadi H, Ching T, Day A, Harris R, Linkem C, Popov D, Wilkins C, Li L, Wang J, Liu C, Chen L, Dines JN, Atyeo C, Alter G, Baldo L, Sherwood A, Howie B, Klinger M, Yusko E, Robins HS, Benzeno S, Gilbert AE. Multimodal, broadly neutralizing antibodies against SARS-CoV-2 identified by high-throughput native pairing of BCRs from bulk B cells. Cell Chem Biol 2023; 30:1377-1389.e8. [PMID: 37586370 PMCID: PMC10659930 DOI: 10.1016/j.chembiol.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/25/2023] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.
Collapse
Affiliation(s)
| | | | | | - Andrea Musa
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Jeff Tracy
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Yu Liang
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Peter Ebert
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Erica Eggers
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Ryan Brown
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Adria Carbo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | - Austin Day
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | | | | - Lianqu Li
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Jiao Wang
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Chuanxin Liu
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | - Li Chen
- GenScript ProBio Biotech, Nanjing, Jiangsu Province, China
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Lance Baldo
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Mark Klinger
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Erik Yusko
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
30
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
31
|
Seow J, Shalim ZA, Graham C, Kimuda S, Pillai A, Lechmere T, Kurshan A, Khimji AM, Snell LB, Nebbia G, Mant C, Waters A, Fox J, Malim MH, Doores KJ. Broad and potent neutralizing antibodies are elicited in vaccinated individuals following Delta/BA.1 breakthrough infection. mBio 2023; 14:e0120623. [PMID: 37747187 PMCID: PMC10653880 DOI: 10.1128/mbio.01206-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Zayed A. Shalim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Aswin Pillai
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Atika M. Khimji
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Snell
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Infectious Diseases Biobank, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Anele Waters
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
32
|
Ma Z, Zhao Y, Lv J, Pan L. Development and application of classical swine fever virus monoclonal antibodies derived from single B cells. Vet Res 2023; 54:90. [PMID: 37845739 PMCID: PMC10580647 DOI: 10.1186/s13567-023-01229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/14/2023] [Indexed: 10/18/2023] Open
Abstract
Vaccination with E2 subunit vaccines is currently the main measure to control classical swine fever virus (CSFV), which is an endemic disease, and detection of antibodies against CSFV E2 is the most effective way to evaluate herd immunity. In the present study, the E2 protein was expressed by a baculovirus expression system, and two monoclonal antibodies (mAbs), namely, 3A9 and 4F7, were successfully produced using techniques for the isolation of single B cells from splenocytes from mice immunized with the E2 protein. Moreover, two linear B-cell epitopes, 25GLTTTWKEYSHDLQL39 and 259GNTTVKVHASDERGP273, reactive to 3A9 and 4F7, respectively, were identified using epitope mapping of the E2 protein. In addition, the diagnostic performance of the two mAbs was evaluated using blocking enzyme-linked immunosorbent assay (bELISA), and the results showed that the two mAbs had high diagnostic specificity (96.08%, 94.38%) and diagnostic sensitivity (97.49%, 95.97%). Together, these findings identify two ideal candidate peptides and matching mAbs for a new method of CSFV diagnosis, which will contribute to the control and eradication of classical swine fever.
Collapse
Affiliation(s)
- Zhongyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yongcong Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianliang Lv
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
33
|
Ben-Shalom N, Sandbank E, Abramovitz L, Hezroni H, Levine T, Trachtenberg E, Fogel N, Mor M, Yefet R, Stoler-Barak L, Hagin D, Nakai A, Noda M, Suzuki K, Shulman Z, Ben-Eliyahu S, Freund NT. β2-adrenergic signaling promotes higher-affinity B cells and antibodies. Brain Behav Immun 2023; 113:66-82. [PMID: 37369341 DOI: 10.1016/j.bbi.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress-induced β2-adrenergic receptor (β2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological β2AR blocking or when the experiments were conducted in β2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following β2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo β2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, β2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a β2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated β2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.
