1
|
Zhou Z, Sicairos B, Zhou J, Du Y. Proteomic Analysis Reveals Major Proteins and Pathways That Mediate the Effect of 17-β-Estradiol in Cell Division and Apoptosis in Breast Cancer MCF7 Cells. J Proteome Res 2024; 23:4835-4848. [PMID: 39392593 PMCID: PMC11536429 DOI: 10.1021/acs.jproteome.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Despite extensive research, the genes/proteins and pathways responsible for the physiological effects of estrogen remain elusive. In this study, we determined the effect of estrogen on global protein expression in breast cancer MCF7 cells using a proteomic method. The expression of 77 cytosolic, 74 nuclear, and 81 membrane/organelle proteins was significantly altered by 17-β-estradiol (E2). Protein enrichment analyses suggest that E2 may stimulate cell division primarily by promoting the G1 to S phase transition and advancing the G2/M checkpoint. The effect of E2 on cell survival was complex, as it could simultaneously enhance and inhibit apoptosis. Bioinformatics analysis suggests that E2 may enhance apoptosis by promoting the accumulation of the pore-forming protein Bax in the mitochondria and inhibit apoptosis by activating the PI3K/AKT/mTOR signaling pathway. We verified the activation of the PI3K signaling and the accumulation of Bax in the membrane/organelle fraction in E2-treated cells using immunoblotting. Treatment of MCF7 cells with E2 and the PI3K inhibitor Ly294002 significantly enhanced apoptosis compared to those treated with E2 alone, suggesting that combining estrogen with a PI3K inhibitor could be a promising strategy for treating ERα-positive breast cancer. Interestingly, many of the E2-upregulated proteins contained the HEAT, KH, and RRM domains.
Collapse
Affiliation(s)
| | | | | | - Yuchun Du
- Department of Biological
Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Zhang J, Li S, Kuang C, Shen Y, Yu H, Chen F, Tang R, Mao S, Lv L, Qi M, Zhang J, Yuan K. CD74 + fibroblasts proliferate upon mechanical stretching to promote angiogenesis in keloids. FASEB J 2024; 38:e70103. [PMID: 39400419 DOI: 10.1096/fj.202401302r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The healing of human skin wounds is susceptible to perturbation caused by excessive mechanical stretching, resulting in enlarged scars, hypertrophic scars, or even keloids in predisposed individuals. Keloids are fibro-proliferative scar tissues that extend beyond the initial wound boundary, consisting of the actively progressing periphery and the quiescent center. The stretch-associated outgrowth and enhanced angiogenesis are two features of the periphery of keloids. However, which cell population is responsible for transducing the mechanical stimulation to the progression of keloids remains unclear. Herein, through integrative analysis of single-cell RNA sequencing of keloids, we identified CD74+ fibroblasts, a previously unappreciated subset of fibroblasts with pro-angiogenic and stretch-induced proliferative capacities, as a key player in stretch-induced progression of keloids. Immunostaining of keloid cryosections depicted a predominant distribution of CD74+ fibroblasts in the periphery, interacting with the vasculature. In vitro tube formation assays on purified CD74+ fibroblasts ascertained their pro-angiogenic function. BrdU assays revealed that these cells proliferate upon stretching, through PIEZO1-mediated calcium influx and the downstream ERK and AKT signaling. Collectively, our findings propose a model wherein CD74+ fibroblasts serve as pivotal drivers of stretch-induced keloid progression, fueled by their proliferative and pro-angiogenic activities. Targeting the attributes of CD74+ fibroblasts holds promise as a therapeutic strategy for the management of keloids.
Collapse
Affiliation(s)
- Jingheng Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyao Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunfan Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Porras-Gómez TJ, Moreno-Mendoza N. Identification of the proliferative activity of germline progenitor cells in the adult ovary of the bat Artibeus jamaicensis. ZYGOTE 2024:1-10. [PMID: 39445446 DOI: 10.1017/s0967199424000364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Until a few years ago, it was assumed that oocyte renewal did not take place in the ovary of adult organisms; however, the existence of germline progenitor cells (GPCs), which renew the ovarian follicular reserve, has now been documented in mammals. Specifically, in the adult ovary of bats, the presence of cells located in the cortical region with characteristics similar to GPCs, called adult cortical germ cells (ACGC), has been observed. One of the requirements that a GPC must fulfil is to be able to proliferate mitotically, so the evaluation of cell proliferation in ACGC is of utmost importance in order to be able to relate them to a parental lineage. Currently, there are several methods to determine cell proliferation, including BrdU labelling or the use of endogenous proliferation markers. Thus, the aim of this work was to evaluate the proliferative activity of ACGC in the adult ovary of the bat Artibeus jamaicensis, using different proliferation markers and correlating these with the protein expression of the transcription factor Oct4 and the germ line marker Ddx4. We found that the expression pattern of the proliferation markers BrdU, PCNA, Ki-67 and pH3 occurs at different times of the cell cycle, so co-localization of two or more of these markers allows us to identify proliferating cells. This allowed us to identify ACGC with proliferative capacity in the adult ovary of A. jamaicensis, suggesting that GPCs renew the follicle reserve during the adult life of the organism.
Collapse
Affiliation(s)
- Tania J Porras-Gómez
- Department of Cell Biology and Phisiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228 Ciudad de México04510, Mexico
| | - Norma Moreno-Mendoza
- Department of Cell Biology and Phisiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228 Ciudad de México04510, Mexico
| |
Collapse
|
4
|
Liu Y, Wang Z, Yang L, Zhang M, Li M, Zhang J, Tang L, Jiang Z, Li X, Deng J, Meng Q, Liu S, Wang K, Qi L. Identification of a rank-based radiomic signature with individualized prognostic value for lung adenocarcinoma in a multi-cohort study. Eur J Radiol 2024; 181:111782. [PMID: 39427495 DOI: 10.1016/j.ejrad.2024.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVES Radiomics provides an opportunity to evaluate cancer prognosis noninvasively. However, the susceptibility of the radiomic quantitative features to multicenter effects, leads to the clinical dilemma of the radiomic signatures. This study aimed to develop a radiomic signature to circumvent multicenter effects, achieving the individualized prognostic assessment of lung adenocarcinoma (LUAD). METHODS Using computed tomography (CT) imaging of 234 stage I-IIIA LUAD patients derived from three public multicenter cohorts, we proposed a rank-based method that utilized the relative rank patterns of quantitative values between radiomic feature pairs within individual patients and established a feature pair signature for LUAD prognosis. We collected a new clinical cohort with 162 LUAD patients for independent validation. RESULTS A rank-based radiomic signature, consisting of 12 feature pairs, was developed, and it could determine the mortality risk for an individual according to the rank patterns of 12 feature pairs within the patient's CT imaging. The prognostic performance of the rank-based signature was effectively validated in the new clinical cohort (log-rank P = 0.0051, C-index = 0.73), whereas other signatures lost their prognostic ability across centers. The novel proposed radiomic nomogram significantly improved the prognostic performance of clinicopathological factors. The further radiogenomic analyses revealed the underlying biological characteristics (e.g., Stemness, Ferroptosis, 'ECM') reflected by the rank-based radiomic signature. CONCLUSIONS This multicenter study illustrates the accuracy and stability of the rank-based radiomic signature for LUAD prognosis, and demonstrates a unique advantage of clinical individualized application. The biological characteristics underlying the rank-based radiomic signature would accelerate its clinical application.
