1
|
Kim YC, Ahn JH, Jin H, Yang MJ, Hong SP, Yoon JH, Kim SH, Gebre TN, Lee HJ, Kim YM, Koh GY. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci Immunol 2023; 8:eadg6155. [PMID: 37801517 DOI: 10.1126/sciimmunol.adg6155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
High neonatal susceptibility to meningitis has been attributed to the anatomical barriers that act to protect the central nervous system (CNS) from infection being immature and not fully developed. However, the mechanisms by which pathogens breach CNS barriers are poorly understood. Using the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) to study virus propagation into the CNS during systemic infection, we demonstrate that mortality in neonatal, but not adult, mice is high after infection. Virus propagated extensively from the perivenous sinus region of the dura mater to the leptomeninges, choroid plexus, and cerebral cortex. Although the structural barrier of CNS border tissues is comparable between neonates and adults, immunofluorescence staining and single-cell RNA sequencing analyses revealed that the neonatal dural immune cells are immature and predominantly composed of CD206hi macrophages, with major histocompatibility complex class II (MHCII)hi macrophages being rare. In adults, however, perivenous sinus immune cells were enriched in MHCIIhi macrophages that are specialized for producing antiviral molecules and chemokines compared with CD206hi macrophages and protected the CNS against systemic virus invasion. Our findings clarify how systemic pathogens enter the CNS through its border tissues and how the immune barrier at the perivenous sinus region of the dura blocks pathogen access to the CNS.
Collapse
Affiliation(s)
- Young-Chan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hokyung Jin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Myung Jin Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jin-Hui Yoon
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sang-Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tirhas Niguse Gebre
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Hong JY, Kim H, Lee J, Jeon WJ, Yeo C, Kim H, Lee YJ, Ha IH. Epidural Injection Method for Long-Term Pain Management in Rats with Spinal Stenosis. Biomedicines 2023; 11:biomedicines11051390. [PMID: 37239061 DOI: 10.3390/biomedicines11051390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Epidural injection is one of the most common nonsurgical treatment options for long-term pain relief in lumbar spinal stenosis. Recently, various nerve block injections have been used for pain management. Among them, nerve block through epidural injection is a safe and effective method for the clinical treatment of low back or lower extremity pain. Although the epidural injection method has a long history, the effectiveness of long-term epidural injections in disc diseases has not been scientifically proven. In particular, to verify the safety and efficacy of drugs in preclinical studies, the route and method of drug administration in terms of the clinical application method and duration of use must be established. However, there is no standardized method for long-term epidural injections in a rat model of stenosis to identify the precise efficacy and safety of epidural injections. Therefore, standardizing the epidural injection method is very important for evaluating the efficacy and safety of drugs used for back or lower extremity pain. We describe the first standardized long-term epidural injection method for evaluating the efficacy and safety of drugs according to their route of administration in rats with lumbar spinal stenosis.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
3
|
Nakajima T, Takeda S, Ito Y, Oyama A, Takami Y, Takeya Y, Yamamoto K, Sugimoto K, Shimizu H, Shimamura M, Rakugi H, Morishita R. A novel chronic dural port platform for continuous collection of cerebrospinal fluid and intrathecal drug delivery in free-moving mice. Fluids Barriers CNS 2022; 19:31. [PMID: 35505336 PMCID: PMC9066940 DOI: 10.1186/s12987-022-00331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) provides a close representation of pathophysiological changes occurring in the central nervous system (CNS); therefore, it has been employed in pathogenesis research and biomarker development for CNS disorders. CSF obtained from valid mouse models relevant to CNS disorders can be an important resource for successful biomarker and drug development. However, the limited volume of CSF that can be collected from tiny intrathecal spaces and the technical difficulties involved in CSF sampling has been a bottleneck that has hindered the detailed analysis of CSF in mouse models. METHODS We developed a novel chronic dural port (CDP) method without cannulation for CSF collection of mice. This method enables easy and repeated access to the intrathecal space in a free-moving, unanesthetized mouse, thereby enabling continuous long-term CSF collection with minimal tissue