1
|
Baig MS, Barmpoutsi S, Bharti S, Weigert A, Hirani N, Atre R, Khabiya R, Sharma R, Sarup S, Savai R. Adaptor molecules mediate negative regulation of macrophage inflammatory pathways: a closer look. Front Immunol 2024; 15:1355012. [PMID: 38482001 PMCID: PMC10933033 DOI: 10.3389/fimmu.2024.1355012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 04/13/2024] Open
Abstract
Macrophages play a central role in initiating, maintaining, and terminating inflammation. For that, macrophages respond to various external stimuli in changing environments through signaling pathways that are tightly regulated and interconnected. This process involves, among others, autoregulatory loops that activate and deactivate macrophages through various cytokines, stimulants, and other chemical mediators. Adaptor proteins play an indispensable role in facilitating various inflammatory signals. These proteins are dynamic and flexible modulators of immune cell signaling and act as molecular bridges between cell surface receptors and intracellular effector molecules. They are involved in regulating physiological inflammation and also contribute significantly to the development of chronic inflammatory processes. This is at least partly due to their involvement in the activation and deactivation of macrophages, leading to changes in the macrophages' activation/phenotype. This review provides a comprehensive overview of the 20 adaptor molecules and proteins that act as negative regulators of inflammation in macrophages and effectively suppress inflammatory signaling pathways. We emphasize the functional role of adaptors in signal transduction in macrophages and their influence on the phenotypic transition of macrophages from pro-inflammatory M1-like states to anti-inflammatory M2-like phenotypes. This endeavor mainly aims at highlighting and orchestrating the intricate dynamics of adaptor molecules by elucidating the associated key roles along with respective domains and opening avenues for therapeutic and investigative purposes in clinical practice.
Collapse
Affiliation(s)
- Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Shivmuni Sarup
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Kim M, Lee J, Cai L, Choi H, Oh D, Jawad A, Hyun SH. Neurotrophin-4 promotes the specification of trophectoderm lineage after parthenogenetic activation and enhances porcine early embryonic development. Front Cell Dev Biol 2023; 11:1194596. [PMID: 37519302 PMCID: PMC10373506 DOI: 10.3389/fcell.2023.1194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Neurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos. Herein, we investigated the effect of NT-4 supplementation during the in vitro culture (IVC) of embryos, analyzed the transcription levels of specific genes, and outlined the first cell lineage specification for porcine PA-derived blastocysts. We confirmed that NT-4 and its receptor proteins were localized in both the inner cell mass (ICM) and trophectoderm (TE) in porcine blastocysts. Across different concentrations (0, 1, 10, and 100 ng/mL) of NT-4 supplementation, the optimal concentration of NT-4 to improve the developmental competence of porcine parthenotes was 10 ng/mL. NT-4 supplementation during porcine IVC significantly (p < 0.05) increased the proportion of TE cells by inducing the transcription of TE lineage markers (CDX2, PPAG3, and GATA3 transcripts). NT-4 also reduced blastocyst apoptosis by regulating the transcription of apoptosis-related genes (BAX and BCL2L1 transcripts) and improved blastocyst quality via the interaction of neurotrophin-, Hippo-yes-associated protein (Hippo-YAP) and mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. Additionally, NT-4 supplementation during IVC significantly (p < 0.05) increased YAP1 transcript levels and significantly (p < 0.01) decreased LATS2 transcript levels, respectively, in the porcine PA-derived blastocysts. We also confirmed through fluorescence intensity that the YAP1 protein was significantly (p < 0.001) increased in the NT-4-treated blastocysts compared with that in the control. NT-4 also promoted differentiation into the TE lineage rather than into the ICM lineage during porcine early embryonic development. In conclusion, 10 ng/mL NT-4 supplementation enhanced blastocyst quality by regulating the apoptosis- and TE lineage specification-related genes and interacting with neurotrophin-, Hippo-YAP-, and MAPK/ERK signaling pathway during porcine in vitro embryo development.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Salokas K, Liu X, Öhman T, Chowdhury I, Gawriyski L, Keskitalo S, Varjosalo M. Physical and functional interactome atlas of human receptor tyrosine kinases. EMBO Rep 2022; 23:e54041. [PMID: 35384245 PMCID: PMC9171411 DOI: 10.15252/embr.202154041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Xiaonan Liu
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Tiina Öhman
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | - Lisa Gawriyski
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salla Keskitalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Markku Varjosalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Lu X, An L, Fan G, Zang L, Huang W, Li J, Liu J, Ge W, Huang Y, Xu J, Du S, Cao Y, Zhou T, Yin H, Yu L, Jiao S, Wang H. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res 2022; 32:359-374. [PMID: 35197608 PMCID: PMC8975831 DOI: 10.1038/s41422-022-00628-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
TSPAN family of proteins are generally considered to assemble as multimeric complexes on the plasma membrane. Our previous work uncovered that TSPAN8 can translocate into the nucleus as a membrane-free form, a process that requires TSPAN8 palmitoylation and association with cholesterol to promote its extraction from the plasma membrane and subsequent binding with 14-3-3θ and importin-β. However, what upstream signal(s) regulate(s) the nuclear translocation of TSPAN8, the potential function of TSPAN8 in the nucleus, and the underlying molecular mechanisms all remain unclear. Here, we demonstrate that, epidermal growth factor receptor (EGFR) signaling induces TSPAN8 nuclear translocation by activating the kinase AKT, which in turn directly phosphorylates TSPAN8 at Ser129, an event essential for its binding with 14-3-3θ and importin ß1. In the nucleus, phosphorylated TSPAN8 interacts with STAT3 to enhance its chromatin occupancy and therefore regulates transcription of downstream cancer-promoting genes, such as MYC, BCL2, MMP9, etc. The EGFR-AKT-TSPAN8-STAT3 axis was found to be hyperactivated in multiple human cancers, and associated with aggressive phenotype and dismal prognosis. We further developed a humanized monoclonal antibody hT8Ab4 that specifically recognizes the large extracellular loop of TSPAN8 (TSPAN8-LEL), thus being able to block the extraction of TSPAN8 from the plasma membrane and consequently its nuclear localization. Importantly, both in vitro and in vivo studies demonstrated an antitumor effect of hT8Ab4. Collectively, we discovered an unconventional function of TSPAN8 and dissected the underlying molecular mechanisms, which not only showcase a new layer of biological complexity of traditional membrane proteins, but also shed light on TSPAN8 as a novel therapeutic target for refractory cancers.
Collapse
Affiliation(s)
- Xiaoqing Lu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Breast Surgery, Shanxi Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Guangjian Fan
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Zang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Jingxuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Khoury ZH, Salameh F. Trodusquemine: Potential Utility in Wound Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Zhu W, Li MC, Wang FR, Mackenzie GG, Oteiza PI. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem Pharmacol 2020; 175:113923. [PMID: 32217102 PMCID: PMC7489796 DOI: 10.1016/j.bcp.2020.113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological studies indicate that consumption of fruits and vegetables containing procyanidins is associated with lower CRC risk. This study investigated the capacity of two dimeric procyanidins composed of epicatechin gallate (ECG) or epigallocatechin gallate (EGCG) isolated from persimmons, to inhibit CRC cell growth and promote apoptosis, characterizing the underlying mechanisms. ECG and EGCG dimers reduced the growth of five human CRC cell lines in a concentration (10-60 μM)- and time (24-72 h)-dependent manner, with a 72 h-IC50 value in Caco-2 cells of 10 and 30 μM, respectively. ECG and EGCG dimers inhibited Caco-2 cell proliferation by arresting the cell cycle in G2/M phase and by inducing apoptosis via the mitochondrial pathway. In addition, ECG and EGCG dimers inhibited cell migration, invasion, and adhesion, decreasing the activity of matrix metalloproteinases (MMP-2/9). Mechanistically, ECG and EGCG dimers inhibited the activation of lipid raft-associated epidermal growth factor (EGF) receptor (EGFR), without affecting its localization at lipid rafts. In particular, ECG and EGCG dimers reduced EGFR phosphorylation at Tyr1068 residue, prevented EGFR dimerization and activation upon stimulation, and induced EGFR internalization both in the absence and presence of EGF. Furthermore, ECG and EGCG dimers increased EGFR phosphorylation at Tyr1045 residue, providing a docking site for ubiquitin ligase c-Cbl and induced EGFR degradation by the proteasome. Downstream of EGFR, ECG and EGCG dimers inhibited the activation of the MEK/ERK1/2 and PI3K/AKT signaling pathways, downregulating proteins involved in the modulation of cell survival. In conclusion, ECG and EGCG dimers reduced CRC cell growth by inhibiting EGFR activation at multiple steps, including the disruption of lipid rafts integrity and promoting EGFR degradation. These results shed light on a potential molecular mechanism on how procyanidins-rich diets may lower CRC risk.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mei C Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng R Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, Abdollahi A, Abbaszadegan MR. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res 2019; 52:2. [PMID: 30621788 PMCID: PMC6323733 DOI: 10.1186/s40659-018-0208-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor family members such as ErbB1 and ErbB3 are involved in tumor progression and metastasis. Although, there are various reports about the prognostic value of EGFR members separately in gastric cancer, there is not any report about the probable correlation between ErbB1 and ErbB3 co-expression and gastric cancer prognosis. In present study, we assessed the correlation between ErbB1 and ErbB3 co-overexpression (in the level of mRNA and protein expression) and gastric cancer prognosis for the first time. METHODS ErbB1 and ErbB3 expressions were analyzed by immunohistochemistry and real-time PCR in 50 patients with gastric cancer. Parametric correlations were done between the ErbB1 and ErbB3 expression and clinicopathological features. Multivariate and logistic regression analyses were also done to assess the roles of ErbB1 and ErbB3 in tumor prognosis and survival. RESULTS There were significant correlations between ErbB1/ErbB3 co-overexpression and tumor size (p = 0.026), macroscopic features (p < 0.05), tumor differentiation (p < 0.05), stage of tumor (p < 0.05), and recurrence (p < 0.05). Moreover, ErbB1/ErbB3 co-overexpression may predict the survival status of patients (p < 0.05). CONCLUSION ErbB1 and ErbB3 co-overexpression is accompanied with the poor prognosis and can be used efficiently in targeted therapy of gastric cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasha Makhdoumi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azadeh Aarabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ezzat Dadkhah
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Woo SH, Seo SK, Park Y, Kim EK, Seong MK, Kim HA, Song JY, Hwang SG, Lee JK, Noh WC, Park IC. Dichloroacetate potentiates tamoxifen-induced cell death in breast cancer cells via downregulation of the epidermal growth factor receptor. Oncotarget 2018; 7:59809-59819. [PMID: 27494858 PMCID: PMC5312350 DOI: 10.18632/oncotarget.10999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Metabolic reprogramming in cancer cells has recently been recognized as an essential hallmark of neoplasia. In this context, metabolic alterations represent an attractive therapeutic target, and encouraging results with drugs targeting various metabolic processes have been obtained in preclinical studies. Recently, several studies have suggested that dichloroacetate (DCA), a specific pyruvate dehydrogenase kinase inhibitor, may be a potential anticancer drug in a large number of diverse tumors. However, the precise mechanism is not fully understood, which is important for the use of DCA in cancer treatment. In the present study, we found that DCA sensitized MCF7 breast cancer cells to tamoxifen-induced cell death by decreasing epidermal growth factor receptor (EGFR) expression. The downregulation of EGFR was caused by degradation of the protein. Furthermore, p38 mitogen-activated protein kinase played an important role in DCA/tamoxifen-induced EGFR degradation. Finally, DCA also promoted comparable tamoxifen-induced cell death in tamoxifen-resistant MCF7 cells, which were established by long-term treatment with tamoxifen. In summary, our results suggest that DCA is an attractive potential drug that sensitizes cells to tamoxifen-induced cell death and overcome tamoxifen resistance via downregulation of EGFR expression in breast cancer cells.
Collapse
Affiliation(s)
- Sang Hyeok Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sung-Keum Seo
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Yoonhwa Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea.,School of Life Science and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun-Kyu Kim
- Department of Surgery, Breast Cancer Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Jin Kyung Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Woo Chul Noh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, 01812, Republic of Korea
| |
Collapse
|
9
|
Dayde D, Guerard M, Perron P, Hatat AS, Barrial C, Eymin B, Gazzeri S. Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival. Oncogene 2015; 35:3986-94. [PMID: 26686095 DOI: 10.1038/onc.2015.480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a cell surface receptor that has an essential role in cell proliferation and survival, and overexpression of EGFR is a common feature of human cancers. In Non-small-cell lung cancer (NSCLC), activating mutations of EGFR have also been described. We recently showed that mutant EGFR-L858R inhibits the expression of the p14ARF tumor-suppressor protein to promote cell survival. In this study, we defined the molecular bases by which EGFR controls Arf expression. Using various lung tumor models, we showed that EGF stimulation inhibits Arf transcription by a mechanism involving the nuclear transport and recruitment of EGFR to the Arf promoter. We unraveled the vesicular trafficking protein Vps34 as a mediator of EGFR nuclear trafficking and showed that its neutralization prevents the accumulation of EGFR to the Arf promoter in response to ligand activation. Finally, in lung tumor cells that carry mutant EGFR-L858R, we demonstrated that inhibition of Vps34 using small interfering RNA restrains nuclear EGFR location and restores Arf expression leading to apoptosis. These findings identify the Arf tumor suppressor as a new transcriptional target of nuclear EGFR and highlight Vps34 as an important regulator of the nuclear EGFR/Arf survival pathway. As a whole, they provide a mechanistic explanation to the inverse correlation between nuclear expression of EGFR and overall survival in NSCLC patients.