Collapse
Affiliation(s)
- Noam Ben-Shalom
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Elad Sandbank
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Lilach Abramovitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talia Levine
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Estherina Trachtenberg
- The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel
| | - Nadav Fogel
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Michael Mor
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Ron Yefet
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Hagin
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel; Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 623906, Israel
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Noda
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shamgar Ben-Eliyahu
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel; The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel.
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel.
| |
Collapse
|
34
|
Tsai CY, Sakakibara S, Kuan YD, Omori H, El Hussien MA, Okuzaki D, Lu SL, Noda T, Tabata K, Nakamura S, Yoshimori T, Kikutani H. Opposing roles of RUBCN isoforms in autophagy and memory B cell generation. Sci Signal 2023; 16:eade3599. [PMID: 37725663 DOI: 10.1126/scisignal.ade3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
RUBCN (also known as Rubicon) was originally identified as a negative regulator of autophagy, a process by which cells degrade and recycle damaged components or organelles and that requires the activity of the class III PI3K VPS34 and the mTORC1 protein complex. Here, we characterized the role of a shorter isoform, RUBCN100, as an autophagy-promoting factor in B cells. RUBCN100 was translated from alternative translation initiation sites and lacked the RUN domain of the longer, previously characterized RUBCN130 isoform. Specific deficiency of RUBCN130 in B cells enhanced autophagy, which promoted memory B cell generation. In contrast to RUBCN130, which is localized in late endosomes and lysosomes and suppresses the enzymatic activity of VPS34, an effect thought to mediated by its RUN domain, RUBCN100 was preferentially located in early endosomes and enhanced VPS34 activity, presumably because of the absence of the RUN domain. Furthermore, RUBCN100, but not RUBCN130, enhanced autophagy and suppressed mTORC1 activation. Our findings reveal that the opposing roles of two RUBCN isoforms are critical for autophagy regulation and memory B cell differentiation.
Collapse
Affiliation(s)
- Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-Diao Kuan
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroko Omori
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Maruwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Weinfurter JT, Bennett SN, Reynolds M. A SMART method for efficiently isolating monoclonal antibodies from individual rhesus macaque memory B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543510. [PMID: 37333083 PMCID: PMC10274751 DOI: 10.1101/2023.06.02.543510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Characterizing antigen-specific B cells is a critical component of vaccine and infectious disease studies in rhesus macaques (RMs). However, it is challenging to capture immunoglobulin variable (IgV) genes from individual RM B cells using 5' multiplex (MTPX) primers in nested PCR reactions. In particular, the diversity within RM IgV gene leader sequences necessitates the use of large 5' MTPX primer sets to amplify IgV genes, decreasing PCR efficiency. To address this problem, we developed a switching mechanism at the 5' ends of the RNA transcript (SMART)-based method for amplifying IgV genes from single RM B cells, providing unbiased capture of Ig heavy and light chain pairs for cloning antibodies. We demonstrate this technique by isolating simian immunodeficiency virus (SIV) envelope-specific antibodies from single-sorted RM memory B cells. This approach has several advantages over existing methods for PCR cloning antibodies from RMs. First, optimized PCR conditions and SMART 5' and 3' rapid amplification of cDNA ends (RACE) reactions generate full-length cDNAs from individual B cells. Second, it appends synthetic primer binding sites to the 5' and 3' ends of cDNA during synthesis, allowing for PCR amplification of low-abundance antibody templates. Third, universal 5' primers are employed to amplify the IgV genes from cDNA, simplifying the primer mixes in the nested PCR reactions and improving the recovery of matched heavy and light chain pairs. We anticipate this method will enhance the isolation of antibodies from individual RM B cells, supporting the genetic and functional characterization of antigen-specific B cells.
