1
|
Kasper B, Zablotski Y, Mueller RS. Long-term use of lokivetmab in dogs with atopic dermatitis. Vet Dermatol 2024; 35:683-693. [PMID: 39143659 DOI: 10.1111/vde.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/05/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Lokivetmab, a caninised monoclonal antibody against interleukin (IL)-31, is an effective treatment for the pruritus associated with canine atopic dermatitis (cAD). OBJECTIVES To investigate the efficacy and safety of lokivetmab during long-term treatment defined as at least three consecutive lokivetmab injections in atopic dogs under field conditions. To assess individual factors influencing treatment outcome and adverse events. ANIMALS 150 dogs with cAD. MATERIALS AND METHODS Medical records of dogs treated with lokivetmab were reviewed, and owners and/or veterinarians were contacted as needed for follow-up. A decrease of the pruritus Visual Analog Scale (PVAS) score by ≥2 or a PVAS score ≤2 after treatment was considered as treatment success. Logistic regression was used to investigate the influence of a variety of factors on outcome: type of cAD (food versus environment), age at first lokivetmab administration, disease chronicity, dosage and/or secondary infection. Any adverse event that occurred during the study period was recorded. RESULTS Lokivetmab reduced the PVAS score with long-term use (p < 0.01); the success rate was 53 of 69 total dogs (77%). The probability of treatment failure decreased with increasing treatment duration. None of the factors investigated influenced the treatment outcome. Twelve dogs of 150 (8%) showed adverse events such as gastrointestinal signs or lethargy. CONCLUSION AND CLINICAL RELEVANCE Lokivetmab appears to be an effective and safe long-term anti-itch therapy for dogs with cAD.
Collapse
Affiliation(s)
- Bettina Kasper
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Yury Zablotski
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Yue T, Wang J, Liu F, Gong P, Li J, Zhang X, Zhang N. The effects of anti-lung cancer in nude mice by a fully human single-chain antibody against associated antigen Ts7TMR between A549 cells and Trichinella spiralis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:300-308. [PMID: 38753524 DOI: 10.1080/21691401.2024.2347377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.
Collapse
Affiliation(s)
- Taotao Yue
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jinpeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fang Liu
- First Hospital, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Al-Taie A, Özcan Bülbül E. A paradigm use of monoclonal antibodies-conjugated nanoparticles in breast cancer treatment: current status and potential approaches. J Drug Target 2024; 32:45-56. [PMID: 38096045 DOI: 10.1080/1061186x.2023.2295803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Monoclonal antibodies (mAbs) are integral to cancer treatment over conventional non-specific therapy methods. This study provides a scoping review of the clinically approved mAbs, focusing on the current application of different nanocarrier technologies as drug delivery targets for mAb-conjugated nanoparticles (NPs) as potential features for breast cancer (BC) treatment. An extensive literature search was conducted between the years 2000 and 2023 using various sources of databases. The first part covered mAb classification, types, and mechanisms of action, pharmacokinetics and clinical applications in BC. The second part covered polymeric, lipid and inorganic-based NPs, which are a variety of mAb-conjugated NPs targeting BC. A total of 20 relevant studies were enrolled indicating there are three different types of nanoparticular systems (polymeric NPs, inorganic NPs and lipid-based NPs) that can be used for BC treatment by being loaded with various active substances and conjugated with these antibodies. While mAbs have altered the way in cancer treatment due to targeting cancer cells specifically, the delivery of mAbs with nanoparticulate systems is important in the treatment of BC, as NPs are still being investigated as distinctive and promising drug delivery methods that can be employed for effective treatment of BC.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| |
Collapse
|
5
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
6
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
7
|
Gu Y, Zhao Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol Diagn Ther 2024; 28:669-702. [PMID: 39172329 PMCID: PMC11512917 DOI: 10.1007/s40291-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In recent years, bispecific antibodies (BsAbs) have emerged as a promising therapeutic strategy against tumors. BsAbs can recruit and activate immune cells, block multiple signaling pathways, and deliver therapeutic payloads directly to tumor sites. This review provides a comprehensive overview of the recent advances in the development and clinical application of BsAbs for the treatment of solid tumors. We discuss the different formats, the unique mechanisms of action, and the clinical outcomes of the most advanced BsAbs in solid tumor therapy. Several studies have also analyzed the clinical progress of bispecific antibodies. However, this review distinguishes itself by exploring the challenges associated with bispecific antibodies and proposing potential solutions. As the field progresses, BsAbs hold promise to redefine cancer treatment paradigms and offer new hope to patients with solid tumors.
Collapse
Affiliation(s)
- Yuheng Gu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
8
|
Chen H, Bao Y, Li X, Chen F, Sugimura R, Zeng X, Xia J. Cell Surface Engineering by Phase-Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy. Angew Chem Int Ed Engl 2024; 63:e202410566. [PMID: 39103291 DOI: 10.1002/anie.202410566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
Cell therapies such as CAR-T have demonstrated significant clinical successes, driving the investigation of immune cell surface engineering using natural and synthetic materials to enhance their therapeutic performance. However, many of these materials do not fully replicate the dynamic nature of the extracellular matrix (ECM). This study presents a cell surface engineering strategy that utilizes phase-separated peptide coacervates to decorate the surface of immune cells. We meticulously designed a tripeptide, Fmoc-Lys-Gly-Dopa-OH (KGdelta; Fmoc=fluorenylmethyloxycarbonyl; delta=Dopa, dihydroxyphenylalanine), that forms coacervates in aqueous solution via phase separation. These coacervates, mirroring the phase separation properties of ECM proteins, coat the natural killer (NK) cell surface with the assistance of Fe3+ ions and create an outer layer capable of encapsulating monoclonal antibodies (mAb), such as Trastuzumab. The antibody-embedded coacervate layer equips the NK cells with the ability to recognize cancer cells and eliminate them through enhanced antibody-dependent cellular cytotoxicity (ADCC). This work thus presents a unique strategy of cell surface functionalization and demonstrates its use in displaying cancer-targeting mAb for cancer therapies, highlighting its potential application in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Xiaojing Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Fangke Chen
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 99999, Hong Kong SAR, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| |
Collapse
|
9
|
Velásquez F, Frazao M, Diez A, Villegas F, Álvarez-Bidwell M, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López F, Toro-Ascuy D, Ahumada M, Reyes-Cerpa S. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1658. [PMID: 39452994 PMCID: PMC11510216 DOI: 10.3390/nano14201658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, has been the most severe health concern for the Chilean salmon industry. The efforts to control P. salmonis infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments. Here, we developed a poly (D, L-lactide-glycolic acid) (PLGA)-nanosystem functionalized with Atlantic salmon IgM (PLGA-IgM) to specifically deliver florfenicol into infected cells. Polymeric nanoparticles (NPs) were prepared via the double emulsion solvent-evaporation method in the presence of florfenicol. Later, the PLGA-NPs were functionalized with Atlantic salmon IgM through carbodiimide chemistry. The nanosystem showed an average size of ~380-410 nm and a negative surface charge. Further, florfenicol encapsulation efficiency was close to 10%. We evaluated the internalization of the nanosystem and its impact on bacterial load in SHK-1 cells by using confocal microscopy and qPCR. The results suggest that stimulation with the nanosystem elicits a decrease in the bacterial load of P. salmonis when it infects Atlantic salmon macrophages. Overall, the IgM-functionalized PLGA-based nanosystem represents an alternative to the administration of antibiotics in salmon farming, complementing the delivery of antibiotics with the stimulation of the immune response of infected macrophages.
Collapse
Affiliation(s)
- Felipe Velásquez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Mateus Frazao
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Arturo Diez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Felipe Villegas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marcelo Álvarez-Bidwell
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago 8250122, Chile
| | - Felipe Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9170002, Chile; (E.V.-V.); (F.R.-L.)
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 8380000, Chile;
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile (M.F.); (A.D.); (F.V.); (M.Á.-B.); (J.A.R.-P.)
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
10
|
Lebon C, Grossmann S, Mann G, Lindner F, Koide A, Koide S, Diepold A, Hantschel O. Cytosolic delivery of monobodies using the bacterial type III secretion system inhibits oncogenic BCR: ABL1 signaling. Cell Commun Signal 2024; 22:500. [PMID: 39415233 PMCID: PMC11483992 DOI: 10.1186/s12964-024-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.
Collapse
Affiliation(s)
- Chiara Lebon
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany
| | - Sebastian Grossmann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Greg Mann
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Florian Lindner
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Akiko Koide
- Department of Medicine, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany.
- Institute of Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany.
| |
Collapse
|
11
|
Zhao Y, Hou X, Wang Z, Peng S, Zheng C, Huang Q, Ma Y, Li Y, Liu Y, Liu Y, Shi L, Huang F. A Mechanical Immune Checkpoint Inhibitor Stiffens Tumor Cells to Potentiate Antitumor Immunity. Angew Chem Int Ed Engl 2024:e202417518. [PMID: 39400947 DOI: 10.1002/anie.202417518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Tumor progression is associated with tumor-cell softening. Improving the stiffness of the tumor cells can make them more vulnerable to lymphocyte-mediated attack. Tumor cell membranes typically exhibit higher cholesterol levels than normal cells, making tumor cells soft. Herein, we demonstrate a mechanical immune checkpoint inhibitor (MICI) formulated by cyclodextrin (CD) lipids and fusogenic lipids. Through fusing CD lipids into the tumor cell membrane using a fusogenic liposome formulation, the cholesterol in the plasma membrane is reduced due to the specific host-guest interactions between CD lipid and cholesterol. As a result, tumor cells are stiffened, and the activation of lymphocytes (including NK and cytotoxic effector T cells) is improved when contacting the stiffened tumor cells, characterized by robust degranulation and effector cytokine production. Notably, this treatment has negligible influence on the infiltration and proliferation of lymphocytes in tumor tissues, confirming that the enhanced antitumor efficacy should result from activating a specific number of lymphocytes caused by direct regulation of the tumor cell stiffness. The combination of MICIs and clinical immunotherapies enhances the lymphocyte-mediated antitumor effects in two tumor mouse models, including breast cancer and melanoma. Our research also reveals an unappreciated mechanical dimension to lymphocyte activation.
Collapse
Affiliation(s)
- Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zeyu Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Shiyu Peng
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunxiong Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fan Huang
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
12
|
Moirangthem R, Cordela S, Khateeb D, Shor B, Kosik I, Schneidman-Duhovny D, Mandelboim M, Jönsson F, Yewdell JW, Bruel T, Bar-On Y. Dual neutralization of influenza virus hemagglutinin and neuraminidase by a bispecific antibody leads to improved antiviral activity. Mol Ther 2024; 32:3712-3728. [PMID: 39086132 PMCID: PMC11489563 DOI: 10.1016/j.ymthe.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Mice
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/virology
- Neutralization Tests
- Dogs
- Disease Models, Animal
- Madin Darby Canine Kidney Cells
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Female
Collapse
Affiliation(s)
- Romila Moirangthem
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Dina Khateeb
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Ben Shor
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology; Inserm UMR1222, Paris 75015, France; CNRS, Paris 75015, France
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité; CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
13
|
Dugourd-Camus C, Ferreira CP, Adimy M. Modelling the mechanisms of antibody mixtures in viral infections: the cases of sequential homologous and heterologous dengue infections. J R Soc Interface 2024; 21:20240182. [PMID: 39406340 PMCID: PMC11523103 DOI: 10.1098/rsif.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 11/01/2024] Open
Abstract
Antibodies play an essential role in the immune response to viral infections, vaccination or antibody therapy. Nevertheless, they can be either protective or harmful during the immune response. Moreover, competition or cooperation between mixed antibodies can enhance or reduce this protective or harmful effect. Using the laws of chemical reactions, we propose a new approach to modelling the antigen-antibody complex activity. The resulting expression covers not only purely competitive or purely independent binding but also synergistic binding which, depending on the antibodies, can promote either neutralization or enhancement of viral activity. We then integrate this expression of viral activity in a within-host model and investigate the existence of steady-states and their asymptotic stability. We complete our study with numerical simulations to illustrate different scenarios: firstly, where both antibodies are neutralizing and secondly, where one antibody is neutralizing and the other enhancing. The results indicate that efficient viral neutralization is associated with purely independent antibody binding, whereas strong viral activity enhancement is expected in the case of purely competitive antibody binding. Finally, data collected during a secondary dengue infection were used to validate the model. The dataset includes sequential measurements of virus and antibody titres during viremia in patients. Data fitting shows that the two antibodies are in strong competition, as the synergistic binding is low. This contributes to the high levels of virus titres and may explain the antibody-dependent enhancement phenomenon. Besides, the mortality of infected cells is almost twice as high as that of susceptible cells, and the heterogeneity of viral kinetics in patients is associated with variability in antibody responses between individuals. Other applications of the model may be considered, such as the efficacy of vaccines and antibody-based therapies.
Collapse
Affiliation(s)
- Charlotte Dugourd-Camus
- Inria, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, Villeurbanne69603, France
| | - Claudia P. Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo18618-689, Brazil
| | - Mostafa Adimy
- Inria, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, Villeurbanne69603, France
| |
Collapse
|
14
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
15
|
Giron LB, Pasternak AO, Abdel-Mohsen M. Soluble markers of viral rebound and post-treatment HIV control. Curr Opin HIV AIDS 2024:01222929-990000000-00114. [PMID: 39392413 DOI: 10.1097/coh.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW We focus on the different classes of biological molecules measurable in easily accessible bodily fluids that have the potential to serve as biomarkers for the HIV post-treatment controller (PTC) phenotype and/or the timing of viral rebound after stopping antiretroviral therapy (ART). RECENT FINDINGS Various viral components and host factors measurable in body fluids can play crucial roles in understanding and predicting the PTC phenotype. We review recent findings linking viral components, the quantitative and qualitative features of antibodies (including autologous HIV-specific antibodies), markers of inflammation and tissue damage, other host proteins (including hormones such as sex hormones), as well as metabolites, extracellular vesicles, and cell-free DNA to HIV control post-ART interruption. Several of these molecules can or have the potential to predict the time and probability of viral rebound after stopping ART and are biologically active molecules that can directly or indirectly (by modulating immune pressures) impact the size and activity of HIV reservoirs during and post-ART interruption. SUMMARY A comprehensive model combining multiple markers is needed to predict the PTC phenotype. This model can be leveraged to predict and understand the PTC phenotype, which can guide novel curative interventions to replicate this phenotype in post-treatment non-controllers.
Collapse
Affiliation(s)
| | - Alexander O Pasternak
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
| | | |
Collapse
|
16
|
Alkhawaja B, Abuarqoub D, Al-natour M, Alshaer W, Abdallah Q, Esawi E, Jaber M, Alkhawaja N, Ghanim BY, Qinna N, Watts AG. Facile Rebridging Conjugation Approach to Attain Monoclonal Antibody-Targeted Nanoparticles with Enhanced Antigen Binding and Payload Delivery. Bioconjug Chem 2024; 35. [PMID: 39254438 PMCID: PMC11487529 DOI: 10.1021/acs.bioconjchem.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Adopting conventional conjugation approaches to construct antibody-targeted nanoparticles (NPs) has demonstrated suboptimal control over the binding orientation and the structural stability of monoclonal antibodies (mAbs). Hitherto, the developed antibody-targeted NPs have shown proof of concept but lack product homogeneity, batch-to-batch reproducibility, and stability, precluding their advancement toward the clinic. To circumvent these limitations and advance toward clinical application, herein, a refined approach based on site-specific construction of mAb-immobilized NPs will be appraised. Initially, the conjugation of atezolizumab (anti-PDL1 antibody, