1
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Principe G, Lezcano V, Tiburzi S, Miravalles AB, García BN, Gumilar F, González-Pardo V. In vitro and in vivo evidence of the antineoplastic activity of quercetin against endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Biochimie 2025; 229:30-41. [PMID: 39369938 DOI: 10.1016/j.biochi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 μM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Virginia Lezcano
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Silvina Tiburzi
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Betina N García
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina; Bioquímica Austral, Laboratorio de Análisis Clínicos y Gestión, 25 de Mayo 1007, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Majerciak V, Alvarado-Hernandez B, Ma Y, Duduskar S, Lobanov A, Cam M, Zheng ZM. A KSHV RNA-binding protein promotes FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation. mBio 2025; 16:e0317224. [PMID: 39655935 PMCID: PMC11708059 DOI: 10.1128/mbio.03172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an RNA-binding protein ORF57 in lytic infection. Using an optimized CLIP-seq in this report, we identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS RNA as one of the major ORF57-specific RNA targets. FOS dimerizes with JUN as a transcription factor AP-1 involved in cell proliferation, differentiation, and transformation. Knockout of the ORF57 gene from the KSHV genome led BAC16-iSLK cells incapable of FOS expression in KSHV lytic infection. The dysfunctional KSHV genome in FOS expression could be rescued by Lenti-ORF57 virus infection. ORF57 protein does not regulate FOS translation but binds to the 13-nt RNA motif near the FOS RNA 5' end and prolongs FOS mRNA half-life 7.7 times longer than it is in the absence of ORF57. This binding of ORF57 to FOS RNA is likely competitive to the binding of host nuclease AEN (ISG20L1) of which physiological RNase activity remains unknown. KSHV infection inhibits the expression of AEN, but not exosomal RNA helicase MTR4. FOS expression mediated by ORF57 inhibits AEN transcription through FOS binding to AEN promoter but transactivates RGS2, a regulator of G-protein-coupled receptors. FOS binds a conserved AP-1 site in the RGS2 promoter and enhances RGS2 expression to phosphorylate AKT. Altogether, we have discovered that KSHV ORF57 specifically binds and stabilizes FOS RNA to increase FOS expression, thereby disturbing host gene expression and inducing pathogenesis during KSHV lytic infection.IMPORTANCEWe discovered that FOS, a heterodimer component of oncogenic transcription factor AP-1, is highly elevated in KSHV-infected cells by expression of a viral lytic RNA-binding protein, ORF57, which binds a 13-nt RNA motif near the FOS RNA 5' end to prolong FOS RNA half-life. This binding of ORF57 to FOS RNA is competitive to the binding of host RNA destabilizer(s). KSHV infection inhibits expression of host nuclease AEN, but not MTR4. FOS inhibits AEN transcription by binding to the AEN promoter but transactivates RGS2 by binding to a conserved AP-1 site in the RGS2 promoter, thereby enhancing RGS2 expression and phosphorylation of AKT. Thus, KSHV lytic infection controls the expression of a subset of genes for signaling, cell cycle progression, and proliferation to potentially contribute to viral oncogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Shivalee Duduskar
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
4
|
Schultz S, Gomard-Henshaw K, Muller M. RNA Modifications and Their Role in Regulating KSHV Replication and Pathogenic Mechanisms. J Med Virol 2025; 97:e70140. [PMID: 39740054 DOI: 10.1002/jmv.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication. Recent studies have highlighted the importance of RNA modifications, also known as the epitranscriptome, in regulating KSHV-encoded RNAs, adding a novel layer of posttranscriptional control previously unknown. These RNA modifications, such as N6-methyladenosine, A-to-I editing, and N4-acetylcytidine, are involved in fine-tuning KSHV gene expression during both latency and lytic replication. Understanding the role of RNA modifications in KSHV infection is essential for revealing new regulatory mechanisms and identifying therapeutic opportunities. Targeting these RNA modifications could serve as a strategy to disrupt key viral processes, offering promising insights into KSHV pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- S Schultz
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - K Gomard-Henshaw
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Muller
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Chen J, Fan J, Malaviarachchi PA, Post SR, Lin Z, Zhang X, Qin Z. Alterations in Cellular Gene Expression Due to Co-Infection With Kaposi's Sarcoma-Associated Herpesvirus and SARS-CoV-2: Implications for Disease Severity. J Med Virol 2025; 97:e70149. [PMID: 39740042 DOI: 10.1002/jmv.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 pandemic, has resulted in over 7 million confirmed deaths. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal outcomes. Therefore, it is essential to investigate the impact of COVID-19 on pre-existing conditions in patients, such as cancer and other infectious diseases. Recent clinical studies have reported the reactivation of human herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), in severe COVID-19 patients or vaccinated individuals. To support these clinical observations, we established a KSHV/SARS-CoV-2 co-infection system in A549-hACE2 cells. Our findings indicate that co-infection with live SARS-CoV-2 sharply induces KSHV lytic reactivation. Transcriptomic analysis revealed significant changes in global cellular gene expression in KSHV-infected A549-hACE2 cells, both with and without SARS-CoV-2 co-infection. These data provide a molecular basis for understanding whether patients with pre-existing oncogenic herpesvirus infections are at increased risk for more severe COVID-19 or for developing virus-associated cancers even after full recovery from COVID-19.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiaojiao Fan
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priyangi A Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
6
|
Wang X, Liu Z, Xu X, Wang X, Ming Z, Liu C, Gao H, Li T, Liang Q. KSHV hijacks the antiviral kinase IKKε to initiate lytic replication. PLoS Pathog 2025; 21:e1012856. [PMID: 39823515 PMCID: PMC11781660 DOI: 10.1371/journal.ppat.1012856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/30/2025] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45. This SUMOylation event leads to the association of IKKε with PML, resulting in the disruption of PML nuclear bodies (PML NBs) and subsequent increase in lytic replication of KSHV. Notably, IKKε does not affect the total expression level of PML but facilitates the translocation of PML from the nucleus to the cytoplasm during KSHV lytic replication. Further experiments utilizing mutations on the SUMOylation sites of IKKε or inhibiting IKKε using BAY-985 showed that these actions no longer impact PML NBs and completely suppress the lytic replication of KSHV. These findings not only emphasize the essential role of IKKε in the life cycle of KSHV but also illustrate how KSHV exploits IKKε through SUMOylation modification to enhance its own replication process.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Joint Ph.D. Degree Program between SJTU-SM and HUJI-MED, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenshan Liu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Xu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Ming