Collapse
Affiliation(s)
- Jason T. Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
| | - Sarah N. Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
| | - Matthew Reynolds
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison WI
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison WI
| |
Collapse
|
36
|
Zhang F, Jenkins J, de Carvalho RVH, Nakandakari-Higa S, Chen T, Abernathy ME, Baharani VA, Nyakatura EK, Andrew D, Lebedeva IV, Lorenz IC, Hoffmann HH, Rice CM, Victora GD, Barnes CO, Hatziioannou T, Bieniasz PD. Pan-sarbecovirus prophylaxis with human anti-ACE2 monoclonal antibodies. Nat Microbiol 2023; 8:1051-1063. [PMID: 37188812 PMCID: PMC10234812 DOI: 10.1038/s41564-023-01389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Jesse Jenkins
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Irina V Lebedeva
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
37
|
Willett MJ, McNees C, Sharma S, Newen AM, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral death by neglect and limited clonal deletion during physiologic B lymphocyte development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542923. [PMID: 37502950 PMCID: PMC10370189 DOI: 10.1101/2023.05.30.542923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autoreactive B cells generated during B cell development are inactivated by clonal deletion, receptor editing or anergy. Up to 97% of immature B cells appear to die before completing maturation, but the anatomic sites and reasons underlying this massive cell loss are not fully understood. Here, we directly quantitated apoptosis and clonal deletion during physiologic B lymphocyte development using Rosa26INDIA apoptosis indicator mice. Immature B cells displayed low levels of apoptosis in the bone marrow but started dying at high levels in the periphery upon release from bone marrow sinusoids into the blood circulation. Clonal deletion of self-reactive B cells was neither a major contributor to apoptosis in the bone marrow nor the periphery. Instead, most peripheral transitional 1 B cells did not encounter the signals required for positive selection into the mature B cell compartments. This study sheds new light on B cell development and suggests that receptor editing and/or anergy efficiently control most primary autoreactivity in mice.
Collapse
Affiliation(s)
- Mikala JoAnn Willett
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University; Shanghai, China, 200032
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
39
|
Chang TH, Hsieh FL, Gu X, Smallwood PM, Kavran JM, Gabelli SB, Nathans J. Structural insights into plasmalemma vesicle-associated protein (PLVAP): Implications for vascular endothelial diaphragms and fenestrae. Proc Natl Acad Sci U S A 2023; 120:e2221103120. [PMID: 36996108 PMCID: PMC10083539 DOI: 10.1073/pnas.2221103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
In many organs, small openings across capillary endothelial cells (ECs) allow the diffusion of low-molecular weight compounds and small proteins between the blood and tissue spaces. These openings contain a diaphragm composed of radially arranged fibers, and current evidence suggests that a single-span type II transmembrane protein, plasmalemma vesicle-associated protein-1 (PLVAP), constitutes these fibers. Here, we present the three-dimensional crystal structure of an 89-amino acid segment of the PLVAP extracellular domain (ECD) and show that it adopts a parallel dimeric alpha-helical coiled-coil configuration with five interchain disulfide bonds. The structure was solved using single-wavelength anomalous diffraction from sulfur-containing residues (sulfur SAD) to generate phase information. Biochemical and circular dichroism (CD) experiments show that a second PLVAP ECD segment also has a parallel dimeric alpha-helical configuration-presumably a coiled coil-held together with interchain disulfide bonds. Overall, ~2/3 of the ~390 amino acids within the PLVAP ECD adopt a helical configuration, as determined by CD. We also determined the sequence and epitope of MECA-32, an anti-PLVAP antibody. Taken together, these data lend strong support to the model of capillary diaphragms formulated by Tse and Stan in which approximately ten PLVAP dimers are arranged within each 60- to 80-nm-diameter opening like the spokes of a bicycle wheel. Passage of molecules through the wedge-shaped pores is presumably determined both by the length of PLVAP-i.e., the long dimension of the pore-and by the chemical properties of amino acid side chains and N-linked glycans on the solvent-accessible faces of PLVAP.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Fu-Lien Hsieh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Xiaowu Gu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jennifer M. Kavran
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
40
|
Stoler-Barak L, Harris E, Peres A, Hezroni H, Kuka M, Di Lucia P, Grenov A, Gurwicz N, Kupervaser M, Yip BH, Iannacone M, Yaari G, Crispino JD, Shulman Z. B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation. Nat Commun 2023; 14:1462. [PMID: 36927854 PMCID: PMC10020581 DOI: 10.1038/s41467-023-37205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ethan Harris
