1
|
Li Y, Mei M, Wang Q, Gen L, Hao K, Zhong R, Mo T, Jiang J, Zhu W. Structural characteristics and anti-photoaging effect of Pyracantha fortuneana fruit polysaccharides in vitro and in vivo. Int J Biol Macromol 2024; 278:134123. [PMID: 39053831 DOI: 10.1016/j.ijbiomac.2024.134123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyracantha fortuneana is a cultivated pant extensively cultivated worldwide for its ornamental value and ecological benefits. In this study, a polysaccharide with anti-photoaging activity was extracted and purified from P. fortuneana fruit (PPFP). The structural constitution of PPFP was elucidated by molecular weight determination, FT-IR, monosaccharide composition analysis, smith degradation, methylation, and NMR spectroscopy. The results revealed that PPFP is a macromolecular polysaccharide with a weight-average molecular weight of 70,895 Da. The PPFP is predominantly characterized by →3,6)-β-Galp-(1→, →5,3)-α-Araf-(1 → and →4,2)-α-Xylp-(1→, →4)-β-Galp-(1 → and →4)-β-GalpA-(1 → glycosidic linkages, with t-α-Araf-(1 → and t-α-Glcp-(1 → terminal units. The anti-photoaging activity and potential mechanism of action of PPFP was investigated in vitro and in vivo. Results showed that PPFP exerted anti-photoaging effect on UVB-damaged HaCaT cells by ameliorating cell apoptosis, regulating the mitochondrial membrane potential and oxidative stress level, alleviating the phosphorylation level of the proteins in MAPK pathways, and repairing the expression of tight junction proteins. Moreover, PPFP enhanced the lifespan and diminished the oxidative stress in UVB-injured Caenorhabditis elegans. Collectively, this study comprehensively elucidates the anti-photodamaging potential of P. fortuneana fruit polysaccharide and offers a novel plant-derived adjuvant therapy for the treating photodamage.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Manxue Mei
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qianhui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Longmei Gen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kexin Hao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxin Mo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528329, China.
| |
Collapse
|
2
|
Prabhu KS, Ahmad F, Kuttikrishnan S, Leo R, Ali TA, Izadi M, Mateo JM, Alam M, Ahmad A, Al-Shabeeb Akil AS, Bhat AA, Buddenkotte J, Pourkarimi E, Steinhoff M, Uddin S. Bortezomib exerts its anti-cancer activity through the regulation of Skp2/p53 axis in non-melanoma skin cancer cells and C. elegans. Cell Death Discov 2024; 10:225. [PMID: 38724504 PMCID: PMC11082213 DOI: 10.1038/s41420-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ammira S Al-Shabeeb Akil
- Population Genetic and Genomics, Genetics and Metabolic Disorders Clinical Research Program, Precision Medicine of Diabetes Obesity and Cancer laboratory, Sidra Medicine, Doha, 26999, Qatar
| | - Ajaz A Bhat
- Population Genetic and Genomics, Genetics and Metabolic Disorders Clinical Research Program, Precision Medicine of Diabetes Obesity and Cancer laboratory, Sidra Medicine, Doha, 26999, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
- College of Medicine, Qatar University, Doha, 2713, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
3
|
Anand S, Hasan T, Maytin EV. Treatment of nonmelanoma skin cancer with pro-differentiation agents and photodynamic therapy: Preclinical and clinical studies (Review). Photochem Photobiol 2024:10.1111/php.13914. [PMID: 38310633 PMCID: PMC11297983 DOI: 10.1111/php.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is a nonscarring cancer treatment in which a pro-drug (5-aminolevulinic acid, ALA) is applied, converted into a photosensitizer (protoporphyrin IX, PpIX) which is then activated by visible light. ALA-PDT is now popular for treating nonmelanoma skin cancer (NMSC), but can be ineffective for larger skin tumors, mainly due to inadequate production of PpIX. Work over the past two decades has shown that differentiation-promoting agents, including methotrexate (MTX), 5-fluorouracil (5FU) and vitamin D (Vit D) can be combined with ALA-PDT as neoadjuvants to promote tumor-specific accumulation of PpIX, enhance tumor-selective cell death, and improve therapeutic outcome. In this review, we provide a historical perspective of how the combinations of differentiation-promoting agents with PDT (cPDT) evolved, including Initial discoveries, biochemical and molecular mechanisms, and clinical translation for the treatment of NMSCs. For added context, we also compare the differentiation-promoting neoadjuvants with some other clinical PDT combinations such as surgery, laser ablation, iron-chelating agents (CP94), and immunomodulators that do not induce differentiation. Although this review focuses mainly on the application of cPDT for NMSCs, the concepts and findings described here may be more broadly applicable towards improving the therapeutic outcomes of PDT treatment for other types of cancers.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Edward V Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
4
|
Anand S, Shen A, Cheng CE, Chen J, Powers J, Rayman P, Diaz M, Hasan T, Maytin EV. Combination of vitamin D and photodynamic therapy enhances immune responses in murine models of squamous cell skin cancer. Photodiagnosis Photodyn Ther 2024; 45:103983. [PMID: 38281610 PMCID: PMC11197882 DOI: 10.1016/j.pdpdt.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Improved treatment outcomes for non-melanoma skin cancers can be achieved if Vitamin D (Vit D) is used as a neoadjuvant prior to photodynamic therapy (PDT). However, the mechanisms for this effect are unclear. Vit D elevates protoporphyrin (PpIX) levels within tumor cells, but also exerts immune-modulatory effects. Here, two murine models, UVB-induced actinic keratoses (AK) and human squamous cell carcinoma (A431) xenografts, were used to analyze the time course of local and systemic immune responses after PDT ± Vit D. Fluorescence immunohistochemistry of tissues and flow analysis (FACS) of blood were employed. In tissue, damage-associated molecular patterns (DAMPs) were increased, and infiltration of neutrophils (Ly6G+), macrophages (F4/80+), and dendritic cells (CD11c+) were observed. In most cases, Vit D alone or PDT alone increased cell recruitment, but Vit D + PDT showed even greater recruitment effects. Similarly for T cells, increased infiltration of total (CD3+), cytotoxic (CD8+) and regulatory (FoxP3+) T-cells was observed after Vit D or PDT, but the increase was even greater with the combination. FACS analysis revealed a variety of interesting changes in circulating immune cell levels. In particular, neutrophils decreased in the blood after Vit D, consistent with migration of neutrophils into AK lesions. Levels of cells expressing the PD-1+ checkpoint receptor were reduced in AKs following Vit D, potentially counteracting PD-1+ elevations seen after PDT alone. In summary, Vit D and ALA-PDT, two treatments with individual immunogenic effects, may be advantageous in combination to improve treatment efficacy and management of AK in the dermatology clinic.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Alan Shen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Cheng-En Cheng
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jacky Chen
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer Powers
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Pat Rayman
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marcela Diaz
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Edward V Maytin
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114.
| |
Collapse
|
5
|
Thakur M, Rho O, Khandelwal A, Nathan CAO, DiGiovanni J. Inducible Keratinocyte Specific FGFR2 Deficiency Inhibits UVB-Induced Signaling, Proliferation, Inflammation, and Skin Carcinogenesis. J Invest Dermatol 2024; 144:341-350.e7. [PMID: 37660781 DOI: 10.1016/j.jid.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
A potential role for fibroblast growth factor receptor 2 (FGFR2) in cutaneous squamous cell carcinoma (cSCC) has been reported. To demonstrate the specific role of FGFR2 in UVB-induced skin carcinogenesis and development of cSCC, we generated a keratinocyte specific, tamoxifen inducible mouse model of FGFR2 deficiency. In this mouse model, topical application of 4-hydroxy tamoxifen led to the induction of Cre recombinase to delete FGFR2 in epidermal keratinocytes of both male and female transgenic mice. Analysis of epidermal protein lysates isolated from FGFR2 deficient mice exposed to UVB showed significant reductions of phospho-FGFR (pFGFR; Y653/654) and phospho-fibroblast growth factor receptor substrate 2α as well as downstream effectors of mTORC1 signaling. Phosphorylation of signal transducer and activators of transcription 1/3 was significantly reduced as well as levels of IRF-1, DUSP6, early growth response 1, and PD-L1 compared to the control groups. Keratinocyte-specific ablation of FGFR2 also significantly inhibited epidermal hyperproliferation, hyperplasia, and inflammation after exposure to UVB. Finally, keratinocyte-specific deletion of FGFR2 significantly inhibited UVB-induced cSCC formation. Collectively, the current data demonstrate an important role of FGFR2 in UVB-induced oncogenic signaling as well as development of cSCC. In addition, the current preclinical findings suggest that inhibition of FGFR2 signaling may provide a previously unreported strategy to prevent and/or treat UVB-induced cSCC.