damage and providing a large volume of high-quality CSF from a single mouse. When combined with chemical biosensors, the CDP method allows for real-time monitoring of the dynamic changes in neurochemicals in the CSF at a one-second temporal resolution in free-moving mice. Moreover, the CDP can serve as a direct access point for the intrathecal injection of CSF tracers and drugs. RESULTS We established a CDP implantation and continuous CSF collection protocol. The CSF collected using CDP was not contaminated with blood and maintained physiological concentrations of basic electrolytes and proteins. The CDP method did not affect mouse's physiological behavior or induce tissue damage, thereby enabling a stable CSF collection for up to four weeks. The spatio-temporal distribution of CSF tracers delivered using CDP revealed that CSF metabolism in different brain areas is dynamic. The direct intrathecal delivery of centrally acting drugs using CDP enabled real-time behavioral assessments in free-moving mice. CONCLUSIONS The CDP method enables the collection of a large volume of high-quality CSF and direct intrathecal drug administration with real-time behavioral assessment in free-moving mice. Combined with animal models relevant to CNS disorders, this method provides a unique and valuable platform for biomarker and therapeutic drug research.
Collapse
Affiliation(s)
- Tsuneo Nakajima
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Shuko Takeda
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yuki Ito
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Akane Oyama
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yoichi Takami
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yasushi Takeya
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Nursing Division of Health Sciences Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Koichi Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ken Sugimoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.415086.e0000 0001 1014 2000General and Geriatric Medicine, Kawasaki Medical School General Medical Center, Okayama, 700-8505 Japan
| | - Hideo Shimizu
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.412378.b0000 0001 1088 0812Department of Internal Medicine, Osaka Dental University, Hirakata, Osaka 573-1121 Japan
| | - Munehisa Shimamura
- grid.136593.b0000 0004 0373 3971Department of Neurology, Department of Health Development and Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hiromi Rakugi
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ryuichi Morishita
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| |
Collapse
|
4
|
Evaluation of Traumatic Spinal Cord Injury in a Rat Model Using 99mTc-GA-5 as a Potential In Vivo Tracer. Molecules 2021; 26:molecules26237138. [PMID: 34885718 PMCID: PMC8658927 DOI: 10.3390/molecules26237138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) refers to the damage suffered in the spinal cord by any trauma or pathology. The purpose of this work was to determine whether 99mTc-GA-5, a radiotracer targeting Glial Fibrillary Acidic Protein (GFAP), can reveal in vivo the reactivation of astrocytes in a murine model with SCI. A method for the 99mTc radiolabeling of the mouse anti-GFAP monoclonal antibody GA-5 was implemented. Radiochemical characterization was performed, and radioimmunohistochemistry assays were used to evaluate the integrity of 99mTc-GA-5. MicroSPECT/CT was used for in vivo imaging to trace SCI in the rats. No alterations in the GA-5’s recognition/specificity ability were observed after the radiolabeling. The GA-5’s radiolabeling procedure implemented in this work offers a practical method to allow the in vivo following of this monoclonal antibody to evaluate its biodistribution and specificity for GFAP receptors using SPECT/CT molecular imaging.
Collapse
|
5
|
Intrathecal implantation surgical considerations in rodents; a review. J Neurosci Methods 2021; 363:109327. [PMID: 34418443 DOI: 10.1016/j.jneumeth.2021.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
Intrathecal access in humans is a routine clinical intervention. However, intrathecal access is limited to drug delivery purposes in rodents, and intrathecal implantation is not a common surgical practice. Preclinically, we have successfully adopted different intrathecal implantation surgical methods for different implant materials in rodents. However, employing the appropriate intrathecal implantation method is a challenging process for surgeons, which includes several steps such as preoperative evaluations and postoperative care. The aim of this review is to define and compare the major documented surgical approaches applicable for intrathecal implantation in rodents along with the associated side effects, as well as highlighting the critical preoperative and postoperative considerations. Overall, this review will provide surgeons with the principles of intrathecal implantation approaches applicable for different implant materials.