Collapse
Affiliation(s)
- D Dayde
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - M Guerard
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - P Perron
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - A-S Hatat
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - C Barrial
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - B Eymin
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | - S Gazzeri
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Grenoble, France.,Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| |
Collapse
|
10
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
11
|
Morii M, Fukumoto Y, Kubota S, Yamaguchi N, Nakayama Y, Yamaguchi N. Imatinib inhibits inactivation of the ATM/ATR signaling pathway and recovery from adriamycin/doxorubicin-induced DNA damage checkpoint arrest. Cell Biol Int 2015; 39:923-32. [DOI: 10.1002/cbin.10460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/06/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Mariko Morii
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
| | - Yasunori Fukumoto
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
| | - Sho Kubota
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
| | - Noritaka Yamaguchi
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
| | - Yuji Nakayama
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
- Present address: Department of Biochemistry & Molecular Biology; Kyoto Pharmaceutical University; Kyoto 607-8414 Japan
| | - Naoto Yamaguchi
- Department of Molecular Cell Biology; Graduate School of Pharmaceutical Sciences, Chiba University; Chiba 260-8675 Japan
| |
Collapse
|
12
|
Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS One 2014; 9:e115571. [PMID: 25535984 PMCID: PMC4275242 DOI: 10.1371/journal.pone.0115571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023] Open
Abstract
Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.
Collapse
|
13
|
Ellina MI, Bouris P, Aletras AJ, Theocharis AD, Kletsas D, Karamanos NK. EGFR and HER2 exert distinct roles on colon cancer cell functional properties and expression of matrix macromolecules. Biochim Biophys Acta Gen Subj 2014; 1840:2651-61. [DOI: 10.1016/j.bbagen.2014.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023]
|
14
|
Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA. Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 2013; 134:381-90. [PMID: 23891756 DOI: 10.1016/j.mad.2013.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/13/2013] [Accepted: 07/14/2013] [Indexed: 02/06/2023]
Abstract
Age-related changes in stem cells could have a profound impact on tissue aging and the development of age-related diseases such as cancer. However, the effects of metformin, a recently recognized anti-cancer drug, on stem cell aging remain largely unknown. In the present study, an experiment was set up to investigate the underlying mechanism of metformin's beneficial effects on age-related changes in intestinal stem cells (ISCs) derived from Drosophila midgut. Results showed that metformin reduced age- and oxidative stress-related accumulation of DNA damage marked by Drosophila γH2AX foci and 8-oxo-dG in ISCs and progenitor cells. Metformin also inhibited age and- oxidative stress-related ISC hyperproliferation as well as intestinal hyperplasia. Our study further revealed that the inhibitory effects of metformin on DNA damage accumulation may be due to the down-regulation of age-related and oxidative stress-induced AKT activity. These data indicate that metformin has beneficial effects on age-related changes in ISCs derived from Drosophila midgut. Further, our results suggest a possible impact of DNA damage on stem cell genomic instability, which leads to the development of age-related diseases. Additionally, our study suggests that Drosophila midgut stem cells can be a suitable model system for studying stem cell biology and stem cell aging.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Iida M, Brand TM, Campbell DA, Li C, Wheeler DL. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor. Oncogene 2013; 32:759-67. [PMID: 22430206 PMCID: PMC3381861 DOI: 10.1038/onc.2012.90] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 01/26/2012] [Accepted: 02/12/2012] [Indexed: 01/13/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR nuclear translocation in this model of cetuximab resistance.
Collapse
Affiliation(s)
| | | | - David A Campbell
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR 3159, Madison, Wisconsin, 53705 USA
| | - Chunrong Li
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR 3159, Madison, Wisconsin, 53705 USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR 3159, Madison, Wisconsin, 53705 USA
| |
Collapse
|
16
|
Hung MC. On mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol 2012; 4:a013532. [PMID: 22855727 DOI: 10.1101/cshperspect.a013532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Bodzin AS, Wei Z, Hurtt R, Gu T, Doria C. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol 2012; 227:2947-52. [PMID: 21959795 DOI: 10.1002/jcp.23041] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.
Collapse
Affiliation(s)
- Adam S Bodzin
- Division of Transplantation, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.
Collapse
Affiliation(s)
- Jessica B. Casaletto
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
| | - Andrea I. McClatchey
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
- To whom correspondence should be addressed:
| |
Collapse
|
19
|
Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci 2012; 2:13. [PMID: 22520625 PMCID: PMC3418567 DOI: 10.1186/2045-3701-2-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | | |
Collapse
|
20
|
Nuclear translocation and functions of growth factor receptors. Semin Cell Dev Biol 2012; 23:165-71. [DOI: 10.1016/j.semcdb.2011.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/08/2011] [Indexed: 01/24/2023]
|
21
|
Wang YN, Lee HH, Lee HJ, Du Y, Yamaguchi H, Hung MC. Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2. J Biol Chem 2012; 287:16869-79. [PMID: 22451678 DOI: 10.1074/jbc.m111.314799] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Hanamatsu T, Yoshioka T, Okano Y, Hirose Y, Kozawa O, Moriwaki H. Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Mol Cancer 2011; 10:79. [PMID: 21722395 PMCID: PMC3141756 DOI: 10.1186/1476-4598-10-79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rho-associated coiled-coil containing protein kinase (Rho-kinase/ROCK) is involved in various cellular functions including cell proliferation, and is generally considered to be oncogenic, while some studies show that ROCK functions as a negative regulator of cancer progression. As a result, the precise role of ROCK remains controversial. We have previously reported that Rho-kinase/ROCK negatively regulates epidermal growth factor (EGF)-induced cell proliferation in SW480 colon cancer cells. In the present study, we investigated the role of ROCK in EGF receptor (EGFR) signaling in the pancreatic cancer cell lines, Panc1, KP3 and AsPc1. RESULTS In these cells, Y27632, a specific ROCK inhibitor, enhanced EGF-induced BrdU incorporation. The blockade of EGF stimulation utilizing anti-EGFR-neutralizing antibodies suppressed Panc1 cell proliferation. EGF induced RhoA activity, as well as the phosphorylation of cofilin and myosin light chain (MLC), both targets of ROCK signaling, and Y27632 suppressed both of these processes, indicating that the phosphorylation of cofilin and MLC by EGF occurs through ROCK in Panc1 cells. EGF-induced phosphorylation of EGFR at tyrosine residues was augmented when the cells were pretreated with Y27632 or were subjected to gene silencing using ROCK-siRNA. We also obtained similar results using transforming growth factor-α. In addition, EGF-induced phosphorylation of p44/p42 mitogen-activated protein kinase and Akt were also enhanced by Y27632 or ROCK-siRNA. Moreover, an immunofluorescence microscope study revealed that pretreatment with Y27632 delayed EGF-induced internalization of EGFR. Taken together, these data indicate that ROCK functions to switch off EGFR signaling by promoting the internalization of the EGFR. CONCLUSIONS While EGF first stimulates the activation of the EGFR and subsequently increases cancer cell proliferation, EGF concurrently induces the activation of ROCK, which then turns off the activated EGFR pathway via a negative feedback system.