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengrong Liu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Gao
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiming Liang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Chen Q, Li X, Quan L, Zhou R, Liu X, Cheng L, Sarid R, Kuang E. FoxK1 and FoxK2 cooperate with ORF45 to promote late lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2024; 98:e0077924. [PMID: 39494902 DOI: 10.1128/jvi.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Lytic replication is essential for persistent infection of Kaposi's sarcoma-associated herpesvirus (KSHV) and the pathogenesis of related diseases, and many cellular pathways are hijacked by KSHV proteins to initiate and control the lytic replication of this virus. However, the mechanism involved in KSHV lytic replication from the early to the late phases remains largely undetermined. We previously revealed that KSHV open reading frame 45 (ORF45) plays important roles in late transcription and translation. In the present study, we revealed that the Forkhead box proteins FoxK1 and FoxK2 are ORF45-binding proteins and are essential for KSHV lytic gene expression and virion production, and that depletion of FoxK1 or FoxK2 significantly suppresses the expression of many late viral genes. FoxK1 and FoxK2 directly bind to the promoters of several late viral genes, ORF45 augments the promoter binding and transcriptional activity of FoxK1 and FoxK2, and then FoxK1 or FoxK2 cooperates with ORF45 to promote late viral gene expression. Our findings suggest that ORF45 interacts with FoxK1 and FoxK2 and promotes their occupancy on a cluster of late viral promoters and their subsequent transcriptional activity; consequently, FoxK1 and FoxK2 promote late viral gene expression to facilitate KSHV lytic replication.IMPORTANCEThe forkhead box proteins FoxK1 and FoxK2 can act as transcriptional inhibitors or activators to regulate several important processes, including aerobic glycolysis, metabolism, autophagy, and antiviral responses. However, the subversion and functions of FoxK1 and FoxK2 during KSHV infection and the pathogenesis of related diseases remain unknown. Here, we revealed that ORF45 binds to FoxK1 and FoxK2 and increases their transcriptional activity during KSHV lytic replication; consequently, FoxK1 and FoxK2 bind to late viral promoters and cooperate with ORF45 to promote late lytic gene expression. Our findings reveal two new ORF45 partners and a new function of ORF45 in which it utilizes FoxK1 and FoxK2 to promote transcription during late KSHV lytic replication.
Collapse
Affiliation(s)
- Qingyang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Li Quan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rihong Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangpeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Cheng
- School of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronit Sarid
- School of Graduate Studies, The Mina and Everard Goodman Faculty of Life Sciences & Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
9
|
Lee MJ, Yeon JH, Lee J, Kang YH, Park BS, Park J, Yun SH, Wirth D, Yoo SM, Park C, Gao SJ, Lee MS. Senescence of endothelial cells increases susceptibility to Kaposi's sarcoma-associated herpesvirus infection via CD109-mediated viral entry. J Clin Invest 2024; 135:e183561. [PMID: 39666389 PMCID: PMC11827841 DOI: 10.1172/jci183561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024] Open
Abstract
The aging process is characterized by cellular functional decline and increased susceptibility to infections. Understanding the association between virus infection and aging is crucial for developing effective strategies against viral infections in older individuals. However, the relationship between Kaposi's sarcoma-associated herpesvirus (KSHV) infection, a cause of increased Kaposi's sarcoma prevalence among the elderly without HIV infection, and cellular senescence remains enigmatic. This study uncovered a link between cellular senescence and enhanced KSHV infectivity in human endothelial cells. Through a comprehensive proteomic analysis, we identified caveolin-1 and CD109 as host factors significantly upregulated in senescent cells that promote KSHV infection. Remarkably, CRISPR/Cas9-mediated KO of these factors reduced KSHV binding and entry, leading to decreased viral infectivity. Furthermore, surface plasmon resonance analysis and confocal microscopy revealed a direct interaction between KSHV virions and CD109 on the cell surface during entry, with recombinant CD109 protein exhibiting inhibitory activity of KSHV infection by blocking virion binding. These findings uncover a previously unrecognized role of cellular senescence in enhancing KSHV infection through upregulation of specific host factors and provide insights into the complex interplay between aging and viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jisu Lee
- Department of Microbiology and Immunology, and
| | - Yun Hee Kang
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, South Korea
| | - Joohee Park
- Department of Microbiology and Immunology, and
| | - Sung-Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Shou-Jinag Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, and
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| |
Collapse
|
10
|
Moayedi J, Hashempour A, Musavi Z, Ghasabi F, Khodadad N, Davarpanah MA, Hasanshahi A. Assessment of human Herpes Virus-8 infection in Iranian cirrhotic patients on the waiting list for liver transplantation: A cross-sectional analysis. New Microbes New Infect 2024; 62:101496. [PMID: 39429733 PMCID: PMC11490846 DOI: 10.1016/j.nmni.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Background Human Herpes Virus 8 (HHV-8) is involved in autoimmunity. However, its association with advanced liver disease has not been fully explained. Herein, the prevalence of HHV-8 viremia was assessed in Iranian liver transplant candidates with a confirmed diagnosis of cirrhosis. Methods This cross-sectional study was conducted on 230 patients with cryptogenic cirrhosis, virus-related cirrhosis, and autoimmune hepatitis, as well as 140 healthy blood donors from April 2022 to September 2023. The HHV-8 IgG antibody concentration and viral load were evaluated via ELISA and RT‒PCR, respectively. Results Anti-HHV-8 IgG antibodies were detected in 25 cirrhotic patients (10.8 %) and four healthy individuals (2.6 %) (p = 0.022). The majority of the seropositive patients had cryptogenic cirrhosis (20.4 %), followed by autoimmune hepatitis (13.1 %) and virus-related cirrhosis (4.7 %). The seropositivity of HHV-8 IgG antibody was significantly different among the etiologies of liver cirrhosis (p = 0.011). However, HHV-8 genomic DNA was not detected in the sera of the patients or healthy blood donors. Conclusion The role of HHV-8 infection in the development of posttransplant diseases, together with the higher seroprevalence of HHV-8 antibodies in cirrhotic patients than in healthy individuals, highlights the importance of both primary and latent infections in liver transplantation. Therefore, serological and molecular screening of HHV-8 is highly suggested for liver transplant candidates and organ donors. The possibility of antibody-mediated epitope mimicry in cryptogenic and autoimmune groups with moderate HHV-8 antibody positivity and negative viral loads may account for the development of advanced liver diseases.
