1
|
Zhao Q, Huang X, Wu X. Development of NHAcGD2/NHAcGD3 conjugates of bacteriophage MX1 virus-like particles as anticancer vaccines. RSC Adv 2024; 14:6246-6252. [PMID: 38375005 PMCID: PMC10875654 DOI: 10.1039/d3ra08923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
The successful development of an anticancer vaccine will be a giant leap forward in cancer prevention and treatment. Herein, the bacteriophage MX1 coat protein virus-like particles (MX1 VLPs) have been conjugated with 9NHAc-GD2 (NHAcGD2) to obtain a MX1-NHAcGD2 conjugate. Intriguingly, vaccinating against this conjugate produced a robust anti-NHAcGD2 IgG response in mice, with an average IgG titer of over 3 million. More interestingly, antibodies induced by the MX1-NHAcGD2 conjugate bound well to IMR-32 neuroblastoma cells and had potent complement-dependent cytotoxic (CDC) effects on IMR-32 cells. Inspired by the superiority of the 9NHAc-GD2 antigen, we also designed another 9NHAc-modified ganglioside antigen, 9NHAc-GD3 (NHAcGD3), to overcome the hydrolytic instability of 9-O-acetylated-GD3. By coupling NHAcGD3 with MX1 VLP, the MX1-NHAcGD3 conjugate was constructed. Strikingly, vaccination of MX1-NHAcGD3 elicited high anti-NHAcGD3 IgG antibodies, which effectively recognized human malignant melanoma SK-MEL-28 cells and had a significant CDC effect against this cell line. This study provides novel MX1-NHAcGD2 and MX1-NHAcGD3 conjugates with broad clinical translational prospects as promising anticancer vaccines.
Collapse
Affiliation(s)
- Qingyu Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University East Lansing Michigan 48824 USA
| | - Xuanjun Wu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
2
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
3
|
Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca Á, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today 2023; 28:103458. [PMID: 36427779 DOI: 10.1016/j.drudis.2022.103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Given their superior efficacy, rapid engineering, low-cost manufacturing, and safe delivery prospects, mRNA vaccines offer an intriguing alternative to conventional vaccination technologies. Several mRNA vaccine platforms targeting infectious diseases and various types of cancer have exhibited beneficial results both in vivo and in vitro. Issues related to mRNA stability and immunogenicity have been addressed. Current mRNA vaccines can generate robust immune responses, without being constrained by the major histocompatibility complex (MHC) haplotype of the recipient. Given that mRNA vaccinations are the only transient genetic information carriers, they are also safe. In this review, we provide an update and overview on mRNA vaccines, including their current state, and the problems that have prevented them from being used in more general therapeutic ways.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
4
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Motamedi Dehbarez F, Mahmoodi S. Production of a Novel Multi-Epitope Peptide Vaccine against Hepatocellular Carcinoma. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:558-565. [PMID: 36380977 PMCID: PMC9652490 DOI: 10.30476/ijms.2021.90916.2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the prevalent cancers in the world with a high recurrence rate. In recent years, different researches have focused on designing efficient multi-epitope peptide vaccines against HCC. In designing these vaccines, over-expressed antigens in HCC patients, such as α- fetoprotein (AFP) and glypican-3 (GPC-3), have been employed. In our previous study, a multi-epitope peptide vaccine for HCC was designed by in-silico methods. The designed vaccine construct included the AFP, GPC-3, and aspartyl-β-hydroxylase (ASPH) as CytoLoxic T cell Lymphocytes (CTL), one epitope from Tetanus Toxin Fragment C (TTFrC) as Helper T cell Lymphocytes (HTL), and a segment of microbial heat shock protein (HSP70) peptide407-426 as an adjuvant. All the mentioned parts were connected by appropriate linkers. The aim of this study is the production of the designed vaccine. METHODS This research is experimental and was carried out in Fasa, Iran, in 2017. The designed vaccine construct gene was transformed to the Escherchia coli BL21 (DE3) strain and expressed in different isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations (0.6 and 1 mM), times (4, 6, 8, 16 hours), and temperatures (25 and 37 °C). Then, the expressed protein was analyzed by Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the Western blot methods. RESULTS The best conditions for protein expression were obtained in the Super Optimal Broth (SOB) medium at 37 °C after the induction of expression by 1 mM IPTG for six hour. CONCLUSION The recombinant HCC vaccine was produced with a proper concentration.
Collapse
Affiliation(s)
- Fatemeh Motamedi Dehbarez
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Effectiveness of combination therapy with ISA101 vaccine for the treatment of human papillomavirus-induced cervical cancer. Front Oncol 2022; 12:990877. [PMID: 36300095 PMCID: PMC9589033 DOI: 10.3389/fonc.2022.990877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the women-associated tumors that affects numerous people yearly. It is the fourth most common malignancy in women worldwide. Following early diagnosis, this cancer can be cured mainly by traditional methods such as surgery, tumor resection, and chemotherapy; nonetheless, it becomes more challenging to treat in advanced and metastatic stages. With the advent of novel treatments such as angiogenesis inhibitors or immuno-checkpoint blockers in recent years, the survival rate of patients with advanced cervical cancer has significantly increased. However, it has not yet reached a satisfactory level. It has been revealed that human papillomavirus (HPV) infection is responsible for more than 90% of cervical cancer cases. However, evidence revealed that monotherapy with anti-HPV vaccines such as ISA101 could not affect tumor growth and progression in patients with HPV-induced cervical cancer. Therefore, combining ISA101 and immune checkpoint blockers or other immunotherapeutic approaches may be more robust and effective than monotherapy with ISA101 or immune checkpoint blockers for treating cervical cancer. This review summarizes the ISA101 properties, advantages and disadvantages. Furthermore, various conducted combination therapies with ISA101 and the effectiveness and challenges of this treatment have been discussed.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Yijun Yu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qingping Li, ; Wenqing Liang,
| | - Qingping Li
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Qingping Li, ; Wenqing Liang,
| |
Collapse
|
7
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
8
|
Zhang L, Yang LL, Wan SC, Yang QC, Xiao Y, Deng H, Sun ZJ. Three-Dimensional Covalent Organic Frameworks with Cross-Linked Pores for Efficient Cancer Immunotherapy. NANO LETTERS 2021; 21:7979-7988. [PMID: 34525805 DOI: 10.1021/acs.nanolett.1c02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the design and synthesis of a series of three-dimensional (3D) covalent organic frameworks (COFs) as immunogenic cell death (ICD) inducers for cancer immunotherapy. Three triple-topic amine building blocks, inactive to inducing ICD, were used to construct three COFs, COF-607, COF-608, and COF-609, with outstanding ICD eliciting efficiency. Mechanism studies revealed that after linking these ICD inert monomers into the COF backbone, the optical properties of these COFs could be systematically tuned to achieve excellent reactive oxygen species (ROS) production performance. This combined with 3D cross-linked pores, mimicking lung structure, favor the exchange and diffusion of oxygen and ROS, leading to excellent inducing ICD efficacy. One member, COF-609, is capable of triggering abscopal and long-lasting immune memory effects in a mouse model of breast cancer with >95% mice survival after being treated with COF-609+αCD47 for 110 days.