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mirela Kuka
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Di Lucia
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amalie Grenov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Gurwicz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Kupervaser
- De Botton Institute for Proteomics, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Bon Ham Yip
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matteo Iannacone
- Vita-Salute San Raffaele University and Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 52900, Israel
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
41
|
Chen ST, Oliveira TY, Gazumyan A, Cipolla M, Nussenzweig MC. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 2023; 56:547-561.e7. [PMID: 36882061 PMCID: PMC10424567 DOI: 10.1016/j.immuni.2023.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Germinal centers (GCs) are sites of B cell clonal expansion, diversification, and antibody affinity selection. This process is limited and directed by T follicular helper cells that provide helper signals to B cells that endocytose, process, and present cognate antigens in proportion to their B cell receptor (BCR) affinity. Under this model, the BCR functions as an endocytic receptor for antigen capture. How signaling through the BCR contributes to selection is not well understood. To investigate the role of BCR signaling in GC selection, we developed a tracker for antigen binding and presentation and a Bruton's tyrosine kinase drug-resistant-mutant mouse model. We showed that BCR signaling per se is necessary for the survival and priming of light zone B cells to receive T cell help. Our findings provide insight into how high-affinity antibodies are selected within GCs and are fundamental to our understanding of adaptive immunity and vaccine development.
Collapse
Affiliation(s)
- Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat Immunol 2023; 24:604-611. [PMID: 36879067 PMCID: PMC10063443 DOI: 10.1038/s41590-023-01445-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.
Collapse
|
43
|
Hägglöf T, Cipolla M, Loewe M, Chen ST, Mesin L, Hartweger H, ElTanbouly MA, Cho A, Gazumyan A, Ramos V, Stamatatos L, Oliveira TY, Nussenzweig MC, Viant C. Continuous germinal center invasion contributes to the diversity of the immune response. Cell 2023; 186:147-161.e15. [PMID: 36565698 PMCID: PMC9825658 DOI: 10.1016/j.cell.2022.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Antibody responses are characterized by increasing affinity and diversity over time. Affinity maturation occurs in germinal centers by a mechanism that involves repeated cycles of somatic mutation and selection. How antibody responses diversify while also undergoing affinity maturation is not as well understood. Here, we examined germinal center (GC) dynamics by tracking B cell entry, division, somatic mutation, and specificity. Our experiments show that naive B cells continuously enter GCs where they compete for T cell help and undergo clonal expansion. Consistent with late entry, invaders carry fewer mutations but can contribute up to 30% or more of the cells in late-stage germinal centers. Notably, cells entering the germinal center at later stages of the reaction diversify the immune response by expressing receptors that show low affinity to the immunogen. Paradoxically, the affinity threshold for late GC entry is lowered in the presence of high-affinity antibodies.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mohamed A ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| | - Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Subas Satish HP, Zeglinski K, Uren RT, Nutt SL, Ritchie ME, Gouil Q, Kluck RM. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells. MAbs 2022; 14:2106621. [PMID: 35965451 PMCID: PMC9377246 DOI: 10.1080/19420862.2022.2106621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Hema Preethi Subas Satish
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kathleen Zeglinski
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Rachel T. Uren
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Stephen L. Nutt
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Matthew E. Ritchie
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Quentin Gouil
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ruth M. Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research , Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
45
|
Muri J, Cecchinato V, Cavalli A, Shanbhag AA, Matkovic M, Biggiogero M, Maida PA, Moritz J, Toscano C, Ghovehoud E, Furlan R, Barbic F, Voza A, Nadai GD, Cervia C, Zurbuchen Y, Taeschler P, Murray LA, Danelon-Sargenti G, Moro S, Gong T, Piffaretti P, Bianchini F, Crivelli V, Podešvová L, Pedotti M, Jarrossay D, Sgrignani J, Thelen S, Uhr M, Bernasconi E, Rauch A, Manzo A, Ciurea A, Rocchi MB, Varani L, Moser B, Bottazzi B, Thelen M, Fallon BA, Boyman O, Mantovani A, Garzoni C, Franzetti-Pellanda A, Uguccioni M, Robbiani DF. Anti-chemokine antibodies after SARS-CoV-2 infection correlate with favorable disease course. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.23.493121. [PMID: 35664993 PMCID: PMC9164443 DOI: 10.1101/2022.05.23.493121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Pier Andrea Maida