Collapse
|
6
|
Jabbari S, Bananej M, Zarei M, Komaki A, Hajikhani R. Effects of intrathecal and intracerebroventricular microinjection of kaempferol on pain: possible mechanisms of action. Res Pharm Sci 2021; 16:203-216. [PMID: 34084207 PMCID: PMC8102926 DOI: 10.4103/1735-5362.310527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background and purpose: Kaempferol (KM), a flavonoid, has an anti-inflammatory and anticancer effect and prevents many metabolic diseases. Nonetheless, very few studies have been done on the antinociceptive effects of KM. This research aimed at assessing the involvement of opioids, gamma-aminobutyric acid (GABA) receptors, and inflammatory mediators in the antinociceptive effects of KM in male Wistar rats. Experimental approach: The intracerebroventricular and/or intrathecal administration of the compounds was done for examining their central impacts on the thermal and chemical pain by the tail-flick and formalin paw tests. For assessing the role of opioid and GABA receptors in the possible antinociceptive effects of KM, several antagonists were used. Also, a rotarod test was carried out for assessing motor performance. Findings/Results: The intracerebroventricular and/or intrathecal microinjections of KM (40 μg/rat) had partially antinociceptive effects in the tail-flick test in rats (P < 0.05). In the formalin paw model, the intrathecal microinjection of KM had antinociceptive effects in phase 1 (20 and 40 μg/rat; P < 0.05 and P < 0.01, respectively) and phase 2 (20 and 40 μg/rat; P < 0.01 and P < 0.001, respectively). Using naloxonazine and/or bicuculline approved the involvement of opioid and GABA receptors in the central antinociceptive effects of KM, respectively. Moreover, KM reduced the expression levels of caspase 6, interleukin-1β, tumor necrosis factor-α, and interleukin-6. The antinociceptive effects of KM were not linked to variations in the locomotor activity. Conclusion and implications: It can be concluded that KM has remarkable antinociceptive effects at a spinal level, which is associated with the presence of the inflammatory state. These impacts were undetectable following injections in the lateral ventricle. The possible mechanisms of KM antinociception are possibly linked to various modulatory pathways, including opioid and GABA receptors.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Maryam Bananej
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ramin Hajikhani
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
7
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
8
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
9
|
Ineichen BV, Di Palma S, Laczko E, Liddelow SA, Neumann S, Schwab ME, Mosberger AC. Regional Differences in Penetration of the Protein Stabilizer Trimethoprim (TMP) in the Rat Central Nervous System. Front Mol Neurosci 2020; 13:167. [PMID: 33013318 PMCID: PMC7496896 DOI: 10.3389/fnmol.2020.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 12/04/2022] Open
Abstract
Regulating gene expression at the protein level is becoming increasingly important for answering basic questions in neurobiology. Several techniques using destabilizing domains (DD) on transgenes, which can be activated or deactivated by specific drugs, have been developed to achieve this goal. A DD from bacterial dihydrofolate reductase bound and stabilized by trimethoprim (TMP) represents such a tool. To control transgenic protein levels in the brain, the DD-regulating drugs need to have sufficient penetration into the central nervous system (CNS). Yet, very limited information is available on TMP pharmacokinetics in the CNS following systemic injection. Here, we performed a pharmacokinetic study on the penetration of TMP into different CNS compartments in the rat. We used mass spectrometry to measure TMP concentrations in serum, cerebrospinal fluid (CSF) and tissue samples of different CNS regions upon intraperitoneal TMP injection. We show that TMP quickly (within 10 min) penetrates from serum to CSF through the blood-CSF barrier. TMP also shows quick penetration into brain tissue but concentrations were an order of magnitude lower compared to serum or CSF. TMP concentration in spinal cord was lower than in any other analyzed CNS area. Nevertheless, effective levels of TMP to stabilize DDs can be reached in the CNS with half-lives around 2 h. These data show that TMP has good and fast penetration properties into the CNS and is therefore a valuable ligand for precisely controlling protein expression in the CNS in rodents.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Department of Health Sciences and Technology, Brain Research Institute, University of Zurich, ETH Zürich, Zurich, Switzerland