Collapse
Affiliation(s)
- Javad Moayedi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghasabi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hasanshahi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Atani ZR, Hosseini SS, Goudarzi H, Faghihloo E. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Glob Med Genet 2024; 11:285-296. [PMID: 39224462 PMCID: PMC11368560 DOI: 10.1055/s-0044-1790210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.
Collapse
Affiliation(s)
- Zahra Rafiei Atani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sareh Sadat Hosseini
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Han C, Niu D, Lan K. Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection. Viruses 2024; 16:1870. [PMID: 39772181 PMCID: PMC11680275 DOI: 10.3390/v16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host. In latently infected cells, most viral genes are epigenetically silenced by components of cellular chromatin, DNA methylation and histone post-translational modifications. However, some specific latent genes are preserved and actively expressed to maintain the virus's latent state within the host cell. Latency is not a dead end, but the virus has the ability to reactivate. This reactivation is a complex process that involves the removal of repressive chromatin modifications and increased accessibility for both viral and cellular factors, allowing the activation of the full transcriptional program necessary for the subsequent lytic replication. This review will introduce the roles of epigenetic modifications in KSHV latent and lytic life cycles, including DNA methylation, histone methylation and acetylation modifications, chromatin remodeling, genome conformation, and non-coding RNA expression. Additionally, we will also review the transcriptional regulation of viral genes and host factors in KSHV infection. This review aims to enhance our understanding of the molecular mechanisms of epigenetic modifications and transcriptional regulation in the KSHV life cycle, providing insights for future research.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Topiwala IS, Ramachandran A, A MS, Sengupta R, Dhar R, Devi A. Exosomes and tumor virus interlink: A complex side of cancer. Pathol Res Pract 2024; 266:155747. [PMID: 39647256 DOI: 10.1016/j.prp.2024.155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Extracellular Vesicles (EVs) based cancer research reveals several complicated sides of cancer. EVs are classified as several subpopulations such as microvesicles, apoptotic bodies, and exosomes. In cancer, exosomes play a significant role as a cellular messenger in tumor development and progression. Tumor-derived exosomes (TEXs) are also a theranostic tool for cancer. Tumor virus-infected cell-derived EVs promote cancer development. Exosomes (a subpopulation of EVs) play a significant role in converting noninfecting cells to infected cells. It transports several biological active cargo (DNA, RNA, protein, and virions) towards the noninfected cells. This cellular transport enhances infection rates via reprogramming of noninfected cells. In this review, we explore tumor viruses, exosomes and tumor viruses interlink, the theranostic landscape of exosomes in tumor virus-associated cancer and the future orientation of exosomes-based virus oncology.
Collapse
Affiliation(s)
- Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Aparna Ramachandran
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
14
|
Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, Arkhipenko MV, Nikitin NA, Karpova OV. Prokaryote- and Eukaryote-Based Expression Systems: Advances in Post-Pandemic Viral Antigen Production for Vaccines. Int J Mol Sci 2024; 25:11979. [PMID: 39596049 PMCID: PMC11594041 DOI: 10.3390/ijms252211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This review addresses the ongoing global challenge posed by emerging and evolving viral diseases, underscoring the need for innovative vaccine development strategies. It focuses on the modern approaches to creating vaccines based on recombinant proteins produced in different expression systems, including bacteria, yeast, plants, insects, and mammals. This review analyses the advantages, limitations, and applications of these expression systems for producing vaccine antigens, as well as strategies for designing safer, more effective, and potentially 'universal' antigens. The review discusses the development of vaccines for a range of viral diseases, excluding SARS-CoV-2, which has already been extensively studied. The authors present these findings with the aim of contributing to ongoing research and advancing the development of antiviral vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (D.L.G.); (O.A.K.); (E.M.R.); (A.O.K.); (E.A.E.); (M.V.A.); (O.V.K.)
| | | |
Collapse
|
15
|
Sayyad Z, Acharya D, Gack MU. TRIM Proteins: Key Regulators of Immunity to Herpesvirus Infection. Viruses 2024; 16:1738. [PMID: 39599852 PMCID: PMC11599090 DOI: 10.3390/v16111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Herpesviruses are ubiquitous DNA viruses that can establish latency and cause a range of mild to life-threatening diseases in humans. Upon infection, herpesviruses trigger the activation of several host antiviral defense programs that play critical roles in curbing virus replication and dissemination. Recent work from many groups has integrated our understanding of TRIM (tripartite motif) proteins, a specific group of E3 ligase enzymes, as pivotal orchestrators of mammalian antiviral immunity. In this review, we summarize recent advances in the modulation of innate immune signaling by TRIM proteins during herpesvirus infection, with a focus on the detection of herpes simplex virus type 1 (HSV-1, a prototype herpesvirus) by cGAS-STING, RIG-I-like receptors, and Toll-like receptors. We also review the latest progress in understanding the intricate relationship between herpesvirus replication and TRIM protein-regulated autophagy and apoptosis. Finally, we discuss the maneuvers used by HSV-1 and other herpesviruses to overcome TRIM protein-mediated virus restriction.