Collapse
|
9
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F. DNA vaccination against oncoantigens: A promise. Oncoimmunology 2021; 1:316-325. [PMID: 22737607 PMCID: PMC3382874 DOI: 10.4161/onci.19127] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging evidence that DNA vaccines elicit a protective immune response in rodents, dogs and cancer patients, coupled with the US Food and Drug Administration (FDA) approval of an initial DNA vaccine to treat canine tumors is beginning to close the gap between the optimistic experimental data and their difficult application in a clinical setting. Here we review a series of conceptual and biotechnological advances that are working together to make DNA vaccines targeting molecules that play important roles during cancer progression (oncoantigens) a promise with near-term clinical impact.
Collapse
Affiliation(s)
- Manuela Iezzi
- Aging Research Centre; G. d'Annunzio University; Chieti, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
12
|
Shen L, Zhou T, Fan Y, Chang X, Wang Y, Sun J, Xing L, Jiang H. Recent progress in tumor photodynamic immunotherapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:911-927. [PMID: 32123302 PMCID: PMC7468530 DOI: 10.1038/s41401-020-0372-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems, including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yan-Peng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jin-Rong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Leblay N, Maity R, Hasan F, Neri P. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Front Oncol 2020; 10:636. [PMID: 32432039 PMCID: PMC7214816 DOI: 10.3389/fonc.2020.00636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently emerged as a promising treatment option for multiple myeloma (MM) patients. Profound immune dysfunction and evasion of immune surveillance are known to characterize MM evolution and disease progression. Along with genomic changes observed in malignant plasma cells, the bone marrow (BM) milieu creates a protective environment sustained by the complex interaction of BM stromal cells (BMSCs) and malignant cells that using bidirectional connections and cytokines released stimulate disease progression, drug resistance and enable immune escape. Local immune suppression and T-cell exhaustion are important mediating factors of clinical outcomes and responses to immune-based approaches. Thus, further characterization of the defects present in the immune system of MM patients is essential to develop novel therapies and to repurpose the existing ones. This review seeks to provide insights into the mechanisms that promote tumor escape, cause inadequate T-cell stimulation and impaired cytotoxicity in MM. Furthermore, it highlights current immunotherapies being used to restore adaptive T-cell immune responses in MM and describes strategies created to escape these multiple immune evasion mechanisms.
Collapse
Affiliation(s)
- Noémie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Fajer Hasan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Hua S, Chen F, Wang X, Gou S. Dual-functional conjugates improving cancer immunochemotherapy by inhibiting tubulin polymerization and indoleamine-2,3-dioxygenase. Eur J Med Chem 2020; 189:112041. [PMID: 31954880 DOI: 10.1016/j.ejmech.2020.112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
A series of novel conjugates comprising tublin and IDO inhibitors were designed, synthesized and evaluated for their antiproliferative activity. Among them, HI5, composed of combretastatin A-4 (CA-4) and (D)-1-methyltryptophan (D-MT) by a linker, exhibited the most potent antitumor activity, in particular with higher IC50 value (0.07 μM) than CA-4 (0.21 μM) against HeLa cancer cell line. Mechanism studies indicated that HI5 can inhibit tubulin polymerization and cell migration, cause G2/M phase arrest, concurrent induce apoptosis via the mitochondrial dependent apoptosis pathway and cause reactive oxidative stress generation in HeLa cells. Furthermore, HI5 can inhibit IDO expression and decrease kynurenine production, leading to stimulating T cells activation and proliferation to enhance antitumor immunity in vitro. Interestingly, HI5 can effectively limit the tumor growth in the HeLa xenograft mice models without causing significant loss of body weight. Consequently, such a conjugation can be a potent and safe immunochemotherapeutic method for improving cancer therapy.
Collapse
Affiliation(s)
- Shixian Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Immunotherapy for Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11122009. [PMID: 31842518 PMCID: PMC6966649 DOI: 10.3390/cancers11122009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Despite therapeutic advances over the past decades, multiple myeloma (MM) remains a largely incurable disease with poor prognosis in high-risk patients, and thus new treatment strategies are needed to achieve treatment breakthroughs. MM represents various forms of impaired immune surveillance characterized by not only disrupted antibody production but also immune dysfunction of T, natural killer cells, and dendritic cells, although immunotherapeutic interventions such as allogeneic stem-cell transplantation and dendritic cell-based tumor vaccines were reported to prolong survival in limited populations of MM patients. Recently, epoch-making immunotherapies, i.e., immunomodulatory drug-intensified monoclonal antibodies, such as daratumumab combined with lenalidomide and chimeric antigen receptor T-cell therapy targeting B-cell maturation antigen, have been developed, and was shown to improve prognosis even in advanced-stage MM patients. Clinical trials using other antibody-based treatments, such as antibody drug-conjugate and bispecific antigen-directed CD3 T-cell engager targeting, are ongoing. The manipulation of anergic T-cells by checkpoint inhibitors, including an anti-T-cell immunoglobulin and ITIM domains (TIGIT) antibody, also has the potential to prolong survival times. Those new treatments or their combination will improve prognosis and possibly point toward a cure for MM.