Collapse
Affiliation(s)
- Masanori Nakashima
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yamauchi T, Adachi S, Yasuda I, Nakashima M, Kawaguchi J, Nishii Y, Yoshioka T, Okano Y, Hirose Y, Kozawa O, Moriwaki H. UVC radiation induces downregulation of EGF receptor via phosphorylation at serine 1046/1047 in human pancreatic cancer cells. Radiat Res 2011; 176:565-74. [PMID: 21692654 DOI: 10.1667/rr2445.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in human pancreatic cancer and is one of the clinical targets in its treatment. In the present study we investigated the mechanism underlying ultraviolet C (UVC)-radiation-induced cell growth inhibition and downregulation of EGFR in human pancreatic cancer cells (Panc1 and KP3). The cell proliferation assay indicated that Panc1 and KP3 cells were more sensitive to UVC radiation, and their growth was significantly inhibited compared to cells of the normal human pancreatic epithelial cell line, PE. Although EGFR levels was extremely low in PE cells, EGFR were highly overexpressed in Panc1 and KP3 cells, and UVC radiation downregulated the expression of EGFR in a time-dependent manner and induced phosphorylation of EGFR at Ser1046/1047 (S1046/7) in Panc1 and KP3 cells. UVC radiation induced activation of p38 mitogen-activated protein kinase (MAPK), and EGFR phosphorylation at S1046/7 induced by UVC radiation was markedly attenuated by the inhibition of p38 MAPK. Moreover, fluorescence microscopy revealed that p38 MAPK activated by UVC radiation triggered EGFR internalization and that this was not correlated with c-Cbl, an ubiquitin ligase, which plays an important role in EGF-induced EGFR downregulation. Taken together, our results suggest that in pancreatic cancer cells UVC radiation induced desensitization of the cells to EGFR stimuli via phosphorylation of EGFR at S1046/7 by activation of p38 MAPK, independent of c-Cbl.
Collapse
Affiliation(s)
- Takahiro Yamauchi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Adachi S, Yasuda I, Nakashima M, Yamauchi T, Kawaguchi J, Shimizu M, Itani M, Nakamura M, Nishii Y, Yoshioka T, Hirose Y, Okano Y, Moriwaki H, Kozawa O. Ultraviolet irradiation can induce evasion of colon cancer cells from stimulation of epidermal growth factor. J Biol Chem 2011; 286:26178-87. [PMID: 21646361 DOI: 10.1074/jbc.m111.240630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.
Collapse
Affiliation(s)
- Seiji Adachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, Chen HY, Chien PJ, Ma HT, Tsai HC, Lai CC, Sher YP, Lien HC, Tsai CH, Hung MC. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res 2011; 71:4269-79. [PMID: 21555369 DOI: 10.1158/0008-5472.can-10-3504] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aberrant regulation of rRNA synthesis and translation control can facilitate tumorigenesis. The ErbB2 growth factor receptor is overexpressed in many human tumors and has been detected in the nucleus, but the role of nuclear ErbB2 is obscure. In this study, we defined a novel function of nuclear ErbB2 in enhancing rRNA gene transcription by RNA polymerase-I (RNA Pol I). Nuclear ErbB2 physically associates with β-actin and RNA Pol I, coinciding with active RNA Pol I transcription sites in nucleoli. RNA interference-mediated knockdown of ErbB2 reduced pre-rRNA and protein synthesis. In contrast, wild-type ErbB2 augmented pre-rRNA level, protein production, and cell size/cell growth, but not by an ErbB2 mutant that is defective in nuclear translocation. Chromatin immunoprecipitation assays revealed that ErbB2 enhances binding of RNA Pol I to rDNA. In addition, ErbB2 associated with rDNA, RNA Pol I, and β-actin, suggesting how it could stimulate rRNA production, protein synthesis, and increased cell size and cell growth. Finally, ErbB2-potentiated RNA Pol I transcription could be stimulated by ligand and was not substantially repressed by inhibition of PI3-K and MEK/ERK (extracellular signal regulated kinase), the main ErbB2 effector signaling pathways. Together, our findings indicate that nuclear ErbB2 functions as a regulator of rRNA synthesis and cellular translation, which may contribute to tumor development and progression.
Collapse
Affiliation(s)
- Long-Yuan Li
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mukherjee B, Choy H, Nirodi C, Burma S. Targeting nonhomologous end-joining through epidermal growth factor receptor inhibition: rationale and strategies for radiosensitization. Semin Radiat Oncol 2011; 20:250-7. [PMID: 20832017 DOI: 10.1016/j.semradonc.2010.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation or chemotherapeutic drugs used to eradicate cancer cells. The ability of cancer cells to effectively repair DSBs significantly influences the outcome of therapeutic regimens. Therefore, a new and important area of clinical cancer research is the development of DNA repair inhibitors that can be used as radio- or chemosensitizers. Nonhomologous end joining (NHEJ) is the predominant pathway for the repair of radiation-induced DSBs. A series of recent reports indicates that the epidermal growth factor receptor (EGFR) or its downstream components may modulate NHEJ through direct interaction with the DNA repair enzyme, DNA-dependent protein kinase. Because EGFR is overexpressed or activated in many cancers, these findings provide a compelling rationale for combining radiotherapy with therapies that block EGFR or its downstream signaling components. In this review, we delineate how these novel connections between a cell-surface receptor (EGFR) and a predominantly nuclear event (NHEJ) provide vulnerable nodes that can be selectively targeted to improve cancer therapy.
Collapse
Affiliation(s)
- Bipasha Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | | | | | | |
Collapse
|
27
|
Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, Protheroe AS, Howarth M, Macaulay VM. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 2010; 70:6412-9. [PMID: 20710042 DOI: 10.1158/0008-5472.can-10-0052] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein composed of two extracellular alpha subunits and two beta subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here, we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to alpha- and beta-subunit domains. Cell-surface IGF-1R translocates to the nucleus following clathrin-mediated endocytosis, regulated by IGF levels. The IGF-1R is unusual among transmembrane receptors that undergo nuclear import, in that both alpha and beta subunits traffic to the nucleus. Nuclear IGF-1R is phosphorylated in response to ligand and undergoes IGF-induced interaction with chromatin, suggesting direct engagement in transcriptional regulation. The IGF dependence of these phenomena indicates a requirement for the receptor kinase, and indeed, IGF-1R nuclear import and chromatin binding can be blocked by a novel IGF-1R kinase inhibitor. Nuclear IGF-1R is detectable in primary renal cancer cells, formalin-fixed tumors, preinvasive lesions in the breast, and nonmalignant tissues characterized by a high proliferation rate. In clear cell renal cancer, nuclear IGF-1R is associated with adverse prognosis. Our findings suggest that IGF-1R nuclear import has biological significance, may contribute directly to IGF-1R function, and may influence the efficacy of IGF-1R inhibitory drugs.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Cellular Pathology, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH, Wang H, Hsu JM, Hung MC. The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 2010; 285:38720-9. [PMID: 20937808 DOI: 10.1074/jbc.m110.158659] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that endocytosis plays an essential role in the nuclear transport of the ErbB family members, such as epidermal growth factor receptor (EGFR) and ErbB-2. Nevertheless, how full-length receptors embedded in the endosomal membrane pass through the nuclear pore complexes and function as non-membrane-bound receptors in the nucleus remains unclear. Here we show that upon EGF treatment, the biotinylated cell surface EGFR is trafficked to the inner nuclear membrane (INM) through the nuclear pore complexes, remaining in a membrane-bound environment. We further find that importin β regulates EGFR nuclear transport to the INM in addition to the nucleus/nucleoplasm. Unexpectedly, the well known endoplasmic reticulum associated translocon Sec61β is found to reside in the INM and associate with EGFR. Knocking down Sec61β expression reduces EGFR level in the nucleoplasm portion and accumulates it in the INM portion. Thus, the Sec61β translocon plays an unrecognized role in the release of the membrane-anchored EGFR from the lipid bilayer of the INM to the nucleus. The newly identified Sec61β function provides an alternative pathway for nuclear transport that can be utilized by membrane-embedded proteins such as full-length EGFR.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Larsen CA, Dashwood RH, Bisson WH. Tea catechins as inhibitors of receptor tyrosine kinases: mechanistic insights and human relevance. Pharmacol Res 2010; 62:457-64. [PMID: 20691268 DOI: 10.1016/j.phrs.2010.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) play important roles in the control of fundamental cellular processes, influencing the balance between cell proliferation and death. RTKs have emerged as molecular targets for the treatment of various cancers. Green tea and its polyphenolic compounds, the catechins, exhibit chemopreventive and chemotherapeutic properties in many human cancer cell types, as well as in various carcinogenicity models in vivo. Epidemiological studies are somewhat less convincing, but some positive correlations have been observed. The tea catechins, including (-)-epigallocatechin-3-gallate (EGCG), have pleiotropic effects on cellular proteins and signaling pathways. This review focuses on the ability of the tea constituents to suppress RTK signaling, and summarizes the mechanisms by which EGCG and other catechins might exert their protective effects towards dysregulated RTKs in cancer cells. The findings are discussed in the context of ongoing clinical trials with RTK inhibitors, and the possibility for drug/nutrient interactions enhancing therapeutic efficacy.
Collapse
|
30
|
Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, Hung MC. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 2010; 399:498-504. [PMID: 20674546 DOI: 10.1016/j.bbrc.2010.07.096] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/25/2010] [Indexed: 11/17/2022]
Abstract
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH(2)-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with gamma-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang YN, Yamaguchi H, Hsu JM, Hung MC. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 2010; 29:3997-4006. [PMID: 20473332 DOI: 10.1038/onc.2010.157] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple membrane-bound receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and ErbB-2, have been reported to be localized in the nucleus, where emerging evidence suggests that they are involved in transcriptional regulation, cell proliferation, DNA repair and chemo- and radio-resistance. Recent studies have shown that endocytosis and endosomal sorting are involved in the nuclear transport of cell surface RTKs. However, the detailed mechanism by which the full-length receptors embedded in the endosomal membrane travel all the way from the cell surface to the early endosomes and pass through the nuclear pore complexes is unknown. This important area has been overlooked for decades, which has hindered progress in our understanding of nuclear RTKs' functions. Here, we discuss the putative mechanisms by which EGFR family RTKs are shuttled into the nucleus. Understanding the trafficking mechanisms as to how RTKs are transported from the cell surface to the nucleus will significantly contribute to understanding the functions of the nuclear RTKs.
Collapse
Affiliation(s)
- Y-N Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
32
|
Choi S, Choi Y, Dat NT, Hwangbo C, Lee JJ, Lee JH. Tephrosin induces internalization and degradation of EGFR and ErbB2 in HT-29 human colon cancer cells. Cancer Lett 2010; 293:23-30. [PMID: 20056314 DOI: 10.1016/j.canlet.2009.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 01/17/2023]
Abstract
Inactivation of epidermal growth factor receptor (EGFR) family members are prime targets for cancer therapy. Here, we show that tephrosin, a natural rotenoid which has potent antitumor activities, induced internalization of EGFR and ErbB2, and thereby induced degradation of the receptors. Treatment of HT-29 cells with tephrosin inhibited both the ligand-induced and constitutive phosphorylation of EGFR, ErbB2 and ErbB3, and concomitantly suppressed the activation of the downstream signaling molecules such as Akt and Erk1/2 mitogen-activated protein kinase (MAPK). Tephrosin caused internalization of EGFR and ErbB2 into vehicles, which resulted in degradation of the receptors. This degradation was blocked by the lysosomal inhibitor, chloroquine. We also showed that tephrosin induced apoptosis. Tephrosin did not induce the proteolytic processing of caspase-3 and poly(ADP-ribose) polymerase (PARP), but did nuclear translocation of apoptosis-inducing factor (AIF), suggesting that tephrosin may induce caspase-independent apoptosis. These findings provide the first evidence that tephrosin could exert antitumor effects by inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Kim HJ, Ryu JH, Kim CH, Lim JW, Moon UY, Lee GH, Lee JG, Baek SJ, Yoon JH. Epicatechin gallate suppresses oxidative stress-induced MUC5AC overexpression by interaction with epidermal growth factor receptor. Am J Respir Cell Mol Biol 2009; 43:349-57. [PMID: 19855084 DOI: 10.1165/rcmb.2009-0205oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The goal of this study was to investigate the effect of epicatechin gallate (ECG), a component of green tea polyphenols, on the signal pathway for oxidative stress-induced intracellular reactive oxygen species (ROS) generation and MUC5AC overexpression in normal human nasal epithelial (NHNE) cells. Passage-2 NHNE cells were used, and ECG was administered before stimulation with exogenous hydrogen peroxide (H(2)O(2)). MUC5AC gene and protein levels were measured by real-time PCR and dot blot analysis. Western blot analysis and immunocytofluorescence study were performed for detecting the activity of epidermal growth factor receptor (EGFR). Exogenous H(2)O(2) increases intracellular ROS generation, leading to the overexpression of MUC5AC. The phosphorylation and internalization of EGFR were associated with this ROS generation. ECG decreased the phosphorylation and internalization of EGFR at the cell surface of NHNE cells, resulting in the attenuation of exogenous H(2)O(2)-induced intracellular ROS generation and MUC5AC overexpression. ECG may be a therapeutic material against oxidative stress-induced ROS generation and mucus hypersecretion in airways.
Collapse
Affiliation(s)
- Hyun Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gene expression changes in normal haematopoietic cells. Best Pract Res Clin Haematol 2009; 22:249-69. [PMID: 19698932 DOI: 10.1016/j.beha.2009.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexity of the healthy haematopoietic system is immense, and as such, one must understand the biology driving normal haematopoietic expression profiles when designing experiments and interpreting expression data that involve normal cells. This article seeks to present an organised approach to the use and interpretation of gene profiling in normal haematopoiesis and broadly illustrates the challenges of selecting appropriate controls for high-throughput expression studies.
Collapse
|
35
|
Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 2009; 28:3801-13. [PMID: 19684613 DOI: 10.1038/onc.2009.234] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and beta-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab.
Collapse
Affiliation(s)
- C Li
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
36
|
Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, Komaki R, Varella-Garcia M, Hong WK, Aldape KD, Wistuba II. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res 2009; 15:4829-37. [PMID: 19622585 PMCID: PMC3372920 DOI: 10.1158/1078-0432.ccr-08-2921] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To compare the characteristics of deregulation of HER receptors and their ligands between primary tumor and corresponding brain metastases of non-small cell lung carcinoma (NSCLC). EXPERIMENTAL DESIGN Fifty-five NSCLC primary tumors and corresponding brain metastases specimens were examined for the immunohistochemical expression of epidermal growth factor receptor (EGFR), phosphorylated EGFR, Her2, Her3, and phosphorylated Her3, and their ligands EGF, transforming growth factor-alpha, amphiregulin, epiregulin, betacellulin, heparin-binding EGFR-like growth factor, neuregulin (NRG) 1, and NRG2. Analysis of EGFR copy number using fluorescence in situ hybridization and mutation by PCR-based sequencing was also done. RESULTS Metastases showed significantly higher immunohistochemical expression of EGF (membrane: brain metastases 66.0 versus primary tumors 48.5; P = 0.027; nucleus: brain metastases 92.2 versus 67.4; P = 0.008), amphiregulin (nucleus: brain metastases 53.7 versus primary tumors 33.7; P = 0.019), phosphorylated EGFR (membrane: brain metastases 161.5 versus primary tumors 76.0; P < 0.0001; cytoplasm: brain metastases 101.5 versus primary tumors 55.9; P = 0.014), and phosphorylated Her3 (membrane: brain metastases 25.0 versus primary tumors 3.7; P = 0.001) than primary tumors did. Primary tumors showed significantly higher expression of cytoplasmic transforming growth factor-alpha(primary tumors 149.8 versus brain metastases 111.3; P = 0.008) and NRG1 (primary tumors 158.5 versus brain metastases 122.8; P = 0.006). In adenocarcinomas, a similar high frequency of EGFR copy number gain (high polysomy and amplification) was detected in primary (65%) and brain metastasis (63%) sites. However, adenocarcinoma metastases (30%) showed higher frequency of EGFR amplification than corresponding primary tumors (10%). Patients whose primary tumors showed EGFR amplification tended to develop brain metastases at an earlier time point. CONCLUSIONS Our findings suggest that NSCLC brain metastases have some significant differences in HER family receptor-related abnormalities from primary lung tumors.
Collapse
Affiliation(s)
- Menghong Sun
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Lei Feng
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Natalie Ozburn
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Guosheng Yin
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Marileila Varella-Garcia
- Department of Medicine/Medical Oncology and Pathology, University of Colorado Cancer Center, Aurora, Colorado
| | - Waun Ki Hong
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Kenneth D. Aldape
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I. Wistuba
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Adachi S, Shimizu M, Shirakami Y, Yamauchi J, Natsume H, Matsushima-Nishiwaki R, To S, Weinstein IB, Moriwaki H, Kozawa O. (-)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells. Carcinogenesis 2009; 30:1544-52. [PMID: 19578043 DOI: 10.1093/carcin/bgp166] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that (-)-epigallocatechin gallate (EGCG) in green tea alters plasma membrane organization and causes internalization of epidermal growth factor receptor (EGFR), resulting in the suppression of colon cancer cell growth. In the present study, we investigated the detailed mechanism underlying EGCG-induced downregulation of EGFR in SW480 colon cancer cells. Prolonged exposure to EGCG caused EGFR degradation. However, EGCG required neither an ubiquitin ligase (c-Cbl) binding to EGFR nor a phosphorylation of EGFR at tyrosine residues, both of which are reportedly necessary for EGFR degradation induced by epidermal growth factor. In addition, EGCG induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK by SB203580, a specific p38 MAPK inhibitor, or the gene silencing using p38 MAPK-small interfering RNA (siRNA) suppressed the internalization and subsequent degradation of EGFR induced by EGCG. EGFR underwent a gel mobility shift upon treatment with EGCG and this was canceled by SB203580, indicating that EGCG causes EGFR phosphorylation via p38 MAPK. Moreover, EGCG caused phosphorylation of EGFR at Ser1046/1047, a site that is critical for its downregulation and this was also suppressed by SB203580 or siRNA of p38 MAPK. Taken together, our results strongly suggest that phosphorylation of EGFR at serine 1046/1047 via activation of p38 MAPK plays a pivotal role in EGCG-induced downregulation of EGFR in colon cancer cells.
Collapse
Affiliation(s)
- Seiji Adachi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Adachi S, Natsume H, Yamauchi J, Matsushima-Nishiwaki R, Joe AK, Moriwaki H, Kozawa O. p38 MAP kinase controls EGF receptor downregulation via phosphorylation at Ser1046/1047. Cancer Lett 2009; 277:108-13. [DOI: 10.1016/j.canlet.2008.11.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/14/2008] [Accepted: 11/27/2008] [Indexed: 01/09/2023]
|
39
|
Maures TJ, Chen L, Carter-Su C. Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 2009; 23:1077-91. [PMID: 19372237 DOI: 10.1210/me.2009-0011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adapter protein SH2B1 (SH2-B, PSM) is recruited to multiple ligand-activated receptor tyrosine kinases, including the receptors for nerve growth factor (NGF), insulin, and IGF-I as well as the cytokine receptor-associated Janus kinase family kinases. In this study, we examine SH2B1's function in NGF signaling. We show that depleting endogenous SH2B1 using short hairpin RNA against SH2B1 inhibits NGF-dependent neurite outgrowth, but not NGF-mediated phosphorylation of Akt or ERKs 1/2. SH2B1 has been hypothesized to localize and function at the plasma membrane. We identify a nuclear localization signal within SH2B1 and show that it is required for nuclear translocation of SH2B1beta. Mutation of the nuclear localization signal has no effect on NGF-induced activation of TrkA and ERKs 1/2 but prevents SH2B1beta from enhancing NGF-induced neurite outgrowth. Disruption of SH2B1beta nuclear import also prevents SH2B1beta from enhancing NGF-induced transcription of genes important for neuronal differentiation, including those encoding urokinase plasminogen activator receptor, and matrix metalloproteinases 3 and 10. Disruption of SH2B1beta nuclear export by mutation of its nuclear export sequence similarly prevents SH2B1beta enhancement of NGF-induced transcription of those genes. Nuclear translocation of the highly homologous family member SH2B2(APS) was not observed. Together, these data suggest that rather than simply acting as an adapter protein linking signaling proteins to the activated TrkA receptor at the plasma membrane, SH2B1beta must shuttle between the plasma membrane and nucleus to function as a critical component of NGF-induced gene expression and neuronal differentiation.
Collapse
Affiliation(s)
- Travis J Maures
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | |
Collapse
|
40
|
Budi EH, Patterson LB, Parichy DM. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation. Development 2008; 135:2603-14. [PMID: 18508863 PMCID: PMC2704560 DOI: 10.1242/dev.019299] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish, maintain or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, which encodes an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3b activities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores, and suggest complex modes by which ErbB signals promote adult pigment pattern development.
Collapse
Affiliation(s)
- Erine H. Budi
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| | - Larissa B. Patterson
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| | - David M. Parichy
- Department of Biology Institute for Stem Cell and Regenerative Medicine University of Washington Box 351800 Seattle WA 98195−1800
| |
Collapse
|
41
|
Adachi S, Nagao T, To S, Joe AK, Shimizu M, Matsushima-Nishiwaki R, Kozawa O, Moriwaki H, Maxfield FR, Weinstein IB. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 2008; 29:1986-93. [PMID: 18586691 DOI: 10.1093/carcin/bgn128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We recently found that the inhibitory effect of (-)-epigallocatechin gallate (EGCG) on epidermal growth factor (EGF) binding to the epidermal growth factor receptor (EGFR) is associated with alterations in lipid organization in the plasma membrane of colon cancer cells. Since changes in lipid organizations are thought to play a role in the trafficking of several membrane proteins, in this study we examined the effects of EGCG on cellular localization of the EGFR in SW480 cells. Treatment of the cells for 30 min with as little as 1 microg/ml of EGCG caused a decrease in cell surface-associated EGFRs and this was associated with internalization of EGFRs into endosomal vesicles. Similar effects were seen with a green fluorescent protein (GFP)-EGFR fusion protein. As expected, the EGFR protein was phosphorylated at tyrosine residues, ubiquitinated and partially degraded when the cells were treated with EGF, but treatment with EGCG caused none of these effects. The loss of EGFRs from the cell surface induced by treating the cells with EGF for 30 min persisted for at least 2 h. However, the loss of EGFRs from the cell surface induced by temporary exposure to EGCG was partially restored within 1-2 h. These studies provide the first evidence that EGCG can induce internalization of EGFRs into endosomes, which can recycle back to the cell surface. This sequestrating of inactivated EGFRs into endosomes may explain, at least in part, the ability of EGCG to inhibit activation of the EGFR and thereby exert anticancer effects.
Collapse
Affiliation(s)
- Seiji Adachi
- Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168th Street, New York, NY 10032-2704, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Anatomically based technologies (computed tomography scans, magnetic resonance imaging, and so on) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular-imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy.
Collapse
|
43
|
Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008; 65:1566-84. [PMID: 18259690 PMCID: PMC3060045 DOI: 10.1007/s00018-008-7440-8] [Citation(s) in RCA: 507] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy.
Collapse
Affiliation(s)
- M. J. Wieduwilt
- Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, UCSF, Box 0875, San Francisco, CA 94143-0875 USA
| | - M. M. Moasser
- Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, UCSF, Box 0875, San Francisco, CA 94143-0875 USA
| |
Collapse
|
44
|
Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH. c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 2007; 283:4344-51. [PMID: 18073207 DOI: 10.1074/jbc.m706550200] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) is important for cell proliferation, differentiation, and related activities. HGF acts through its receptor c-Met, which activates downstream signaling pathways. HGF binds to c-Met at the plasma membrane, where it is generally believed that c-Met signaling is initiated. Here we report that c-Met rapidly translocates to the nucleus upon stimulation with HGF. Ca(2+) signals that are induced by HGF result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. Translocation of c-Met to the nucleus depends upon the adaptor protein Gab1 and importin beta1, and formation of Ca(2+) signals in turn depends upon this translocation. HGF may exert its particular effects on cells because it bypasses signaling pathways in the cytoplasm to directly activate signaling pathways in the nucleus.
Collapse
Affiliation(s)
- Dawidson A Gomes
- Department of Internal Medicine and Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Goodison S, Nakamura K, Iczkowski KA, Anai S, Boehlein SK, Rosser CJ. Exogenous mycoplasmal p37 protein alters gene expression, growth and morphology of prostate cancer cells. Cytogenet Genome Res 2007; 118:204-13. [PMID: 18000372 DOI: 10.1159/000108302] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/05/2007] [Indexed: 11/19/2022] Open
Abstract
We previously showed that the Mycoplasma hyorhinis-encoded protein p37 can promote invasion of cancer cells in a dose-dependent manner, an effect that was blocked by monoclonal antibodies specific for p37. In this study, we further elucidated changes in growth, morphology and gene expression in prostate cancer cell lines when treated with exogenous p37 protein. Incubation with recombinant p37 caused significant nuclear enlargement, denoting active, anaplastic cells and increased the migratory potential of both PC-3 and DU145 cells. Microarray analysis of p37-treated and untreated cells identified eight gene expression clusters that could be broadly classified into three basic patterns. These were an increase in both cell lines, a decrease in either cell line or a cell line-specific differential trend. The most represented functional gene categories included cell cycle, signal transduction and metabolic factors. Taken together, these observations suggest that p37 potentiates the aggressiveness of prostate cancer and thus molecular events triggered by p37 maybe target for therapy.
Collapse
Affiliation(s)
- S Goodison
- Department of Surgery, The University of Florida, Jacksonville, FL, USA
| | | | | | | | | | | |
Collapse
|
46
|
Dalmizrak O, Wu A, Chen J, Sun H, Utama FE, Zambelli D, Tran TH, Rui H, Baserga R. Insulin Receptor Substrate-1 Regulates the Transformed Phenotype of BT-20 Human Mammary Cancer Cells. Cancer Res 2007; 67:2124-30. [PMID: 17332342 DOI: 10.1158/0008-5472.can-06-3954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Although originating from a human breast cancer, BT-20 cells do not form colonies in soft agar. BT-20 cells do not express insulin receptor substrate-1 (IRS-1), which is known to promote both normal and abnormal growth and to inhibit differentiation. Stable expression of IRS-1 confers to BT-20 cells the ability to form colonies in soft agar. BT-20 cells form tumors in xenografts in mice, but the size of tumors is twice as large when the cells express IRS-1. The increased transformed phenotype is characterized by occupancy of the rDNA and cyclin D1 promoters by IRS-1 and the activation of the cyclin D1, c-myc, and rDNA promoters. In addition, the retinoblastoma protein, which is detectable in the rDNA promoter of quiescent BT-20/IRS-1 cells, is replaced by IRS-1 after insulin-like growth factor-I stimulation. Our results indicate that in BT-20 human mammary cancer cells, expression of IRS-1 activates promoters involved in cell growth and cell proliferation, resulting in a more transformed phenotype. Targeting of IRS-1 could be effective in inhibiting the proliferation of mammary cancer cells. [Cancer Res 2007;67(5):2124–30]
Collapse
Affiliation(s)
- Ozlem Dalmizrak
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hsu SC, Hung MC. Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 2007; 282:10432-40. [PMID: 17283074 DOI: 10.1074/jbc.m610014200] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aberrant expression of epidermal growth factor receptor (EGFR) is present in many human tumors. Several reports have shown that EGFR is translocated into the nucleus during liver regeneration and in several types of cells and tissues such as placenta and thyroid. Nuclear EGFR is associated with transcription, DNA synthesis, and DNA repair activity and serves as a prognostic marker in breast carcinoma and oropharyngeal squamous cell cancer. However, the nuclear localization sequence (NLS) of EGFR has not been extensively examined. In this study, we have shown that the juxtamembrane region of EGFR harbors a putative NLS with three clusters of basic amino acids (RRRHIVRKRTLRR (amino acids 645-657)) that mediates the nuclear localization of EGFR. We found that this newly characterized tripartite NLS is conserved among the EGFR family members (EGFR, ErbB2, ErbB3, and ErbB4) and is able to move each to the nucleus. Further, this tripartite NLS could also mediate the nuclear localization of other known cytoplasmic proteins such as pyruvate kinase. We have demonstrated that mutating one of the three basic amino acid clusters (R or K --> A) leads to significant impairment of the nuclear localization of EGFR and that of a green fluorescent protein-pyruvate kinase-NLS reporter protein. Our results show that this tripartite NLS is distinct from the traditional mono- and bipartite NLS and reveal a mechanism that could account for the nuclear localization of membrane receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Amino Acid Sequence
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- HeLa Cells
- Humans
- Multigene Family/physiology
- Mutation, Missense
- Nuclear Localization Signals/genetics
- Nuclear Localization Signals/metabolism
- Oropharyngeal Neoplasms/genetics
- Oropharyngeal Neoplasms/metabolism
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 2007; 18:38-45. [PMID: 17140804 DOI: 10.1016/j.tem.2006.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/28/2022]
Abstract
Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.
Collapse
Affiliation(s)
- Travis J Maures
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0662, USA
| | | | | |
Collapse
|
49
|
Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, McIntush EW, Li LY, Hawke DH, Kobayashi R, Hung MC. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 2006; 8:1359-68. [PMID: 17115032 DOI: 10.1038/ncb1501] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/10/2006] [Indexed: 01/11/2023]
Abstract
The proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication and damage repair. How its function is controlled remains an important question. Here, we show that the chromatin-bound PCNA protein is phosphorylated on Tyr 211, which is required for maintaining its function on chromatin and is dependent on the tyrosine kinase activity of EGF receptor (EGFR) in the nucleus. Phosphorylation on Tyr 211 by EGFR stabilizes chromatin-bound PCNA protein and associated functions. Consistently, increased PCNA Tyr 211 phosphorylation coincides with pronounced cell proliferation, and is better correlated with poor survival of breast cancer patients, as well as nuclear EGFR in tumours, than is the total PCNA level. These results identify a novel nuclear mechanism linking tyrosine kinase receptor function with the regulation of the PCNA sliding clamp.
Collapse
Affiliation(s)
- Shao-Chun Wang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The role of receptor tyrosine kinases (RTKs) in transmembrane signaling is well established. Recently, ligand-dependent translocation of RTKs to the nucleus has been reported, but the functional importance of this process remains unclear. In this issue, Sardi et al. (2006) provide evidence for direct signaling in the nucleus by an intracellular ErbB4 receptor fragment that is released upon receptor activation by ligand. The fragment forms a complex with the adaptor TAB2 and the corepressor N-CoR and transits to the nucleus, where it represses transcription of genes that promote the formation of astrocytes.
Collapse
Affiliation(s)
- Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|