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Jacques Moritz
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Elaheh Ghovehoud
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Internal Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Internal Medicine, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Guendalina De Nadai
- Emergency Medicine Residency School, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4 - 20090 Pieve Emanuele, Milan, Italy
| | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yves Zurbuchen
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Taeschler
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lilly A. Murray
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | | | - Simone Moro
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tao Gong
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Pietro Piffaretti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Enos Bernasconi
- Regional Hospital Lugano, Ente Ospedaliero Cantonale; Lugano, Switzerland
- Università della Svizzera italiana; Lugano, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern; Bern, Switzerland
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia; Pavia, Italy
| | - Adrian Ciurea
- Department of Rheumatology, Zurich University Hospital, University of Zurich; Zurich, Switzerland
| | - Marco B.L. Rocchi
- Department of Biomolecular Sciences, Biostatistics Unit, University of Urbino; Urbino, Italy
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine; Cardiff, United Kingdom
| | - Barbara Bottazzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
- Lyme Research Program at the New York State Psychiatric Institute, New York, NY, USA
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
46
|
Melzi E, Willis JR, Ma KM, Lin YC, Kratochvil S, Berndsen ZT, Landais EA, Kalyuzhniy O, Nair U, Warner J, Steichen JM, Kalyuzhniy A, Le A, Pecetta S, Perez M, Kirsch K, Weldon SR, Falcone S, Himansu S, Carfi A, Sok D, Ward AB, Schief WR, Batista FD. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022; 55:2168-2186.e6. [PMID: 36179690 PMCID: PMC9671093 DOI: 10.1016/j.immuni.2022.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.
Collapse
Affiliation(s)
- Eleonora Melzi
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sven Kratochvil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise A Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amber Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simone Pecetta
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Manfredo Perez
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kathrin Kirsch
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Tas JMJ, Koo JH, Lin YC, Xie Z, Steichen JM, Jackson AM, Hauser BM, Wang X, Cottrell CA, Torres JL, Warner JE, Kirsch KH, Weldon SR, Groschel B, Nogal B, Ozorowski G, Bangaru S, Phelps N, Adachi Y, Eskandarzadeh S, Kubitz M, Burton DR, Lingwood D, Schmidt AG, Nair U, Ward AB, Schief WR, Batista FD. Antibodies from primary humoral responses modulate the recruitment of naive B cells during secondary responses. Immunity 2022; 55:1856-1871.e6. [PMID: 35987201 PMCID: PMC9350677 DOI: 10.1016/j.immuni.2022.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023]
Abstract
Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.
Collapse
Affiliation(s)
- Jeroen M J Tas
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ja-Hyun Koo
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Abigail M Jackson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Blake M Hauser
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Xuesong Wang
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jonathan L Torres
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - John E Warner
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Kathrin H Kirsch
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Stephanie R Weldon
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bartek Nogal
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Sandhya Bangaru
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Dennis R Burton
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Daniel Lingwood
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Barnes CO, Schoofs T, Gnanapragasam PN, Golijanin J, Huey-Tubman KE, Gruell H, Schommers P, Suh-Toma N, Lee YE, Cetrulo Lorenzi JC, Piechocka-Trocha A, Scheid JF, West AP, Walker BD, Seaman MS, Klein F, Nussenzweig MC, Bjorkman PJ. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. SCIENCE ADVANCES 2022; 8:eabp8155. [PMID: 35960796 PMCID: PMC9374330 DOI: 10.1126/sciadv.abp8155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-Å x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach.