Collapse
Affiliation(s)
- Megha Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Alok Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA; Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Los Angeles, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA; LiveStrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA; Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
6
|
Liang X, Liu J, Liu X, Jin Y, Xu M, Han Z, Wang K, Zhang C, Zou F, Zhou L. LINP1 represses unfolded protein response by directly inhibiting eIF2α phosphorylation to promote cutaneous squamous cell carcinoma. Exp Hematol Oncol 2023; 12:31. [PMID: 36918934 PMCID: PMC10012465 DOI: 10.1186/s40164-023-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ER stress) may destroy endoplasmic reticulum homeostasis (ER homeostasis) and leads to programmable cell death. Unfolded protein response (UPR) originally stimulated by ER stress is critical for the survival of tumor cells through trying to re-establish ER homeostasis as an adaption to harsh microenvironment. However, mechanisms involving key regulators in modulating UPR remain underexplored. METHODS The expression of LINP1 in cutaneous squamous cell carcinoma (cSCC) tissues and cell lines was assessed. Subsequently, LINP1 was knocked out, knocked down or overexpressed in cSCC cells. CCK-8 assays, colony forming assays, transwell migration assays and invasiveness measurement by matrigel-coated transwell were performed to examine the role of LINP1 in cSCC development through gain-of-function and loss-of-function experiments. Transcriptomic sequencing (RNA-Seq) was conducted and indicated the key downstream signaling events regulated by LINP1 including UPR and apoptosis signaling. Furthermore, the direct interaction between LINP1 and eIF2α to modulate UPR and apoptosis was confirmed by RNA pulldown, RNA immunoprecipitation (RIP), ChIP-qPCR and in vitro phosphorylation assays. RESULTS In this study, LncRNA in non-homologous end joining pathway 1 (LINP1) was identified to be one of the top ten highest-expressed LncRNAs in cSCC, the second most common cancer in the world. Functional studies using in vitro and in vivo models revealed that LINP1 functions as an oncogene to promote cell proliferation, colony formation, migration and invasiveness while inhibiting cell apoptosis in cSCC. Transcriptomic sequencing after knockdown of LINP1 indicated LINP1 negatively regulates UPR-related pathways involving key effectors for activating UPR and the apoptosis following the prolonged UPR. Mechanistic study showed LINP1 physically interacts with eIF2α to inhibit its phosphorylation for avoiding unmitigated UPR. Loss of LINP1 followed by enhanced eIF2α phosphorylation led to overactivated UPR and induced DDIT3 expression, contributing to ER stress-induced apoptosis and suppression of cSCC development. CONCLUSIONS Our findings demonstrate a novel regulatory hierarchy of UPR by demonstrating LINP1 as a critical modulator for eIF2α phosphorylation and a suppressor of UPR-mediated apoptosis, which suggests a novel therapeutic target for cSCC treatment.
Collapse
Affiliation(s)
- Xiaoting Liang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingyuan Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Jin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minna Xu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ke Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunting Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Liang Zhou
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Kim SH, Lee SE, Kim SJ, Fang X, Hur J, Sozen E, Özer NK, Kim KP, Surh YJ. Protective effects of an electrophilic metabolite of docosahexaenoic acid on UVB-induced oxidative cell death, dermatitis, and carcinogenesis. Redox Biol 2023; 62:102666. [PMID: 36934646 PMCID: PMC10031545 DOI: 10.1016/j.redox.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - So Eui Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Altunizade, Istanbul, Turkey
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Melo CPB, Saito P, Martinez RM, Staurengo-Ferrari L, Pinto IC, Rodrigues CCA, Badaro-Garcia S, Vignoli JA, Baracat MM, Bussmann AJC, Georgetti SR, Verri WA, Casagrande R. Aspirin-Triggered Resolvin D1 (AT-RvD1) Protects Mouse Skin against UVB-Induced Inflammation and Oxidative Stress. Molecules 2023; 28:molecules28052417. [PMID: 36903662 PMCID: PMC10005614 DOI: 10.3390/molecules28052417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Intense exposure to UVB radiation incites excessive production of reactive oxygen species (ROS) and inflammation. The resolution of inflammation is an active process orchestrated by a family of lipid molecules that includes AT-RvD1, a specialized proresolving lipid mediator (SPM). AT-RvD1 is derived from omega-3, which presents anti-inflammatory activity and reduces oxidative stress markers. The present work aims to investigate the protective effect of AT-RvD1 on UVB-induced inflammation and oxidative stress in hairless mice. Animals were first treated with 30, 100, and 300 pg/animal AT-RvD1 (i.v.) and then exposed to UVB (4.14 J/cm2). The results showed that 300 pg/animal of AT-RvD1 could restrict skin edema, neutrophil and mast cell infiltration, COX-2 mRNA expression, cytokine release, and MMP-9 activity and restore skin antioxidant capacity as per FRAP and ABTS assays and control O2•- production, lipoperoxidation, epidermal thickening, and sunburn cells development. AT-RvD1 could reverse the UVB-induced downregulation of Nrf2 and its downstream targets GSH, catalase, and NOQ-1. Our results suggest that by upregulating the Nrf2 pathway, AT-RvD1 promotes the expression of ARE genes, restoring the skin's natural antioxidant defense against UVB exposition to avoid oxidative stress, inflammation, and tissue damage.
Collapse
Affiliation(s)
- Cristina P. B. Melo
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Priscila Saito
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Renata M. Martinez
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Immunology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ingrid C. Pinto
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Camilla C. A. Rodrigues
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Stephanie Badaro-Garcia
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marcela M. Baracat
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Allan J. C. Bussmann
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina 86057-970, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86038-350, PR, Brazil
- Correspondence: (W.A.V.); (R.C.)
| |
Collapse
|
9
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
10
|
Yim W, Zhou J, Sasi L, Zhao J, Yeung J, Cheng Y, Jin Z, Johnson W, Xu M, Palma-Chavez J, Fu L, Qi B, Retout M, Shah NJ, Bae J, Jokerst JV. 3D-Bioprinted Phantom with Human Skin Phototypes for Biomedical Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206385. [PMID: 36305604 PMCID: PMC9868107 DOI: 10.1002/adma.202206385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lekshmi Sasi
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jiayu Zhao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yong Cheng
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wade Johnson
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ming Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jorge Palma-Chavez
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lei Fu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Maurice Retout
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nisarg J. Shah
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jinhye Bae
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
12
|
Asare O, Ayala Y, Hafeez BB, Ramirez-Correa GA, Cho YY, Kim DJ. Ultraviolet Radiation Exposure and its Impacts on Cutaneous Phosphorylation Signaling in Carcinogenesis: Focusing on Protein Tyrosine Phosphatases †. Photochem Photobiol 2022; 99:344-355. [PMID: 36029171 DOI: 10.1111/php.13703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 01/14/2023]
Abstract
Sunlight exposure is a significant risk factor for UV-induced deteriorating transformations of epidermal homeostasis leading to skin carcinogenesis. The ability of UVB radiation to cause melanoma, as well as basal and squamous cell carcinomas, makes UVB the most harmful among the three known UV ranges. UVB-induced DNA mutations and dysregulation of signaling pathways contribute to skin cancer formation. Among various signaling pathways modulated by UVB, tyrosine phosphorylation signaling which is mediated by the action of protein tyrosine kinases (PTKs) on specific tyrosine residues is highly implicated in photocarcinogenesis. Following UVB irradiation, PTKs get activated and their downstream signaling pathways contribute to photocarcinogenesis by promoting the survival of damaged keratinocytes and increasing cell proliferation. While UVB activates oncogenic signaling pathways, it can also activate tumor suppressive signaling pathways as initial protective mechanisms to maintain epidermal homeostasis. Tyrosine dephosphorylation is one of the protective mechanisms and is mediated by the action of protein tyrosine phosphatases (PTPs). PTP can counteract UVB-mediated PTK activation and downregulate oncogenic signaling pathways. However, PTPs have not been studied extensively in photocarcinogenesis with previous studies regarding their inactivation induced by UVB. This current review will summarize the recent progress in the protective function of PTPs in epidermal photocarcinogenesis.
Collapse
Affiliation(s)
- Obed Asare
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Yasmin Ayala
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX.,South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, Edinburg, TX
| | - Genaro A Ramirez-Correa
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Korea
| | - Dae Joon Kim
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX.,South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, Edinburg, TX.,Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX
| |
Collapse
|
13
|
Liu H, Gao H, Chen C, Jia W, Xu D, Jiang G. IDO Inhibitor and Gallic Acid Cross-Linked Small Molecule Drug Synergistic Treatment of Melanoma. Front Oncol 2022; 12:904229. [PMID: 35875081 PMCID: PMC9303008 DOI: 10.3389/fonc.2022.904229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we synthesized a molecule GA-1MT (GM) composed of indoleamine 2,3-dioxygenase (IDO) inhibitor (1-methyl-d-tryptophan, 1MT) called NLG8189 and gallic acid (GA) and verified its therapeutic effect on B16F10 melanoma cells and an orthotopic tumor-bearing mouse model. The synthesized molecule GM was analyzed by 1H NMR and mass spectrometry (MS). In addition, we confirmed that GM could mediate the immune response in the B16F10 cell tumor model by flow cytometry and immunofluorescence. The synthesized GM molecule could increase the solubility of 1MT to enhance the drug efficacy and lower costs. Moreover, GM could inhibit melanoma growth by combining 1MT and GA. In vivo experiments showed that GM could effectively inhibit the expression of tyrosinase, regulate the proportion of CD4+ T cells, CD8+ T cells, and regulatory T cells (Treg cells) in tumors, and significantly suppress melanoma growth. The newly synthesized drug GM could more effectively inhibit melanoma than GA and 1MT alone or in combination.
Collapse
Affiliation(s)
- Hongmei Liu
- Xuzhou Medical University, Xuzhou, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Gao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyu Jia
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Delong Xu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
14
|
de Araújo Andrade T, Heimfarth L, Dos Santos DM, Dos Santos MRV, de Albuquerque-Júnior RLC, Dos Santos-Neto AG, de Araujo GRS, Lira AAM, Matos SS, Frank LA, Rabelo TK, Quintans-Júnior LJ, de Souza Siqueira Quintans J, de Souza Araujo AA, Serafini MR. Hesperetin-Based Hydrogels Protect the Skin against UV Radiation-Induced Damage. AAPS PharmSciTech 2022; 23:170. [PMID: 35729366 DOI: 10.1208/s12249-022-02323-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
UV radiation can cause damages, such as erythema, skin photoaging, and carcinogenesis. The adoption of protective measures against sun exposure is essential to prevent these damages, and the interest in using natural substances as an alternative for photoprotection is growing. Thus, hesperetin with antioxidant, anti-inflammatory, and anticancer properties is a promising substance to be used with photochemopreventive action and to protect the skin from damage induced by UV radiation. Therefore, the present study aimed to develop a topical formulation based on AAMVPC gel containing hesperetin and evaluate its photoprotective effect on the skin of rats exposed to UVA-UVB radiation. The animals were submitted to the irradiation protocol UVA-UVB, and at the end, erythema, lipid peroxidation, and activity of the antioxidant enzyme catalase and superoxide dismutase were evaluated. Additionally, it evaluated the activity of myeloperoxidase and histological changes. The formulation presented a rheological and spreadability profile suitable for cutaneous application. In vivo results demonstrated that the topical formulation of AAMVPC gel containing hesperetin at a concentration of 10% protected the skin from damage induced by UVA-UVB radiation, with the absence of erythema, lipid lipoperoxidation, and inflammation (low myeloperoxidase activity), and increased catalase and superoxide dismutase activities. The morphology and architecture of the dermo-epidermal tissue of these animals were like those observed under normal conditions (non-irradiated animals). Thus, the results showed that hesperetin was able to protect the animals' skin against UV radiation-induced skin damage and the protection mechanisms may be related to the antioxidant and anti-inflammatory properties of this natural product.
Collapse
Affiliation(s)
| | - Luana Heimfarth
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Danillo Menezes Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Márcio Roberto Viana Dos Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | | | | | | | | | - Saulo Santos Matos
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brasil.
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Jullyana de Souza Siqueira Quintans
- Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Adriano Antunes de Souza Araujo
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil.,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil. .,Health Sciences Graduate Program, Universidade Federal de Sergipe, Aracaju, Sergipe, Brasil.
| |
Collapse
|
15
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Evaluation of in vitro human skin models for studying effects of external stressors and stimuli and developing treatment modalities. VIEW 2022. [DOI: 10.1002/viw.20210012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emily Sutterby
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Peter Thurgood
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia
| | | | - Elena Pirogova
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
16
|
Tang D, Wu J, Wang Y, Cui H, Tao Z, Lei L, Zhou Z, Tao S. Dietary restriction attenuates inflammation and protects mouse skin from high-dose UVB irradiation. Rejuvenation Res 2022; 25:149-157. [PMID: 35152736 DOI: 10.1089/rej.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Duozhuang Tang
- Nanchang University Second Affiliated Hospital, 196534, Department of Hematology, Nanchang, jiangxi, China
| | - Jianying Wu
- Nanchang University Second Affiliated Hospital, 196534, Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, Nanchang, Jiangxi, China
| | - Yiting Wang
- Nanchang University Second Affiliated Hospital, 196534, Department of Hematology,, Nanchang, Jiangxi, China
| | - Hui Cui
- Nanchang University Second Affiliated Hospital, 196534, Department of Oncology, Nanchang, China
| | - Zhendong Tao
- Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Department of Medical Laboratory Medicine, nanchang, China
| | - Lang Lei
- Nanchang University Second Affiliated Hospital, 196534, Department of Pathology, Nanchang, China
| | - Zhuangfa Zhou
- Shangrao Guangxin Maternal and Child Health Care Hospital, shangrao, jiangxi, China
| | - Si Tao
- Nanchang University Second Affiliated Hospital, 196534, Min-De Road. 1, Nanchang, China, 330006
| |
Collapse
|
17
|
Kim D, Lee M, Yang JH, Yang JS, Kim OK. Dual Skin-Whitening and Anti-wrinkle Function of Low-Molecular-Weight Fish Collagen. J Med Food 2022; 25:192-204. [PMID: 35148197 DOI: 10.1089/jmf.2021.k.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the protective effects of low-molecular-weight fish collagen from tilapia against melanogenesis in melanocytes, ultraviolet B (UVB)-irradiated Hs27 skin fibroblasts, and hairless mice. We observed collagen production-related pathways in UVB-irradiated Hs27 skin fibroblasts and hairless mice, and the melanogenesis-related pathways in melanocyte and UVB-irradiated hairless mice. The collagen production-related pathways were activated in the UVB-irradiated Hs27 skin fibroblasts and hairless mice. In addition, UVB exposure stimulated the melanogenesis-related pathways in melanocytes and hairless mice. However, treatment with low-molecular-weight fish collagen significantly increased the messenger RNA expressions of collagen production-related factors and significantly decreased the production of cytokines. Furthermore, treatment with low-molecular-weight fish collagen suppressed melanogenesis by inhibiting glutathione synthesis and downregulating melanocyte-inducing transcription factor expression through the suppression of cyclic AMP/protein kinase A/cAMP-responsive binding protein signaling and nitric oxide production. Low-molecular-weight fish collagen exerts protective effects against UVB-induced photoaging, through anti-inflammatory, antioxidant, and anti-melanogenesis activities and could be used for developing effective natural anti-photoaging products.
Collapse
Affiliation(s)
- Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | | | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
18
|
Kim MJ, Ha SJ, So BR, Kim CK, Kim KM, Jung SK. NADPH Oxidase and Epidermal Growth Factor Receptor Are Promising Targets of Phytochemicals for Ultraviolet-Induced Skin Carcinogenesis. Antioxidants (Basel) 2021; 10:antiox10121909. [PMID: 34943012 PMCID: PMC8750051 DOI: 10.3390/antiox10121909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
The skin acts as the primary defense organ that protects the body from the external environment. Skin cancer is one of the most common cancers in the world. Skin carcinogenesis is usually caused by cell degeneration due to exposure to ultraviolet (UV) radiation, which causes changes in various signaling networks, disrupting the homeostasis of single skin cells. In this review, we summarize the roles of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and epidermal growth factor receptor (EGFR) in UV-induced skin carcinogenesis. Furthermore, we describe the crosstalk that exists between NOX, EGFR, and protein tyrosine phosphatase κ and its oncogenic downstream signaling pathways. Chemoprevention is the use of chemical compounds to recover the healthy status of the skin or delay cancer development. Current evidence from in vitro and in vivo studies on chemopreventive phytochemicals that target NOX, EGFR, or both, as major regulators of skin carcinogenesis will also be discussed.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Su Jeong Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea;
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea;
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (M.J.K.); (B.R.S.)
- Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (K.-M.K.); (S.K.J.); Tel.: +82-53-950-5711 (K.-M.K.); +82-53-950-7764 (S.K.J.)
| |
Collapse
|
19
|
Dual Nature of Relationship between Mycobacteria and Cancer. Int J Mol Sci 2021; 22:ijms22158332. [PMID: 34361097 PMCID: PMC8347776 DOI: 10.3390/ijms22158332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Although the therapeutic effect of mycobacteria as antitumor agents has been known for decades, recent epidemiological and experimental studies have revealed that mycobacterium-related chronic inflammation may be a possible mechanism of cancer pathogenesis. Mycobacterium tuberculosis and non-tuberculous Mycobacterium avium complex infections have been implicated as potentially contributing to the etiology of lung cancer, whereas Mycobacterium ulcerans has been correlated with skin carcinogenesis. The risk of tumor development with chronic mycobacterial infections is thought to be a result of many host effector mechanisms acting at different stages of oncogenesis. In this paper, we focus on the nature of the relationship between mycobacteria and cancer, describing the clinical significance of mycobacteria-based cancer therapy as well as epidemiological evidence on the contribution of chronic mycobacterial infections to the increased lung cancer risk.
Collapse
|
20
|
Melo CPB, Saito P, Vale DL, Rodrigues CCA, Pinto IC, Martinez RM, Bezerra JR, Baracat MM, Verri WA, Fonseca-Bazzo YM, Georgetti SR, Casagrande R. Protection against UVB deleterious skin effects in a mouse model: effect of a topical emulsion containing Cordia verbenacea extract. Photochem Photobiol Sci 2021; 20:1033-1051. [PMID: 34297334 DOI: 10.1007/s43630-021-00079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cordia verbenacea DC (Boraginaceae) is a flowering shrub found along the Brazilian Atlantic Forest, Brazilian coast, and low areas of the Amazon. The crude extract of its leaves is widely used in Brazilian folk medicine as an anti-inflammatory, both topically and orally. The aim of this study is to evaluate the activity of C. verbenacea ethanolic leaves extract (CVE) against UVB-triggered cutaneous inflammation and oxidative damage in hairless mice. CVE treatment recovered cutaneous antioxidant capacity demonstrated by scavenging ABTS+ free radical and iron-reducing antioxidant potential evaluated by FRAP. CVE also controlled the following UV-triggered events in the skin: reduced glutathione (GSH) depletion, catalase activity decrease, and superoxide anion (O⋅-) build-up. Furthermore, mice treated with CVE exhibited less inflammation, shown by the reduction in COX-2 expression, TNF-α, IL-1β, IL-6, edema, and neutrophil infiltration. CVE also regulated epidermal thickening and sunburn cells, reduced dermal mast cells, and preserved collagen integrity. The best results were obtained using 5% CVE-added emulsion. The present data demonstrate that topical administration of CVE presents photochemoprotective activity in a mouse model of UVB inflammation and oxidative stress. Because of the intricate network linking inflammation, oxidative stress, and skin cancer, these results also indicate the importance of further studies elucidating a possible role of C. verbenacea in the prevention of UVB-induced skin cancer and evaluating a potential synergy between CVE and sunscreens in topical products against UVB damaging effects to the skin.
Collapse
Affiliation(s)
- Cristina P B Melo
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Priscila Saito
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - David L Vale
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Camilla C A Rodrigues
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Renata M Martinez
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Julia R Bezerra
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Marcela M Baracat
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Waldiceu A Verri
- Pathological Sciences Department, State University of Londrina-UEL, Km 380 Celso Garcia Cid Hwy (PR-445), P.O. Box 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Yris Maria Fonseca-Bazzo
- Quality Control Laboratory, School of Health Sciences, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Sandra R Georgetti
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil
| | - Rubia Casagrande
- Pharmaceutical Sciences Department, State University of Londrina-UEL, University Hospital, Avenida Robert Koch, 60, Vila Operária, Londrina, Paraná, CEP 86039-440, Brazil.
| |
Collapse
|
21
|
Liu J, Yan G, Chen Q, Zeng Q, Wang X. Modified 5-aminolevulinic acid photodynamic therapy (M-PDT) inhibits cutaneous squamous cell carcinoma cell proliferation via targeting PP2A/PP5-mediated MAPK signaling pathway. Int J Biochem Cell Biol 2021; 137:106036. [PMID: 34217813 DOI: 10.1016/j.biocel.2021.106036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND We previously demonstrated that M-PDT is painless and effective in precancerous skin diseases treatment. However, whether M-PDT is effective in cSCC and the underlying inhibitory mechanism remains enigmatic. OBJECTIVE We aims to unveil the effect of M-PDT on cSCC cell proliferation and the regulatory effect of M-PDT on MAPK signaling. METHODS The proliferation and migration of cSCC cells were revealed by CCK8 assay, tumor sphere formation assay and scratch assay respectively. The expression of MAPKs was examined by western blot. The activity of PP2A and PP5 was regulated by inhibitor and recombinant adenoviruses. RESULTS Here, we show that M-PDT inhibits cSCC cell proliferation by activating p-JNK, p-p38 and inhibiting p-Erk1/2, as well as activation of PP2A and inactivation of PP5. Furthermore, pharmacological inhibition of PP2A conferred resistance to M-PDT's suppression on p-Erk1/2 and attenuated inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP2A showed the contrary results. Pharmacological inhibition of PP5 potentiated M-PDT's elevation on p-JNK and strengthened inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP5 exhibited the contrary results. CONCLUSION Our findings indicate that M-PDT inhibits cSCC cell proliferation via targeting PP2A/PP5-mediated MAPK signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qi Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
22
|
Phenolic Extract from Aralia nudicaulis L. Rhizomes Inhibits Cellular Oxidative Stresses. Molecules 2021; 26:molecules26154458. [PMID: 34361611 PMCID: PMC8347711 DOI: 10.3390/molecules26154458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
UV-B and IR-A radiation are important inducers of biological changes in skin involving ROS generation. The overloading of antioxidant defense mechanisms by ROS production could lead to photoaging and photocarcinogenesis processes. Various traditional usages are reported for Aralia nudicaulis L. extracts, including treatment of dermatological disorders. Antioxidant and anti-inflammatory properties have already been reported for other Aralia species possibly due to the presence of phenolic compounds. However, the phenolic composition and the potential activity of A. nudicaulis rhizomes extract against oxidative stress and UV/IR damages have not been investigated. The main aims of this study were to prepare a fraction enriched in phenolic compounds (FEPC) from A. nudicaulis rhizomes, to identify its major phenolic compounds and to assess its potential for protective effects against oxidative stress induced by UV-B, IR-A or inflammation. A quantitative LC-MS study of FEPC shows that chlorogenic, caffeic and protocatechuic acids are the main phenolic compounds present, with concentrations of 15.6%, 15.3% and 4.8% of the total composition, respectively. With a validated analytical method, those compounds were quantified over different stages of the growing period. As for biological potential, first this extract demonstrates antioxidant and anti-inflammatory activities. Furthermore, ROS generation induced by IR-A and UV-B were strongly inhibited by A. nudicaulis extract, suggesting that Aralia nudicaulis L. rhizome extract could protect dermal cells against oxidative stress induced by UV-B and IR-A.
Collapse
|
23
|
Teng Y, Yu Y, Li S, Huang Y, Xu D, Tao X, Fan Y. Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Front Public Health 2021; 9:666528. [PMID: 34368047 PMCID: PMC8339433 DOI: 10.3389/fpubh.2021.666528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ultraviolet radiation (UVR) is a known carcinogen participated for the development of skin cancers. Solar UVR exposure, particularly ultraviolet B (UVB), is the mostly significant environmental risk factor for the occurrence and progress of basal cell carcinoma(BCC). Both cumulative and intermittent high-grade UVR exposure could promote the uncontrolled replication of skin cells. There are also exsiting other contributing environmental factors that combine with the UVR exposure to promote the development of BCC. DNA damage in formation of skin cancers is considered to be a result of UVR toxicity. It is UVR that could activate a series of oncogenes simultaneously inactivating tumor suppressor genes and aberrant proliferation and survival of keratinocytes that repair these damages. Furthermore, mounting evidence demonstrates that inflammatory responses of immune cells in the tumor microenvironment plays crucial role in the skin tumorigenesis as well. In this chapter, we will follow the function of UVR in the onset and development of BCC. We describe the factors that influence BCC induced by UVR, and also review the recent advances of pathogenesis of BCC induced by UVR from the genetic and inflammatory aspects.
Collapse
Affiliation(s)
- Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sujing Li
- Bengbu Medical College, Bengbu, China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Danfeng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
24
|
Kim D, Lee KR, Kim NR, Park SJ, Lee M, Kim OK. Combination of Bifidobacterium longum and Galacto-Oligosaccharide Protects the Skin from Photoaging. J Med Food 2021; 24:606-616. [PMID: 34077675 DOI: 10.1089/jmf.2021.k.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexposure to ultraviolet B (UVB) irradiation induces photoaging that is characterized by the formation of wrinkles and loss of skin elasticity. To understand the mechanism of action of probiotics and prebiotics in skin protection against photoaging, we investigated the effects of dietary supplementation with the probiotic, Bifidobacterium longum, and prebiotic, galacto-oligosaccharide, on UVB-induced photoaging in hairless mice. We measured short chain fatty acid (SCFA) levels, antioxidant enzyme activity, and inflammatory signaling protein levels to elucidate the possible mechanisms underlying the effects of the dietary supplements B. longum and galacto-oligosaccharide. We observed that dietary supplementation with B. longum and galacto-oligosaccharide, individually and in combination, exerted protective effects against UVB-induced photoaging, showing anti-inflammatory and antioxidative effects. In particular, supplementation with the combination of B. longum and galacto-oligosaccharide showed stronger protective effects than supplementation with the probiotic or prebiotic alone. In addition, the serum levels of SCFAs and acetate were increased following dietary supplementation with B. longum and galacto-oligosaccharide, especially in combination. Therefore, we suggest that the combination of B. longum and galacto-oligosaccharide may potentially be used as a functional food to protect UVB-induced photoaging.
Collapse
Affiliation(s)
- Dakyung Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Kyu Ri Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Korea
| | | | - Soo-Jeung Park
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Minhee Lee
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
25
|
Ibuki Y, Komaki Y, Yang G, Toyooka T. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 2021; 20:639-652. [PMID: 33978941 DOI: 10.1007/s43630-021-00050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
26
|
Anand S, Govande M, Yasinchak A, Heusinkveld L, Shakya S, Fairchild R, Maytin EV. Painless Photodynamic Therapy Triggers Innate and Adaptive Immune Responses in a Murine Model of UV-induced Squamous Skin Pre-cancer. Photochem Photobiol 2021; 97:607-617. [PMID: 33113217 PMCID: PMC10481390 DOI: 10.1111/php.13350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Painless photodynamic therapy (p-PDT), which involves application of photosensitizer and immediate exposure to light to treat actinic keratosis (AK) in patients, causes negligible pain on the day of treatment but leads to delayed inflammation and effective lesion clearance (Kaw et al., J Am Acad Dermatol 2020). To better understand how p-PDT works, hairless mice with UV-induced AK were treated with p-PDT and monitored for 2 weeks. Lesion clearance after p-PDT was similar to clearance after conventional PDT (c-PDT). However, lesion biopsies showed minimal cell death and less production of reactive oxygen species (ROS) in p-PDT treated than in c-PDT-treated lesions. Interestingly, p-PDT triggered vigorous recruitment of immune cells associated with innate immunity. Neutrophils (Ly6G+) and macrophages (F4/80+) appeared at 4 h and peaked at 24 h after p-PDT. Damage-associated molecular patterns (DAMPs), including calreticulin, HMGB1, and HSP70, were expressed at maximum levels around 24 h post-p-PDT. Total T cells (CD3+) were increased at 24 h, whereas large increases in cytotoxic (CD8+) and regulatory (Foxp3+) T cells were observed at 1 and 2 weeks post-p-PDT. In summary, the ability of p-PDT to eliminate AK lesions, despite very little overt cellular damage, appears to involve stimulation of a local immune response.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | - Lauren Heusinkveld
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Robert Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Edward V. Maytin
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
27
|
Yang SH, Liu CT, Hong CQ, Huang ZY, Wang HZ, Wei LF, Lin YW, Guo HP, Peng YH, Xu YW. Autoantibodies against p53, MMP-7, and Hsp70 as Potential Biomarkers for Detection of Nonmelanoma Skin Cancers. DISEASE MARKERS 2021; 2021:5592693. [PMID: 34336006 PMCID: PMC8289574 DOI: 10.1155/2021/5592693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are two predominant histological types of nonmelanoma skin cancer (NMSC), lacking effective early diagnostic markers. In this study, we assessed the diagnostic value of autoantibodies against p53, MMP-7, and Hsp70 in skin SCC and BCC. ELISA was performed to detect levels of autoantibodies in sera from 101 NMSC patients and 102 normal controls, who were recruited from the Cancer Hospital of Shantou University Medical College. A receiver operator characteristic curve was used to evaluate the diagnostic value. The serum levels of autoantibodies against p53, MMP-7, and Hsp70 were higher in NMSCs than those in the normal controls (all P < 0.01). The AUC of the three-autoantibody panel was 0.841 (95% CI: 0.788-0.894) with the sensitivity and specificity of 60.40% and 91.20% when differentiating NMSCs from normal controls. Furthermore, measurement of this panel could differentiate early-stage skin cancer patients from normal controls (AUC: 0.851; 95% CI: 0.793-0.908). Data from Oncomine showed that the level of p53 mRNA was elevated in BCC (P < 0.05), and the Hsp70 mRNA was upregulated in SCC (P < 0.001). This serum three-autoantibody panel might function in assisting the early diagnosis of NMSC.
Collapse
Affiliation(s)
- Shi-Han Yang
- Department of Dermatology and Venereology, Affiliated Shantou Hospital of Sun Yat-sen University, 114 Waima Road, Shantou 515041, China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
- Precision Medicine Research Center, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Ze-Yuan Huang
- Department of Dermatology and Venereology, Affiliated Shantou Hospital of Sun Yat-sen University, 114 Waima Road, Shantou 515041, China
| | - Huan-Zhu Wang
- Department of Dermatology and Venereology, Affiliated Shantou Hospital of Sun Yat-sen University, 114 Waima Road, Shantou 515041, China
| | - Lai-Feng Wei
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
- Precision Medicine Research Center, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
- Precision Medicine Research Center, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
- Precision Medicine Research Center, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China
- Precision Medicine Research Center, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
28
|
Balasubramaniam A, Adi P, Tra My DT, Keshari S, Sankar R, Chen CL, Huang CM. Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Sci Rep 2020; 10:21585. [PMID: 33299009 PMCID: PMC7725810 DOI: 10.1038/s41598-020-78132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Repurposing existing compounds for new indications may facilitate the discovery of skin prebiotics which have not been well defined. Four compounds that have been registered by the International Nomenclature of Cosmetic Ingredients (INCI) were included to study their abilities to induce the fermentation of Staphylococcusepidermidis (S. epidermidis), a bacterial species abundant in the human skin. Liquid coco-caprylate/caprate (LCC), originally used as an emollient, effectively initiated the fermentation of S. epidermidis ATCC 12228, produced short-chain fatty acids (SCFAs), and provoked robust electricity. Application of LCC plus electrogenic S. epidermidis ATCC 12228 on mouse skin significantly reduced ultraviolet B (UV-B)-induced injuries which were evaluated by the formation of 4-hydroxynonenal (4-HNE), cyclobutane pyrimidine dimers (CPD), and skin lesions. A S. epidermidis S2 isolate with low expressions of genes encoding pyruvate dehydrogenase (pdh), and phosphate acetyltransferase (pta) was found to be poorly electrogenic. The protective action of electrogenic S. epidermidis against UV-B-induced skin injuries was considerably suppressed when mouse skin was applied with LCC in combination with a poorly electrogenic S. epidermidis S2 isolate. Exploring new indication of LCC for promoting S. epidermidis against UV-B provided an example of repurposing INCI-registered compounds as skin prebiotics.
Collapse
Affiliation(s)
- Arun Balasubramaniam
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Prakoso Adi
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Do Thi Tra My
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Raman Sankar
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chien-Lung Chen
- Division of Nephrology, Landseed International Hospital, Taoyuan, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Fayyad N, Kobaisi F, Beal D, Mahfouf W, Ged C, Morice-Picard F, Fayyad-Kazan M, Fayyad-Kazan H, Badran B, Rezvani HR, Rachidi W. Xeroderma Pigmentosum C (XPC) Mutations in Primary Fibroblasts Impair Base Excision Repair Pathway and Increase Oxidative DNA Damage. Front Genet 2020; 11:561687. [PMID: 33329698 PMCID: PMC7728722 DOI: 10.3389/fgene.2020.561687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Xeroderma Pigmentosum C (XPC) is a multi-functional protein that is involved not only in the repair of bulky lesions, post-irradiation, via nucleotide excision repair (NER) per se but also in oxidative DNA damage mending. Since base excision repair (BER) is the primary regulator of oxidative DNA damage, we characterized, post-Ultraviolet B-rays (UVB)-irradiation, the detailed effect of three different XPC mutations in primary fibroblasts derived from XP-C patients on mRNA, protein expression and activity of different BER factors. We found that XP-C fibroblasts are characterized by downregulated expression of different BER factors including OGG1, MYH, APE1, LIG3, XRCC1, and Polβ. Such a downregulation was also observed at OGG1, MYH, and APE1 protein levels. This was accompanied with an increase in DNA oxidative lesions, as evidenced by 8-oxoguanine levels, immediately post-UVB-irradiation. Unlike in normal control cells, these oxidative lesions persisted over time in XP-C cells having lower excision repair capacities. Taken together, our results indicated that an impaired BER pathway in XP-C fibroblasts leads to longer persistence and delayed repair of oxidative DNA damage. This might explain the diverse clinical phenotypes in XP-C patients suffering from cancer in both photo-protected and photo-exposed areas. Therapeutic strategies based on reinforcement of BER pathway might therefore represent an innovative path for limiting the drawbacks of NER-based diseases, as in XP-C case.
Collapse
Affiliation(s)
- Nour Fayyad
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Farah Kobaisi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| | - David Beal
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Walid Mahfouf
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France
| | - Cécile Ged
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hamid R Rezvani
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Walid Rachidi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| |
Collapse
|
30
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
31
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
32
|
Niu Y, Chen Y, Xu H, Wang Q, Xue C, Zhu R, Zhao RC. Astragaloside IV Promotes Antiphotoaging by Enhancing the Proliferation and Paracrine Activity of Adipose-Derived Stem Cells. Stem Cells Dev 2020; 29:1285-1293. [PMID: 32703122 DOI: 10.1089/scd.2020.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Photoaging is a degenerative biological process. As a kind of pluripotent stem cells, adipose-derived stem cells (ADSCs) are widely used in the treatment of photoaging. Therefore, we aimed to find an effective way to improve the antiaging ability of ADSCs. In this study, we isolated ADSCs and assessed multilineage differentiation ability and markers. Cultured ADSCs were preconditioned with astragaloside IV (ASI) at 10-7, 10-6, and 10-5 M. Cell proliferation was assessed by CCK-8 assay and cytokine secretion by enzyme-linked immunosorbent assay (ELISA). A fibroblast photoaging model was established and cocultured with normal ADSCs or ASI-treated ADSCs. Matrix metalloproteinase-1 (MMP1) and type I procollagen (PC-I) secreted by human dermal fibroblasts were measured by ELISA. The effects of ASI-treated ADSCs on skin texture, including dermal thickness, collagen content, and microvessel density, in a photoaging animal model were analyzed using H&E staining, Masson staining, and CD31 immunohistochemistry, respectively. We found that 10-6 M ASI could significantly promote cell proliferation and stimulate robust secretion of growth factors in ADSCs. Furthermore, our data showed that ASI-treated ADSCs could markedly reverse the ultraviolet B-induced decrease of PC-I secretion and increase of MMP-1 release in fibroblasts. Moreover, in photoaged skin of nude mice, ASI-treated ADSCs significantly increased dermal thickness, collagen content, and microvessel density.
Collapse
Affiliation(s)
- Yanchao Niu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yunfei Chen
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoying Xu
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiaoling Wang
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunling Xue
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongjia Zhu
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Beijing Key Laboratory (No.BZO381), Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Department of Cell Biology, School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Kwak CS, Yang J, Shin CY, Chung JH. Rosa multiflora Thunb Flower Extract Attenuates Ultraviolet-Induced Photoaging in Skin Cells and Hairless Mice. J Med Food 2020; 23:988-997. [PMID: 32721259 DOI: 10.1089/jmf.2019.4610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ethanol extract (RET) of Rosa multiflora Thunb flowers and its subfractions in ethylacetate (REA) or n-butanol subfractions (RBT) were reported to have potent antioxidative and anti-inflammatory activities. In this study, we investigated if those Rosa multiflora flower (RMF) extracts prevent ultraviolet (UV)-induced biochemical damages leading to photoaging. In keratinocyte or dermal fibroblasts, RET, REA, and RBT treatments with UV irradiation significantly decreased reactive oxygen species (ROS), interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-1 levels through suppression of nuclear factor kappa B and mitogen-activated protein kinases. In the animal experiment, mice were orally supplemented with RET (RET group) or REA and RBT mixture (RM group) for 10 weeks, concomitantly with UV exposure. Tumor necrosis factor alpha production and MMP-13 expression were reduced in the mouse skin of RET and RM groups compared with those in the UV control (UVC) group. UV-induced IL-6 production and epidermal thickening were reduced in RM group compared with those in UVC group. Eight phenolic compounds, including quercitrin (quercetin-3-O-rhamnoside), were identified in RMF extracts. Quercitrin treatment to dermal fibroblasts significantly attenuated an increase of MMP-1 expression and a decrease of type I procollagen expression caused by UV. Collectively, RMF extracts showed protective effects from UV-induced photoaging in the skin through suppression of ROS generation, proinflammatory cytokine production, and MMP expression. Quercitrin is suggested to be one of the effective compounds.
Collapse
Affiliation(s)
- Chung Shil Kwak
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwon Yang
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Yup Shin
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
34
|
Are FDA-Approved Sunscreen Components Effective in Preventing Solar UV-Induced Skin Cancer? Cells 2020; 9:cells9071674. [PMID: 32664608 PMCID: PMC7407267 DOI: 10.3390/cells9071674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Solar ultraviolet (SUV) exposure is a major risk factor in the etiology of cutaneous squamous cell carcinoma (cSCC). People commonly use sunscreens to prevent SUV-induced skin damage and cancer. Nonetheless, the prevalence of cSCC continues to increase every year, suggesting that commercially available sunscreens might not be used appropriately or are not completely effective. In the current study, a solar simulated light (SSL)-induced cSCC mouse model was used to investigate the efficacy of eight commonly used FDA-approved sunscreen components against skin carcinogenesis. First, we tested FDA-approved sunscreen components for their ability to block UVA or UVB irradiation by using VITRO-SKIN (a model that mimics human skin properties), and then the efficacy of FDA-approved sunscreen components was investigated in an SSL-induced cSCC mouse model. Our results identified which FDA-approved sunscreen components or combinations are effective in preventing cSCC development. Not surprisingly, the results indicated that sunscreen combinations that block both UVA and UVB significantly suppressed the formation of cutaneous papillomas and cSCC development and decreased the activation of oncoproteins and the expression of COX-2, keratin 17, and EGFR in SSL-exposed SKH-1 (Crl:SKH1-Hrhr) hairless mouse skin. Notably, several sunscreen components that were individually purported to block both UVA and UVB were ineffective alone. At least one component had toxic effects that led to a high mortality rate in mice exposed to SSL. Our findings provide new insights into the development of the best sunscreen to prevent chronic SUV-induced cSCC development.
Collapse
|
35
|
Kim D, Kim HJ, Jun HS. Polygonum multiflorum Thunb. Extract Stimulates Melanogenesis by Induction of COX2 Expression through the Activation of p38 MAPK in B16F10 Mouse Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7642019. [PMID: 32714420 PMCID: PMC7334760 DOI: 10.1155/2020/7642019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Polygonum multiflorum Thunb. (PM) root extracts have been used for treating graying hair in Oriental medicine; however, the molecular mechanisms underlying the melanogenic effects of PM root have not been fully understood. In the present study, we investigated the melanogenic effects of an ethanolic extract of PM root (PME) and the mechanisms involved. We examined the effects of PME on cell viability, cellular melanin content, and tyrosinase activity in B16F10 cells. The melanogenic mechanism of PME was explored using signaling inhibitors and examining the expression of melanogenic genes and signaling molecules by western blot and RT-qPCR analyses. PME did not exhibit any cytotoxicity in B16F10 cells compared to that in control cells. PME treatment significantly increased melanin production and tyrosinase activity. In addition, PME induced the expression of cyclooxygenase-2 (COX2) as well as that of melanogenic genes, such as microphthalmia-associated transcription factor (MiTF), tyrosinase-related protein (Trp) 1, Trp2, and tyrosinase, in B16F10 cells. PME treatment increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), and pretreatment with SB 203580, a p38 MAPK inhibitor, significantly suppressed this PME-induced increase in the expression of COX2 and melanogenic genes. These results indicate that PME induced the expression of melanogenic genes by inducing COX2 expression via the activation of the p38 MAPK pathway, thereby contributing to the enhancement of melanogenesis.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyo-Jin Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21565, Republic of Korea
| |
Collapse
|
36
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
37
|
Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy. Int J Pharm 2020; 582:119336. [DOI: 10.1016/j.ijpharm.2020.119336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
|
38
|
Agostinelli E. Biochemical and pathophysiological properties of polyamines. Amino Acids 2020; 52:111-117. [PMID: 32072296 DOI: 10.1007/s00726-020-02821-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Enzo Agostinelli
- Department of Biochemical Sciences, A. Rossi Fanelli', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
39
|
Wang Y, Deng X, Dai Y, Niu X, Zhou M. miR-27a Downregulation Promotes Cutaneous Squamous Cell Carcinoma Progression via Targeting EGFR. Front Oncol 2020; 9:1565. [PMID: 32039029 PMCID: PMC6985147 DOI: 10.3389/fonc.2019.01565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second common malignant cancer around the worldwide and is etiologically linked to ultraviolet radiation. miRNAs play an important role in the initiation and progression of cancers. However, the functions of miRNAs in cSCC remain to be elucidated. Here, we screened and identified miR-27a as a consistently downregulated miRNA after UVB irradiation in HaCaT cells. It was found that miR-27a expression was significantly decreased in cSCC cells and tissues. in vitro and in vivo experiments showed that miR-27a inhibited cell proliferation and invasion of cSCC cells. Mechanistically, EGFR was identified to be directly targeted by miR-27a and miR-27a suppressed the phosphorylation of EGFR and its downstream NF-κB signaling pathway. Overall, these findings suggest that downregulation of miR-27a promotes tumor growth and metastasis via targeting EGFR and its downstream NF-κB signaling pathway, reminding that miR-27a plays a vital role in the progression of cSCC and could be a new therapeutic target.
Collapse
Affiliation(s)
- Yinghui Wang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Reinehr CPH, Bakos RM. Actinic keratoses: review of clinical, dermoscopic, and therapeutic aspects. An Bras Dermatol 2019; 94:637-657. [PMID: 31789244 PMCID: PMC6939186 DOI: 10.1016/j.abd.2019.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Actinic keratoses are dysplastic proliferations of keratinocytes with potential for malignant transformation. Clinically, actinic keratoses present as macules, papules, or hyperkeratotic plaques with an erythematous background that occur on photoexposed areas. At initial stages, they may be better identified by palpation rather than by visual inspection. They may also be pigmented and show variable degrees of infiltration; when multiple they then constitute the so-called field cancerization. Their prevalence ranges from 11% to 60% in Caucasian individuals above 40 years. Ultraviolet radiation is the main factor involved in pathogenesis, but individual factors also play a role in the predisposing to lesions appearance. Diagnosis of lesions is based on clinical and dermoscopic examination, but in some situations histopathological analysis may be necessary. The risk of transformation into squamous cell carcinoma is the major concern regarding actinic keratoses. Therapeutic modalities for actinic keratoses include topical medications, and ablative and surgical methods; the best treatment option should always be individualized according to the patient.
Collapse
Affiliation(s)
| | - Renato Marchiori Bakos
- Department of Dermatology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Kim J, Park MK, Li WQ, Qureshi AA, Cho E. Association of Vitamin A Intake With Cutaneous Squamous Cell Carcinoma Risk in the United States. JAMA Dermatol 2019; 155:1260-1268. [PMID: 31365038 PMCID: PMC6669777 DOI: 10.1001/jamadermatol.2019.1937] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Retinoids are bioactive forms of vitamin A that are essential in the maintenance of epithelial maturation and differentiation. Synthetic retinoids are used in chemoprevention of skin cancer among high-risk populations with potential adverse effects. Epidemiologic data on vitamin A intake and risk of cutaneous squamous cell carcinoma (SCC) are limited. OBJECTIVE To examine whether vitamin A intake is associated with a reduction in SCC risk. DESIGN, SETTINGS, AND PARTICIPANTS This cohort study prospectively examined intake of vitamin A and carotenoids and SCC risk in the Nurses' Health Study (1984-2012) and the Health Professionals Follow-up Study (1986-2012). Diet was assessed repeatedly. Incident SCC was confirmed by pathologic reports. Data analysis was performed from June 21, 2017, to December 4, 2018. EXPOSURES Intakes of vitamin A, retinol, and carotenoids. MAIN OUTCOMES AND MEASURES Incident SCC. Cox proportional hazards regression models were used to compute cohort-specific hazard ratios (HRs) and 95% CIs. Pooled HRs of the cohort-specific results were calculated. RESULTS A total of 3978 SCC cases in 75 170 women in the Nurses' Health Study (mean [SD] age, 50.4 [7.2] years) and 48 400 men in the Health Professionals Follow-up Study (mean [SD] age, 54.3 [9.9] years) were documented. Higher total vitamin A was associated with a reduction in SCC risk; with quintile 1 as the reference, the pooled multivariate HRs for the increasing quintiles of vitamin A intake were 0.97 (95% CI, 0.87-1.07) for quintile 2, 0.97 (95% CI, 0.80-1.17) for quintile 3, 0.93 (95% CI, 0.84-1.03) for quintile 4, and 0.83 (95% CI, 0.75-0.93) for quintile 5 (P < .001 for trend). Higher intakes of retinol and some carotenoids were also associated with a reduction in SCC risk; the pooled HRs for the highest quintiles of intake compared with the lowest quintiles were 0.88 (95% CI, 0.79-0.97; P = .001 for trend) for total retinol, 0.86 (95% CI, 0.76-0.96; P = .001 for trend) for beta cryptoxanthin, 0.87 (95% CI, 0.78-0.96; P < .001 for trend) for lycopene, and 0.89 (95% CI, 0.81-0.99; P = .02 for trend) for lutein and zeaxanthin. The results were generally consistent by sex and other SCC risk factors. CONCLUSIONS AND RELEVANCE This study suggests that increased intake of dietary vitamin A is associated with decreased risk of incident SCC. Future studies are needed to determine whether vitamin A supplementation has a role in chemoprevention of SCC.
Collapse
Affiliation(s)
- Jongwoo Kim
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Family Medicine, Sanggye-Paik Hospital, College of Medicine, Inje University, Seoul, South Korea
| | - Min Kyung Park
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Abstract
DNA repair proteins have been found to localize to the centrosomes and defects in these proteins cause centrosome abnormality. Centrobin is a centriole-associated protein that is required for centriole duplication and microtubule stability. A recent study revealed that centrobin is a candidate substrate for ATM/ATR kinases. However, whether centrobin is involved in DNA damage response (DDR) remains unexplored. Here we show that centrobin is phosphorylated after UV exposure and that the phosphorylation is detected exclusively in the detergent/DNase I-resistant nuclear matrix. UV-induced phosphorylation of centrobin is largely dependent on ATR activity. Centrobin-depleted cells show impaired DNA damage-induced microtubule stabilization and increased sensitivity to UV radiation. Interestingly, depletion of centrobin leads to defective homologous recombination (HR) repair, which is reversed by expression of wild-type centrobin. Taken together, these results strongly suggest that centrobin plays an important role in DDR.
Collapse
Affiliation(s)
- Na Mi Ryu
- Department of Pharmacology, Chonnam National University Medical School , Jellanamdo , Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School , Jellanamdo , Republic of Korea
| |
Collapse
|
43
|
Ghayas S, Ali Masood M, Parveen R, Aquib M, Farooq MA, Banerjee P, Sambhare S, Bavi R. 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. J Biomol Struct Dyn 2019; 38:2916-2927. [DOI: 10.1080/07391102.2019.1647287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sana Ghayas
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - M. Ali Masood
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - Rashida Parveen
- Department of Pharmacy, Superior University Lahore, Lahore, Pakistan
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Parikshit Banerjee
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Taiwan
| | - Susmit Sambhare
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, China Gulou District
| |
Collapse
|
44
|
Phototoxic risk assessment on benzophenone UV filters: In vitro assessment and a theoretical model. Toxicol In Vitro 2019; 60:180-186. [PMID: 31154060 DOI: 10.1016/j.tiv.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
Benzophenones (BPs), filtering out both UVA and UVB rays, are widely used in a great variety of sunscreens and personal care products. However, they have not been extensively studied for the mechanisms of UV-absorbing toxicity. In this study, we used CPZ (chlorpromazine) as a positive control and SDS (sodium dodecyl sulfate) as a negative control, and the phototoxic of BP-1, BP-3 and BP-4 were investigated in vitro assays using three cell types under different UV exposure conditions. This was followed by setting up a theoretical model, which was adopted to predict and compare the phototoxicity. It was found that Balb/c 3T3 (Balb/c 3T3 fibroblast cell lines) showed sensitivity to UVA+ and UVB+ exposure, while the HS68 (human HS68 fibroblast cell lines) to UVA+ and the HaCaT (human HaCaT keratinocyte cell lines) to UVB+. The test compound, BP-1, was detected to be phototoxic at UVA+ conditions, but BP-3 and BP-4 were discovered to be non-phototoxic at UVA+ conditions. This demonstrated that BP-1, BP-3 and BP-4 remained low-risk chemicals under UVB+ condition. The theoretical calculation of the energy gap (EGAP) showed BP-1(EGAP) > BP-3(EGAP) > BP-4(EGAP).
Collapse
|
45
|
Yang Y, Wu R, Sargsyan D, Yin R, Kuo HC, Yang I, Wang L, Cheng D, Wang C, Li S, Hudlikar R, Lu Y, Kong AN. UVB drives different stages of epigenome alterations during progression of skin cancer. Cancer Lett 2019; 449:20-30. [PMID: 30771437 PMCID: PMC6411449 DOI: 10.1016/j.canlet.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
Exposure to ultraviolet B (UVB) irradiation results in multitude of cellular responses including generation of reactive oxygen species and DNA damage and is responsible for non-melanoma skin cancers (NMSCs). Although genetic mutation is well documented, the epi-mutation, the alteration in epigenetics, remains elusive. In this study, we utilized CpG Methyl-seq to identify a genome-wide DNA CpG methylation, to profile the DNA methylation in UVB-irradiated SKH-1 mouse skin epidermis and non-melanoma skin papillomas at various stages. Methyl-seq and RNA-seq were performed to examine the methylation and corresponding transcriptome alterations. The methylation profiles in mouse epidermis were altered by UVB-irradiation as time progresses. Ingenuity Pathways Analysis (IPA) identified many cancer related pathways including PTEN, p53, Nrf2 and inflammatory signaling in UVB-irradiation induced carcinogenesis. Additionally, some novel genes involved in skin carcinogenesis that were not previously reported were differentially methylated, including Enf2, Mgst2, Vegfa, and Cdk4. Taken together, the current study provides novel profiles and insights of methylation and transcriptomic changes at different stages of carcinogenesis in UVB-irradiation induced NMSC and offers potential targets for prevention and treatment of NMSC at different stages of human skin cancer.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Irene Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yaoping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
46
|
Shin J, Chung KY, Park E, Nam KA, Yoon J. Occupational differences in standardized mortality ratios for non-melanotic skin cancer and melanoma in exposed areas among individuals with Fitzpatrick skin types III and IV. J Occup Health 2019; 61:235-241. [PMID: 30761684 PMCID: PMC6499352 DOI: 10.1002/1348-9585.12040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The objective of this study was to identify subpopulations vulnerable to skin cancer by occupations, among individuals with Fitzpatrick skin types III and IV. METHODS Data were retrieved from the national mortality registry of Korean National Statistical Office (KNSO) from 1993 to 2012, including all medical certificates of death written and confirmed by physicians. Medical certificates of death from 1993 to 2012 were obtained from the national mortality registry of Korean National Statistical Office. These completed medical certificates are verified by the Korean Ministry of Government Administration and Home Affairs and formatted using 103 main and 236 specific causes of death as recommended by the World Health Organization. We calculated direct standardized mortality rate and standardized mortality ratio (SMR) using the indirect standardization method. The entire population as reflected in the 2005 national census was used as a reference population. RESULTS Of 594 deaths from skin cancer, 227 (38.2%) were from non-melanotic skin cancer (NMSC) and 367 (61.8%) from cutaneous melanoma (CM). Compared to office workers, agriculture/fishery/forestry workers had significantly higher SMRs for NMSC in men [SMR: 461, 95% confidential interval (CI): 329-583] and women (SMR: 575, 95% CI: 317-864). SMR was also increased in men who worked in exposed area (SMR of NMSC:553, 95% CI:222-1018, SMR of CM:453, 95% CI: 133-1009). CONCLUSION This is the first Asian study to suggest that agriculture/fishery/forestry workers have increased SMRs for NMSC and CM in exposed areas. Early diagnosis of skin cancer in this group is important.
Collapse
Affiliation(s)
- Jaeyong Shin
- Department of Preventive Medicine, College of MedicineYonsei UniversitySeoulKorea
- Institute of Health Services Research, College of MedicineYonsei UniversitySeoulKorea
- Department of Public Health, Graduate SchoolYonsei UniversitySeoulKorea
- Department of Dermatology, Severance hospital, College of medicineYonsei UniversitySeoulKorea
| | - Kee Yang Chung
- Department of Dermatology, Severance hospital, College of medicineYonsei UniversitySeoulKorea
| | - Eun‐Cheol Park
- Department of Preventive Medicine, College of MedicineYonsei UniversitySeoulKorea
- Institute of Health Services Research, College of MedicineYonsei UniversitySeoulKorea
- Department of Public Health, Graduate SchoolYonsei UniversitySeoulKorea
| | - Kyoung Ae Nam
- Department of Dermatology, Severance hospital, College of medicineYonsei UniversitySeoulKorea
| | - Jin‐Ha Yoon
- Department of Preventive Medicine, College of MedicineYonsei UniversitySeoulKorea
- The Institute for Occupational HealthYonsei University College of MedicineSeoulKorea
| |
Collapse
|
47
|
Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar Drugs 2019; 17:E222. [PMID: 31013795 PMCID: PMC6521297 DOI: 10.3390/md17040222] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Collapse
Affiliation(s)
- Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
48
|
Stump CL, Feehan RP, Jordan T, Shantz LM, Nowotarski SL. Knocking down raptor in human keratinocytes affects ornithine decarboxylase in a post-transcriptional Manner following ultraviolet B exposure. Amino Acids 2019; 52:141-149. [PMID: 30972602 DOI: 10.1007/s00726-019-02732-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Non-melanoma skin cancer (NMSC) is the most common form of cancer. Ultraviolet-B (UVB) radiation has been shown to be a complete carcinogen in the development of NMSC. The mammalian target of rapamycin complex 1 (mTORC1) is upregulated by UVB. Ornithine decarboxylase (ODC), the first enzyme of the polyamine biosynthetic pathway, is also upregulated in response to UVB. However, the interplay between these two pathways after UVB exposure remains unclear. The studies described here compare mRNA stability between normal human keratinocytes (HaCaT cells) and HaCaT cells with low levels of raptor to investigate whether the induction of ODC by UVB is dependent on mTORC1. We show that the knockdown of mTORC1 activity led to decreased levels of ODC protein both before and after exposure to 20 mJ/cm2 UVB. ODC mRNA was less stable in cells with decreased mTORC1 activity. Polysome profiles revealed that the initiation of ODC mRNA translation did not change in UVB-treated cells. We have shown that the ODC transcript is stabilized by the RNA-binding protein human antigen R (HuR). To expand these studies, we investigated whether HuR functions to regulate ODC mRNA stability in human keratinocytes exposed to UVB. We show an increased cytoplasmic localization of HuR after UVB exposure in wild-type cells. The ablation of HuR via CRISPR/Cas9 did not alter the stability of the ODC message, suggesting the involvement of other trans-acting factors. These data suggest that in human keratinocytes, ODC mRNA stability is regulated, in part, by an mTORC1-dependent mechanism after UVB exposure.
Collapse
Affiliation(s)
- Coryn L Stump
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA, 19610, USA
| | - Robert P Feehan
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Torey Jordan
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA, 19610, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shannon L Nowotarski
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA, 19610, USA.
| |
Collapse
|
49
|
Apigenin restores impairment of autophagy and downregulation of unfolded protein response regulatory proteins in keratinocytes exposed to ultraviolet B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:84-95. [PMID: 30933875 DOI: 10.1016/j.jphotobiol.2019.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV)-B radiation is a major environmental risk factor that is responsible for the development and progression of many skin cancers. Apigenin, a type of bioflavonoid, has been reported to inhibit UVB-induced skin cancer. However, how apigenin functions in keratinocytes with UV damage remains unclear. In this study, by lactate dehydrogenase (LDH) release assay, we found that apigenin treatment increased cell death in the primary human epidermal keratinocytes (HEKs) and the cutaneous squamous cell carcinoma cell line COLO-16. Apigenin treatment reduced microtubule-associated protein 1 light chain 3 (LC3)-II turnover, acridine orange staining and GFP-LC3 puncta in both cell types, suggesting autophagy inhibition. However, apigenin treatment restored the inhibition of autophagy in UVB-challenged HEKs. Moreover, apigenin treatment restored the UVB-induced downregulation of ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia, Rad3-related (ATR) and the unfolded protein response (UPR) regulatory proteins, BiP, IRE1α and PERK in HEKs. Apigenin treatment also inhibited UVB-induced apoptosis and cell death in HEKs. In addition, autophagy inhibition by autophagy-related gene (ATG) 5 RNA interference interrupted apigenin-induced restoration of ATR, ATM and BiP, which were downregulated in HEKs exposed to UVB radiation. Our findings indicate that apigenin exhibits a novel protective effect in keratinocytes with UVB damage, suggesting potential application as a photoprotective agent.
Collapse
|
50
|
Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci Rep 2019; 9:4496. [PMID: 30872693 PMCID: PMC6418262 DOI: 10.1038/s41598-019-40913-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Lipid peroxidation by reactive oxygen species (ROS) during oxidative stress is non-enzymatic damage that affects the integrity of biological membrane, and alters the fluidity and permeability. We conducted molecular dynamic simulation studies to evaluate the structural properties of the bilayer after lipid peroxidation and to measure the permeability of distinct ROS. The oxidized membrane contains free fatty acid, ceramide, cholesterol, and 5α-hydroperoxycholesterol (5α-CH). The result of unconstrained molecular dynamic simulations revealed that lipid peroxidation causes area-per-lipid of the bilayer to increase and bilayer thickness to decrease. The simulations also revealed that the oxidized group of 5α-CH (-OOH) moves towards the aqueous layer and its backbone tilts causing lateral expansion of the bilayer membrane. These changes are detrimental to structural and functional properties of the membrane. The measured free energy profile for different ROS (H2O2, HO2, HO, and O2) across the peroxidized lipid bilayer showed that the increase in lipid peroxidation resulted in breaching barrier decrease for all species, allowing easy traversal of the membrane. Thus, lipid peroxidation perturbs the membrane barrier and imposes oxidative stress resulting into apoptosis. The collective insights increase the understanding of oxidation stress at the atomic level.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea.
| | - Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Nowon-Gu, Seoul, 139-791, Korea
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, 406-799, South Korea.
| |
Collapse
|