Collapse
|
17
|
A Novel Anti-PD-L1 Vaccine for Cancer Immunotherapy and Immunoprevention. Cancers (Basel) 2019; 11:cancers11121909. [PMID: 31805690 PMCID: PMC6966557 DOI: 10.3390/cancers11121909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in activating cellular and humoral immune responses. DC-based tumor vaccines targeting tumor-associated antigens (TAAs) have been extensively tested and demonstrated to be safe and potent in inducing anti-TAA immune responses in cancer patients. Sipuleucel-T (Provenge), a cancer vaccine of autologous DCs loaded with TAA, was approved by the United States Food and Drug Administration (FDA) for the treatment of castration-resistant prostate cancer. Sipuleucel-T prolongs patient survival, but has little or no effect on clinical disease progression or biomarker kinetics. Due to the overall limited clinical efficacy of tumor vaccines, there is a need to enhance their potency. PD-L1 is a key immune checkpoint molecule and is frequently overexpressed on tumor cells to evade antitumor immune destruction. Repeated administrations of PD-L1 or PD-1 antibodies have induced sustained tumor regression in a fraction of cancer patients. In this study, we tested whether vaccinations with DCs, loaded with a PD-L1 immunogen (PDL1-Vax), are able to induce anti-PD-L1 immune responses. We found that DCs loaded with PDL1-Vax induced anti-PD-L1 antibody and T cell responses in immunized mice and that PD-L1-specific CTLs had cytolytic activities against PD-L1+ tumor cells. We demonstrated that vaccination with PDL1-Vax DCs potently inhibited the growth of PD-L1+ tumor cells. In summary, this study demonstrates for the first time the principle and feasibility of DC vaccination (PDL1-Vax) to actively induce anti-PD-L1 antibody and T cell responses capable of inhibiting PD-L1+ tumor growth. This novel anti-PD-L1 vaccination strategy could be used for cancer treatment and prevention.
Collapse
|
18
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Liu D, Chen B, Mo Y, Wang Z, Qi T, Zhang Q, Wang Y. Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. NANO LETTERS 2019; 19:6964-6976. [PMID: 31518149 DOI: 10.1021/acs.nanolett.9b02306] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunotherapy through stimulating the host immune system has emerged as a powerful therapeutic strategy for various malignant and metastatic tumors in the clinic. However, harnessing the immune system for cancer treatment often fails to obtain a durable response rate due to the poor immunogenicity and the strong immunosuppressive milieu in the tumor site. Herein, a redox-activated liposome was developed from the self-assembly of the porphyrin-phospholipid conjugate and coencapsulation of indoleamine 2,3-dioxygenase (IDO) inhibitor into the interior lumen via remote-loading for simultaneous induction of immunogenic cell death (ICD) and reversing of suppressive tumor microenvironment. The nanoparticle exhibited prolonged blood circulation and enhanced tumor accumulation in the 4T1 tumor-bearing mice after intravenous injection. The nanovesicle could render exponential activation of fluorescence signal and photodynamic therapy (PDT) activity (>100-fold) in response to the high level of intracellular glutathione after endocytosed by tumor cells, thereby achieving effective inhibition of tumor growth and reduced phototoxicity to normal tissues owing to the activatable design of the nanoparticle. More importantly, redox-activated PDT induced intratumoral infiltration of cytotoxic T lymphocytes by induction of ICD of tumor cells. After combining with the IDO inhibitor, the systemic antitumor immune response was further augmented. Hence, we believe that the present nanovesicle strategy has the potential for the synergistic immunotherapy of the metastatic cancers.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Enzyme Inhibitors/therapeutic use
- Female
- Immunogenic Cell Death/drug effects
- Immunotherapy
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Liposomes/therapeutic use
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Nanoparticles/therapeutic use
- Oxidation-Reduction
- Photochemotherapy
- Porphyrins/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Dechun Liu
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yulin Mo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Tong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
20
|
Abstract
Introduction: Although many current cancer therapies are effective, the mortality rate globally is unacceptably high. Cancer remains the second leading cause of death worldwide after heart disease and has caused nearly 10 million deaths in 2018. Additionally, current preventive therapies for cancer are underdeveloped, undermining the quality of life of high-risk individuals. Therefore, new treatment options for targeting cancer are urgently needed. In a recent study, researchers adopted an autologous iPSC-based vaccine to present a broad spectrum of tumor antigens to the immune system and succeeded in orchestrating a strong prophylactic immunity towards multiple types of cancer in mice. Areas covered: In this review, we provide an overview of how cancer develops, the role of immune surveillance in cancer progression, the current status and challenges of cancer immunotherapy as well as the genetic overlap between pluripotent stem cells and cancer cells. Finally, we discuss the rationale for an autologous iPSC-based vaccine and its applications in murine cancer models. Expert opinion: The autologous iPSC-based vaccine is a promising preventive and therapeutic strategy for fighting various types of cancers. Continuing efforts and clinical/translational follow-up studies may bring an autologous iPSC-based cancer vaccination approach from bench to bedside.
Collapse
Affiliation(s)
- Lin Wang
- Cardiovascular Institute, Stanford University School of Medicine , Stanford , CA , USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford , CA , USA
| | - Mark D Pegram
- Stanford Women's Cancer Center, Stanford University School of Medicine , Stanford , CA , USA.,Department of Medicine, Stanford University , Stanford , CA , USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine , Stanford , CA , USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford , CA , USA.,Department of Medicine, Stanford University , Stanford , CA , USA.,Department of Radiology, Stanford University , Stanford , CA , USA
| |
Collapse
|
21
|
Barhoumi M, Koutsoni OS, Dotsika E, Guizani I. Leishmania infantum LeIF and its recombinant polypeptides induce the maturation of dendritic cells in vitro: An insight for dendritic cells based vaccine. Immunol Lett 2019; 210:20-28. [PMID: 30998957 DOI: 10.1016/j.imlet.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
We previously showed that recombinant Leishmania infantum eukaryotic initiation factor (LieIF) was able to induce the secretion of cytokines IL-12, IL-10 and TNF-α by human monocytes. In this study, we explored in vitro the potential of LieIF to induce phenotypic maturation and functional differentiation of murine bone-marrow derived dendritic cells (BM-DCs). Moreover, in order to identify potential immunnomodulatory regions of LieIF, eight recombinant overlapping protein fragments covering the whole amino acid sequence of protein, were constructed and assessed in vitro for their ability to induce maturation of BM-DCs. Our data showed that LieIF and some of its recombinant polypeptides were able to induce elevated expression of CD40, CD80 and CD86 co-stimulatory molecules with concurrent IL-12 production. Moreover, we used an in vivo experimental model of cutaneous leishmaniasis consisted of susceptible Leishmania major-infected BALB/c mice and we demonstrated that LieIF-pulsed-BM-DCs adoptively transferred in mice were capable to confer protection against a high dose parasite challenge. This study further describes the immunomodulatory properties of LieIF and its polypeptides bringing relevant information for their exploitation as candidate molecules for vaccine development against leishmaniasis.
Collapse
Affiliation(s)
- Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| | - Olga S Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vass Sofias Av, Athens 11521, Greece.
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP 74, 1002 Tunis-Belvedère, Tunisia.
| |
Collapse
|
22
|
Kaufmann J, Wentzensen N, Brinker TJ, Grabe N. Large-scale in-silico identification of a tumor-specific antigen pool for targeted immunotherapy in triple-negative breast cancer. Oncotarget 2019; 10:2515-2529. [PMID: 31069014 PMCID: PMC6493464 DOI: 10.18632/oncotarget.26808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Since the advent of cetuximab, clinical cancer treatment has evolved from the standard, relatively nonspecific chemo- and radiotherapy with significant cytotoxic side effects towards immunotherapeutic approaches with selective, target-mechanism-based effects. Antibody therapies as the most successful form of cancer immunotherapy led to approved treatments for specific cancer types with increased patient survival. Thus, the identification of tumor antigens with high immunogenicity is in central focus now. In this study, we applied computational methods to comprehensively discover overexpressed molecular targets with high therapeutic relevance for clinical, immunotherapeutic cancer treatment in triple-negative breast cancer (TNBC). By actively modeling potential negative side effects utilizing expression data of 29 different, normal human tissues, we were able to develop a highly-specific coverage of TNBC patients with RNA targets. We identified here more than 400 potential tumor-specific antigens suitable for targeted therapy, including several already identified as potential targets for TNBC and other solid tumors. A specific cocktail of MAGEB4, CT83, TLX3, ACTL8, PRDM13 achieved almost 94% patient coverage in TNBC. Overall, these results show that our approach can identify and prioritize TNBC targets suitable for targeted therapy. Therefore, our method has the potential to lead to new and more effective immunotherapeutic cancer treatment.
Collapse
Affiliation(s)
- Jessica Kaufmann
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany.,Medical Oncology Department, Universitätsklinik Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Nicolas Wentzensen
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Clinical Genetics Branch, NCI Shady Grove, Bethesda, Maryland, USA
| | - Titus J Brinker
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany.,Medical Oncology Department, Universitätsklinik Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
23
|
Ortega-Pinazo J, Díaz T, Martínez B, Jiménez A, Pinto-Medel MJ, Ferro P. Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank. Cell Tissue Bank 2019; 20:255-265. [PMID: 30903409 DOI: 10.1007/s10561-019-09764-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Human samples are commonly collected and long-term stored in biobanks for current and future analyses. Even though techniques for freezing human blood are well established, the storage time can compromise the cell viability as well as the yield and quality of nucleic acids (RNA and DNA) extracted from them. In this study, a protocol to obtain peripheral blood mononuclear cells (PBMCs) from 70 subjects, which were stored at - 196 °C from EDTA tubes for a long-term, was assessed. In parallel; a protocol to obtain DNA from the same subjects, which were stored at - 80 °C from citrate tubes, was also studied. Samples stored from 2008 to 2012 were studied and the results obtained showed that there were no statistically significant differences in the RNA or DNA extracted in terms of purity, integrity and functionality The freezing protocol used by the Málaga Biobank shows that viable PBMCs and DNA could be kept for a period of, at least, 10 years, with a high quality and performance. Furthermore, RNA extracted from these PBMCs presents also a good quality and performance. Therefore, the samples frozen according to the conditions of the protocols assessed in this study could be optimal for biomedical research.
Collapse
Affiliation(s)
- J Ortega-Pinazo
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - T Díaz
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - B Martínez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - A Jiménez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - M J Pinto-Medel
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - P Ferro
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain.
| |
Collapse
|
24
|
Mahmoodi S, Nezafat N. In SilicoDesigning a Novel Multi-epitope DNA Vaccine against Anti-apoptotic Proteins in Tumor Cells. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181127142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cancer therapy has been known as one of the most important challenges in the world. Various therapeutic methods such as cancer immunotherapy are used to eradicate tumor cells. Vaccines have an important role among different cancer immunotherapeutic approaches. In the field of vaccine production, bioinformatics approach is considered as a useful tool to design multi-epitope cancer vaccines, mainly for selecting immunodominant Cytotoxic T Lymphocytes (CTL) and Helper T Lymphocytes (HTL) epitopes.Objective:Generally, to design efficient multi-epitope cancer vaccines, Tumor-Specific Antigens (TSA) are targeted. In the context of DNA-based cancer vaccines, they contain genes that code tumor antigens and are delivered to host by different methods.Methods:In this study, the anti-apoptotic proteins (BCL2, BCL-X, survivin) that are over-expressed in different tumor cells were selected for CTL and HTL epitopes prediction through different servers such as RANKPEP, CTLpred, and BCPREDS.Results:Three regions from BCL2 and one region from BCL-X were selected as CTL epitopes and two segments from survivin were defined as HTL epitopes. In addition, β-defensin was used as a proper adjuvant to enhance vaccine efficacy. The aforesaid segments were joined together by appropriate linkers, and some important properties of designed vaccine such as antigenicity, allergenicity and physicochemical characteristics were determined by various bioinformatics servers.Conclusion:Based on the bioinformatics results, the physicochemical and immunological features showed that the designed vaccine construct can be used as an efficient cancer vaccine after its efficacy was confirmed by in vitro and in vivo immunological assays.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Chen Q, Chen M, Liu Z. Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chem Soc Rev 2019; 48:5506-5526. [DOI: 10.1039/c9cs00271e] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy by educating or stimulating patients’ own immune systems to attack cancer cells has demonstrated promising therapeutic responses in the clinic.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
26
|
Wu X, Yin Z, McKay C, Pett C, Yu J, Schorlemer M, Gohl T, Sungsuwan S, Ramadan S, Baniel C, Allmon A, Das R, Westerlind U, Finn MG, Huang X. Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice. J Am Chem Soc 2018; 140:16596-16609. [PMID: 30398345 DOI: 10.1021/jacs.8b08473] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mucin-1 (MUC1) is a highly attractive antigen for the development of anticancer vaccines. However, in human clinical trials of multiple MUC1 based vaccines, despite the generation of anti-MUC1 antibodies, the antibodies often failed to exhibit much binding to tumor presumably due to the challenges in inducing protective immune responses in the immunotolerant environment. To design effective MUC1 based vaccines functioning in immunotolerant hosts, vaccine constructs were first synthesized by covalently linking the powerful bacteriophage Qβ carrier with MUC1 glycopeptides containing 20-22 amino acid residues covering one full length of the tandem repeat region of MUC1. However, IgG antibodies elicited by these first generation constructs in tolerant human MUC1 transgenic (Tg) mice did not bind tumor cells strongly. To overcome this, a peptide array has been synthesized. By profiling binding selectivities of antibodies, the long MUC1 glycopeptide was found to contain immunodominant but nonprotective epitopes. Critical insights were obtained into the identity of the key protective epitope. Redesign of the vaccine focusing on the protective epitope led to a new Qβ-MUC1 construct, which was capable of inducing higher levels of anti-MUC1 IgG antibodies in MUC1.Tg mice to react strongly with and kill a wide range of tumor cells compared to the construct containing the gold standard protein carrier, i.e., keyhole limpet hemocyanin. Vaccination with this new Qβ-MUC1 conjugate led to significant protection of MUC1.Tg mice in both metastatic and solid tumor models. The antibodies exhibited remarkable selectivities toward human breast cancer tissues, suggesting its high translational potential.