| | - Serena Di Palma
- Functional Genomics Center Zurich, University of Zurich, ETH Zürich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, University of Zurich, ETH Zürich, Zurich, Switzerland
| | - Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, NY, United States.,Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, United States.,Department of Ophthalmology, NYU School of Medicine, New York, NY, United States
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Schwab
- Department of Health Sciences and Technology, Brain Research Institute, University of Zurich, ETH Zürich, Zurich, Switzerland
| | - Alice C Mosberger
- Department of Health Sciences and Technology, Brain Research Institute, University of Zurich, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
10
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
11
|
Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev 2020; 165-166:77-95. [PMID: 32142739 DOI: 10.1016/j.addr.2020.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
Administration of substances directly into the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord is one approach that can circumvent the blood-brain barrier to enable drug delivery to the central nervous system (CNS). However, molecules that have been administered by intrathecal injection, which includes intraventricular, intracisternal, or lumbar locations, encounter new barriers within the subarachnoid space. These barriers include relatively high rates of turnover as CSF clears and potentially inadequate delivery to tissue or cellular targets. Nanomedicine could offer a solution. In contrast to the fate of freely administered drugs, nanomedicine systems can navigate the subarachnoid space to sustain delivery of therapeutic molecules, genes, and imaging agents within the CNS. Some evidence suggests that certain nanomedicine agents can reach the parenchyma following intrathecal administration. Here, we will address the preclinical and clinical use of intrathecal nanomedicine, including nanoparticles, microparticles, dendrimers, micelles, liposomes, polyplexes, and other colloidalal materials that function to alter the distribution of molecules in tissue. Our review forms a foundational understanding of drug delivery to the CSF that can be built upon to better engineer nanomedicine for intrathecal treatment of disease.
Collapse
Affiliation(s)
- M J Fowler
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - J D Cotter
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - B E Knight
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - E M Sevick-Muraca
- Brown Foundation Institute of Molecular Medicine, Center for Molecular Imaging, Houston, TX 77030, United States of America
| | - D I Sandberg
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Pediatric Surgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States of America
| | - R W Sirianni
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
12
|
Li S, Wang Y, Jiang D, Ni D, Kutyreff CJ, Barnhart TE, Engle JW, Cai W. Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral Ischemia/Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902600. [PMID: 32076591 PMCID: PMC7029627 DOI: 10.1002/advs.201902600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Indexed: 05/30/2023]
Abstract
Intrathecal injection, drugs transporting along perivascular spaces, represents an important route for maintaining blood-brain barrier (BBB) integrity after cerebral ischemia/reperfusion (I/R) injury. However, after being directly injected into cerebrospinal fluid (CSF), the temporal and spatial changes in the distribution of therapeutic protein drugs have remained unknown. Here, with positron emission tomography (PET) imaging, the uptake of 89Zr-agrin is noninvasively and dynamically monitored. These data demonstrate the time-activity curve of drugs in the brain subregions and their spatial distribution in different organs after intrathecal administration. Furthermore, agrin treatment effectively inhibits BBB disruption by reducing the loss of tight-junctional proteins. Importantly, the infarct volume is reduced; the number of apoptotic neurons is decreased; and neurological function is improved in mouse I/R injury models. Thus, intrathecal injection of agrin provides the basis for a new strategy to research and develop protein drugs for reducing the aggravation of I/R injury.