Collapse
Affiliation(s)
- Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | | | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn E. Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Johannes F. Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Visweswaran GRR, Vijayan K, Chandrasekaran R, Trakhimets O, Brown SL, Vigdorovich V, Yang A, Raappana A, Watson A, Selman W, Zuck M, Dambrauskas N, Kaushansky A, Sather DN. Germinal center activity and B cell maturation are associated with protective antibody responses against Plasmodium pre-erythrocytic infection. PLoS Pathog 2022; 18:e1010671. [PMID: 35793394 PMCID: PMC9292112 DOI: 10.1371/journal.ppat.1010671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP. Identifying specific features of vaccine-elicited antibody responses that are associated with protection from malaria infection is a key step toward the development of a safe and effective vaccine. Here we compared antibody and B cell responses in two mouse strains that exhibited a differential ability to generate antibodies that protect from infection challenge. We found that protection was due to the presence of vaccine-elicited antibodies and could be transferred between strains, and that the ability of antibodies to neutralize the parasite was directly linked to the strength (affinity) with which it binds CSP. Thus, we sought to understand if there were differences in the two strains in the process of B cell maturation that leads to generation of high affinity, protective antibody responses after vaccination. Overall, our comparative analysis indicates that germinal center (GC) activity, a key process in B cell maturation, was significantly diminished in the non-protected strain. Further, we observed evidence of higher levels of somatic mutation, which is a result of germinal center activity, in protected mice. Thus, our results indicate that the ability to generate protective antibody responses was linked to enhanced B cell maturation in the protected strain, providing a key clue to the type of responses that should be generated by future vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashton Yang
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alex Watson
- Seattle Children’s Research Institute, Seattle, Washington
| | - William Selman
- Seattle Children’s Research Institute, Seattle, Washington
| | - Meghan Zuck
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alexis Kaushansky
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Brotman Baty Research Institute, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington
- * E-mail: (AK); (DNS)
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- * E-mail: (AK); (DNS)
| |
Collapse
|
50
|
Zeng Y, Zheng Y, Zhang T, Ye F, Zhan L, Kou Z, Zhu S, Gao Z. Identification of a Subtype-Selective Allosteric Inhibitor of GluN1/GluN3 NMDA Receptors. Front Pharmacol 2022; 13:888308. [PMID: 35754487 PMCID: PMC9218946 DOI: 10.3389/fphar.2022.888308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are Ca2+-permeable ionotropic glutamate receptors (iGluRs) in the central nervous system and play important roles in neuronal development and synaptic plasticity. Conventional NMDARs, which typically comprise GluN1 and GluN2 subunits, have different biophysical properties than GluN3-containing NMDARs: GluN3-containing NMDARs have smaller unitary conductance, less Ca2+-permeability and lower Mg2+-sensitivity than those of conventional NMDARs. However, there are very few specific modulators for GluN3-containing NMDARs. Here, we developed a cell-based high-throughput calcium assay and identified 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate) (WZB117) as a relatively selective inhibitor of GluN1/GluN3 receptors. The IC50 value of WZB117 on GluN1/GluN3A receptors expressed in HEK-293 cells was 1.15 ± 0.34 μM. Consistently, WZB117 exhibited strong inhibitory activity against glycine-induced currents in the presence of CGP-78608 but only slightly affected the NMDA-, KA- and AMPA-induced currents in the acutely isolated rat hippocampal neurons. Among the four types of endogenous currents, only the first one is primarily mediated by GluN1/GluN3 receptors. Mechanistic studies showed that WZB117 inhibited the GluN1/GluN3A receptors in a glycine-, voltage- and pH-independent manner, suggesting it is an allosteric modulator. Site-directed mutagenesis and chimera construction further revealed that WZB117 may act on the GluN3A pre-M1 region with key determinants different from those of previously identified modulators. Together, our study developed an efficient method to discover modulators of GluN3-containing NMDARs and characterized WZB117 as a novel allosteric inhibitor of GluN1/GluN3 receptors.
Collapse
Affiliation(s)
- Yue Zeng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Zhang
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|