Collapse
Affiliation(s)
| | | | - Craig McKay
- School of Chemistry & Biochemistry and School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany.,Department of Chemistry , Umeå University , 901 87 Umeå , Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany
| | - Manuel Schorlemer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany
| | - Trevor Gohl
- Department of Physiology , Michigan State University , East Lansing , Michigan 48824 , United States
| | | | - Sherif Ramadan
- Chemistry Department, Faculty of Science , Benha University , Benha , Qaliobiya 13518 , Egypt
| | | | | | - Rupali Das
- Department of Physiology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 44227 Dortmund , Germany.,Department of Chemistry , Umeå University , 901 87 Umeå , Sweden
| | - M G Finn
- School of Chemistry & Biochemistry and School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | |
Collapse
|
27
|
The Application of Nanoparticle-Based Drug Delivery Systems in Checkpoint Blockade Cancer Immunotherapy. J Immunol Res 2018; 2018:3673295. [PMID: 30406152 PMCID: PMC6186339 DOI: 10.1155/2018/3673295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor is the most serious threat to human beings. Although war against cancer has been launched over forty years, cancer treatment is still far away from being satisfactory. Immunotherapy, especially checkpoint blockade immunotherapy, is a rising star that shows a promising future. To fulfill the requirement of depleting primary tumor and inhibiting tumor metastasis and recurrence, many researchers combined checkpoint blockade immunotherapy with other treatment strategies to extend the treatment outcome. Photodynamic therapy could induce immunogenic cell death, and checkpoint blockade could further accelerate the immunity; therefore, combining these two strategies publishes many papers. Additionally, photothermal therapy and immunotherapy were also utilized for combining with checkpoint blockade, which were also reviewed in this paper. Furthermore, antibodies, siRNA, and small molecule inhibitors are developed to block the checkpoint; therefore, we categorized the papers into three sections, combination nanoparticles with checkpoint blockade antibody, combination nanoparticles with checkpoint blockade siRNA, and combination nanoparticles with small molecule checkpoint inhibitors, and related researches were summarized. In conclusion, the combination nanoparticle with checkpoint blockade cancer immunity is a promising direction that may fulfill the requirement of cancer treatment.
Collapse
|
28
|
Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24:2137-2151. [PMID: 29853732 PMCID: PMC5974576 DOI: 10.3748/wjg.v24.i20.2137] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, mostly due to its resistance to treatment. Of these, checkpoint inhibitors (CPI) are inefficient when used as monotherapy, except in the case of a rare subset of tumors harboring microsatellite instability (< 2%). This inefficacy mainly resides in the low immunogenicity and non-inflamed phenotype of PDAC. The abundant stroma generates a hypoxic microenvironment and drives the recruitment of immunosuppressive cells through cancer-associated-fibroblast activation and transforming growth factor β secretion. Several strategies have recently been developed to overcome this immunosuppressive microenvironment. Combination therapies involving CPI aim at increasing tumor immunogenicity and promoting the recruitment and activation of effector T cells. Ongoing studies are therefore exploring the association of CPI with vaccines, oncolytic viruses, MEK inhibitors, cytokine inhibitors, and hypoxia- and stroma-targeting agents. Adoptive T-cell transfer is also under investigation. Moreover, translational studies on tumor tissue and blood, prior to and during treatment may lead to the identification of biomarkers with predictive value for both clinical outcome and response to immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Cindy Neuzillet
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| |
Collapse
|
29
|
In silico analysis and in vitro evaluation of immunogenic and immunomodulatory properties of promiscuous peptides derived from Leishmania infantum eukaryotic initiation factor. Bioorg Med Chem 2017; 25:5904-5916. [PMID: 28974324 DOI: 10.1016/j.bmc.2017.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/16/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022]
Abstract
It is generally considered as imperative the ability to control leishmaniasis through the development of a protective vaccine capable of inducing long-lasting and protective cell-mediated immune responses. In this current study, we demonstrated potential epitopes that bind to H2 MHC class I and II molecules by conducting the in silico analysis of Leishmania infantum eukaryotic Initiation Factor (LieIF) protein, using online available algorithms. Moreover, we synthesized five peptides (16-18 amino acids long) which are part of the N-terminal portion of LieIF and contain promising MHC class I and II-restricted epitopes and afterwards, their predicted immunogenicity was evaluated in vitro by monitoring peptide-specific T-cell responses. Additionally, the immunomodulatory properties of these peptides were investigated in vitro by exploring their potential of inducing phenotypic maturation and functional differentiation of murine Bone-Marrow derived Dendritic Cells (BM-DCs). It was revealed by our data that all the synthetic peptides predicted for H2 alleles; present the property of immunogenicity. Among the synthetic peptides which contained T-cell epitopes, the peptide 52-68 aa (LieIF_2) exhibited immunomodulatory properties with the larger potential. LieIF_2-pulsed BM-DCs up-regulated the expression of the co-stimulatory surface molecules CD80 and CD86, as well as the production of the proinflammatory cytokine TNF-α and of the Th1-polarizing cytokines IL-12 and IFN-γ. The aforementioned data suggest that selected parts of LieIF could be used to develop innovative subunit protective vaccines able to induce effective immunity mediated by MHC class I-restricted as well as class II-restricted T-cell responses.
Collapse
|
30
|
Desai R, Suryadevara CM, Batich KA, Farber SH, Sanchez-Perez L, Sampson JH. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2017; 21:133-45. [PMID: 27223671 DOI: 10.1080/14728214.2016.1186643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Immunotherapy for brain cancer has evolved dramatically over the past decade, owed in part to our improved understanding of how the immune system interacts with tumors residing within the central nervous system (CNS). Glioblastoma (GBM), the most common primary malignant brain tumor in adults, carries a poor prognosis (<15 months) and only few advances have been made since the FDA's approval of temozolomide (TMZ) in 2005. Importantly, several immunotherapies have now entered patient trials based on promising preclinical data, and recent studies have shed light on how GBM employs a slew of immunosuppressive mechanisms that may be targeted for therapeutic gain. Altogether, accumulating evidence suggests immunotherapy may soon earn its keep as a mainstay of clinical management for GBM. AREAS COVERED Here, we review cancer vaccines, checkpoint inhibitors, adoptive T-cell immunotherapy, and oncolytic virotherapy. EXPERT OPINION Checkpoint blockade induces antitumor activity by preventing negative regulation of T-cell activation. This platform, however, depends on an existing frequency of tumor-reactive T cells. GBM tumors are exceptionally equipped to prevent this, occupying low levels of antigen expression and elaborate mechanisms of immunosuppression. Therefore, checkpoint blockade may be most effective when used in combination with a DC vaccine or adoptively transferred tumor-specific T cells generated ex vivo. Both approaches have been shown to induce endogenous immune responses against tumor antigens, providing a rationale for use with checkpoint blockade where both primary and secondary responses may be potentiated.
Collapse
Affiliation(s)
- Rupen Desai
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Carter M Suryadevara
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Kristen A Batich
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - S Harrison Farber
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA
| | - Luis Sanchez-Perez
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
31
|
Zhang H, Zhang S. The expression of Foxp3 and TLR4 in cervical cancer: association with immune escape and clinical pathology. Arch Gynecol Obstet 2016; 295:705-712. [PMID: 28013346 DOI: 10.1007/s00404-016-4277-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the expression of forkhead/winged helix transcription factor p3(Foxp3) and toll-like receptor 4(TLR4) in cervical cancer and evaluate their clinical significance. METHODS Foxp3 and TLR4 protein expression was detected in 105 cervical tissue specimens including cervical cancer, cervical intraepithelial neoplasia (CIN), and healthy control samples using immunohistochemistry. Their relationship with clinicopathologic parameters was also determined. RESULTS Foxp3 and TLR4 had high levels of expression in cervical cancer cells (91.43 and 82.86%, respectively). Foxp3 levels were significantly associated with FIGO stage (P < 0.001) and tumor size (P = 0.034), while TLR4 levels were associated with clinical FIGO stage (P = 0.033) and lymph node metastasis (P = 0.031). Their expression levels were not correlated with age, histologic type, or differentiation (all P > 0.05). These findings suggest that Foxp3 and TLR4 may be useful prognostic indicators of cervical carcinoma. In addition, there were significant positive relationships between Foxp3 and TLR4 expression (r = 0.703, P < 0.001), which shows a possible link and synergistic role of Foxp3 and TLR4 in promoting the immune escape of cervical cancer. CONCLUSIONS Foxp3 and TLR4 may be useful biomarkers for patient prognosis and cervical cancer prediction and treatment.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao St, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
32
|
Angel S, von Briesen H, Oh YJ, Baller MK, Zimmermann H, Germann A. Toward Optimal Cryopreservation and Storage for Achievement of High Cell Recovery and Maintenance of Cell Viability and T Cell Functionality. Biopreserv Biobank 2016; 14:539-547. [PMID: 27792414 PMCID: PMC5180082 DOI: 10.1089/bio.2016.0046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cryopreservation of biological materials such as cells, tissues, and organs is a prevailing topic of high importance. It is employed not only in many research fields but also in the clinical area. Cryopreservation is of great importance for reproductive medicine and clinical studies, as well as for the development of vaccines. Peripheral blood mononuclear cells (PBMCs) are commonly used in vaccine research where comparable and reliable results between different research institutions and laboratories are of high importance. Whereas freezing and thawing processes are well studied, controlled, and standardized, storage conditions are often disregarded. To close this gap, we investigated the influence of suboptimal storage conditions during low-temperature storage on PBMC viability, recovery, and T cell functionality. For this purpose, PBMCs were isolated and exposed with help of a robotic system in a low-temperature environment from 0 up to 350 temperature fluctuation cycles in steps of 50 cycles to simulate storage conditions in large biorepositories with sample storage, removal, and sorting functions. After the simulation, the viability, recovery, and T cell functionality were analyzed to determine the number of temperature rises, which ultimately lead to significant cell damage. All studied parameters decreased with increasing number of temperature cycles. Sometimes after as little as only 50 temperature cycles, a significant effect was observed. These results are very important for all fields in which cell cryopreservation is employed, particularly for clinical and multicenter studies wherein the comparability and reproducibility of results play a crucial role. To obtain reliable results and to maintain the quality of the cells, not only the freezing and thawing processes but also the storage conditions should be controlled and standardized, and any deviations should be documented.
Collapse
Affiliation(s)
- Stephanie Angel
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Hagen von Briesen
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Young-Joo Oh
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| | - Marko K Baller
- 2 University of Applied Sciences Kaiserslautern , Amerikastraße, Zweibruecken, Germany
| | - Heiko Zimmermann
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany .,3 Department of Molecular and Cellular Biotechnology, Saarland University , Saarbruecken, Germany
| | - Anja Germann
- 1 Fraunhofer Institute for Biomedical Engineering , Sulzbach, Germany
| |
Collapse
|
33
|
Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. J Am Chem Soc 2016; 138:12502-10. [PMID: 27575718 DOI: 10.1021/jacs.6b06663] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) can destroy local tumors and minimize normal tissue damage, but is ineffective at eliminating metastases. Checkpoint blockade immunotherapy has enjoyed recent success in the clinic, but only elicits limited rates of systemic antitumor response for most cancers due to insufficient activation of the host immune system. Here we describe a treatment strategy that combines PDT by a new chlorin-based nanoscale metal-organic framework (nMOF), TBC-Hf, and a small-molecule immunotherapy agent that inhibits indoleamine 2,3-dioxygenase (IDO), encapsulated in the nMOF channels to induce systemic antitumor immunity. The synergistic combination therapy achieved effective local and distant tumor rejection in colorectal cancer models. We detected increased T cell infiltration in the tumor microenvironment after activation of the immune system with the combination of IDO inhibition by the small-molecule immunotherapy agent and immunogenic cell death induced by PDT. We also elucidated the underlying immunological mechanisms and revealed compensatory roles of neutrophils and B cells in presenting tumor-associated antigens to T cells in this combination therapy. We believe that nMOF-enabled PDT has the potential to significantly enhance checkpoint blockade cancer immunotherapy, affording clinical benefits for the treatment of many difficult-to-treat cancers.
Collapse
Affiliation(s)
- Kuangda Lu
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chunbai He
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Nining Guo
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States.,Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago , Chicago, Illinois 60637, United States
| | - Christina Chan
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago , Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest 2016; 45:619-40. [DOI: 10.1080/08820139.2016.1197241] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma. Oncotarget 2016; 6:25932-42. [PMID: 26305550 PMCID: PMC4694876 DOI: 10.18632/oncotarget.4577] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Fibroblast activation protein α (FAPα) is a potential target for cancer therapy. However, elimination of FAPα+ fibroblasts activates secretion of IFN-γ and TNF-α. IFN-γ can in turn induce expression indolamine-2,3-dioxygenase (IDO), thereby contributing to immunosuppression, while TNF-α can induce EMT. These two reactive effects would limit the efficacy of a tumor vaccine. We found that curcumin can inhibit IDO expression and TNF-α-induced EMT. Moreover, FAPαc vaccine and CpG combined with curcumin lavage inhibited tumor growth and prolonged the survival of mice implanted with melanoma cells. The combination of FAPαc vaccine, CpG and curcumin stimulated FAPα antibody production and CD8+ T cell-mediated killing of FAPα-expressing stromal cells without adverse reactive effects. We suggest a combination of curcumin and FAPαc vaccine for melanoma therapy.
Collapse
|
36
|
Bobbala S, Tamboli V, McDowell A, Mitra AK, Hook S. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines. AAPS JOURNAL 2015; 18:261-9. [PMID: 26589309 DOI: 10.1208/s12248-015-9843-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.
Collapse
Affiliation(s)
- Sharan Bobbala
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Viral Tamboli
- School of Pharmacy, UMKC, Kansas City, Missouri, USA
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Ashim K Mitra
- School of Pharmacy, UMKC, Kansas City, Missouri, USA
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
37
|
He H, Tu X, Zhang J, Acheampong DO, Ding L, Ma Z, Ren X, Luo C, Chen Z, Wang T, Xie W, Wang M. A novel antibody targeting CD24 and hepatocellular carcinoma in vivo by near-infrared fluorescence imaging. Immunobiology 2015; 220:1328-36. [PMID: 26255089 DOI: 10.1016/j.imbio.2015.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/13/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
Liver cancer is one of the most common malignant cancers worldwide. The poor response of liver cancer to chemotherapy has whipped up the interest in targeted therapy with monoclonal antibodies because of its potential efficiency. One promising target is cluster of differentiation 24 (CD24), which is known to beover-expressed on hepatocellular carcinoma (HCC), providing prospect for HCC targeted diagnosis and therapy. In this study we developed a novel CD24 targeted monoclonal antibody G7mAb based on hybridoma technology and then generated a single-chain antibodyfragment (scFv) G7S. Firstly, ELISA, western blot, and flow cytometry assays demonstrated specific binding of CD24 by G7mAb and G7S. Further, G7mAb was demonstrated to have similar binding capacity as ML5 (a commercial Anti-CD24 Mouse Antibody) inimmunohistochemical assay. Further more, a near-infrared fluorescent dye multiplex probe amplification (MPA) was conjugated to G7mAb and G7S to form G7mAb-MPA and G7S-MPA. The near-infrared fluorescence imaging revealed that G7mAb and G7S aggregate in CD24+Huh7 hepatocellular carcinoma xenograft tissuevia specific binding to CD24 in vivo. In conclussion, G7mAb and G7S were tumor targeted therapeutic and diagnostic potentials in vitro and in vivo as anticipated.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaojie Tu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Desmond Omane Acheampong
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li Ding
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaoxiong Ma
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xueyan Ren
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen Luo
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tong Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Xie
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
38
|
Li Y, Zhou W, Du J, Jiang C, Xie X, Xue T, He Y. Generation of cytotoxic T lymphocytes specific for native or modified peptides derived from the epidermal growth factor receptor pathway substrate 8 antigen. Cancer Immunol Immunother 2015; 64:259-69. [PMID: 25376540 PMCID: PMC11028780 DOI: 10.1007/s00262-014-1631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
The ideal tumor antigen for the development of a cancer immunotherapy is one that is expressed only in tumor cells. The epidermal growth factor receptor pathway substrate 8 gene (Eps8) might be an effective antigen for cancer immunotherapy as it is overexpressed in a variety of cancer cells but not in normal tissues. In this study, the potential utility of an Eps8-derived immunotherapy was tested in vitro and in vivo. Three computer-based algorithms were used to design eight Eps8 native epitopes with potentially high binding affinity to the HLA-A2.1 molecule, which is found at a high frequency in the Chinese population. Of these eight, three peptides with a moderate affinity to the HLA-A2.1 molecule were modified at anchor residue positions to achieve stronger immunogenicity. These four modified peptides displayed stronger binding affinity to HLA-A2.1 molecules on T2 cells and a lower dissociation rate. In functional assays with human PBMCs in vitro and in HLA-A2.1/K(b) transgenic mice in vivo, CTLs primed by each native and modified peptide secreted IFN-γ and were toxic to cancer cells from a variety of tissue types in an HLA-A2.1-restricted and Eps8-specific manner. p101-109-2L and p276-284-1Y9V were superior to other modified and native epitopes both in vitro and in vivo. These results indicate that employing the native and modified epitopes identified here in Eps8-based immunotherapy for HLA-A2.1 positive cancer patients may result in efficient anticancer immune responses for diverse tumor types.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/immunology
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Mice
- Mice, Transgenic
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Stability
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Chunjun Jiang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Tongyuan Xue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| |
Collapse
|
39
|
Carmon L, Avivi I, Kovjazin R, Zuckerman T, Dray L, Gatt ME, Or R, Shapira MY. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. Br J Haematol 2014; 169:44-56. [DOI: 10.1111/bjh.13245] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Lior Carmon
- Vaxil BioTherapeutics Ltd.; Nes-Ziona Israel
| | - Irit Avivi
- Department of Haematology; Rambam Medical Campus; Haifa Israel
- Technion; Israel Institute of Technology; Haifa Israel
| | | | - Tsila Zuckerman
- Department of Haematology; Rambam Medical Campus; Haifa Israel
- Technion; Israel Institute of Technology; Haifa Israel
| | - Lillian Dray
- Department of Bone Marrow Transplantation & Cancer Immunotherapy; Hadassah Medical Centre; Jerusalem Israel
| | - Moshe E. Gatt
- Department of Bone Marrow Transplantation & Cancer Immunotherapy; Hadassah Medical Centre; Jerusalem Israel
| | - Reuven Or
- Department of Bone Marrow Transplantation & Cancer Immunotherapy; Hadassah Medical Centre; Jerusalem Israel
| | - Michael Y. Shapira
- Department of Bone Marrow Transplantation & Cancer Immunotherapy; Hadassah Medical Centre; Jerusalem Israel
| |
Collapse
|
40
|
TLR-9 agonist immunostimulatory sequence adjuvants linked to cancer antigens. Methods Mol Biol 2014; 1139:337-44. [PMID: 24619691 DOI: 10.1007/978-1-4939-0345-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The primary goal of cancer vaccines is to elicit tumor-specific cytotoxic T lymphocytes (CTL) capable of eradicating established tumors and preventing/eradicating their metastatic spread. CpG oligonucleotides (CpG ODN) activate and support the maturation of immune cells, including plasmacytoid dendritic cells and B lymphocytes, that express Toll-like receptor 9 (TLR9) and are capable of presenting tumor antigens to T cells. Thus, CpG ODN are effective vaccine adjuvants. The adjuvant activity of CpG ODN is improved by maintaining them in close physical and temporal proximity to the co-administered vaccine antigen. This work describes a method of chemically conjugating CpG ODN to antigens and/or cancer cells that improve the resulting CTL response.