Collapse
Affiliation(s)
- Shiyong Li
- Department of RehabilitationSecond Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Ye Wang
- Department of NeurologySecond Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Dawei Jiang
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Dalong Ni
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Christopher J. Kutyreff
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Todd E. Barnhart
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Jonathan W. Engle
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| |
Collapse
|
13
|
Wu Q, Zhang H, Nie H, Zeng Z. Anti‑Nogo‑A antibody promotes brain function recovery after cardiopulmonary resuscitation in rats by reducing apoptosis. Mol Med Rep 2019; 21:77-88. [PMID: 31746353 PMCID: PMC6896331 DOI: 10.3892/mmr.2019.10825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
Brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is the main cause of neurological dysfunction and death in cardiac arrest. To assess the effect of Nogo-A antibody on brain function in rats following CPR and to explore the underlying mechanisms, CA/CPR (ventricular fibrillation) rats were divided into the CPR+Nogo-A, CPR+saline and sham groups. Hippocampal caspase-3 levels were detected by RT-PCR and immunoblotting. Next, Nogo-A, glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), cysteinyl aspartate specific proteinase-12 (casapse-12), Bcl-2 and Bax protein levels in the hippocampus were detected by immunoblotting. Coronal brain sections were analyzed by TUNEL assay to detect apoptosis at 72 h, while Nissl staining and electron microscopy were performed to detect Nissl bodies and microstructure at 24 h, respectively. Finally, rats were assessed for neurologic deficits at various times. Nissl staining revealed morphological improvement after Nogo-A antibody treatment. Sub-organelle structure was preserved as assessed by electron microscopy in model animals post-antibody treatment; neurological function was improved as well (P<0.05), while the apoptosis index was decreased (26.2±9.85 vs. 46.6±12.95%; P<0.05). Hippocampal caspase-3 mRNA and protein, Nogo-A protein levels were significantly decreased after antibody treatment (P<0.05). Hippocampal Nogo-A expression was positively correlated with caspase-3 (Pearson's correlation; r=0.790, P=0.000). Hippocampal GRP78 and Bcl-2 protein levels were higher after antibody treatment than these levels noted in the model animals (P<0.05), while CHOP, caspase-12 and Bax levels were reduced (P<0.05). Nogo-A antibody ameliorates neurological function after restoration of spontaneous circulation (ROSC), possibly by suppressing apoptosis induced by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qinqin Wu
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Haihong Zhang
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Hu Nie
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Zeng
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Ma Q, Decker Y, Müller A, Ineichen BV, Proulx ST. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J Exp Med 2019; 216:2492-2502. [PMID: 31455602 PMCID: PMC6829589 DOI: 10.1084/jem.20190351] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, University of the Saarland, Homburg, Germany
| | | | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019; 572:62-66. [PMID: 31341278 DOI: 10.1038/s41586-019-1419-5] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Recent work has shown that meningeal lymphatic vessels (mLVs), mainly in the dorsal part of the skull, are involved in the clearance of cerebrospinal fluid (CSF), but the precise route of CSF drainage is still unknown. Here we reveal the importance of mLVs in the basal part of the skull for this process by visualizing their distinct anatomical location and characterizing their specialized morphological features, which facilitate the uptake and drainage of CSF. Unlike dorsal mLVs, basal mLVs have lymphatic valves and capillaries located adjacent to the subarachnoid space in mice. We also show that basal mLVs are hotspots for the clearance of CSF macromolecules and that both mLV integrity and CSF drainage are impaired with ageing. Our findings should increase the understanding of how mLVs contribute to the neuropathophysiological processes that are associated with ageing.
