1
|
Li Y, Pan L, Mugaanyi J, Li H, Li G, Huang J, Dai L. Pathomic and bioinformatics analysis of clinical-pathological and genomic factors for pancreatic cancer prognosis. Sci Rep 2024; 14:27769. [PMID: 39533091 PMCID: PMC11557977 DOI: 10.1038/s41598-024-79619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer exhibits a high degree of malignancy with a poor prognosis, lacking effective prognostic targets. Utilizing histopathological methodologies, this study endeavors to predict the expression of pathological features in pancreatic ductal adenocarcinoma (PAAD) and investigate their underlying molecular mechanisms. Pathological images, transcriptomic, and clinical data from TCGA-PAAD were collected for survival analysis. Image segmentation using unsupervised machine learning was employed to extract features, perform clustering, and establish models. The prognostic value of pathological features and associated clinical risk factors were evaluated; the correlation between pathological features and molecular mechanisms, gene mutations, and immune infiltration was analyzed. By clustering 45 effective pathological features, we divided PAAD patients into two groups: cluster 1 and cluster 2. Significant associations with poor prognosis were found for cluster 2 in both the training group (n = 113) and validation group (n = 75) (p = 0.006), with pathological stages II-IV identified as potential synergistic risk factors (HR = 2.421, 95% CI = 1.263-4.639, p = 0.008). Subsequently, through multi-omics correlation analysis, we further revealed a close association between cluster 2 and the oxidative phosphorylation mechanism. Within the cluster 2 group, 28 oxidative phosphorylation genes exhibited reduced expression, CDKN2A gene mutations were upregulated, and there was significant downregulation of Tregs infiltration and related immune gene expression. The pathomic model constructed using machine learning serves as a valuable prognostic target for PAAD. The histopathological features cluster 2 are closely associated with the downregulation of oxidative phosphorylation levels and Tregs immune infiltration.
Collapse
Affiliation(s)
- Yang Li
- Department of Emergency, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Lujuan Pan
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, 533000, Guangxi, China
| | - Joseph Mugaanyi
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hua Li
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, 533000, Guangxi, China
| | - Gehui Li
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jing Huang
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| | - Lei Dai
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
2
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
3
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
4
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
5
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
6
|
Zhou Y, He Z, Li T, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. 3D Chromatin Alteration by Disrupting β-Catenin/CBP Interaction Is Enriched with Insulin Signaling in Pancreatic Cancer. Cancers (Basel) 2024; 16:2202. [PMID: 38927910 PMCID: PMC11201718 DOI: 10.3390/cancers16122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of how the functional crosstalk between the antagonist and the β-catenin/CBP interaction affects changes in 3D chromatin architecture and, thereby, gene expression and downstream effects remains to be elucidated. Here, we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate that the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1-a key insulin signaling gene-significantly impeding pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Zhijing He
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Tian Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.H.); (T.L.)
| | - Lavanya Choppavarapu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Gustavo W. Leone
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Victor X. Jin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Won Y, Jang B, Lee SH, Reyzer ML, Presentation KS, Kim H, Caldwell B, Zhang C, Lee HS, Lee C, Trinh VQ, Tan MCB, Kim K, Caprioli RM, Choi E. Oncogenic Fatty Acid Metabolism Rewires Energy Supply Chain in Gastric Carcinogenesis. Gastroenterology 2024; 166:772-786.e14. [PMID: 38272100 PMCID: PMC11040571 DOI: 10.1053/j.gastro.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND & AIMS Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Republic of Korea
| | - Su-Hyung Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Kimberly S Presentation
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hye Seung Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vincent Q Trinh
- The Digital Histology and Advanced Pathology Research, The Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal, Montréal, Québec, Canada
| | - Marcus C B Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
8
|
Zhu X, Fu Z, Dutchak K, Arabzadeh A, Milette S, Steinberger J, Morin G, Monast A, Pilon V, Kong T, Adams BN, Prando Munhoz E, Hosein HJB, Fang T, Su J, Xue Y, Rayes R, Sangwan V, Walsh LA, Chen G, Quail DF, Spicer JD, Park M, Dankort D, Huang S. Cotargeting CDK4/6 and BRD4 Promotes Senescence and Ferroptosis Sensitivity in Cancer. Cancer Res 2024; 84:1333-1351. [PMID: 38277141 DOI: 10.1158/0008-5472.can-23-1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/21/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are approved for breast cancer treatment and show activity against other malignancies, including KRAS-mutant non-small cell lung cancer (NSCLC). However, the clinical efficacy of CDK4/6 inhibitors is limited due to frequent drug resistance and their largely cytostatic effects. Through a genome-wide cDNA screen, we identified that bromodomain-containing protein 4 (BRD4) overexpression conferred resistance to the CDK4/6 inhibitor palbociclib in KRAS-mutant NSCLC cells. Inhibition of BRD4, either by RNA interference or small-molecule inhibitors, synergized with palbociclib to induce senescence in NSCLC cells and tumors, and the combination prolonged survival in a KRAS-mutant NSCLC mouse model. Mechanistically, BRD4-inhibition enhanced cell-cycle arrest and reactive oxygen species (ROS) accumulation, both of which are necessary for senescence induction; this in turn elevated GPX4, a peroxidase that suppresses ROS-triggered ferroptosis. Consequently, GPX4 inhibitor treatment selectively induced ferroptotic cell death in the senescent cancer cells, resulting in tumor regression. Cotargeting CDK4/6 and BRD4 also promoted senescence and ferroptosis vulnerability in pancreatic and breast cancer cells. Together, these findings reveal therapeutic vulnerabilities and effective combinations to enhance the clinical utility of CDK4/6 inhibitors. SIGNIFICANCE The combination of cytostatic CDK4/6 and BRD4 inhibitors induces senescent cancer cells that are primed for activation of ferroptotic cell death by targeting GPX4, providing an effective strategy for treating cancer.
Collapse
Affiliation(s)
- Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Kendall Dutchak
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Azadeh Arabzadeh
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Simon Milette
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anie Monast
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Virginie Pilon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Bianca N Adams
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Erika Prando Munhoz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Hannah J B Hosein
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Tianxu Fang
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jing Su
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Yibo Xue
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Roni Rayes
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Logan A Walsh
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Guojun Chen
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Daniela F Quail
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Jonathan D Spicer
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - David Dankort
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Fukuda J, Kosuge S, Satoh Y, Sekiya S, Yamamura R, Ooshio T, Hirata T, Sato R, Hatanaka KC, Mitsuhashi T, Nakamura T, Matsuno Y, Hatanaka Y, Hirano S, Sonoshita M. Concurrent targeting of GSK3 and MEK as a therapeutic strategy to treat pancreatic ductal adenocarcinoma. Cancer Sci 2024; 115:1333-1345. [PMID: 38320747 PMCID: PMC11007052 DOI: 10.1111/cas.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 04/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.
Collapse
Affiliation(s)
- Junki Fukuda
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Shinya Kosuge
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Yusuke Satoh
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Sho Sekiya
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takako Ooshio
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Taiga Hirata
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Reo Sato
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Kanako C. Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Tomoko Mitsuhashi
- Department of Surgical PathologyHokkaido University HospitalSapporoJapan
| | - Toru Nakamura
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Yoshihiro Matsuno
- Department of Surgical PathologyHokkaido University HospitalSapporoJapan
| | - Yutaka Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
- Research Division of Genome Companion DiagnosticsHokkaido University HospitalSapporoJapan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
10
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
11
|
Xu Y, Nipper MH, Dominguez AA, Ye Z, Akanuma N, Lopez K, Deng JJ, Arenas D, Sanchez A, Sharkey FE, Court CM, Singhi AD, Wang H, Fernandez-Zapico ME, Sun LZ, Zheng S, Chen Y, Liu J, Wang P. Reconstitution of human PDAC using primary cells reveals oncogenic transcriptomic features at tumor onset. Nat Commun 2024; 15:818. [PMID: 38280869 PMCID: PMC10821902 DOI: 10.1038/s41467-024-45097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michael H Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Angel A Dominguez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhenqing Ye
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Naoki Akanuma
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Janice J Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Destiny Arenas
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ava Sanchez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colin M Court
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Rashid S, Rashid S, Das P, Malik N, Dash NR, Singh N, Pandey RM, Kumar L, Chauhan SS, Chosdol K, Gupta S, Saraya A. Elucidating the Role of miRNA-326 Modulating Hedgehog Signaling in Pancreatic Carcinoma. Pancreas 2024; 53:e42-e48. [PMID: 38019614 DOI: 10.1097/mpa.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIM Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies worldwide characterized by poor prognosis. MicroRNAs (miRNAs) function as the key regulators in carcinogenesis and may act as noninvasive biomarkers in various malignancies including PDAC. The present study aimed to elucidate the role of miR-326, a known modulator of hedgehog (Hh) pathway in PDAC. MATERIALS AND METHODS miR-326 circulating levels were assessed in 105 PDAC patients, 31 with chronic pancreatitis (CP) and 36 healthy controls by quantitative Polymerase chain reaction. The expression of miR-326 and smoothened (SMO) was checked in surgical PDAC tissue. SMO protein expression was analyzed by immunohistochemistry in different groups. Finally, the role of miR-326 as a modulator of Hh pathway was assessed in vitro. RESULTS Our results demonstrate that miR-326 is downregulated in both blood and tissue of PDAC patients as compared with controls. In contrast, the target gene/protein expression of SMO is upregulated in PDAC. Moreover, the tumor stromal expression of SMO was found to be clinically associated with lymph-node metastasis and vascular encasement in PDAC. Overexpression of miR-326 in Panc1 cell line was found to induce downregulation of SMO suggesting the tumor suppressor role of miR-326 in PDAC. CONCLUSIONS Taken together, miR-326 acts as a tumor suppressor in PDAC by modulating Hh pathway. It may be a promising target for the development of efficient drug therapies for the treatment of PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidhi Singh
- From the Departments of Gastroenterology and HNU
| | | | | | | | | | - Surabhi Gupta
- Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- From the Departments of Gastroenterology and HNU
| |
Collapse
|
13
|
Chowdhury NN, Yang Y, Dutta A, Luo M, Wei Z, Abrahams SR, Revenko AS, Shah F, Miles LA, Parmer RJ, de Laat B, Wolberg AS, Luyendyk JP, Fishel ML, Flick MJ. Plasminogen deficiency suppresses pancreatic ductal adenocarcinoma disease progression. Mol Oncol 2024; 18:113-135. [PMID: 37971174 PMCID: PMC10766200 DOI: 10.1002/1878-0261.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.
Collapse
Affiliation(s)
- Nayela N. Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Yi Yang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Ananya Dutta
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Michelle Luo
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Sara R. Abrahams
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | | | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
| | - Lindsey A. Miles
- Department of Molecular MedicineScripps Research InstituteLa JollaCAUSA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare SystemUniversity of California, San DiegoCAUSA
| | - Bas de Laat
- Synapse Research InstituteMaastrichtThe Netherlands
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Matthew J. Flick
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| |
Collapse
|
14
|
Miao X, Shen S, Koch G, Wang X, Li J, Shen X, Qu J, Straubinger RM, Jusko WJ. Systems pharmacodynamic model of combined gemcitabine and trabectedin in pancreatic cancer cells. Part I.Çô Effects on signal transduction pathways related to tumor growth. J Pharm Sci 2024; 113:214-227. [PMID: 38498417 PMCID: PMC11017371 DOI: 10.1016/j.xphs.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 03/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States
| | - Shichen Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics Research Center, University of Basel, Children's Hospital, Basel, Switzerland
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Jun Li
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
15
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
16
|
Zhou Y, Li T, He Z, Choppavarapu L, Hu X, Cao R, Leone GW, Kahn M, Jin VX. Reprogramming of 3D chromatin domains by antagonizing the β-catenin/CBP interaction attenuates insulin signaling in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566585. [PMID: 38013997 PMCID: PMC10680786 DOI: 10.1101/2023.11.10.566585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The therapeutic potential of targeting the β-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a β-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this β-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the β-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of the functional crosstalk between antagonizing the β-catenin/CBP interaction effect changes in 3D chromatin architecture and thereby gene expression and downstream effects remains to be elucidated. Here we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after the treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1, a key insulin signaling gene, significantly impede pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.
Collapse
|
17
|
Zhao B, Li Z, Yu S, Li T, Wang W, Liu R, Zhang B, Fang X, Shen Y, Han Q, Xu X, Wang K, Gong W, Li T, Li A, Zhou T, Li W, Li T. LEF1 enhances β-catenin transactivation through IDR-dependent liquid-liquid phase separation. Life Sci Alliance 2023; 6:e202302118. [PMID: 37657935 PMCID: PMC10474303 DOI: 10.26508/lsa.202302118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Wnt/β-catenin signaling plays a crucial role in cancer development, primarily activated by β-catenin forming a transcription complex with LEF/TCF in the nucleus and initiating the transcription of Wnt target genes. Here, we report that LEF1, a member of the LEF/TCF family, can form intrinsically disordered region (IDR)-dependent condensates with β-catenin both in vivo and in vitro, which is required for β-catenin-dependent transcription. Notably, LEF1 with disrupted IDR lost its promoting activity on tumor proliferation and metastasis, which can be restored by substituting with FUS IDR. Our findings provide new insight into the essential role of liquid-liquid phase separation in Wnt/β-catenin signaling and present a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Bing Zhao
- National Center of Biomedical Analysis, Beijing, China
| | - Zhuoxin Li
- National Center of Biomedical Analysis, Beijing, China
| | - Shaoqing Yu
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tingting Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Wen Wang
- National Center of Biomedical Analysis, Beijing, China
| | - Ran Liu
- National Center of Biomedical Analysis, Beijing, China
| | - Biyu Zhang
- National Center of Biomedical Analysis, Beijing, China
| | - Xiya Fang
- National Center of Biomedical Analysis, Beijing, China
| | - Yezhuang Shen
- National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Xin Xu
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Kai Wang
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Weili Gong
- National Center of Biomedical Analysis, Beijing, China
| | - Tao Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Ailing Li
- National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, China
| | - Teng Li
- National Center of Biomedical Analysis, Beijing, China
- Nanhu Laboratory, Jiaxing, China
| |
Collapse
|
18
|
Bhalerao N, Chakraborty A, Marciel MP, Hwang J, Britain CM, Silva AD, Eltoum IE, Jones RB, Alexander KL, Smythies LE, Smith PD, Crossman DK, Crowley MR, Shin B, Harrington LE, Yan Z, Bethea MM, Hunter CS, Klug CA, Buchsbaum DJ, Bellis SL. ST6GAL1 sialyltransferase promotes acinar to ductal metaplasia and pancreatic cancer progression. JCI Insight 2023; 8:e161563. [PMID: 37643018 PMCID: PMC10619436 DOI: 10.1172/jci.insight.161563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 β-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.
Collapse
Affiliation(s)
| | | | | | - Jihye Hwang
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | | | | | | | | | | | | | - Boyoung Shin
- Department of Cell, Developmental, and Integrative Biology
| | | | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | - Donald J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
19
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
20
|
Rowell MC, Deschênes-Simard X, Lopes-Paciencia S, Le Calvé B, Kalegari P, Mignacca L, Fernandez-Ruiz A, Guillon J, Lessard F, Bourdeau V, Igelmann S, Duman AM, Stanom Y, Kottakis F, Deshpande V, Krizhanovsky V, Bardeesy N, Ferbeyre G. Targeting ribosome biogenesis reinforces ERK-dependent senescence in pancreatic cancer. Cell Cycle 2023; 22:2172-2193. [PMID: 37942963 PMCID: PMC10732607 DOI: 10.1080/15384101.2023.2278945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Pancreatic adenocarcinomas (PDAC) often possess mutations in K-Ras that stimulate the ERK pathway. Aberrantly high ERK activation triggers oncogene-induced senescence, which halts tumor progression. Here we report that low-grade pancreatic intraepithelial neoplasia displays very high levels of phospho-ERK consistent with a senescence response. However, advanced lesions that have circumvented the senescence barrier exhibit lower phospho-ERK levels. Restoring ERK hyperactivation in PDAC using activated RAF leads to ERK-dependent growth arrest with senescence biomarkers. ERK-dependent senescence in PDAC was characterized by a nucleolar stress response including a selective depletion of nucleolar phosphoproteins and intranucleolar foci containing RNA polymerase I designated as senescence-associated nucleolar foci (SANF). Accordingly, combining ribosome biogenesis inhibitors with ERK hyperactivation reinforced the senescence response in PDAC cells. Notably, comparable mechanisms were observed upon treatment with the platinum-based chemotherapy regimen FOLFIRINOX, currently a first-line treatment option for PDAC. We thus suggest that drugs targeting ribosome biogenesis can improve the senescence anticancer response in pancreatic cancer.
Collapse
Affiliation(s)
- MC. Rowell
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - X. Deschênes-Simard
- Département de Biochimie et Médecine Moléculaire, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - S. Lopes-Paciencia
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - B. Le Calvé
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| | - P. Kalegari
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - L. Mignacca
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| | - A. Fernandez-Ruiz
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - J. Guillon
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - F. Lessard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Research Centre, Canada, Present
| | - V. Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| | - S Igelmann
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| | - AM. Duman
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Y. Stanom
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| | - F. Kottakis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - V. Deshpande
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - V. Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - N. Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - G. Ferbeyre
- Département de Biochimie et Médecine Moléculaire, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, QC, Canada
| |
Collapse
|
21
|
Mahyoub MA, Elhoumed M, Maqul AH, Almezgagi M, Abbas M, Jiao Y, Wang J, Alnaggar M, Zhao P, He S. Fatty infiltration of the pancreas: a systematic concept analysis. Front Med (Lausanne) 2023; 10:1227188. [PMID: 37809324 PMCID: PMC10556874 DOI: 10.3389/fmed.2023.1227188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Fatty infiltration of the pancreas (FIP) has been recognized for nearly a century, yet many aspects of this condition remain unclear. Regular literature reviews on the diagnosis, consequences, and management of FIP are crucial. This review article highlights the various disorders for which FIP has been established as a risk factor, including type 2 diabetes mellitus (T2DM), pancreatitis, pancreatic fistula (PF), metabolic syndrome (MS), polycystic ovary syndrome (PCOS), and pancreatic duct adenocarcinoma (PDAC), as well as the new investigation tools. Given the interdisciplinary nature of FIP research, a broad range of healthcare specialists are involved. This review article covers key aspects of FIP, including nomenclature and definition of pancreatic fat infiltration, history and epidemiology, etiology and pathophysiology, clinical presentation and diagnosis, clinical consequences, and treatment. This review is presented in a detailed narrative format for accessibility to clinicians and medical students.
Collapse
Affiliation(s)
- Mueataz A. Mahyoub
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Mohamed Elhoumed
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- National Institute of Public Health Research (INRSP), Nouakchott, Mauritania
| | - Abdulfatah Hassan Maqul
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, Sahan Diagnostic Center, Mogadishu, Somalia
| | - Maged Almezgagi
- The Key Laboratory of High-altitude Medical Application of Qinghai Province, Xining, Qinghai, China
- Department of Immunology, Qinghai University, Xining, Qinghai, China
- Department of Medical Microbiology, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Mustafa Abbas
- Department of Internal Medicine, Faculty of Medicine, Thamar University, Dhamar, Yemen
| | - Yang Jiao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mohammed Alnaggar
- Department of Oncology, South Hubei Cancer Hospital, Xianning, Hubei, China
- Department of Internal Medicine, Clinic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ping Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Clinical Medical Research Center for Digestive Diseases (Oncology) of Shaanxi Province, Xi'an, China
| |
Collapse
|
22
|
Yu L, Lu J, Xie N, Fang L, Chen S, Wu Y, Wang X, Li B. Suppression of Wnt/β-catenin Signaling in PDAC via METTL16-mediated N6-methyladenosine Modification of DVL2. J Cancer 2023; 14:2964-2977. [PMID: 37859814 PMCID: PMC10583588 DOI: 10.7150/jca.85860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
Pancreatic cancer is a formidable cause of cancer-related deaths worldwide and has witnessed a more than twofold increase in incidence over the last 25 years. The most frequently occurring form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), accounting for the majority of pancreatic cancer cases. N6-methyladenosine (m6A), the most abundant transcript modification, has been implicated in the pathogenesis of numerous human cancers, including pancreatic cancer. Despite this, the functional role of methyltransferase-like 16 (METTL16), a critical m6A methyltransferase, in PDAC remains elusive. In this study, we demonstrate that METTL16 expression is significantly diminished in PDAC, rendering it a promising prognostic indicator. Strikingly, both in vitro and in vivo assays revealed accelerated metastasis and invasion of PDAC cells upon METTL16 knockdown, while overexpression of METTL16 exerted an opposite effect. Mechanistically, METTL16 regulates DVL2 expression by suppressing its translation via m6A modification, thereby regulating Wnt/β-catenin signaling., Our results unveil the downregulation of METTL16 as a concomitant increase in DVL2 levels via m6A modification promoting the progression of PDAC. Thus, we propose METTL16 as a novel therapeutic candidate for targeted PDAC treatment.
Collapse
Affiliation(s)
- Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lutong Fang
- The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Sumin Chen
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Ying Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
23
|
Bednar F, Pasca di Magliano M. Calligraphy tool offers clues to the origin of pancreatic cancer. Nature 2023; 621:265-266. [PMID: 37587278 DOI: 10.1038/d41586-023-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
24
|
Sekiya S, Fukuda J, Yamamura R, Ooshio T, Satoh Y, Kosuge S, Sato R, Hatanaka KC, Hatanaka Y, Mitsuhashi T, Nakamura T, Matsuno Y, Hirano S, Sonoshita M. Drosophila Screening Identifies Dual Inhibition of MEK and AURKB as an Effective Therapy for Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:2704-2715. [PMID: 37378549 DOI: 10.1158/0008-5472.can-22-3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Significant progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) by generating and using murine models. To accelerate drug discovery by identifying novel therapeutic targets on a systemic level, here we generated a Drosophila model mimicking the genetic signature in PDAC (KRAS, TP53, CDKN2A, and SMAD4 alterations), which is associated with the worst prognosis in patients. The '4-hit' flies displayed epithelial transformation and decreased survival. Comprehensive genetic screening of their entire kinome revealed kinases including MEK and AURKB as therapeutic targets. Consistently, a combination of the MEK inhibitor trametinib and the AURKB inhibitor BI-831266 suppressed the growth of human PDAC xenografts in mice. In patients with PDAC, the activity of AURKB was associated with poor prognosis. This fly-based platform provides an efficient whole-body approach that complements current methods for identifying therapeutic targets in PDAC. SIGNIFICANCE Development of a Drosophila model mimicking genetic alterations in human pancreatic ductal adenocarcinoma provides a tool for genetic screening that identifies MEK and AURKB inhibition as a potential treatment strategy.
Collapse
Affiliation(s)
- Sho Sekiya
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Junki Fukuda
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takako Ooshio
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Satoh
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kosuge
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Reo Sato
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Kuvendjiska J, Müller F, Bronsert P, Timme-Bronsert S, Fichtner-Feigl S, Kulemann B. Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasm of the Pancreas. Life (Basel) 2023; 13:1570. [PMID: 37511945 PMCID: PMC10381561 DOI: 10.3390/life13071570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is the most common pancreatic cyst and a precursor of pancreatic cancer (PDAC). Since PDAC has a devastatingly high mortality rate, the early diagnosis and treatment of any precursor lesion are rational. The safety of the existing guidelines on the clinical management of IPMN has been criticized due to unsatisfactory sensitivity and specificity, showing the need for further markers. Blood obtained from patients with IPMN was therefore subjected to size-based isolation of circulating epithelial cells (CECs). We isolated CECs and evaluated their cytological characteristics. Additionally, we compared Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in CECs and the primary IPMN tissue, since KRAS mutations are very typical for PDAC. Samples from 27 IPMN patients were analyzed. In 10 (37%) patients, CECs were isolated and showed a hybrid pattern of surface markers involving both epithelial and mesenchymal markers, suggesting a possible EMT process of the cells. Especially, patients with high-grade dysplasia in the main specimen were all CEC-positive. KRAS mutations were also present in CECs but less common than in IPMN tissue. The existence of CEC in IPMN patients offers additional blood-based research possibilities for IMPN biology.
Collapse
Affiliation(s)
- Jasmina Kuvendjiska
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Felix Müller
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Peter Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Sylvia Timme-Bronsert
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Tumorbank, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Stefan Fichtner-Feigl
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of General and Visceral Surgery, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Birte Kulemann
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Department of Surgery, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| |
Collapse
|
26
|
Lilly AC, Astsaturov I, Golemis EA. Intrapancreatic fat, pancreatitis, and pancreatic cancer. Cell Mol Life Sci 2023; 80:206. [PMID: 37452870 PMCID: PMC10349727 DOI: 10.1007/s00018-023-04855-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-β, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.
Collapse
Affiliation(s)
- Anna C Lilly
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Igor Astsaturov
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
27
|
Miller-Phillips L, Collisson EA. RAS and Other Molecular Targets in Pancreatic Cancer: The Next Wave Is Coming. Curr Treat Options Oncol 2023:10.1007/s11864-023-01096-x. [PMID: 37296367 DOI: 10.1007/s11864-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT Since the discovery of oncogenes in the 1970s, cancer doctors and researchers alike have understood the promise of discovering drugs to block the dominantly acting function of mutated signaling proteins in cancer. This promise was delivered, first slowly, with early signals inhibiting HER2 and BCR-Abl in the 1990s and 2000s, and then quickly, with kinase inhibitors being approved hand over fist in non-small cell lung cancer, melanoma, and many other malignancies. The RAS proteins, however, remained recalcitrant to chemical inhibition for decades, despite being, by far, the most frequently mutated oncogenes in cancers of all types. Nowhere was this deficit more palpable than in pancreatic ductal adenocarcinoma (PDA), where > 90% of cases are driven by single nucleotide substitutions at a single codon of the KRAS gene. The ice began to crack in 2012 when Ostrem and colleagues (Nature 503(7477): 548-551, 2013) synthesized the first KRAS G12C inhibitors, which covalently bind to GDP-bound G12C-mutated KRAS and lock the oncoprotein in its inactive state. In the last decade, the scientific community has established a new foundation on this and other druggable pockets in mutant KRAS. Here we provide an up-to-date overview of drugs targeting KRAS and other molecular targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lisa Miller-Phillips
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA.
| |
Collapse
|
28
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
29
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Lett 2023; 555:216040. [PMID: 36565920 DOI: 10.1016/j.canlet.2022.216040] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of β-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered β-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/β-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.
Collapse
|
32
|
Zhou C, Zhu X, Liu N, Dong X, Zhang X, Huang H, Tang Y, Liu S, Hu M, Wang M, Deng X, Li S, Zhang R, Huang Y, Lyu H, Xiao S, Luo S, Ali DW, Michalak M, Chen XZ, Wang Z, Tang J. B-lymphoid tyrosine kinase-mediated FAM83A phosphorylation elevates pancreatic tumorigenesis through interacting with β-catenin. Signal Transduct Target Ther 2023; 8:66. [PMID: 36797256 PMCID: PMC9935901 DOI: 10.1038/s41392-022-01268-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 02/18/2023] Open
Abstract
Abnormal activation of Wnt/β-catenin-mediated transcription is closely associated with the malignancy of pancreatic cancer. Family with sequence similarity 83 member A (FAM83A) was shown recently to have oncogenic effects in a variety of cancer types, but the biological roles and molecular mechanisms of FAM83A in pancreatic cancer need further investigation. Here, we newly discovered that FAM83A binds directly to β-catenin and inhibits the assembly of the cytoplasmic destruction complex thus inhibiting the subsequent phosphorylation and degradation. FAM83A is mainly phosphorylated by the SRC non-receptor kinase family member BLK (B-lymphoid tyrosine kinase) at tyrosine 138 residue within the DUF1669 domain that mediates the FAM83A-β-catenin interaction. Moreover, FAM83A tyrosine 138 phosphorylation enhances oncogenic Wnt/β-catenin-mediated transcription through promoting β-catenin-TCF4 interaction and showed an elevated nucleus translocation, which inhibits the recruitment of histone deacetylases by TCF4. We also showed that FAM83A is a direct downstream target of Wnt/β-catenin signaling and correlates with the levels of Wnt target genes in human clinical pancreatic cancer tissues. Notably, the inhibitory peptides that target the FAM83A-β-catenin interaction significantly suppressed pancreatic cancer growth and metastasis in vitro and in vivo. Our results revealed that blocking the FAM83A cascade signaling defines a therapeutic target in human pancreatic cancer.
Collapse
Affiliation(s)
- Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Xiaoting Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Nanxi Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xueying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Xuewen Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Huili Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, and Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200433, China
| | - Yu Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shicheng Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Mengyu Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Sang Luo
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Ningxia, 750001, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Zhentian Wang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, and Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200433, China.
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
33
|
Du W, Menjivar RE, Donahue KL, Kadiyala P, Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles CV, Zhang Y, Pasca di Magliano M. WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer. J Exp Med 2023; 220:e20220503. [PMID: 36239683 PMCID: PMC9577101 DOI: 10.1084/jem.20220503] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | | | - Padma Kadiyala
- Immunology Program, University of Michigan, Ann Arbor, MI
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | | | - Xi He
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Christina V. Angeles
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
34
|
Yakovlev VA, Sullivan SA, Fields EC, Temkin SM. PARP inhibitors in the treatment of ARID1A mutant ovarian clear cell cancer: PI3K/Akt1-dependent mechanism of synthetic lethality. Front Oncol 2023; 13:1124147. [PMID: 36910637 PMCID: PMC9992988 DOI: 10.3389/fonc.2023.1124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme involved in the repair of DNA single-strand breaks (SSB). The recent development of poly(ADP-ribose) polymerase inhibitors (PARPi) results from over 45 years of studies. When the activity of PARP1 or PARP2 is compromised, DNA SSB lesions are unresolved and can be converted to DNA double-strand breaks (DSBs) by the cellular transcription mechanisms. ARID1A (also called BAF250a) is an important component of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex. ARID1A gene demonstrates >50% of mutation rate in ovarian clear-cell carcinomas (OCCC). Mutated or downregulated ARID1A significantly compromises the Homologous Recombination Repair (HRR) of DNA DSB. Results The present study demonstrated that downregulated or mutated ARID1A attenuates DNA HRR through stimulation of the PI3K/Akt1 pathway and makes tumor cells highly sensitive to PARPi and PARPi/ionizing radiation (IR) combination. We showed that PI3K/Akt1 pathway plays an important role in the sensitization of cancer cell lines with compromised function of ARID1A to PARPi treatment. Discussion We believe that using of PARPi monotherapy or in combination with radiation therapy is an appealing strategy for treating ARID1A-mutated cancers, as well as many other types of PI3K/Akt1-driven cancers.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephanie A Sullivan
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emma C Fields
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
35
|
Kumar S, Singh SK, Srivastava P, Suresh S, Rana B, Rana A. Interplay between MAP kinases and tumor microenvironment: Opportunity for immunotherapy in pancreatic cancer. Adv Cancer Res 2023. [PMID: 37268394 DOI: 10.1016/bs.acr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.
Collapse
|
36
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
37
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
38
|
Wang Y, Zhang H, Li J, Niu MM, Zhou Y, Qu Y. Discovery of potent and noncovalent KRAS G12D inhibitors: Structure-based virtual screening and biological evaluation. Front Pharmacol 2022; 13:1094887. [PMID: 36618907 PMCID: PMC9815544 DOI: 10.3389/fphar.2022.1094887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of pancreatic cancer. Herein, we identified four potent and noncovalent KRASG12D inhibitors (hits 1-4) by using structure-based virtual screening and biological evaluation. The in vitro assays indicated that the four compounds had sub-nanomolar affinities for KRASG12D and showed a dose-dependent inhibitory effect on human pancreatic cancer cells. In particular, the hit compound 3 was the most promising candidate and significantly inhibited the tumor growth of pancreatic cancer in tumor-bearing mice. The hit compound 3 represented a promising starting point for structural optimization in hit-to-lead development. This study shows that hit compound 3 provides a basis for the development of the treatment of cancer driven by KRASG12D.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Hai Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jindong Li
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yang Zhou
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,*Correspondence: Yang Zhou, ; Yuanqian Qu,
| | - Yuanqian Qu
- Department of Pathology, Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China,*Correspondence: Yang Zhou, ; Yuanqian Qu,
| |
Collapse
|
39
|
Jiang M, Wang J, Shen Y, Zhu J, Liu Z, Gong W, Yu Y, Zhang S, Zhou X, He S, Song Y, Zhu Z, Jin L, Cong W. Ribosomal S6 Protein Kinase 2 Aggravates the Process of Systemic Scleroderma. J Invest Dermatol 2022; 142:3175-3183.e5. [PMID: 35853487 DOI: 10.1016/j.jid.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Systemic sclerosis is a complex process of pathogenesis, and the contributions of inherited genes, infections, and chemicals remain largely unknown. In this study, we showed that p90 ribosomal S6 protein kinase 2 (RSK2) was selectively upregulated in fibrotic skin and fibroblasts treated with the profibrotic cytokine TGF-β. Moreover, knockout of Rsk2 specifically in skin fibroblasts or pharmacological inhibition of RSK2 attenuated skin fibrosis in a mouse model. Mechanistically, RSK2 directly interacted with glycogen synthase kinase 3β in vivo and in vitro and thereby induced phosphorylation of glycogen synthase kinase 3β at Ser9 to inhibit ubiquitination and degradation of GLI1, which promoted fibroblast differentiation and skin fibrosis. Consequently, RSK2 plays an important role in the dermal skin of systemic sclerosis. These findings provided a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Mengying Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jianan Wang
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhili Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo, China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
40
|
Tong Y, Sun M, Chen L, Wang Y, Li Y, Li L, Zhang X, Cai Y, Qie J, Pang Y, Xu Z, Zhao J, Zhang X, Liu Y, Tian S, Qin Z, Feng J, Zhang F, Zhu J, Xu Y, Lou W, Ji Y, Zhao J, He F, Hou Y, Ding C. Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. J Hematol Oncol 2022; 15:168. [PMID: 36434634 PMCID: PMC9701038 DOI: 10.1186/s13045-022-01384-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis. Proteogenomic characterization and integrative proteomic analysis provide a functional context to annotate genomic abnormalities with prognostic value. METHODS We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 217 PDAC tumors with paired non-tumor adjacent tissues. In vivo functional experiments were performed to further illustrate the biological events related to PDAC tumorigenesis and progression. RESULTS A comprehensive proteogenomic landscape revealed that TP53 mutations upregulated the CDK4-mediated cell proliferation process and led to poor prognosis in younger patients. Integrative multi-omics analysis illustrated the proteomic and phosphoproteomic alteration led by genomic alterations such as KRAS mutations and ADAM9 amplification of PDAC tumorigenesis. Proteogenomic analysis combined with in vivo experiments revealed that the higher amplification frequency of ADAM9 (8p11.22) could drive PDAC metastasis, though downregulating adhesion junction and upregulating WNT signaling pathway. Proteome-based stratification of PDAC revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Immune clustering defined a metabolic tumor subset that harbored FH amplicons led to better prognosis. Functional experiments revealed the role of FH in altering tumor glycolysis and in impacting PDAC tumor microenvironments. Experiments utilizing both in vivo and in vitro assay proved that loss of HOGA1 promoted the tumor growth via activating LARP7-CDK1 pathway. CONCLUSIONS This proteogenomic dataset provided a valuable resource for researchers and clinicians seeking for better understanding and treatment of PDAC.
Collapse
Affiliation(s)
- Yexin Tong
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Mingjun Sun
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingli Chen
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yunzhi Wang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yan Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Lingling Li
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xuan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yumeng Cai
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jingbo Qie
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yanrui Pang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Ziyan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiangyan Zhao
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Xiaolei Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yang Liu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Sha Tian
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Zhaoyu Qin
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jinwen Feng
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jiajun Zhu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yifan Xu
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Wenhui Lou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Yuan Ji
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Jianyuan Zhao
- grid.16821.3c0000 0004 0368 8293Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.207374.50000 0001 2189 3846Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Fuchu He
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206 China ,grid.506261.60000 0001 0706 7839Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Yingyong Hou
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| | - Chen Ding
- grid.8547.e0000 0001 0125 2443Institute of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Department of Pathology, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433 China
| |
Collapse
|
41
|
Mashima Y, Nohira H, Sugihara H, Dynlacht BD, Kobayashi T, Itoh H. KIF24 depletion induces clustering of supernumerary centrosomes in PDAC cells. Life Sci Alliance 2022; 5:5/11/e202201470. [PMID: 35803737 PMCID: PMC9270500 DOI: 10.26508/lsa.202201470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Depletion of the centrosomal kinesin KIF24, known to restrain the assembly of primary cilia, suppresses multipolar spindle formation by clustering centrosomes in centrosome-amplified PDAC cells. Clustering of supernumerary centrosomes, which potentially leads to cell survival and chromosomal instability, is frequently observed in cancers. However, the molecular mechanisms that control centrosome clustering remain largely unknown. The centrosomal kinesin KIF24 was previously shown to restrain the assembly of primary cilia in mammalian cells. Here, we revealed that KIF24 depletion suppresses multipolar spindle formation by clustering centrosomes in pancreatic ductal adenocarcinoma (PDAC) cells harboring supernumerary centrosomes. KIF24 depletion also induced hyper-proliferation and improved mitotic progression in PDAC cells. In contrast, disruption of primary cilia failed to affect the proliferation and spindle formation in KIF24-depleted cells. These results suggest a novel role for KIF24 in suppressing centrosome clustering independent of primary ciliation in centrosome-amplified PDAC cells.
Collapse
Affiliation(s)
- Yu Mashima
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hayato Nohira
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroki Sugihara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Brian David Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
42
|
Yeung MCF, Shek TWH. KRAS Mutation Testing on Endoscopic Ultrasound-Guided Fine-Needle Aspiration Samples Improves the Diagnostic Accuracy of Pancreatic Cancer. Pancreas 2022; 51:1365-1371. [PMID: 37099780 DOI: 10.1097/mpa.0000000000002193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) cytology was one of the investigations for pancreatic masses. While the specificity approached 100%, its sensitivity remained low because of high rate of indeterminate and false-negative results. Meanwhile, KRAS gene was frequently mutated in up to 90% of pancreatic ductal adenocarcinoma and its precursor lesions. This study aimed to determine whether KRAS mutation analysis could improve the diagnostic sensitivity in EUS-FNA samples for pancreatic adenocarcinoma. METHODS The EUS-FNA samples from patients with a pancreatic mass obtained between January 2016 and December 2017 were reviewed retrospectively. The cytology results were classified as malignant, suspicious for malignancy, atypical, negative for malignancy, and nondiagnostic. KRAS mutation testing was performed using polymerase chain reaction followed by Sanger sequencing. RESULTS A total of 126 EUS-FNA specimens were reviewed. The overall sensitivity and specificity by cytology alone were 29% and 100%, respectively. When KRAS mutation testing was performed in cases with indeterminate and negative cytology, the sensitivity increased to 74.2%, and the specificity remained at 100%. CONCLUSIONS KRAS mutation analysis, especially when performed in cytologically indeterminate cases, improves the diagnostic accuracy for pancreatic ductal adenocarcinoma. This may reduce the need to repeat invasive EUS-FNA for diagnosis.
Collapse
Affiliation(s)
- Maximus C F Yeung
- From the Department of Pathology, Queen Mary Hospital and The University of Hong Kong, Hong Kong
| | | |
Collapse
|
43
|
Zheng S, Lin J, Pang Z, Zhang H, Wang Y, Ma L, Zhang H, Zhang X, Chen M, Zhang X, Zhao C, Qi J, Cao L, Wang M, He X, Sheng R. Aberrant Cholesterol Metabolism and Wnt/β-Catenin Signaling Coalesce via Frizzled5 in Supporting Cancer Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200750. [PMID: 35975457 PMCID: PMC9534957 DOI: 10.1002/advs.202200750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/23/2022] [Indexed: 05/12/2023]
Abstract
Frizzled (Fzd) proteins are Wnt receptors and play essential roles in development, homeostasis, and oncogenesis. How Wnt/Fzd signaling is coupled to physiological regulation remains unknown. Cholesterol is reported as a signaling molecule regulating morphogen such as Hedgehog signaling. Despite the elusiveness of the in-depth mechanism, it is well-established that pancreatic cancer specially requires abnormal cholesterol metabolism levels for growth. In this study, it is unexpectedly found that among ten Fzds, Fzd5 has a unique capacity to bind cholesterol specifically through its conserved extracellular linker region. Cholesterol-binding enables Fzd5 palmitoylation, which is indispensable for receptor maturation and trafficking to the plasma membrane. In Wnt-addicted pancreatic ductal adenocarcinoma (PDAC), cholesterol stimulates tumor growth via Fzd5-mediated Wnt/β-catenin signaling. A natural oxysterol, 25-hydroxylsterol competes with cholesterol and inhibits Fzd5 maturation and Wnt signaling, thereby alleviating PDAC growth. This cholesterol-receptor interaction and ensuing receptor lipidation uncover a novel mechanism by which Fzd5 acts as a cholesterol sensor and pivotal connection coupling lipid metabolism to morphogen signaling. These findings further suggest that cholesterol-targeting may provide new therapeutic opportunities for treating Wnt-dependent cancers.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Jiahui Lin
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Zhongqiu Pang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Hui Zhang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Yinuo Wang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Lanjing Ma
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Haijiao Zhang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Xi Zhang
- College of SciencesNortheastern UniversityShenyang110004P. R. China
| | - Maorong Chen
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationNational Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chao Zhao
- School of Public HealthJilin UniversityChangchun130021P. R. China
| | - Jun Qi
- Department of Cancer BiologyDana‐Farber Cancer InstituteDepartment of MedicineHarvard Medical SchoolBostonMA02215USA
| | - Liu Cao
- Institute of Translational MedicineKey Laboratory of Cell Biology of Ministry of Public Healthand Key Laboratory of Medical Cell Biology of Ministry of EducationLiaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and PreventionChina Medical UniversityShenyang110112P. R. China
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhan430030P. R. China
| | - Xi He
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| | - Ren Sheng
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
44
|
Chen LJ, Wu L, Wang W, Zhai LL, Xiang F, Li WB, Tang ZG. Long non‑coding RNA 01614 hyperactivates WNT/β‑catenin signaling to promote pancreatic cancer progression by suppressing GSK‑3β. Int J Oncol 2022; 61:116. [PMID: 35929518 PMCID: PMC9387559 DOI: 10.3892/ijo.2022.5406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non-coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC-related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease-free survival of patients with PC according to the analysis of The Cancer Genome Atlas-derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of β-catenin protein to hyperactivate the WNT/β-catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK-3β and perturbed the interaction between GSK-3β and AXIN1, thereby preventing the formation of the β-catenin degradation complex and reducing the degradation of β-catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Breast and Τhyroid Surgery, Experiment Center of Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Xiang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bo Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
45
|
Zhou M, Pan S, Qin T, Zhao C, Yin T, Gao Y, Liu Y, Zhang Z, Shi Y, Bai Y, Gong J, Guo X, Wang M, Qin R. LncRNA FAM83H-AS1 promotes the malignant progression of pancreatic ductal adenocarcinoma by stabilizing FAM83H mRNA to protect β-catenin from degradation. J Exp Clin Cancer Res 2022; 41:288. [PMID: 36171592 PMCID: PMC9520839 DOI: 10.1186/s13046-022-02491-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pancreatic ductal adenocarcinoma is prone to metastasis, resulting in short survival and low quality of life. LncRNAs are pivotal orchestrators that participate in various tumor progress. The underlying role and mechanism of lncRNA FAM83H-AS1 is still unknown in PDAC progression.
Methods
To address this issue, firstly, we profiled and analyzed the aberrant lncRNA expression in TCGA database and identified FAM83H-AS1 as the most effective one in promoting the migration of pancreatic cancer cells. Then, the expression levels of FAM83H-AS1 in patient’s serum, tumor tissues and PDAC cells were detected using RT-qPCR, and FAM83H-AS1 distribution in PDAC cells was determined by performing FISH and RT-qPCR. Next, a series of in vivo and in vitro functional assays were conducted to elucidate the role of FAM83H-AS1 in cell growth and metastasis in PDAC. The regulatory relationship between FAM83H-AS1 and FAM83H (the homologous gene of FAM83H-AS1) was verified by performing protein and RNA degradation assays respectively. Co-IP assays were performed to explore the potential regulatory mechanism of FAM83H to β-catenin. Rescue assays were performed to validate the regulation of the FAM83H-AS1/FAM83H/β-catenin axis in PDAC progression.
Results
FAM83H-AS1 was highly expressed in the tumor tissues and serum of patients with PDAC, and was correlated with shorter survival. FAM83H-AS1 significantly promoted the proliferation, invasion and metastasis of PDAC cells, by protecting FAM83H mRNA from degradation. Importantly, FAM83H protein manifested the similar malignant functions as that of FAM83H-AS1 in PDAC cells, and could bind to β-catenin. Specifically, FAM83H could decrease the ubiquitylation of β-catenin, and accordingly activated the effector genes of Wnt/β-catenin signaling.
Conclusions
Collectively, FAM83H-AS1 could promote FAM83H expression by stabilizing its mRNA, allowing FAM83H to decrease the ubiquitylation of β-catenin, thus resulted in an amplified FAM83H-AS1/FAM83H/β-catenin signal axis to promote PDAC progression. FAM83H-AS1 might be a novel prognostic and therapeutic target for combating PDAC.
Collapse
|
46
|
Baslan T, Morris JP, Zhao Z, Reyes J, Ho YJ, Tsanov KM, Bermeo J, Tian S, Zhang S, Askan G, Yavas A, Lecomte N, Erakky A, Varghese AM, Zhang A, Kendall J, Ghiban E, Chorbadjiev L, Wu J, Dimitrova N, Chadalavada K, Nanjangud GJ, Bandlamudi C, Gong Y, Donoghue MTA, Socci ND, Krasnitz A, Notta F, Leach SD, Iacobuzio-Donahue CA, Lowe SW. Ordered and deterministic cancer genome evolution after p53 loss. Nature 2022; 608:795-802. [PMID: 35978189 PMCID: PMC9402436 DOI: 10.1038/s41586-022-05082-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.
Collapse
Affiliation(s)
- Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John P Morris
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Reyes
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Bermeo
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gokce Askan
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aslihan Yavas
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Lecomte
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Erakky
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M Varghese
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Elena Ghiban
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lubomir Chorbadjiev
- Technical School of Electronic Systems, Technical University of Sofia, Sofia, Bulgaria
| | - Jie Wu
- Phillips Research North America, Oncology Informatics and Genomics, Cambridge, MA, USA
| | - Nevenka Dimitrova
- Phillips Research North America, Oncology Informatics and Genomics, Cambridge, MA, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yixiao Gong
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D Socci
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Krasnitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steve D Leach
- Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dartmouth Cancer Center, Hanover, NH, USA
| | | | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
47
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
48
|
Aguilera KY, Le T, Riahi R, Lay AR, Hinz S, Saadat EA, Vashisht AA, Wohlschlegel J, Donahue TR, Radu CG, Dawson DW. Porcupine Inhibition Disrupts Mitochondrial Function and Homeostasis in WNT Ligand-Addicted Pancreatic Cancer. Mol Cancer Ther 2022; 21:936-947. [PMID: 35313331 PMCID: PMC9167706 DOI: 10.1158/1535-7163.mct-21-0623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
WNT signaling promotes pancreatic ductal adenocarcinoma (PDAC) through diverse effects on proliferation, differentiation, survival, and stemness. A subset of PDAC with inactivating mutations in ring finger protein 43 (RNF43) show growth dependency on autocrine WNT ligand signaling and are susceptible to agents that block WNT ligand acylation by Porcupine O-acyltransferase, which is required for proper WNT ligand processing and secretion. For this study, global transcriptomic, proteomic, and metabolomic analyses were performed to explore the therapeutic response of RNF43-mutant PDAC to the Porcupine inhibitor (PORCNi) LGK974. LGK974 disrupted cellular bioenergetics and mitochondrial function through actions that included rapid mitochondrial depolarization, reduced mitochondrial content, and inhibition of oxidative phosphorylation and tricarboxylic acid cycle. LGK974 also broadly altered transcriptional activity, downregulating genes involved in cell cycle, nucleotide metabolism, and ribosomal biogenesis and upregulating genes involved in epithelial-mesenchymal transition, hypoxia, endocytosis, and lysosomes. Autophagy and lysosomal activity were augmented in response to LGK974, which synergistically inhibited tumor cell viability in combination with chloroquine. Autocrine WNT ligand signaling dictates metabolic dependencies in RNF43-mutant PDAC through a combination of transcription dependent and independent effects linked to mitochondrial health and function. Metabolic adaptations to mitochondrial damage and bioenergetic stress represent potential targetable liabilities in combination with PORCNi for the treatment of WNT ligand-addicted PDAC.
Collapse
Affiliation(s)
- Kristina Y. Aguilera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Anna R. Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Stefan Hinz
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Edris A. Saadat
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Ajay A. Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Timothy R. Donahue
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
- Department of Surgery, University of California, Los Angeles, CA, 90095
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA, 90095
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| |
Collapse
|
49
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
50
|
Modeling Pancreatic Cancer with Patient-Derived Organoids Integrating Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14092077. [PMID: 35565206 PMCID: PMC9103557 DOI: 10.3390/cancers14092077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic cancer tissue is resistant to anticancer drugs because of its complex microenvironment. Cancer-associated fibroblasts (CAFs) are an important source of extracellular matrix components, which alter the physical and chemical properties of pancreatic tissue, thus impairing effective intratumoral drug delivery and resulting in resistance to conventional chemotherapy. In this study, we developed a novel CAF-integrated pancreatic cancer organoid (CIPCO) model that can mimic the tumor microenvironment and confirmed that the gene expression and pathological characteristics of CIPCO are similar to those of human cancer tissue. The organoid model could serve as a preclinical model for developing individualized therapies. Abstract Pancreatic cancer is a devastating disease and is highly resistant to anticancer drugs because of its complex microenvironment. Cancer-associated fibroblasts (CAFs) are an important source of extracellular matrix (ECM) components, which alter the physical and chemical properties of pancreatic tissue, thus impairing effective intratumoral drug delivery and resulting in resistance to conventional chemotherapy. The objective of this study was to develop a new cancer organoid model, including a fibrous tumor microenvironment (TME) using CAFs. The CAF-integrated pancreatic cancer organoid (CIPCO) model developed in this study histologically mimicked human pancreatic cancer and included ECM production by CAFs. The cancer cell–CAF interaction in the CIPCO promoted epithelial–mesenchymal transition of cancer cells, which was reversed by CAF inhibition using all-trans retinoic acid. Deposition of newly synthesized collagen I in the CIPCO disturbed the delivery of gemcitabine to cancer cells, and treatment with collagenase increased the cytotoxic effect of gemcitabine. This model may lead to the development of next-generation cancer organoid models recapitulating the fibrous TME.
Collapse
|