Collapse
Affiliation(s)
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port St. Lucie, FL 34987, USA;
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port St. Lucie, FL 34987, USA;
| |
Collapse
|
16
|
Payen SH, Andrada K, Tara E, Petereit J, Verma SC, Rossetto CC. The cellular paraspeckle component SFPQ associates with the viral processivity factor ORF59 during lytic replication of Kaposi's Sarcoma-associated herpesvirus (KSHV). Virus Res 2024; 349:199456. [PMID: 39214388 PMCID: PMC11406446 DOI: 10.1016/j.virusres.2024.199456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
Collapse
Affiliation(s)
- Shannon Harger Payen
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Kayla Andrada
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Evelyn Tara
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Juli Petereit
- University of Nevada, Reno, Nevada Bioinformatics Center (RRID: SCR_017802), Reno, NV 89557, USA
| | - Subhash C Verma
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Cyprian C Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA.
| |
Collapse
|
17
|
Liu A, Liu Y, Llinàs del Torrent Masachs C, Zhang W, Pardo L, Ye RD. Structural insights into KSHV-GPCR constitutive activation and CXCL1 chemokine recognition. Proc Natl Acad Sci U S A 2024; 121:e2403217121. [PMID: 39378089 PMCID: PMC11494311 DOI: 10.1073/pnas.2403217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.
Collapse
Affiliation(s)
- Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong523326, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Clàudia Llinàs del Torrent Masachs
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra08193, Spain
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra08193, Spain
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation Research and Development Center, Shenzhen, Guangdong518048, China
| |
Collapse
|
18
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
19
|
Elshirbeny M, Murshed K, Fawzy A, Nauman A, Hamdi A, Akhtar M, Al-Malki H, Alkadi M. Kaposi Sarcoma Involving Kidney Allografts: A Report of Two Cases From Qatar and Literature Review. Cureus 2024; 16:e71573. [PMID: 39559587 PMCID: PMC11571281 DOI: 10.7759/cureus.71573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Immunosuppression in kidney transplantation elevates the risk of malignancies, particularly immune-driven and virus-related cancers like Kaposi sarcoma (KS). KS typically manifests as single or multiple skin lesions following kidney transplantation but can also affect other organs. Involvement of the kidney allograft by KS is exceptionally rare, with only a few cases documented. In this report, we present all known cases of KS involving kidney allografts in adult transplant recipients in Qatar, accompanied by a brief review of the literature.
Collapse
Affiliation(s)
| | - Khaled Murshed
- Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, QAT
| | - Ashraf Fawzy
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Awais Nauman
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Ahmed Hamdi
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Mohammed Akhtar
- Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, QAT
| | | | | |
Collapse
|
20
|
Li X, Ohler ZW, Day A, Bassel L, Grosskopf A, Afsari B, Tagawa T, Custer W, Mangusan R, Lurain K, Yarchoan R, Ziegelbauer J, Ramaswami R, Krug LT. Mapping herpesvirus-driven impacts on the cellular milieu and transcriptional profile of Kaposi sarcoma in patient-derived mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615429. [PMID: 39386738 PMCID: PMC11463583 DOI: 10.1101/2024.09.27.615429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.
Collapse
Affiliation(s)
- Xiaofan Li
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Amanda Day
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Laura Bassel
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Anna Grosskopf
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Bahman Afsari
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Wendi Custer
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| |
Collapse
|
21
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
22
|
Park J, Lee JE. Localized Radiotherapy for Classic Kaposi's Sarcoma: An Analysis of Lesion Characteristics and Treatment Response. Cancers (Basel) 2024; 16:3194. [PMID: 39335165 PMCID: PMC11430677 DOI: 10.3390/cancers16183194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Classic Kaposi's sarcoma (CKS) is a rare malignancy with diverse clinical presentations, lacking a standard treatment. While localized therapies are commonly used for symptomatic lesions, radiotherapy (RT) has demonstrated effectiveness. This study aims to evaluate the efficacy of RT for treating skin lesions in CKS. METHODS A retrospective analysis was conducted on patients with KS treated between April 2012 and January 2024. In total, 69 lesions in 16 patients were included. Treatment response was defined as follows: complete response (CR) indicated the absence of clinically detectable skin lesions and symptoms; partial response (PR) was a reduction in lesion height by more than half or a lighter lesion color compared to before treatment. In-field recurrence was the appearance of new lesions within a previously irradiated field. Logistic regression analysis was used to investigate factors influencing response and in-field recurrence. RESULTS The median follow-up period was 52 months (range, 3-138 months). The overall response rate was 100%, with 92.8% of the patients achieving CR and 7.2% receiving PR. PR was observed in three patients with five lesions, all of which remained stable. In-field recurrence occurred in two patients with initially advanced disease, and all recurrent lesions responded to RT. No variables were significantly associated with response or in-field recurrence. CONCLUSIONS RT for CKS showed a 100% response rate, with complete symptom relief in all cases. The effectiveness of RT was evident, even in cases involving disseminated lesions. Further research is needed to determine the optimal RT dose and fractionation.
Collapse
Affiliation(s)
| | - Jeong Eun Lee
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| |
Collapse
|
23
|
Orbaum-Harel O, Sloutskin A, Kalt I, Sarid R. KSHV ORF20 Promotes Coordinated Lytic Reactivation for Increased Infectious Particle Production. Viruses 2024; 16:1418. [PMID: 39339894 PMCID: PMC11437498 DOI: 10.3390/v16091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi's sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with the ORF20-Null virus. These findings suggest that ORF20 protein, with its putative endonuclease motif, promotes coordinated lytic reactivation for increased infectious particle production.
Collapse
Affiliation(s)
- Odelia Orbaum-Harel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
24
|
Niu D, Ma Y, Ren P, Chang S, Li C, Jiang Y, Han C, Lan K. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog 2024; 20:e1012535. [PMID: 39255317 PMCID: PMC11421797 DOI: 10.1371/journal.ppat.1012535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Inagaki T, Kumar A, Komaki S, Nakajima KI, Izumiya Y. An atlas of chromatin landscape in KSHV-infected cells during de novo infection and reactivation. Virology 2024; 597:110146. [PMID: 38909515 DOI: 10.1016/j.virol.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA.
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
26
|
Wang Y, Feswick A, Apostolou V, Tibbetts SA. The unappreciated role of developing B cells in chronic gammaherpesvirus infections. PLoS Pathog 2024; 20:e1012445. [PMID: 39298520 PMCID: PMC11412639 DOI: 10.1371/journal.ppat.1012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Affiliation(s)
- Yiping Wang
- Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - April Feswick
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Vasiliki Apostolou
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, UF Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
27
|
Hussain I, Boza J, Lukande R, Ayanga R, Semeere A, Cesarman E, Martin J, Maurer T, Erickson D. Automated detection of Kaposi sarcoma-associated herpesvirus infected cells in immunohistochemical images of skin biopsies. RESEARCH SQUARE 2024:rs.3.rs-4736178. [PMID: 39184072 PMCID: PMC11343169 DOI: 10.21203/rs.3.rs-4736178/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Immunohistochemical (IHC) staining for the antigen of Kaposi sarcoma-associated herpesvirus (KSHV), latency-associated nuclear antigen (LANA), is helpful in diagnosing Kaposi sarcoma (KS). A challenge, however, lies in distinguishing anti-LANA-positive cells from morphologically similar brown counterparts. In this work, we demonstrate a framework for automated localization and quantification of LANA positivity in whole slide images (WSI) of skin biopsies, leveraging weakly supervised multiple instance learning (MIL) while reducing false positive predictions by introducing a novel morphology-based slide aggregation method. Our framework generates interpretable heatmaps, offering insights into precise anti-LANA-positive cell localization within WSIs and a quantitative value for the percentage of positive tiles, which may assist with histological subtyping. We trained and tested our framework with an anti-LANA-stained KS pathology dataset prepared by pathologists in the United States from skin biopsies of KS-suspected patients investigated in Uganda. We achieved an area under the receiver operating characteristic curve (AUC) of 0.99 with a sensitivity and specificity of 98.15% and 96.00% in predicting anti-LANA-positive WSIs in a test dataset. We believe that the framework can provide promise for automated detection of LANA in skin biopsies, which may be especially impactful in resource-limited areas that lack trained pathologists.
Collapse
|
28
|
Plotkin MA, Labroli M, Schubert J, Shaw A, Schlegel KAS, Berger R, Cooke AJ, Hayes RP, Armacost KA, Kinek K, Krosky P, Burlein C, Meng S, DiNunzio E, Murray EM, Agrawal S, Madeira M, Flattery A, Yao H, Leithead A, Rose WA, Cox C, Tellers DM, McKenna PM, Raheem I. Discovery of Broad-Spectrum Herpes Antiviral Oxazolidinone Amide Derivatives and Their Structure-Activity Relationships. ACS Med Chem Lett 2024; 15:1232-1241. [PMID: 39140041 PMCID: PMC11318010 DOI: 10.1021/acsmedchemlett.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Herpesvirus infections are ubiquitous, with over 95% of the adult population infected by at least one strain. While most of these infections resolve without treatment in healthy individuals, they can cause significant morbidity and mortality in immunocompromised, stem cell, or organ transplant patients. Current nucleoside standards of care provide meaningful benefit but are limited due to poor tolerability, resistance, and generally narrow spectrum of activity. Herpesviruses share a conserved DNA polymerase, the inhibition of which is validated as an effective strategy to disrupt viral replication. By utilizing a non-nucleoside inhibitor of the viral DNA polymerase, we sought to develop agents covering multiple herpesviruses (e.g., CMV, VZV, HSV1/2, EBV, and HHV6). Herein is described the invention of an oxazolidinone class of broad-spectrum non-nucleoside herpes antiviral inhibitors. A lead compound (42) with potent biochemical and broad-spectrum cellular activity was found to be efficacious in murine models against both HSV-1 and CMV infection.
Collapse
Affiliation(s)
- Michael A. Plotkin
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Marc Labroli
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeffrey Schubert
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Anthony Shaw
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelly-Ann S. Schlegel
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard Berger
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew J. Cooke
- Medicinal
Chemistry, Exscientia, 53 State Street, Boston, Massachusetts 02109, United States
| | - Robert P. Hayes
- Protein
and Structural Chemistry, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Kira A. Armacost
- Computational
Sciences, GlaxoSmithKline, Collegeville Pennsylvania 19426, United States
| | - Keith Kinek
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Paula Krosky
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christine Burlein
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Shi Meng
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Edward DiNunzio
- Quantitative
Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Edward M. Murray
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sony Agrawal
- Quantitative
Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Maria Madeira
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Amy Flattery
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Huifang Yao
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Andrew Leithead
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - William A Rose
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher Cox
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M. Tellers
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Philip M. McKenna
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Izzat Raheem
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
29
|
Kampouri E, Little JS, Crocchiolo R, Hill JA. Human herpesvirus-6, HHV-8 and parvovirus B19 after allogeneic hematopoietic cell transplant: the lesser-known viral complications. Curr Opin Infect Dis 2024; 37:245-253. [PMID: 38726832 DOI: 10.1097/qco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Viral infections continue to burden allogeneic hematopoietic cell transplant (HCT) recipients. We review the epidemiology, diagnosis, and management of human herpesvirus (HHV)-6, HHV-8 and parvovirus B19 following HCT. RECENT FINDINGS Advances in HCT practices significantly improved outcomes but impact viral epidemiology: post-transplant cyclophosphamide for graft-versus-host disease prevention increases HHV-6 reactivation risk while the impact of letermovir for CMV prophylaxis - and resulting decrease in broad-spectrum antivirals - is more complex. Beyond the well established HHV-6 encephalitis, recent evidence implicates HHV-6 in pneumonitis. Novel less toxic therapeutic approaches (brincidofovir, virus-specific T-cells) may enable preventive strategies in the future. HHV-8 is the causal agent of Kaposi's sarcoma, which is only sporadically reported after HCT, but other manifestations are possible and not well elucidated. Parvovirus B19 can cause severe disease post-HCT, frequently manifesting with anemia, but can also be easily overlooked due to lack of routine screening and ambiguity of manifestations. SUMMARY Studies should establish the contemporary epidemiology of HHV-6, and other more insidious viruses, such as HHV-8 and parvovirus B19 following HCT and should encompass novel cellular therapies. Standardized and readily available diagnostic methods are key to elucidate epidemiology and optimize preventive and therapeutic strategies to mitigate the burden of infection.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jessica S Little
- Dana-Farber Cancer Institute
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Joshua A Hill
- Vaccine and Infectious Disease Division
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Suterio DG, Hunter JR, Tenore SB, Pimentel SR, Galinskas J, Dias DA, Bellini DC, Ferreira PA, Diaz RS. People living with HIV co-infected with the Kaposi Sarcoma-associated Herpes Virus have a distinct HIV Tat profile and higher rates of antiretroviral virologic failure, more evident among those with Kaposi's sarcoma. J Med Virol 2024; 96:e29840. [PMID: 39092805 DOI: 10.1002/jmv.29840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Kaposi sarcoma (KS) is a neoplasm of vascular origin that promotes angiogenesis and the growth of endothelial cells triggered by the Kaposi Sarcoma-associated Herpes Virus (KSHV). When associated with HIV, KSHV becomes more aggressive and rapidly evolves. The HIV-1 TAT protein can be essential in developing AIDS-associated KS by promoting angiogenesis and increasing KSHV replication. Therefore, we evaluated the genetic profile of the first exon of tat gene among groups of people living with HIV (PLHIV) with (case group, n = 36) or without KS, this later with (positive control group, n = 46) and without KSHV infection (negative control group, n = 24); all individuals under antiretroviral therapy. The genetic diversity, the DN/DS ratio, and the genetic entropy of the first exon of tat were higher in the case group, followed by the positive control group, which was higher than the negative control group. The number of tat codons under positive selection was seven in the case group, six in the positive control group, and one in the negative control group. The prevalence of HIV viral loads below the detection limit was equal in the case and positive control groups, which were lower than in the negative control group. The mean CD4+ T cell counts were higher in the negative control group, followed by the positive control group, and followed by the case group. These results emphasize the negative influence of KSHV in antiretroviral treatment, as well as the HIV-specific TAT profile among PLHIV who developed KS.
Collapse
Affiliation(s)
- Dalila G Suterio
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - James R Hunter
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Simone B Tenore
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Assistência, Centro de Referência e Treinamento em DST/AIDS, São Paulo, São Paulo, SP, Brazil
| | - Sidnei R Pimentel
- Assistência, Centro de Referência e Treinamento em DST/AIDS, São Paulo, São Paulo, SP, Brazil
| | - Juliana Galinskas
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo A Dias
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Débora C Bellini
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo A Ferreira
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Infectious Diseases Division, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Tribble JT, Johnson M, Moon Y, Rajpara A, Whitsitt J. Kaposi sarcoma in a men-who-have-sex-with-men patient without human immunodeficiency virus who was treated with upadacitinib for ulcerative colitis. JAAD Case Rep 2024; 50:119-122. [PMID: 39135764 PMCID: PMC11318459 DOI: 10.1016/j.jdcr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Affiliation(s)
- Jacob T. Tribble
- Department of Dermatology, University of Missouri – Kansas City School of Medicine, Kansas City, Missouri
| | - Mckinzie Johnson
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yeanna Moon
- Department of Dermatology, University of Missouri – Kansas City School of Medicine, Kansas City, Missouri
| | - Anand Rajpara
- Department of Dermatology, University of Missouri – Kansas City School of Medicine, Kansas City, Missouri
| | | |
Collapse
|
32
|
Manning JC, Boza JM, Cesarman E, Erickson D. Rapid, equipment-free extraction of DNA from skin biopsies for point-of-care diagnostics. Sci Rep 2024; 14:13782. [PMID: 38877073 PMCID: PMC11178891 DOI: 10.1038/s41598-024-64533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Kaposi's sarcoma (KS) is a cancer affecting skin and internal organs for which the Kaposi's sarcoma associated herpesvirus (KSHV) is a necessary cause. Previous work has pursued KS diagnosis by quantifying KSHV DNA in skin biopsies using a point-of-care (POC) device which performs quantitative loop-mediated isothermal amplification (LAMP). These previous studies revealed that extracting DNA from patient biopsies was the rate limiting step in an otherwise rapid process. In this study, a simplified, POC-compatible alkaline DNA extraction, ColdSHOT, was optimized for 0.75 mm human skin punch biopsies. The optimized ColdSHOT extraction consistently produced 40,000+ copies of DNA per 5 µl reaction from 3 mg samples-a yield comparable to standard spin column extractions-within 1 h without significant equipment. The DNA yield was estimated sufficient for KSHV detection from KS-positive patient biopsies, and the LAMP assay was not affected by non-target tissue in the unpurified samples. Furthermore, the yields achieved via ColdSHOT were robust to sample storage in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer prior to DNA extraction, and the DNA sample was stable after extraction. The results presented in this study indicate that the ColdSHOT DNA extraction could be implemented to simplify and accelerate the LAMP-based diagnosis of Kaposi's sarcoma using submillimeter biopsy samples.
Collapse
Affiliation(s)
- Jason Cade Manning
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Juan Manuel Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA.
- Cornell University, 369 Upson Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
33
|
Zhang Y, Dong Z, Gu F, Xu Y, Li Y, Sun W, Rao W, Du S, Zhu C, Wang Y, Wei F, Cai Q. Degradation of TRIM32 is induced by RTA for Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 2024; 98:e0000524. [PMID: 38717113 PMCID: PMC11237441 DOI: 10.1128/jvi.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifei Xu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wutian Rao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Muniraju M, Mutsvunguma LZ, Reidel IG, Escalante GM, Cua S, Musonda W, Calero-Landa J, Farelo MA, Rodriguez E, Li Z, Ogembo JG. Kaposi sarcoma-associated herpesvirus complement control protein (KCP) and glycoprotein K8.1 are not required for viral infection in vitro or in vivo. J Virol 2024; 98:e0057624. [PMID: 38767375 PMCID: PMC11237445 DOI: 10.1128/jvi.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.
Collapse
Affiliation(s)
- Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ivana G Reidel
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriela M Escalante
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Simeon Cua
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Webster Musonda
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jonathan Calero-Landa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Mafalda A Farelo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Zhou Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
35
|
Cozma EC, Banciu LM, Celarel AM, Soare E, Srichawla BS, Kipkorir V, Găman MA. Molecular mechanisms of human papilloma virus related skin cancers: A review. Medicine (Baltimore) 2024; 103:e38202. [PMID: 38787972 PMCID: PMC11124606 DOI: 10.1097/md.0000000000038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The human papillomavirus (HPV) belongs to the Papillomaviridae family of viruses which includes small, double-stranded DNA viral agents. Approximately 90% of HPV infections occur asymptomatically and resolve spontaneously. However, infection with high-risk viral strains can lead to the development of preneoplastic lesions, with an increased propensity to become cancerous. The location of these malignancies includes the oral cavity, cervix, vagina, anus, and vulva, among others. The role of HPV in carcinogenesis has already been demonstrated for the aforementioned neoplasia. However, regarding skin malignancies, the mechanisms that pinpoint the role played by HPV in their initiation and progression still elude our sight. Until now, the only fully understood mechanism of viral cutaneous oncogenesis is that of human herpes virus 8 infection in Kaposi sarcoma. In the case of HPV infection, however, most data focus on the role that beta strains exhibit in the oncogenesis of cutaneous squamous cell carcinoma (cSCC), along with ultraviolet radiation (UVR) and other environmental or genetic factors. However, recent epidemiological investigations have highlighted that HPV could also trigger the onset of other non-melanocytic, for example, basal cell carcinoma (BCC), and/or melanocytic skin cancers, for example, melanoma. Herein, we provide an overview of the role played by HPV in benign and malignant skin lesions with a particular focus on the main epidemiological, pathophysiological, and molecular aspects delineating the involvement of HPV in skin cancers.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Elias University Emergency Hospital, Bucharest, Romania
| | | | | | - Elena Soare
- Elias University Emergency Hospital, Bucharest, Romania
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
36
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
37
|
Rambiki E, Rambiki K, Khalani J, Huwa J, Wallrauch C, Heller T, Painschab M. Letters to the Editor Low Rates of Side Effects in Paclitaxel Chemotherapy for Kaposi Sarcoma and Feasibility of Treatment in Outpatient ART Clinic Settings in Malawi. J Acquir Immune Defic Syndr 2024; 96:e1-e2. [PMID: 38324267 PMCID: PMC11008440 DOI: 10.1097/qai.0000000000003393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Ethel Rambiki
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Kelvin Rambiki
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Jennipher Khalani
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Jacquiline Huwa
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Claudia Wallrauch
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Tom Heller
- Medical Department, Lighthouse Trust, Kamuzu Central Hospital, Lilongwe, Malawi
- Medical Department, University of Washington, International Training and Education Center for Health, Lilongwe, Malawi
| | - Matthew Painschab
- Adult Oncology Division, UNC Project Malawi, Lilongwe, Malawi
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| |
Collapse
|
38
|
Lacunza E, Ahuja A, Coso OA, Abba M, Ramos JC, Cesarman E, Mesri EA, Naipauer J. Unveiling the role of KSHV-infected human mesenchymal stem cells in Kaposi's sarcoma initiation. J Med Virol 2024; 96:e29684. [PMID: 38773828 DOI: 10.1002/jmv.29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anuj Ahuja
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Omar A Coso
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Abba
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Carlos Ramos
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Center for AIDS Research, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Enrique A Mesri
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julian Naipauer
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
39
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
40
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
42
|
Mertelsmann AM, Mukerebe C, Miyaye D, Shigella P, Mhango L, Lutonja P, Corstjens PLAM, de Dood C, van Dam GJ, Colombe S, Maganga JK, Aristide C, Kalluvya SE, Ward MM, Cordeiro AA, Lee MH, Changalucha JM, Downs JA. Clinical and Demographic Factors Associated With Kaposi Sarcoma-Associated Herpesvirus Shedding in Saliva or Cervical Secretions in a Cohort of Tanzanian Women. Open Forum Infect Dis 2024; 11:ofae161. [PMID: 38654970 PMCID: PMC11036159 DOI: 10.1093/ofid/ofae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024] Open
Abstract
Background Reasons for the high prevalence of Kaposi sarcoma-associated herpesvirus (KSHV) in sub-Saharan Africa, and risk factors leading to viral reactivation and shedding, remain largely undefined. Preliminary studies have suggested that schistosome infection, which has been associated with impaired viral control, is associated with KSHV. In this study we sought to determine the relationship between active Schistosoma mansoni or Schistosoma haematobium infection and KSHV shedding. Methods We quantified KSHV DNA in saliva and cervical swabs from 2 cohorts of women living in northwestern Tanzanian communities endemic for S mansoni or S haematobium by real-time polymerase chain reaction. χ2 and Fisher exact tests were used to determine differences in clinical and demographic factors between those who were and were not shedding KSHV. Results Among 139 total women, 44.6% were KSHV seropositive. Six percent of those with S mansoni and 17.1% of those with S haematobium were actively shedding KSHV in saliva and none in cervical samples. Women from the S mansoni cohort who were shedding virus reported infertility more frequently (80% vs 19.5%, P = .009). There was no difference in frequency of KSHV salivary shedding between schistosome-infected and -uninfected women. Conclusions In an area with high KSHV seroprevalence and endemic schistosome infections, we provide the first report with data demonstrating no association between schistosome infection and salivary or cervical herpesvirus shedding. KSHV salivary shedding was associated with infertility, a known effect of another herpesvirus, human herpesvirus 6.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Crispin Mukerebe
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Donald Miyaye
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Peter Shigella
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Loyce Mhango
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Peter Lutonja
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Soledad Colombe
- Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jane K Maganga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Christine Aristide
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | | | - Maureen M Ward
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | | | - Myung Hee Lee
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
| | - John M Changalucha
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine, Bugando Medical Centre, Mwanza, Tanzania
| |
Collapse
|
43
|
Stanfield BA, Ruiz E, Chouljenko VN, Kousoulas KG. Guinea pig herpes like virus is a gamma herpesvirus. Virus Genes 2024; 60:148-158. [PMID: 38340271 PMCID: PMC10978641 DOI: 10.1007/s11262-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Emmanuelle Ruiz
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
44
|
Gumina ME, Hooper MJ, Zhou XA, Koralov SB. Role of Antigenic Stimulation in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2024; 144:755-763. [PMID: 38149950 PMCID: PMC10960716 DOI: 10.1016/j.jid.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.
Collapse
Affiliation(s)
- Megan E Gumina
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Sergei B Koralov
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA.
| |
Collapse
|
45
|
Dash SR, Kundu A, Kundu CN. The role of viruses in cancer progression versus cancer treatment: A dual paradigm. Life Sci 2024; 341:122506. [PMID: 38373620 DOI: 10.1016/j.lfs.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Most human malignancies are attributed to exposure to infectious organisms such as viruses. Certain infections that can induce cancer can evade the immune system, leading to persistent inflammation that facilitates uncontrolled cell growth. Moreover, these pathogens can increase the likelihood of oncogenic transformation, leading to cancer development. Despite significant advancements in medicine, oncological research continues to seek innovative treatment techniques in light of the constraints imposed by traditional therapeutic agents. Virus-based therapy is a novel treatment method that has garnered significant interest due to its broad range of applications. Virotherapy employs oncolytic viruses that are genetically modified to target tumor cells specifically, undergo replication inside them and destroy the malignant cells. Additionally, this therapeutic approach elicits an anticancer response by boosting the patient's immune system. In addition, viruses are commonly employed as targeted delivery vectors for the precise transportation of various genes, medicinal compounds and immune-stimulating substances. Furthermore, virotherapy offers more excellent anticancer activity in combination with established treatment modalities such as immune therapy, chemotherapy and radiation therapy. This review presents a concise overview of the roles played by infectious agents, such as viruses in cancer progression. In addition, we have thoroughly summarized the advancements in utilizing viruses for their oncolytic properties in conjunction with established cancer treatment modalities such as chemotherapy, radiation and immunotherapy.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Anushka Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
46
|
Olsson J, Nourmohammadi S, Honkala E, Johansson A, Hallmans G, Weidung B, Lövheim H, Elgh F. Time trends in herpesvirus seroepidemiology among Swedish adults. BMC Infect Dis 2024; 24:273. [PMID: 38431567 PMCID: PMC10908000 DOI: 10.1186/s12879-024-09155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Human herpesviruses are widespread among the human population. The infections often occur unnoticed, but severe disease as well as long-term sequelae are part of the symptom spectrum. The prevalence varies among subpopulations and with time. The aim of this study was to describe the seroprevalence of Immunoglobulin G against Herpes simplex 1, Herpes simplex 2, Epstein-Barr virus and Cytomegalovirus in the adult Swedish population over a time period of several decades. METHODS Serum samples (n = 892) from biobanks, originating from 30-year-old women, 50-year-old men and 50-year-old women sampled between 1975 and 2018, were analyzed for presence of anti-herpesvirus antibodies. Linear regression analysis was used to test for a correlation between birth year and seroprevalence. Multiple linear regression analysis was used to differentiate between other factors such as age and gender. RESULTS Birth year correlated negatively with the prevalence of immunoglobulin G against Herpes simplex 1 and Epstein-Barr virus (p = 0.004 and 0.033), and positively with Immunoglobulin G against Cytomegalovirus (p = 0.039). When participant categories were analyzed separately, birth year correlated negatively with the prevalence of Immunoglobulin G against Herpes simplex 1 and Herpes simplex 2 (p = 0.032 and 0.028) in 30-year-old women, and with the prevalence of Immunoglobulin G against Cytomegalovirus in 50-year-old men (p = 0.011). CONCLUSIONS The prevalence of Immunoglobulin G against Herpes simplex 1, Herpes simplex 2 and Epstein-Barr virus decreases in later birth cohorts. This indicates a trend of declining risk of getting infected with these viruses as a child and adolescent.
Collapse
Affiliation(s)
- Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | | | - Emma Honkala
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Weidung
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Zhou J, Wang T, Zhang H, Liu J, Wei P, Xu R, Yan Q, Chen G, Li W, Gao SJ, Lu C. KSHV vIL-6 promotes SIRT3-induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation. PLoS Pathog 2024; 20:e1012082. [PMID: 38470932 PMCID: PMC10959363 DOI: 10.1371/journal.ppat.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guochun Chen
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
48
|
Ren P, Niu D, Chang S, Yu L, Ren J, Ma Y, Lan K. RUNX3 inhibits KSHV lytic replication by binding to the viral genome and repressing transcription. J Virol 2024; 98:e0156723. [PMID: 38197631 PMCID: PMC10878072 DOI: 10.1128/jvi.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Majerciak V, Alvarado-Hernandez B, Ma Y, Duduskar S, Lobanov A, Cam M, Zheng ZM. KSHV promotes oncogenic FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577582. [PMID: 38410462 PMCID: PMC10896338 DOI: 10.1101/2024.01.27.577582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is a lytic RNA-binding protein. We applied BCBL-1 cells in lytic KSHV infection and performed UV cross-linking immunoprecipitation (CLIP) followed by RNA-seq of the CLIPed RNA fragments (CLIP-seq). We identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS and CITED2 RNAs being two common ORF57-specific RNA targets. FOS dimerizes with JUN as a transcription factor AP-1 involved in cell proliferation, differentiation, and transformation. Knockout of the ORF57 gene from the KSHV genome led BAC16-iSLK cells incapable of FOS expression in KSHV lytic infection. The dysfunctional KSHV genome in FOS expression could be rescued by Lenti-ORF57 virus infection. ORF57 protein does not regulate FOS translation but binds to the 13-nt RNA motif near the FOS RNA 5' end and prolongs FOS mRNA half-life 7.7 times longer than it is in the absence of ORF57. This binding of ORF57 to FOS RNA is competitive to the binding of a host nuclease AEN (also referred to as ISG20L1). KSHV infection inhibits the expression of AEN, but not exosomal RNA helicase MTR4. FOS expression mediated by ORF57 inhibits AEN transcription, but transactivates RGS2, a regulator of G-protein coupled receptors. FOS binds a conserved AP-1 site in the RGS2 promoter and enhances RGS2 expression to phosphorylate AKT. Altogether, we have discovered that KSHV ORF57 specifically binds and stabilizes FOS RNA to increase FOS expression, thereby disturbing host gene expression and inducing pathogenesis during KSHV lytic infection.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Shivalee Duduskar
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, MD, 20892, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, MD, 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, MD, 21702, USA
| |
Collapse
|
50
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|