Collapse
|
41
|
Lin R, Chen L, Chen G, Hu C, Jiang S, Sevilla J, Wan Y, Sampson JH, Zhu B, Li QJ. Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 2014; 124:5352-67. [PMID: 25347474 DOI: 10.1172/jci76561] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
CD8(+) cytotoxic T lymphocytes (CTLs) have potent antitumor activity and therefore are leading candidates for use in tumor immunotherapy. The application of CTLs for clinical use has been limited by the susceptibility of ex vivo-expanded CTLs to become dysfunctional in response to immunosuppressive microenvironments. Here, we developed a microRNA-targeting (miRNA-targeting) approach that augments CTL cytotoxicity and preserves immunocompetence. Specifically, we screened for miRNAs that modulate cytotoxicity and identified miR-23a as a strong functional repressor of the transcription factor BLIMP-1, which promotes CTL cytotoxicity and effector cell differentiation. In a cohort of advanced lung cancer patients, miR-23a was upregulated in tumor-infiltrating CTLs, and expression correlated with impaired antitumor potential of patient CTLs. We determined that tumor-derived TGF-β directly suppresses CTL immune function by elevating miR-23a and downregulating BLIMP-1. Functional blocking of miR-23a in human CTLs enhanced granzyme B expression, and in mice with established tumors, immunotherapy with just a small number of tumor-specific CTLs in which miR-23a was inhibited robustly hindered tumor progression. Together, our findings provide a miRNA-based strategy that subverts the immunosuppression of CTLs that is often observed during adoptive cell transfer tumor immunotherapy and identify a TGF-β-mediated tumor immune-evasion pathway.
Collapse
|
42
|
The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 2014; 6:1953-85. [PMID: 25268164 PMCID: PMC4276952 DOI: 10.3390/cancers6041953] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
The current standard of care for glioblastoma (GBM) is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ). As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC) vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII) vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care.
Collapse
|
43
|
Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, García MG, Aquino JB, Gonzalez Campaña A, Podestá G, Terres M, Andriani O, Alaniz L, Mazzolini G. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One 2014; 9:e107944. [PMID: 25238610 PMCID: PMC4169605 DOI: 10.1371/journal.pone.0107944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.
Collapse
Affiliation(s)
- Manglio Rizzo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Flavia Piccioni
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Estanislao Peixoto
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana G. García
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Jorge B. Aquino
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Ariel Gonzalez Campaña
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Gustavo Podestá
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcelo Terres
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Oscar Andriani
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- CIT NOBA, Universidad Nacional del Noroeste de la Pcia de Bs. As (UNNOBA), Junín, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| |
Collapse
|
44
|
Lineweaver CH, Davies PCW, Vincent MD. Targeting cancer's weaknesses (not its strengths): Therapeutic strategies suggested by the atavistic model. Bioessays 2014; 36:827-35. [PMID: 25043755 DOI: 10.1002/bies.201400070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation.
Collapse
Affiliation(s)
- Charles H Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics and the Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
45
|
Everson RG, Graner MW, Gromeier M, Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS, Friedman AH, Bigner DD, Sampson JH. Immunotherapy against angiogenesis-associated targets: evidence and implications for the treatment of malignant glioma. Expert Rev Anticancer Ther 2014; 8:717-32. [DOI: 10.1586/14737140.8.5.717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Della Bella S, Clerici M, Villa ML. Disarming dendritic cells: a tumor strategy to escape from immune control? Expert Rev Clin Immunol 2014; 3:411-22. [DOI: 10.1586/1744666x.3.3.411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Lollini PL, Cavallo F, De Giovanni C, Nanni P. Preclinical vaccines against mammary carcinoma. Expert Rev Vaccines 2014; 12:1449-63. [DOI: 10.1586/14760584.2013.845530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Shaw VE, Naisbitt DJ, Costello E, Greenhalf W, Park BK, Neoptolemos JP, Middleton GW. Current status of GV1001 and other telomerase vaccination strategies in the treatment of cancer. Expert Rev Vaccines 2014; 9:1007-16. [DOI: 10.1586/erv.10.92] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Li X, Wang Y, Zhao Y, Yang H, Tong A, Zhao C, Shi H, Li Y, Wang Z, Wei Y. Immunotherapy of tumor with vaccine based on basic fibroblast growth factor-activated fibroblasts. J Cancer Res Clin Oncol 2013; 140:271-80. [DOI: 10.1007/s00432-013-1547-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
|
50
|
Uchtenhagen H, Abualrous ET, Stahl E, Allerbring EB, Sluijter M, Zacharias M, Sandalova T, van Hall T, Springer S, Nygren PÅ, Achour A. Proline substitution independently enhances H-2D(b) complex stabilization and TCR recognition of melanoma-associated peptides. Eur J Immunol 2013; 43:3051-60. [PMID: 23939911 DOI: 10.1002/eji.201343456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/08/2013] [Accepted: 08/08/2013] [Indexed: 11/08/2022]
Abstract
The immunogenicity of H-2D(b) (D(b)) restricted epitopes can be significantly increased by substituting peptide position 3 to a proline (p3P). The p3P modification enhances MHC stability without altering the conformation of the modified epitope allowing for T-cell cross-reactivity with the native peptide. The present study reveals how specific interactions between p3P and the highly conserved MHC heavy chain residue Y159 increase the stability of D(b) in complex with an optimized version of the melanoma-associated epitope gp10025-33 . Furthermore, the p3P modification directly increased the affinity of the D(b)/gp10025-33 -specific T-cell receptor (TCR) pMel. Surprisingly, the enhanced TCR binding was independent from the observed increased stability of the optimized D(b)/gp10025-33 complex and from the interactions formed between p3P and Y159, indicating a direct effect of the p3P modification on TCR recognition.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska Insitutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|