Collapse
|
16
|
Lidocaine protects neurons of the spinal cord in an excitotoxicity model. Neurosci Lett 2019; 698:105-112. [DOI: 10.1016/j.neulet.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
17
|
Anti-Nogo-A Antibodies As a Potential Causal Therapy for Lower Urinary Tract Dysfunction after Spinal Cord Injury. J Neurosci 2019; 39:4066-4076. [PMID: 30902870 DOI: 10.1523/jneurosci.3155-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023] Open
Abstract
Loss of bladder control is common after spinal cord injury (SCI) and no causal therapies are available. Here we investigated whether function-blocking antibodies against the nerve-fiber growth inhibitory protein Nogo-A applied to rats with severe SCI could prevent development of neurogenic lower urinary tract dysfunction. Bladder function of rats with SCI was repeatedly assessed by urodynamic examination in fully awake animals. Four weeks after SCI, detrusor sphincter dyssynergia had developed in all untreated or control antibody-infused animals. In contrast, 2 weeks of intrathecal anti-Nogo-A antibody treatment led to significantly reduced aberrant maximum detrusor pressure during voiding and a reduction of the abnormal EMG high-frequency activity in the external urethral sphincter. Anatomically, we found higher densities of fibers originating from the pontine micturition center in the lumbosacral gray matter in the anti-Nogo-A antibody-treated animals, as well as a reduced number of inhibitory interneurons in lamina X. These results suggest that anti-Nogo-A therapy could also have positive effects on bladder function clinically.SIGNIFICANCE STATEMENT After spinal cord injury, loss of bladder control is common. Detrusor sphincter dyssynergia is a potentially life-threatening consequence. Currently, only symptomatic treatment options are available. First causal treatment options are urgently needed in humans. In this work, we show that function-blocking antibodies against the nerve-fiber growth inhibitory protein Nogo-A applied to rats with severe spinal cord injury could prevent development of neurogenic lower urinary tract dysfunction, in particular detrusor sphincter dyssynergia. Anti-Nogo-A therapy has entered phase II clinical trial in humans and might therefore soon be the first causal treatment option for neurogenic lower urinary tract dysfunction.
Collapse
|
18
|
Papa S, Rossi F, Vismara I, Forloni G, Veglianese P. Nanovector-Mediated Drug Delivery in Spinal Cord Injury: A Multitarget Approach. ACS Chem Neurosci 2019; 10:1173-1182. [PMID: 30763071 DOI: 10.1021/acschemneuro.8b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many preclinical studies seek cures for spinal cord injury (SCI), but when the results are translated to clinical trials they give scant efficacy. One possible reason is that most strategies use treatments directed toward a single pathological mechanism, while a multitherapeutic approach needs to be tested to significantly improve outcomes after SCI. Most of the preclinical reports gave better outcomes when a combination of different compounds was used instead of a single drug. This promising approach, however, must still be improved because it raises some criticism: (i) the blood-spinal cord barrier limits drug distribution, (ii) it is hard to understand the interactions among the pharmacological components after systemic administration, and (iii) the timing of treatments is crucial: the spread of the lesion is a process finely regulated over time, so therapies must be scheduled at precise times during the postinjury course. Nanomedicine could be useful to overcome these limitations. Nanotools allow finely regulated drug administration in terms of cell selectivity and release kinetics. We believe that excellent therapeutic results could be obtained by exploiting this tool in multitherapy. Combining nanoparticles loaded with different compounds that act on the main pathological pathways could overcome the restrictions of traditional drug delivery routes, a major limit for the clinical application of multitherapy. This review digs into these topics, discussing the critical aspects of multitherapies now proposed and suggesting new points of view.
Collapse
Affiliation(s)
- Simonetta Papa
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Irma Vismara
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Gianluigi Forloni
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
19
|
Ma Q, Ries M, Decker Y, Müller A, Riner C, Bücker A, Fassbender K, Detmar M, Proulx ST. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol 2019; 137:151-165. [PMID: 30306266 PMCID: PMC6338719 DOI: 10.1007/s00401-018-1916-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Abstract
The relationships between cerebrospinal fluid (CSF) and brain interstitial fluid are still being elucidated. It has been proposed that CSF within the subarachnoid space will enter paravascular spaces along arteries to flush through the parenchyma of the brain. However, CSF also directly exits the subarachnoid space through the cribriform plate and other perineural routes to reach the lymphatic system. In this study, we aimed to elucidate the functional relationship between CSF efflux through lymphatics and the potential influx into the brain by assessment of the distribution of CSF-infused tracers in awake and anesthetized mice. Using near-infrared fluorescence imaging, we showed that tracers quickly exited the subarachnoid space by transport through the lymphatic system to the systemic circulation in awake mice, significantly limiting their spread to the paravascular spaces of the brain. Magnetic resonance imaging and fluorescence microscopy through the skull under anesthetized conditions indicated that tracers remained confined to paravascular spaces on the surface of the brain. Immediately after death, a substantial influx of tracers occurred along paravascular spaces extending into the brain parenchyma. We conclude that under normal conditions a rapid CSF turnover through lymphatics precludes significant bulk flow into the brain.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, 66421, Homburg, Saar, Germany
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, 66421, Homburg, Saar, Germany
| | - Chantal Riner
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Arno Bücker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, 66421, Homburg, Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, 66421, Homburg, Saar, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Sisti MS, Zanuzzi CN, Nishida F, Cantet RJC, Portiansky EL. Effects of an Intraparenchymal Injection of Lidocaine in the Rat Cervical Spinal Cord. Neurochem Res 2018; 43:2072-2080. [DOI: 10.1007/s11064-018-2628-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022]
|
21
|
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8:1434. [PMID: 29127332 PMCID: PMC5681558 DOI: 10.1038/s41467-017-01484-6] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been commonly accepted to drain through arachnoid projections from the subarachnoid space to the dural venous sinuses. However, a lymphatic component to CSF outflow has long been known. Here, we utilize lymphatic-reporter mice and high-resolution stereomicroscopy to characterize the anatomical routes and dynamics of outflow of CSF. After infusion into a lateral ventricle, tracers spread into the paravascular spaces of the pia mater and cortex of the brain. Tracers also rapidly reach lymph nodes using perineural routes through foramina in the skull. Using noninvasive imaging techniques that can quantify the transport of tracers to the blood and lymph nodes, we find that lymphatic vessels are the major outflow pathway for both large and small molecular tracers in mice. A significant decline in CSF lymphatic outflow is found in aged compared to young mice, suggesting that the lymphatic system may represent a target for age-associated neurological conditions.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
22
|
Ineichen BV, Kapitza S, Bleul C, Good N, Plattner PS, Seyedsadr MS, Kaiser J, Schneider MP, Zörner B, Martin R, Linnebank M, Schwab ME. Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathol 2017. [PMID: 28646336 DOI: 10.1007/s00401-017-1745-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland.
| | - Sandra Kapitza
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicolas Good
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurorehabilitation, School of Medicine, HELIOS Klinik Hagen-Ambrock, Witten/Herdecke University Faculty of Health, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
23
|
Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS. Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 2017; 108:159-172. [PMID: 28844788 DOI: 10.1016/j.nbd.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced by active immunization of C57BL/6 mice with peptide from myelin oligodendrocyte protein (MOG35-55), is a neuroinflammatory, demyelinating disease widely recognized as an animal model of multiple sclerosis (MS). Typically, EAE presents with an ascending course of paralysis, and inflammation that is predominantly localized to the spinal cord. Recent studies have further indicated that inflammation - in both MS and EAE - might initiate within the meninges and propagate from there to the underlying parenchyma. However, the patterns of inflammation within the respective meningeal and parenchymal compartments along the length of the spinal cord, and the progression with which these patterns develop during EAE, have yet to be detailed. Such analysis could hold key to identifying factors critical for spreading, as well as constraining, inflammation along the neuraxis. To address this issue, high-resolution 3-dimensional (3D) confocal microscopy was performed to visualize, in detail, the sequence of leukocyte infiltration at distinct regions of the spinal cord. High quality virtual slide scanning for imaging the entire spinal cord using epifluorescence was further conducted to highlight the directionality and relative degree of inflammation. Meningeal inflammation was found to precede parenchymal inflammation at all levels of the spinal cord, but did not develop equally or simultaneously throughout the subarachnoid space (SAS) of the meninges. Instead, meningeal inflammation was initially most obvious in the caudal SAS, from which it progressed to the immediate underlying parenchyma, paralleling the first signs of clinical disease in the tail and hind limbs. Meningeal inflammation could then be seen to extend in the caudal-to-rostral direction, followed by a similar, but delayed, trajectory of parenchymal inflammation. To additionally determine whether the course of ascending paralysis and leukocyte infiltration during EAE is reflected in differences in inflammatory gene expression by meningeal and parenchymal microvessels along the spinal cord, laser capture microdissection (LCM) coupled with gene expression profiling was performed. Expression profiles varied between these respective vessel populations at both the cervical and caudal levels of the spinal cord during disease progression, and within each vessel population at different levels of the cord at a given time during disease. These results reinforce a significant role for the meninges in the development and propagation of central nervous system inflammation associated with MS and EAE.
Collapse
Affiliation(s)
- Bandana Shrestha
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Peter Chianchiano
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, United States.
| |
Collapse
|
24
|
Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. LAB ON A CHIP 2017; 17:1406-1435. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microfluidic neural probes hold immense potential as in vivo tools for dissecting neural circuit function in complex nervous systems. Miniaturization, integration, and automation of drug delivery tools open up new opportunities for minimally invasive implants. These developments provide unprecedented spatiotemporal resolution in fluid delivery as well as multifunctional interrogation of neural activity using combined electrical and optical modalities. Capitalizing on these unique features, microfluidic technology will greatly advance in vivo pharmacology, electrophysiology, optogenetics, and optopharmacology. In this review, we discuss recent advances in microfluidic neural probe systems. In particular, we will highlight the materials and manufacturing processes of microfluidic probes, device configurations, peripheral devices for fluid handling and packaging, and wireless technologies that can be integrated for the control of these microfluidic probe systems. This article summarizes various microfluidic implants and discusses grand challenges and future directions for further developments.
Collapse
Affiliation(s)
- Joo Yong Sim
- Electronics and Telecommunications Research Institute, Bio-Medical IT Convergence Research Department, Daejeon, 34129, Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Hlavica M, Delparente A, Good A, Good N, Plattner PS, Seyedsadr MS, Schwab ME, Figlewicz DP, Ineichen BV. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci Lett 2017; 648:41-46. [PMID: 28363754 DOI: 10.1016/j.neulet.2017.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/29/2022]
Abstract
One main pathological hallmark of multiple sclerosis (MS) is demyelination. Novel therapies which enhance myelin repair are urgently needed. Insulin and insulin-like growth factor 1 (IGF-1) have strong functional relationships. Here, we addressed the potential capacity of IGF-1 and insulin to enhance remyelination in an animal demyelination model in vivo. We found that chronic intrathecal infusion of IGF-1 enhanced remyelination after lysolecithin-induced demyelination in the spinal cord of young and aged rats. Aged rats showed a weaker innate remyelination capacity and are therefore a good model for progressive MS which is defined by chronic demyelination. In contrast to IGF-1, Insulin had no effect on remyelination in either age group. Our findings highlight the potential use of IGF-1 as remyelinating therapy for MS, particularly the progressive stage in which chronic demyelination is the hallmark.
Collapse
Affiliation(s)
- Martin Hlavica
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; Cantonal Hospital St.Gallen, Department of Neurosurgery, Switzerland
| | - Aro Delparente
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Andrin Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Dianne P Figlewicz
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Benjamin V Ineichen
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; University Hospital Zurich, Department of Neurology, 8091 Zurich, Switzerland.
| |
Collapse
|