Collapse
Affiliation(s)
- Yixin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China; Modern Education Technology Center, Harbin Medical University, Harbin, China
| | - Zhihui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liping Yang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Juxuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Lefan Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Zhiyun Jiang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jiaxing Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, China.
| | - Kezheng Wang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
5
|
Hopper MA, Dropik AR, Walker JS, Novak JP, Laverty MS, Manske MK, Wu X, Wenzl K, Krull JE, Sarangi V, Maurer MJ, Yang ZZ, Del Busso MD, Habermann TM, Link BK, Rimsza LM, Witzig TE, Ansell SM, Cerhan JR, Jevremovic D, Novak AJ. DEK regulates B-cell proliferative capacity and is associated with aggressive disease in low-grade B-cell lymphomas. Blood Cancer J 2024; 14:172. [PMID: 39384745 PMCID: PMC11464677 DOI: 10.1038/s41408-024-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaosheng Wu
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Bone & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Kuenzel NA, Dobner J, Reichert D, Rossi A, Boukamp P, Esser C. Vδ1 T Cells Integrated in Full-Thickness Skin Equivalents: A Model for the Role of Human Skin-Resident γδT Cells. J Invest Dermatol 2024:S0022-202X(24)02173-0. [PMID: 39384018 DOI: 10.1016/j.jid.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
Vδ1 T cells are a subpopulation of γδT cells found in human dermis. Much less is known regarding their role and function in skin health and disease than regarding the roles of murine skin-resident γδT cells. In this study, we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents. We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the skin equivalents. Plated on top of the dermal equivalents, almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the dermal equivalents and the epithelium. Vδ1 T cells contributed to epidermal differentiation of HaCaT cells as indicated by histology, expression of epidermal differentiation markers, and RNA-sequencing expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin equivalents and skin carcinoma equivalents and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Collapse
Affiliation(s)
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
7
|
Li D, Liu Z, Zhang L, Bian X, Wu J, Li L, Chen Y, Luo L, Pan L, Kong L, Xiao Y, Wang J, Zhang X, Wang W, Toma M, Piipponen M, Sommar P, Xu Landén N. The lncRNA SNHG26 drives the inflammatory-to-proliferative state transition of keratinocyte progenitor cells during wound healing. Nat Commun 2024; 15:8637. [PMID: 39366968 PMCID: PMC11452505 DOI: 10.1038/s41467-024-52783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The cell transition from an inflammatory phase to a subsequent proliferative phase is crucial for wound healing, yet the driving mechanism remains unclear. By profiling lncRNA expression changes during human skin wound healing and screening lncRNA functions, we identify SNHG26 as a pivotal regulator in keratinocyte progenitors underpinning this phase transition. Snhg26-deficient mice exhibit impaired wound repair characterized by delayed re-epithelization accompanied by exacerbated inflammation. Single-cell transcriptome analysis combined with gain-of-function and loss-of-function of SNHG26 in vitro and ex vivo reveals its specific role in facilitating inflammatory-to-proliferative state transition of keratinocyte progenitors. A mechanistic study unravels that SNHG26 interacts with and relocates the transcription factor ILF2 from inflammatory genomic loci, such as JUN, IL6, IL8, and CCL20, to the genomic locus of LAMB3. Collectively, our findings suggest that lncRNAs play cardinal roles in expediting tissue repair and regeneration and may constitute an invaluable reservoir of therapeutic targets in reparative medicine.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Ling Pan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Lingzhuo Kong
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Xiya Zhang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Maria Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Corton JC, Ledbetter V, Cohen SM, Atlas E, Yauk CL, Liu J. A transcriptomic biomarker predictive of cell proliferation for use in adverse outcome pathway-informed testing and assessment. Toxicol Sci 2024; 201:174-189. [PMID: 39137154 DOI: 10.1093/toxsci/kfae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
High-throughput transcriptomics (HTTr) is increasingly being used to identify molecular targets of chemicals that can be linked to adverse outcomes. Cell proliferation (CP) is an important key event in chemical carcinogenesis. Here, we describe the construction and characterization of a gene expression biomarker that is predictive of the CP status in human and rodent tissues. The biomarker was constructed from 30 genes known to be increased in expression in prostate cancers relative to surrounding tissues and in cycling human MCF-7 cells after estrogen receptor (ER) agonist exposure. Using a large compendium of gene expression profiles to test utility, the biomarker could identify increases in CP in (i) 308 out of 367 tumor vs. normal surrounding tissue comparisons from 6 human organs, (ii) MCF-7 cells after activation of ER, (iii) after partial hepatectomy in mice and rats, and (iv) the livers of mice and rats after exposure to nongenotoxic hepatocarcinogens. The biomarker identified suppression of CP (i) under conditions of p53 activation by DNA damaging agents in human cells, (ii) in human A549 lung cells exposed to therapeutic anticancer kinase inhibitors (dasatinib, nilotnib), and (iii) in the mouse liver when comparing high levels of CP at birth to the low background levels in the adult. The responses using the biomarker were similar to those observed using conventional markers of CP including PCNA, Ki67, and BrdU labeling. The CP biomarker will be a useful tool for interpretation of HTTr data streams to identify CP status after exposure to chemicals in human cells or in rodent tissues.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198-3135, United States
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, ON K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
9
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
10
|
Devine J, Monzel AS, Shire D, Rosenberg AM, Junker A, Cohen AA, Picard M. Brain-body mitochondrial distribution patterns lack coherence and point to tissue-specific and individualized regulatory mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614152. [PMID: 39345381 PMCID: PMC11430016 DOI: 10.1101/2024.09.20.614152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Energy transformation capacity is generally assumed to be a coherent individual trait driven by genetic and environmental factors. This predicts that some individuals should have high and others low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. Here, we test this assumption using multi-tissue molecular and enzymatic activities in mice and humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mtDNA density were correlated between tissues (median r = -0.01-0.16), indicating that animals with high mitochondrial capacity in one tissue can have low capacity in other tissues. Similarly, the multi-tissue correlation structure of RNAseq-based indices of mitochondrial gene expression across 45 tissues from 948 women and men (GTEx) showed small to moderate coherence between only some tissues (regions of the same brain), but not between brain-body tissue pairs in the same person (median r = 0.01). Mitochondrial DNA copy number (mtDNAcn) also lacked coherence across organs and tissues. Mechanistically, tissue-specific differences in mitochondrial gene expression were attributable in part to i) tissue-specific activation of canonical energy sensing pathways including the transcriptional coactivator PGC-1 and the integrated stress response (ISR), and ii) proliferative activity across tissues. Finally, we identify subgroups of individuals with high mitochondrial gene expression in some tissues (e.g., heart) but low expression in others (e.g., skeletal muscle) who display different clinical phenotypic patterns. Taken together, these data raise the possibility that tissue-specific energy sensing pathways may contribute to the idiosyncratic mitochondrial distribution patterns associated with the inter-organ heterogeneity and phenotypic diversity among individuals.
Collapse
Affiliation(s)
- Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Evers M, Stühmer T, Schreder M, Steinbrunn T, Rudelius M, Jundt F, Ebert R, Hartmann TN, Bargou RC, Rosenwald A, Leich E. Association of ADAM family members with proliferation signaling and disease progression in multiple myeloma. Blood Cancer J 2024; 14:156. [PMID: 39261477 PMCID: PMC11390935 DOI: 10.1038/s41408-024-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.
Collapse
Affiliation(s)
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Schreder
- First Department of Medicine, Klinik Ottakring, Vienna, Austria
| | - Torsten Steinbrunn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University München, München, Germany
| | - Franziska Jundt
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Ralf Christian Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Mahajan K, Das AV, Alahari SK, Pothuraju R, Nair SA. MicroRNA-532-3p Modulates Colorectal Cancer Cell Proliferation and Invasion via Suppression of FOXM1. Cancers (Basel) 2024; 16:3061. [PMID: 39272919 PMCID: PMC11394065 DOI: 10.3390/cancers16173061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and classified into various subtypes, among which transcriptional alterations result in CRC progression, metastasis, and drug resistance. Forkhead-box M1 (FOXM1) is a proliferation-associated transcription factor which is overexpressed in CRC and the mechanisms of FOXM1 regulation have been under investigation. Previously, we showed that FOXM1 binds to promoters of certain microRNAs. Database mining led to several microRNAs that might interact with FOXM1 3'UTR. The interactions between shortlisted microRNAs and FOXM1 3'UTR were quantitated by a dual-luciferase reporter assay. MicroRNA-532-3p interacted with the 3'UTR of the FOXM1 mRNA transcript most efficiently. MicroRNA-532-3p was ectopically overexpressed in colorectal cancer (CRC) cell lines, leading to reduced transcript and protein levels of FOXM1 and cyclin B1, a direct transcriptional target of FOXM1. Further, a clonogenic assay was conducted in overexpressed miR-532-3p CRC cells that revealed a decline in the ability of cells to form colonies and a reduction in migratory and invading potential. These alterations were reinforced at molecular levels by the altered transcript and protein levels of the conventional EMT markers E-cadherin and vimentin. Overall, this study identifies the regulation of FOXM1 by microRNA-532-3p via its interaction with FOXM1 3'UTR, resulting in the suppression of proliferation, migration, and invasion, suggesting its role as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Ketakee Mahajan
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Ani V Das
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ramesh Pothuraju
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - S Asha Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
14
|
Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, Dampier CH, Stossel C, Patil T, Rajan A, Lassoued W, Strauss J, Bailey S, Allen C, Redman J, Beker T, Jiang P, Golan T, Wilkinson S, Sowalsky AG, Pine SR, Caldas C, Gulley JL, Aldape K, Aharonov R, Stone EA, Ruppin E. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. NATURE CANCER 2024; 5:1305-1317. [PMID: 38961276 DOI: 10.1038/s43018-024-00793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Leandro C Hermida
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Katherine Caley
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher H Dampier
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Tejas Patil
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shania Bailey
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Clint Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jason Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sharon R Pine
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - James L Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric A Stone
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
15
|
Liu Y, Gu Q, Xiao Y, Wei X, Wang J, Huang X, Linghu H. Prognostic Value of Ki67 in Epithelial Ovarian Cancer: Post-Neoadjuvant Chemotherapy Ki67 Combined with CA125 Predicting Recurrence. Cancer Manag Res 2024; 16:761-769. [PMID: 39006376 PMCID: PMC11246084 DOI: 10.2147/cmar.s469132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose To evaluate Ki67 expression and prognostic value during neoadjuvant chemotherapy (NACT) in advanced epithelial ovarian cancer (EOC). Patients and Methods 95 patients with advanced EOC receiving NACT followed by interval debulking surgery (IDS) were available for tissue samples from matched pre- and post-therapy specimens. The expression of Ki-67 was evaluated by immunohistochemistry and classified by percentage of stained cells. The optimal cutoff values of the Ki67 were assessed by receiver operating characteristic analysis. Kaplan-Meier analysis, the Log rank test, and Cox regression analysis were carried out to analyze survival. Results Post-NACT Ki67 was an independent prognostic factor for recurrence by univariate (HR: 1.8, 95% CI: 1.1-3.0, P-value: 0.023) and multivariate (HR: 1.88, 95% CI: 1.08-3.26, P-value: 0.025) analysis. Residual disease >1cm (HR: 2.69, 95% CI: 1.31-5.54, P-value: 0.0070) and pre-treatment CA125 ≥ 1432 U/mL (HR: 2.00, 95% CI: 1.13-3.55, P-value: 0.017) were also independent risk factors for progression-free survival (PFS) in multivariate analysis. Post-NACT Ki67 ≥ 20% was an independent risk factor for PFS, however, baseline Ki67 and Ki67 change did not suggest prognostic significance. In patients with high CA125, the median PFS for patients with high postKi67 (median PFS: 15.0 months, 95% CI: 13.4-16.6 months) was significantly (P-value: 0.013) poorer compared to patients with low postKi67 (median PFS: 30.0 months, 95% CI: 13.5-46.5 months). Conclusion Post-NACT Ki67 ≥ 20% was an independent factor associated with poorer PFS in patients with advanced-stage EOC undergoing NACT followed by IDS. The combination of post-NACT Ki67 and pretreatment CA125 could better identify patients with poorer PFS in NACT-administered patients.
Collapse
Affiliation(s)
- Yuexi Liu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qiuying Gu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao Xiao
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xing Wei
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jinlong Wang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaolan Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Linghu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Chandran RR, Vijayaraj P, Garcia-Milian R, King J, Castillo K, Chen L, Kwon Y, William S, Rickabaugh TM, Langerman J, Choi W, Sen C, Lever JEP, Li Q, Pavelkova N, Plosa EJ, Rowe SM, Plath K, Clair G, Gomperts BN. Loss of cell junctional components and matrix alterations drive cell desquamation and fibrotic changes in Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599411. [PMID: 38948715 PMCID: PMC11212876 DOI: 10.1101/2024.06.17.599411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.
Collapse
|
17
|
Zhang Y, Qian L, Chen K, Gu S, Meng Z, Wang J, Li Y, Wang P. Oncolytic adenovirus in treating malignant ascites: A phase II trial and longitudinal single-cell study. Mol Ther 2024; 32:2000-2020. [PMID: 38659226 PMCID: PMC11184408 DOI: 10.1016/j.ymthe.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Gu
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 300032, China.
| | - Ye Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Kurlekar S, Lima JDCC, Li R, Lombardi O, Masson N, Barros AB, Pontecorvi V, Mole DR, Pugh CW, Adam J, Ratcliffe PJ. Oncogenic Cell Tagging and Single-Cell Transcriptomics Reveal Cell Type-Specific and Time-Resolved Responses to Vhl Inactivation in the Kidney. Cancer Res 2024; 84:1799-1816. [PMID: 38502859 PMCID: PMC11148546 DOI: 10.1158/0008-5472.can-23-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing. This strategy uncovered cell type-specific responses to Vhl inactivation, defined a proximal tubular cell class with oncogenic potential, and revealed longer term adaptive changes in the renal epithelium and the interstitium. Oncogenic cell tagging also revealed markedly heterogeneous cellular effects including time-limited proliferation and elimination of specific cell types. Overall, this study reports an experimental strategy for understanding oncogenic processes in which cells bearing genetic alterations can be generated in their native context, marked, and analyzed over time. The observed effects of loss of Vhl in kidney cells provide insights into VHL tumor suppressor action and development of renal cell carcinoma. SIGNIFICANCE Single-cell analysis of heterogeneous and dynamic responses to Vhl inactivation in the kidney suggests that early events shape the cell type specificity of oncogenesis, providing a focus for mechanistic understanding and therapeutic targeting.
Collapse
Affiliation(s)
- Samvid Kurlekar
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna D C C Lima
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ran Li
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Olivia Lombardi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Norma Masson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ayslan B Barros
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Virginia Pontecorvi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher W Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, United Kingdom
| |
Collapse
|
19
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. FASEB J 2024; 38:e23632. [PMID: 38686936 DOI: 10.1096/fj.202400303r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Tuo Z, Lin Y, Zhang Y, Gao L, Yu D, Wang J, Sun C, Sun X, Wang J, Prasad A, Bheesham N, Meng M, Lv Z, Chen X. Prognostic significance and immune landscape of a cell cycle progression-related risk model in bladder cancer. Discov Oncol 2024; 15:160. [PMID: 38735911 PMCID: PMC11089032 DOI: 10.1007/s12672-024-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND A greater emphasis has been placed on the part of cell cycle progression (CCP) in cancer in recent years. Nevertheless, the precise connection between CCP-related genes and bladder cancer (BCa) has remained elusive. This study endeavors to establish and validate a reliable risk model incorporating CCP-related factors, aiming to predict both the prognosis and immune landscape of BCa. METHODS Clinical information and RNA sequencing data were collected from the GEO and TCGA databases. Univariate and multivariate Cox regression analyses were conducted to construct a risk model associated with CCP. The performance of the model was assessed using ROC and Kaplan-Meier survival analyses. Functional enrichment analysis was employed to investigate potential cellular functions and signaling pathways. The immune landscape was characterized using CIBERSORT algorithms. Integration of the risk model with various clinical variables led to the development of a nomogram. RESULTS To build the risk model, three CCP-related genes (RAD54B, KPNA2, and TPM1) were carefully chosen. ROC and Kaplan-Meier survival analysis confirm that our model has good performance. About immunological infiltration, the high-risk group showed decreased levels of regulatory T cells and dendritic cells coupled with increased levels of activated CD4 + memory T cells, M2 macrophages, and neutrophils. Furthermore, the nomogram showed impressive predictive power for OS at 1, 3, and 5 years. CONCLUSION This study provides new insights into the association between the CCP-related risk model and the prognosis of BCa, as well as its impact on the immune landscape.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiani Wang
- Institute for Social Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin; Berlin Institute of Health, Epidemiology and Health Economics, Berlin, Germany
| | - Chenyu Sun
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianchao Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Apurwa Prasad
- Parkview Regional Medical Center, 11109 Parkview Plaza Dr, Fort Wayne, IN, 46845, USA
| | - Nimarta Bheesham
- Internal Medicine, University of Illinois College of Medicine, One Illini Drive, Peoria, IL, 61605, USA
| | - Muzi Meng
- UK Program Site, American University of the Caribbean School of Medicine, Vernon Building Room 64, Sizer St, Preston, PR1 1JQ, UK
- Bronxcare Health System, 1650 Grand Concourse, The Bronx, NY, 10457, USA
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China.
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
21
|
Vessella T, Xiang S, Xiao C, Stilwell M, Fok J, Shohet J, Rozen E, Zhou HS, Wen Q. DDR2 signaling and mechanosensing orchestrate neuroblastoma cell fate through different transcriptome mechanisms. FEBS Open Bio 2024; 14:867-882. [PMID: 38538106 PMCID: PMC11073507 DOI: 10.1002/2211-5463.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | | | - Cong Xiao
- Nash Family Department of Neuroscience, Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Madelyn Stilwell
- Department of Biomedical EngineeringWichita State UniversityKSUSA
| | - Jaidyn Fok
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jason Shohet
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esteban Rozen
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Crnic Institute Boulder Branch, BioFrontiers InstituteUniversity of Colorado BoulderCOUSA
| | - H. Susan Zhou
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | - Qi Wen
- Department of PhysicsWorcester Polytechnic InstituteMAUSA
| |
Collapse
|
22
|
Martins-de-Barros AV, da Costa Araújo FA, Faro TF, de Aquino AAT, Barbosa Neto AG, da Silva HAM, de Lima ELS, Muniz MTC, de Oliveira E Silva ED, de Vasconcelos Carvalho M. BRAF p.V600E Mutational Status Does Not Correlate with Biological Behavior in Conventional Ameloblastomas: A Disease-Free Survival Analysis. Head Neck Pathol 2024; 18:23. [PMID: 38504068 PMCID: PMC10951168 DOI: 10.1007/s12105-024-01621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Dysregulation of the MAPK pathway appears to exert a pivotal role in the pathogenesis of ameloblastomas, since BRAF p.V600E has been reported in over 65% of the tumors. Therefore, the purpose of this study was to investigate whether the BRAF p.V600E is related to biological behavior and disease-free survival in patients with conventional ameloblastomas. METHODS This is a retrospective cohort study based on the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) recommendations. The study population consisted of individuals treated for conventional ameloblastomas. Clinical, imaging, histomorphological, immunohistochemical (Ki67 and CD138/syndecan-1), and molecular BRAF p.V600E mutation analyses were performed. Bivariate statistical analysis was performed through chi-square and Fisher's exact tests. Kaplan-Meier analysis with log-rank test and Cox proportional hazards regression were used to identify predictors of disease-free survival, with a significance level of 5%. RESULTS Forty-one individuals were included, with a male-to-female ratio of 1.15:1. BRAF p.V600E mutation was identified in 75.6% of the tumors. No association between the BRAF mutational status and other clinical, imaging, histomorphological, and immunohistochemical variables was observed. Only the initial treatment modality was significantly associated with a better prognosis in univariate (p = 0.008) and multivariate (p = 0.030) analyses, with a hazard ratio of 9.60 (95%IC = 1.24-73.89), favoring radical treatment. CONCLUSION BRAF p.V600E mutation emerges as a prevalent molecular aberration in ameloblastomas. Nevertheless, it does not seem to significantly affect the tumor proliferative activity, CD138/syndecan-1-mediated cell adhesion, or disease-free survival outcomes.
Collapse
Affiliation(s)
| | - Fábio Andrey da Costa Araújo
- Post-Graduation Program in Dentistry, School of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil.
- Department of Oral and Maxillofacial Surgery, Hospital Universitário Oswaldo Cruz (HUOC/UPE), Recife, Pernambuco, Brazil.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Pernambuco, Rua Arnóbio Marquês, 310, Santo Amaro, Recife, Pernambuco, 50100-130, Brazil.
| | - Tatiane Fonseca Faro
- Post-Graduation Program in Dentistry, School of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | | | - Adauto Gomes Barbosa Neto
- Instituto de Ciências Biológicas (ICB/UPE), University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | | | - Elker Lene Santos de Lima
- Instituto de Ciências Biológicas (ICB/UPE), University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | | | - Emanuel Dias de Oliveira E Silva
- Post-Graduation Program in Dentistry, School of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Department of Oral and Maxillofacial Surgery, Hospital Universitário Oswaldo Cruz (HUOC/UPE), Recife, Pernambuco, Brazil
| | - Marianne de Vasconcelos Carvalho
- Post-Graduation Program in Dentistry, School of Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Centro Integrado de Anatomia Patológica (CIAP), Hospital Universitário Oswaldo Cruz (HUOC/UPE), Recife, Pernambuco, Brazil
| |
Collapse
|
23
|
Liu Y, Huang S, Dong G, Hou C, Zhao Y, Zhang D. Computational identification of DNA damage-relevant lncRNAs for predicting therapeutic efficacy and clinical outcomes in cancer. Comput Biol Med 2024; 171:108107. [PMID: 38412692 DOI: 10.1016/j.compbiomed.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES The role of long non-coding RNAs (lncRNAs) in cancer treatment, particularly in modulating DNA repair programs, is an emerging field that warrants systematic exploration. This study aimed to systematically identify the lncRNA regulators that potentially regulate DNA damage response (DDR). METHODS Using genome-wide mRNA and lncRNA expression profiles of the same tumor patients, we proposed a novel computational framework. This framework performed Gene Set Variation Analysis to calculate DDR pathway enrichment score, which relies on weighting by tumor purity to obtain DDR activity score for each patient. Then, an in-depth differential expression profiling was conducted to identify pathway activity lncRNAs between high- and low-activity groups, utilizing a bootstrap-based randomization method. RESULTS We comprehensively charted the landscape of DDR-relevant lncRNAs across 23 epithelial-based cancer types. Its effectiveness was validated by assessing the consistency of these lncRNAs within various datasets of the same cancer type (hypergeometric test P < 0.001), examining the expression perturbation of these lncRNAs in response to treatment and demonstrating its application in prioritizing clinically-related lncRNAs. Furthermore, leveraging 820 epithelial ovarian cancer patients from four public datasets, we applied these lncRNAs identified by DDRLnc to establish and validate a risk stratification model to evaluate the benefits of platinum-based adjuvant chemotherapy for the improvement of clinical treatment outcomes. CONCLUSIONS Comprehensive pan-cancer analysis illustrates the utility of computational framework in identifying potentially lncRNAs involved in DDR, thereby offering novel insights into the complex realm of cancer research, and it will become a valuable tool for identifying potential therapeutic targets for cancer.
Collapse
Affiliation(s)
- Yixin Liu
- Modern Education Technology Center, Harbin Medical University, Harbin, 150080, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Chang Hou
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China.
| |
Collapse
|
24
|
Zou D, Cai Y, Jin M, Zhang M, Liu Y, Chen S, Yang S, Zhang H, Zhu X, Huang C, Zhu Y, Miao X, Wei Y, Yang X, Tian J. A genetic variant in the immune-related gene ERAP1 affects colorectal cancer prognosis. Chin Med J (Engl) 2024; 137:431-440. [PMID: 37690994 PMCID: PMC10876254 DOI: 10.1097/cm9.0000000000002845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION No. NCT00454519 ( https://clinicaltrials.gov/ ).
Collapse
Affiliation(s)
- Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
25
|
Súkeníková L, Mallone A, Schreiner B, Ripellino P, Nilsson J, Stoffel M, Ulbrich SE, Sallusto F, Latorre D. Autoreactive T cells target peripheral nerves in Guillain-Barré syndrome. Nature 2024; 626:160-168. [PMID: 38233524 PMCID: PMC10830418 DOI: 10.1038/s41586-023-06916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Guillain-Barré syndrome (GBS) is a rare heterogenous disorder of the peripheral nervous system, which is usually triggered by a preceding infection, and causes a potentially life-threatening progressive muscle weakness1. Although GBS is considered an autoimmune disease, the mechanisms that underlie its distinct clinical subtypes remain largely unknown. Here, by combining in vitro T cell screening, single-cell RNA sequencing and T cell receptor (TCR) sequencing, we identify autoreactive memory CD4+ cells, that show a cytotoxic T helper 1 (TH1)-like phenotype, and rare CD8+ T cells that target myelin antigens of the peripheral nerves in patients with the demyelinating disease variant. We characterized more than 1,000 autoreactive single T cell clones, which revealed a polyclonal TCR repertoire, short CDR3β lengths, preferential HLA-DR restrictions and recognition of immunodominant epitopes. We found that autoreactive TCRβ clonotypes were expanded in the blood of the same patient at distinct disease stages and, notably, that they were shared in the blood and the cerebrospinal fluid across different patients with GBS, but not in control individuals. Finally, we identified myelin-reactive T cells in the nerve biopsy from one patient, which indicates that these cells contribute directly to disease pathophysiology. Collectively, our data provide clear evidence of autoreactive T cell immunity in a subset of patients with GBS, and open new perspectives in the field of inflammatory peripheral neuropathies, with potential impact for biomedical applications.
Collapse
Affiliation(s)
- L Súkeníková
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - A Mallone
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - B Schreiner
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - P Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - J Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - S E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - F Sallusto
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - D Latorre
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Makker V, Taylor MH, Aghajanian C, Cohn AL, Brose MS, Simone CD, Cao ZA, Suttner L, Loboda A, Cristescu R, Jelinic P, Orlowski R, Dutta L, Matsui J, Dutcus CE, Minoshima Y, Messing MJ. Evaluation of potential biomarkers for lenvatinib plus pembrolizumab among patients with advanced endometrial cancer: results from Study 111/KEYNOTE-146. J Immunother Cancer 2024; 12:e007929. [PMID: 38242717 PMCID: PMC10806562 DOI: 10.1136/jitc-2023-007929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Lenvatinib plus pembrolizumab demonstrated clinically meaningful benefit in patients with previously treated advanced endometrial carcinoma in Study 111/KEYNOTE-146 (NCT02501096). In these exploratory analyses from this study, we evaluated the associations between clinical outcomes and gene expression signature scores and descriptively summarized response in biomarker subpopulations defined by tumor mutational burden (TMB) and DNA variants for individual genes of interest. METHODS Patients with histologically confirmed metastatic endometrial carcinoma received oral lenvatinib 20 mg once daily plus intravenous pembrolizumab 200 mg every 3 weeks for 35 cycles. Archived formalin-fixed paraffin-embedded tissue was obtained from all patients. T-cell-inflamed gene expression profile (TcellinfGEP) and 11 other gene signatures were evaluated by RNA sequencing. TMB, hotspot mutations in PIK3CA (oncogene), and deleterious mutations in PTEN and TP53 (tumor suppressor genes) were evaluated by whole-exome sequencing (WES). RESULTS 93 and 79 patients were included in the RNA-sequencing-evaluable and WES-evaluable populations, respectively. No statistically significant associations were observed between any of the RNA-sequencing signature scores and objective response rate or progression-free survival. Area under the receiver operating characteristic curve values for response ranged from 0.39 to 0.54; all 95% CIs included 0.50. Responses were seen regardless of TMB (≥175 or <175 mutations/exome) and mutation status. There were no correlations between TcellinfGEP and TMB, TcellinfGEP and microvessel density (MVD), or MVD and TMB. CONCLUSIONS This analysis demonstrated efficacy for lenvatinib plus pembrolizumab regardless of biomarker status. Results from this study do not support clinical utility of the evaluated biomarkers. Further investigation of biomarkers for this regimen is warranted. TRIAL REGISTRATION NUMBER NCT02501096.
Collapse
Affiliation(s)
- Vicky Makker
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew H Taylor
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | | | - Allen L Cohn
- Rocky Mountain Cancer Center, Denver, Colorado, USA
| | - Marcia S Brose
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Liu Z, Han X, Liang F, Zhang Q, Huang X, Shi X, Huo H, Han M, Liu X, Zhu H, He L, Shen L, Hu X, Wang J, Wang QD, Smart N, Zhou B, He B. Dynamics of Endothelial Cell Generation and Turnover in Arteries During Homeostasis and Diseases. Circulation 2024; 149:135-154. [PMID: 38084582 DOI: 10.1161/circulationaha.123.064301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Zixin Liu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Ximeng Han
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Qianyu Zhang
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
| | - Xiuzhen Huang
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Maoying Han
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
| | - Xiuxiu Liu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Huan Zhu
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China (L.H.)
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (X.H., J.W.)
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (X.H., J.W.)
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Q.D.W.)
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, UK (N.S.)
| | - Bin Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China (Y.L., Z.L., X. Han, X. Huang, M.H., X.L., H.Z., B.Z.)
- School of Life Science and Technology, ShanghaiTech University, China (Q.Z., M.H., B.Z.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China (B.Z.)
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, China (Y.L., X. Han, F.L., X.S., H.H., L.S., B.Z., B.H.)
| |
Collapse
|
28
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572607. [PMID: 38187777 PMCID: PMC10769252 DOI: 10.1101/2023.12.20.572607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper Müllerian duct development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
|
29
|
Nguyen MT, Ly QK, Kim HJ, Lee W. WAVE2 Is a Vital Regulator in Myogenic Differentiation of Progenitor Cells through the Mechanosensitive MRTFA-SRF Axis. Cells 2023; 13:9. [PMID: 38201213 PMCID: PMC10778525 DOI: 10.3390/cells13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal myogenesis is an intricate process involving the differentiation of progenitor cells into myofibers, which is regulated by actin cytoskeletal dynamics and myogenic transcription factors. Although recent studies have demonstrated the pivotal roles of actin-binding proteins (ABPs) as mechanosensors and signal transducers, the biological significance of WAVE2 (Wiskott-Aldrich syndrome protein family member 2), an ABP essential for actin polymerization, in myogenic differentiation of progenitor cells has not been investigated. Our study provides important insights into the regulatory roles played by WAVE2 in the myocardin-related transcription factor A (MRTFA)-serum response factor (SRF) signaling axis and differentiation of myoblasts. We demonstrate that WAVE2 expression is induced during myogenic differentiation and plays a pivotal role in actin cytoskeletal remodeling in C2C12 myoblasts. Knockdown of WAVE2 in C2C12 cells reduced filamentous actin levels, increased globular actin accumulation, and impaired the nuclear translocation of MRTFA. Furthermore, WAVE2 depletion in myoblasts inhibited the expression and transcriptional activity of SRF and suppressed cell proliferation in myoblasts. Consequently, WAVE2 knockdown suppressed myogenic regulatory factors (i.e., MyoD, MyoG, and SMYD1) expressions, thereby hindering the differentiation of myoblasts. Thus, this study suggests that WAVE2 is essential for myogenic differentiation of progenitor cells by modulating the mechanosensitive MRTFA-SRF axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
30
|
Sirko S, Schichor C, Della Vecchia P, Metzger F, Sonsalla G, Simon T, Bürkle M, Kalpazidou S, Ninkovic J, Masserdotti G, Sauniere JF, Iacobelli V, Iacobelli S, Delbridge C, Hauck SM, Tonn JC, Götz M. Injury-specific factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. Nat Med 2023; 29:3149-3161. [PMID: 38066208 PMCID: PMC10719094 DOI: 10.1038/s41591-023-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | | | - Giovanna Sonsalla
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tatiana Simon
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Martina Bürkle
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Sofia Kalpazidou
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany
| | - Giacomo Masserdotti
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | | | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany.
| |
Collapse
|
31
|
Shiokawa D, Sakai H, Koizumi M, Okimoto Y, Mori Y, Kanda Y, Ohata H, Honda H, Okamoto K. Elevated stress response marks deeply quiescent reserve cells of gastric chief cells. Commun Biol 2023; 6:1183. [PMID: 37985874 PMCID: PMC10662433 DOI: 10.1038/s42003-023-05550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Gastrointestinal tract organs harbor reserve cells, which are endowed with cellular plasticity and regenerate functional units in response to tissue damage. However, whether the reserve cells in gastrointestinal tract exist as long-term quiescent cells remain incompletely understood. In the present study, we systematically examine H2b-GFP label-retaining cells and identify a long-term slow-cycling population in the gastric corpus but not in other gastrointestinal organs. The label-retaining cells, which reside near the basal layers of the corpus, comprise a subpopulation of chief cells. The identified quiescent cells exhibit induction of Atf4 and its target genes including Atf3, a marker of paligenosis, and activation of the unfolded protein response, but do not show elevated expression of Troy, Lgr5, or Mist. External damage to the gastric mucosa induced by indomethacin treatment triggers proliferation of the quiescent Atf4+ population, indicating that the gastric corpus harbors a specific cell population that is primed to facilitate stomach regeneration.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Ehime University Hospital Translational Research Center, Shitsukawa, Toon, 791-0295, Ehime, Japan
| | - Hiroaki Sakai
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
| | - Yoshie Okimoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yutaro Mori
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yusuke Kanda
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hirokazu Ohata
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan.
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
32
|
Yi D, Liu B, Ding H, Li S, Li R, Pan J, Ramirez K, Xia X, Kala M, Ye Q, Lee WH, Frye RE, Wang T, Zhao Y, Knox KS, Glembotski CC, Fallon MB, Dai Z. E2F1 Mediates SOX17 Deficiency-Induced Pulmonary Hypertension. Hypertension 2023; 80:2357-2371. [PMID: 37737027 PMCID: PMC10591929 DOI: 10.1161/hypertensionaha.123.21241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.
Collapse
Affiliation(s)
- Dan Yi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Bin Liu
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Hongxu Ding
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Shuai Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Rebecca Li
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Jiakai Pan
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Mrinalini Kala
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Won Hee Lee
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | | | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Environmental Health Science and Center of Translational Science, Florida International University, Port Saint Lucie, Florida, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kenneth S. Knox
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Christopher C. Glembotski
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Michael B. Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Sarver Heart Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
33
|
Seo S, Patil SL, Ahn YO, Armetta J, Hegewisch-Solloa E, Castillo M, Guilz NC, Patel A, Corneo B, Borowiak M, Gunaratne P, Mace EM. iPSC-based modeling of helicase deficiency reveals impaired cell proliferation and increased apoptosis after NK cell lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559149. [PMID: 37808662 PMCID: PMC10557596 DOI: 10.1101/2023.09.25.559149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Cell proliferation is a ubiquitous process required for organismal development and homeostasis. However, individuals with partial loss-of-function variants in DNA replicative helicase components often present with immunodeficiency due to specific loss of natural killer (NK) cells. Such lineage-specific disease phenotypes raise questions on how the proliferation is regulated in cell type-specific manner. We aimed to understand NK cell-specific proliferative dynamics and vulnerability to impaired helicase function using iPSCs from individuals with NK cell deficiency (NKD) due to hereditary compound heterozygous GINS4 variants. We observed and characterized heterogeneous cell populations that arise during the iPSC differentiation along with NK cells. While overall cell proliferation decreased with differentiation, early NK cell precursors showed a short burst of cell proliferation. GINS4 deficiency induced replication stress in these early NK cell precursors, which are poised for apoptosis, and ultimately recapitulate the NKD phenotype.
Collapse
Affiliation(s)
- Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Sagar L Patil
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Yong-Oon Ahn
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Jacqueline Armetta
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Nicole C Guilz
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Achchhe Patel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
34
|
Nguyen MT, Ly QK, Kim HJ, Lee W. FLII Modulates the Myogenic Differentiation of Progenitor Cells via Actin Remodeling-Mediated YAP1 Regulation. Int J Mol Sci 2023; 24:14335. [PMID: 37762638 PMCID: PMC10531566 DOI: 10.3390/ijms241814335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Quoc Kiet Ly
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Hyun-Jung Kim
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (Q.K.L.); (H.-J.K.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea
| |
Collapse
|
35
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
36
|
Schütz S, Solé-Boldo L, Lucena-Porcel C, Hoffmann J, Brobeil A, Lonsdorf AS, Rodríguez-Paredes M, Lyko F. Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat Commun 2023; 14:5413. [PMID: 37669956 PMCID: PMC10480447 DOI: 10.1038/s41467-023-41141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a serious public health problem due to its high incidence and metastatic potential. It may progress from actinic keratosis (AK), a precancerous lesion, or the in situ carcinoma, Bowen's disease (BD). During this progression, malignant keratinocytes activate dermal fibroblasts into tumor promoting cancer-associated fibroblasts (CAFs), whose origin and emergence remain largely unknown. Here, we generate and analyze >115,000 single-cell transcriptomes from healthy skin, BD and cSCC of male donors. Our results reveal immunoregulatory and matrix-remodeling CAF subtypes that may derive from pro-inflammatory and mesenchymal fibroblasts, respectively. These CAF subtypes are largely absent in AK and interact with different cell types to establish a pro-tumorigenic microenvironment. These findings are cSCC-specific and could not be recapitulated in basal cell carcinomas. Our study provides important insights into the potential origin and functionalities of dermal CAFs that will be highly beneficial for the specific targeting of the cSCC microenvironment.
Collapse
Affiliation(s)
- Sabrina Schütz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Carlota Lucena-Porcel
- Institute of Pathology, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Jochen Hoffmann
- Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
37
|
Zhang S, Zhai M, Xu Y, Han J, Chen J, Xiong Y, Pan S, Wang Q, Yu C, Rao Z, Sun Q, Sui Y, Fan K, Li H, Guo W, Liu C, Bai Y, Zhou J, Quan D, Zhang X. Decellularised spinal cord matrix manipulates glial niche into repairing phase via serglycin-mediated signalling pathway. Cell Prolif 2023; 56:e13429. [PMID: 36807637 PMCID: PMC10472524 DOI: 10.1111/cpr.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Astrocytes are the most abundant and widespread glial cells in the central nervous system. The heterogeneity of astrocytes plays an essential role in spinal cord injury (SCI) repair. Decellularised spinal cord matrix (DSCM) is advantageous for repairing SCI, but little is known regarding the exact mechanisms and niche alterations. Here, we investigated the DSCM regulatory mechanism of glial niche in the neuro-glial-vascular unit using single-cell RNA sequencing. Our single cell sequencing, molecular and biochemical experiments validated that DSCM facilitated the differentiation of neural progenitor cells through increasing the number of immature astrocytes. Upregulation of mesenchyme-related genes, which maintained astrocyte immaturity, causing insensitivity to inflammatory stimuli. Subsequently, we identified serglycin (SRGN) as a functional component of DSCM, which involves inducing CD44-AKT signalling to trigger human spinal cord-derived primary astrocytes (hspASCs) proliferation and upregulation of genes related to epithelial-mesenchymal transition, thus impeding astrocyte maturation. Finally, we verified that SRGN-COLI and DSCM had similar functions in the human primary cell co-culture system to mimic the glia niche. In conclusion, our work revealed that DSCM reverted astrocyte maturation and altered the glia niche into the repairing phase through the SRGN-mediated signalling pathway.
Collapse
Affiliation(s)
- Sheng Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Man Zhai
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yiwei Xu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiandong Han
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shihua Pan
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Qizheng Wang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Chunlai Yu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Qi Sun
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yufei Sui
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Fan
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Heying Li
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Cuicui Liu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhou
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
38
|
Hepkema J, Lee NK, Stewart BJ, Ruangroengkulrith S, Charoensawan V, Clatworthy MR, Hemberg M. Predicting the impact of sequence motifs on gene regulation using single-cell data. Genome Biol 2023; 24:189. [PMID: 37582793 PMCID: PMC10426127 DOI: 10.1186/s13059-023-03021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
Collapse
Affiliation(s)
- Jacob Hepkema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Keone Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Benjamin J Stewart
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 7310, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Matern MS, Durruthy-Durruthy R, Birol O, Darmanis S, Scheibinger M, Groves AK, Heller S. Transcriptional dynamics of delaminating neuroblasts in the mouse otic vesicle. Cell Rep 2023; 42:112545. [PMID: 37227818 PMCID: PMC10592509 DOI: 10.1016/j.celrep.2023.112545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
An abundance of research has recently highlighted the susceptibility of cochleovestibular ganglion (CVG) neurons to noise damage and aging in the adult cochlea, resulting in hearing deficits. Furthering our understanding of the transcriptional cascades that contribute to CVG development may provide insight into how these cells can be regenerated to treat inner ear dysfunction. Here we perform a high-depth single-cell RNA sequencing analysis of the E10.5 otic vesicle and its surrounding tissues, including CVG precursor neuroblasts and emerging CVG neurons. Clustering and trajectory analysis of otic-lineage cells reveals otic markers and the changes in gene expression that occur from neuroblast delamination toward the development of the CVG. This dataset provides a valuable resource for further identifying the mechanisms associated with CVG development from neurosensory competent cells within the otic vesicle.
Collapse
Affiliation(s)
- Maggie S Matern
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Durruthy-Durruthy
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Onur Birol
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Mirko Scheibinger
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stefan Heller
- Department of Otolaryngology Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Wang T, Zhao R, Zhi J, Liu Z, Wu A, Yang Z, Wang W, Ni T, Jing L, Yu M. Tox4 regulates transcriptional elongation and reinitiation during murine T cell development. Commun Biol 2023; 6:613. [PMID: 37286708 DOI: 10.1038/s42003-023-04992-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
HMG protein Tox4 is a regulator of PP1 phosphatases with unknown function in development. Here we show that Tox4 conditional knockout in mice reduces thymic cellularity, partially blocks T cell development, and decreases ratio of CD8 to CD4 through decreasing proliferation and increasing apoptosis of CD8 cells. In addition, single-cell RNA-seq discovered that Tox4 loss also impairs proliferation of the fast-proliferating double positive (DP) blast population within DP cells in part due to downregulation of genes critical for proliferation, notably Cdk1. Moreover, genes with high and low expression level are more dependent on Tox4 than genes with medium expression level. Mechanistically, Tox4 may facilitate transcriptional reinitiation and restrict elongation in a dephosphorylation-dependent manner, a mechanism that is conserved between mouse and human. These results provide insights into the role of TOX4 in development and establish it as an evolutionarily conserved regulator of transcriptional elongation and reinitiation.
Collapse
Affiliation(s)
- Talang Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyu Zhao
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200052, China
| | - Junhong Zhi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziling Liu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aiwei Wu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zimei Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200052, China.
| |
Collapse
|
41
|
Ukwenya VO, Alese MO, Ogunlade B, Folorunso IM, Omotuyi OI. Anacardium occidentale leaves extract and riboceine mitigate hyperglycemia through anti-oxidative effects and modulation of some selected genes associated with diabetes. J Diabetes Metab Disord 2023; 22:455-468. [PMID: 37255827 PMCID: PMC10225389 DOI: 10.1007/s40200-022-01165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is one of the leading causes of death globally and complications of DM have become a major health concern. Anacardium occidentale is a plant widely recognized for its hypoglycemic properties and traditionally used in developing nations as remedy for DM treatment. Riboceine is a supplement that enhances production of glutathione and known for its vital role in supporting cellular function. This study was designed to evaluate the antidiabetic and antioxidant potential of riboceine and ethanolic extract of A. occidentale leaves in streptozotocin (STZ)-induced diabetic rats. Method Twenty-nine adult male Wistar rats were induced with DM intraperitoneally using a single dose of STZ (70 mg/kg). The STZ-induced rats were divided into groups and administered the same dose (100 mg/kg) of A. occidentale leaves extract and riboceine via gastric gavage at the dose (100 mg/kg) for seventeen days while metformin (40 mg/kg) was used as positive control. Fasting blood glucose and weight of the model rats were examined periodically. Activities of total protein, creatinine, urea, antioxidants (SOD, GSH and GPX), and level of serum insulin were determined. Expression of diabetes related genes including pancreas (Insulin, pdx-1, P16NK4A, and Mki-67), Liver (FAS, ACC, and GFAT) and KIM-1 genes were also determined. Results Data showed that treatment of STZ-induced diabetic rats with A. occidentale and riboceine at the same dose significantly (p < 0.05) ameliorated hyperglycemic effects by improving hepatic and renal functions and antioxidants, preventing hepatic fat accumulation by downregulation of ACC, FAS and GFAT expression, improving β-cell functions through up-regulation of pancreatic insulin, P16NK4A, Mki-67 and pdx-1 expression. Induction of diabetes upregulated mRNA expression of KIM-1, which was ameliorated after treatment of the rats with A. occidentale and riboceine. Conclusion The results obtained in this study demonstrate significant antidiabetic properties of ethanolic extract of A. occidentale and riboceine.
Collapse
Affiliation(s)
- Victor Okoliko Ukwenya
- Department of Human Anatomy, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, P.M.B 704 Nigeria
| | - Margaret Olutayo Alese
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Babatunde Ogunlade
- Department of Human Anatomy, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, P.M.B 704 Nigeria
| | - Ibukun Mary Folorunso
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute for Drug Research and Development, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
42
|
Khare SP, Madhok A, Patta I, Sukla KK, Wagh VV, Kunte PS, Raut D, Bhat D, Kumaran K, Fall C, Tatu U, Chandak GR, Yajnik CS, Galande S. Differential expression of genes influencing mitotic processes in cord blood mononuclear cells after a pre-conceptional micronutrient-based randomised controlled trial: Pune Rural Intervention in Young Adolescents (PRIYA). J Dev Orig Health Dis 2023; 14:437-448. [PMID: 36632790 DOI: 10.1017/s204017442200068x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In The Pune Maternal Nutrition Study, vitamin B12 deficiency was seen in 65% of pregnant women, folate deficiency was rare. Maternal total homocysteine concentrations were inversely associated with offspring birthweight, and low vitamin B12 and high folate concentrations predicted higher offspring adiposity and insulin resistance. These findings guided a nested pre-conceptional randomised controlled trial 'Pune Rural Intervention in Young Adolescents'. The interventions included: (1) vitamin B12+multi-micronutrients as per the United Nations International Multiple Micronutrient Antenatal Preparation, and proteins (B12+MMN), (2) vitamin B12 (B12 alone), and (3) placebo. Intervention improved maternal pre-conceptional and in-pregnancy micronutrient nutrition. Gene expression analysis in cord blood mononuclear cells in 88 pregnancies revealed 75 differentially expressed genes between the B12+MMN and placebo groups. The enriched biological processes included G2/M phase transition, chromosome segregation, and nuclear division. Enriched pathways included, mitotic spindle checkpoint and DNA damage response while enriched human phenotypes were sloping forehead and decreased head circumference. Fructose-bisphosphatase 2 (FBP2) and Cell Division Cycle Associated 2 (CDCA2) genes were under-expressed in the B12 alone group. The latter, involved in chromosome segregation was under-expressed in both intervention groups. Based on the role of B-complex vitamins in the synthesis of nucleotides and S-adenosyl methionine, and the roles of vitamins A and D on gene expression, we propose that the multi-micronutrient intervention epigenetically affected cell cycle dynamics. Neonates in the B12+MMN group had the highest ponderal index. Follow-up studies will reveal if the intervention and the altered biological processes influence offspring diabesity.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Krishna K Sukla
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Vipul V Wagh
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Pooja S Kunte
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Deepa Raut
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Dattatray Bhat
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | | | - Caroline Fall
- Medical Research Council Lifecourse Epidemiology Centre, Southampton, UK
| | - Utpal Tatu
- Indian Institute of Science (IISc), Bangalore, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
43
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, Yang J, Luan Y, Jiang Z, Ling J, Wu Z, Chen Y, Xie Z, Deng Y. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 2023:S1535-6108(23)00137-X. [PMID: 37172580 DOI: 10.1016/j.ccell.2023.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy can induce complete responses in mismatch repair-deficient and microsatellite instability-high (d-MMR/MSI-H) colorectal cancers (CRCs). However, the underlying mechanism for pathological complete response (pCR) to immunotherapy has not been completely understood. We utilize single-cell RNA sequencing (scRNA-seq) to investigate the dynamics of immune and stromal cells in 19 patients with d-MMR/MSI-H CRC who received neoadjuvant PD-1 blockade. We found that in tumors with pCR, there is a concerted decrease in CD8+ Trm-mitotic, CD4+ Tregs, proinflammatory IL1B+ Mono and CCL2+ Fibroblast following treatment, while the proportions of CD8+ Tem, CD4+ Th, CD20+ B, and HLA-DRA+ Endothelial cells increase. Proinflammatory features in the tumor microenvironment mediate the persistence of residual tumors by modulating CD8+ T cells and other response-associated immune cell populations. Our study provides valuable resources and biological insights into the mechanism of successful ICI therapy and potential targets for improving treatment efficacy.
Collapse
Affiliation(s)
- Jianxia Li
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Huabin Hu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ge Qin
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xueqian Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fan Bai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianwei Zhang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yan Huang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chao Wang
- Department of Pathology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Zehang Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Jiayu Ling
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zehua Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yaoxu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai 201114, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510627, China
| | - Yanhong Deng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
45
|
Segalés J, Sánchez-Martín C, Pujol-Morcillo A, Martín-Ruiz M, de Los Santos P, Lobato-Alonso D, Oliver E, Rial E. Role of UCP2 in the Energy Metabolism of the Cancer Cell Line A549. Int J Mol Sci 2023; 24:ijms24098123. [PMID: 37175829 PMCID: PMC10179244 DOI: 10.3390/ijms24098123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation. We have examined the role of UCP2 in the energy metabolism of the lung adenocarcinoma cell line A549 and show that UCP2 silencing decreased the basal rate of respiration, although this inhibition was not compensated by an increase in glycolysis. Silencing did not lead to either changes in proton leakage, as determined by the rate of respiration in the absence of ATP synthesis, or changes in the rate of formation of reactive oxygen species. The decrease in energy metabolism did not alter the cellular energy charge. The decreased cell proliferation observed in UCP2-silenced cells would explain the reduced cellular ATP demand. We conclude that UCP2 does not operate as an uncoupling protein, whereas our results are consistent with its activity as a C4-metabolite carrier involved in the metabolic adaptations of proliferating cells.
Collapse
Affiliation(s)
- Jessica Segalés
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Sánchez-Martín
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Aleida Pujol-Morcillo
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marta Martín-Ruiz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Patricia de Los Santos
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Daniel Lobato-Alonso
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eduardo Rial
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
46
|
Nguyen MT, Lee W. Induction of miR-665-3p Impairs the Differentiation of Myogenic Progenitor Cells by Regulating the TWF1-YAP1 Axis. Cells 2023; 12:cells12081114. [PMID: 37190023 DOI: 10.3390/cells12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Actin dynamics are known to orchestrate various myogenic processes in progenitor cells. Twinfilin-1 (TWF1) is an actin-depolymerizing factor that plays a crucial role in the differentiation of myogenic progenitor cells. However, little is known about the mechanisms underlying the epigenetic regulation of TWF1 expression and impaired myogenic differentiation in the background of muscle wasting. This study investigated how miR-665-3p affects TWF1 expression, actin filaments' modulation, proliferation, and myogenic differentiation in progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in food, suppressed TWF1 expression and inhibited the myogenic differentiation of C2C12 cells while increasing the level of miR-665-3p expression. Interestingly, miR-665-3p inhibited TWF1 expression by targeting TWF1 3'UTR directly. In addition, miR-665-3p accumulated filamentous actin (F-actin) and enhanced the nuclear translocation of Yes-associated protein 1 (YAP1), consequently promoting cell cycle progression and proliferation. Furthermore, miR-665-3p suppressed the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, and consequently impaired myoblast differentiation. In conclusion, this study suggests that SFA-inducible miR-665-3p suppresses TWF1 expression epigenetically and inhibits myogenic differentiation by facilitating myoblast proliferation via the F-actin/YAP1 axis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
47
|
Li L, Jiang D, Liu H, Guo C, Zhao R, Zhang Q, Xu C, Qin Z, Feng J, Liu Y, Wang H, Chen W, Zhang X, Li B, Bai L, Tian S, Tan S, Yu Z, Chen L, Huang J, Zhao JY, Hou Y, Ding C. Comprehensive proteogenomic characterization of early duodenal cancer reveals the carcinogenesis tracks of different subtypes. Nat Commun 2023; 14:1751. [PMID: 36991000 PMCID: PMC10060430 DOI: 10.1038/s41467-023-37221-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
The subtypes of duodenal cancer (DC) are complicated and the carcinogenesis process is not well characterized. We present comprehensive characterization of 438 samples from 156 DC patients, covering 2 major and 5 rare subtypes. Proteogenomics reveals LYN amplification at the chromosome 8q gain functioned in the transmit from intraepithelial neoplasia phase to infiltration tumor phase via MAPK signaling, and illustrates the DST mutation improves mTOR signaling in the duodenal adenocarcinoma stage. Proteome-based analysis elucidates stage-specific molecular characterizations and carcinogenesis tracks, and defines the cancer-driving waves of the adenocarcinoma and Brunner's gland subtypes. The drug-targetable alanyl-tRNA synthetase (AARS1) in the high tumor mutation burden/immune infiltration is significantly enhanced in DC progression, and catalyzes the lysine-alanylation of poly-ADP-ribose polymerases (PARP1), which decreases the apoptosis of cancer cells, eventually promoting cell proliferation and tumorigenesis. We assess the proteogenomic landscape of early DC, and provide insights into the molecular features corresponding therapeutic targets.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Liu
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Rui Zhao
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weijie Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xue Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Yuan Zhao
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Li L, Jiang D, Zhang Q, Liu H, Xu F, Guo C, Qin Z, Wang H, Feng J, Liu Y, Chen W, Zhang X, Bai L, Tian S, Tan S, Xu C, Song Q, Liu Y, Zhong Y, Chen T, Zhou P, Zhao JY, Hou Y, Ding C. Integrative proteogenomic characterization of early esophageal cancer. Nat Commun 2023; 14:1666. [PMID: 36966136 PMCID: PMC10039899 DOI: 10.1038/s41467-023-37440-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is malignant while the carcinogenesis is still unclear. Here, we perform a comprehensive multi-omics analysis of 786 trace-tumor-samples from 154 ESCC patients, covering 9 histopathological stages and 3 phases. Proteogenomics elucidates cancer-driving waves in ESCC progression, and reveals the molecular characterization of alcohol drinking habit associated signatures. We discover chromosome 3q gain functions in the transmit from nontumor to intraepithelial neoplasia phases, and find TP53 mutation enhances DNA replication in intraepithelial neoplasia phase. The mutations of AKAP9 and MCAF1 upregulate glycolysis and Wnt signaling, respectively, in advanced-stage ESCC phase. Six major tracks related to different clinical features during ESCC progression are identified, which is validated by an independent cohort with another 256 samples. Hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) is considered as a drug target in ESCC progression. This study provides insight into the understanding of ESCC molecular mechanism and the development of therapeutic targets.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Weijie Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Xue Zhang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunshi Zhong
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Tianyin Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Anatomy and Neuroscience Research Institute , School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
49
|
Wang H, Cui H, Yang X, Peng L. TUBA1C: a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression. BMC Cancer 2023; 23:258. [PMID: 36941595 PMCID: PMC10026485 DOI: 10.1186/s12885-023-10707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The lack of obvious symptoms of early gastric cancer (GC) as well as the absence of sensitive and specific biomarkers results in poor clinical outcomes. Tubulin is currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders, however, its mechanism of action in gastric cancer is still unclear. Tubulin alpha-1 C (TUBA1C) is a subtype of α-tubulin, high TUBA1C expression has been shown to be closely related to a poor prognosis in various cancers, this study, for the first time, revealed the mechanism of TUBA1C promotes malignant progression of gastric cancer in vitro and in vivo. METHODS The expression of lncRNA EGFR-AS1 was detected in human GC cell lines by qRT-PCR. Mass spectrometry experiments following RNA pulldown assays found that EGFR-AS1 directly binds to TUBA1C, the CCK8, EdU, transwell, wound-healing, cell cycle assays and animal experiments were conducted to investigate the function of TUBA1C in GC. Combined with bioinformatics analyses, reveal interaction between Ki-67, E2F1, PCNA and TUBA1C by western blot. Rescue experiments furtherly demonstrated the relationship of EGFR-AS1and TUBA1C. RESULTS TUBA1C was proved to be a direct target of EGFR-AS1, and TUBA1C promotes gastric cancer proliferation, migration and invasion by accelerating the progression of the cell cycle from the G1 phase to the S phase and activating the expression of oncogenes: Ki-67, E2F1 and PCNA. CONCLUSION TUBA1C is a new potential target of LncRNA EGFR-AS1 promotes gastric cancer progression and could be a novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Haodong Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Huaiping Cui
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Xinjun Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China
| | - Lipan Peng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250000, Jinan, Jinan, China.
| |
Collapse
|
50
|
Jour G, Illa-Bochaca I, Ibrahim M, Donnelly D, Zhu K, Miera EVSD, Vasudevaraja V, Mezzano V, Ramswami S, Yeh YH, Winskill C, Betensky RA, Mehnert J, Osman I. Genomic and Transcriptomic Analyses of NF1-Mutant Melanoma Identify Potential Targeted Approach for Treatment. J Invest Dermatol 2023; 143:444-455.e8. [PMID: 35988589 DOI: 10.1016/j.jid.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
There is currently no targeted therapy to treat NF1-mutant melanomas. In this study, we compared the genomic and transcriptomic signatures of NF1-mutant and NF1 wild-type melanoma to reveal potential treatment targets for this subset of patients. Genomic alterations were verified using qPCR, and differentially expressed genes were independently validated using The Cancer Genome Atlas data and immunohistochemistry. Digital spatial profiling with multiplex immunohistochemistry and immunofluorescence were used to validate the signatures. The efficacy of combinational regimens driven by these signatures was tested through in vitro assays using low-passage cell lines. Pathogenic NF1 mutations were identified in 27% of cases. NF1-mutant melanoma expressed higher proliferative markers MK167 and CDC20 than NF1 wild-type (P = 0.008), which was independently validated both in The Cancer Genome Atlas dataset (P = 0.01, P = 0.03) and with immunohistochemistry (P = 0.013, P = 0.036), respectively. Digital spatial profiling analysis showed upregulation of LY6E within the tumor cells (false discovery rate < 0.01, log2 fold change > 1), confirmed with multiplex immunofluorescence showing colocalization of LY6E in melanoma cells. The combination of MAPK/extracellular signal‒regulated kinase kinase and CDC20 coinhibition induced both cytotoxic and cytostatic effects, decreasing CDC20 expression in multiple NF1-mutant cell lines. In conclusion, NF1-mutant melanoma is associated with a distinct genomic and transcriptomic profile. Our data support investigating CDC20 inhibition with MAPK pathway inhibitors as a targeted regimen in this melanoma subtype.
Collapse
Affiliation(s)
- George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA; Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA.
| | - Irineu Illa-Bochaca
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Milad Ibrahim
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Kelsey Zhu
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Eleazar Vega-Saenz de Miera
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Varshini Vasudevaraja
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Valeria Mezzano
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Sitharam Ramswami
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Yu-Hsin Yeh
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Carolyn Winskill
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Rebecca A Betensky
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Janice Mehnert
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|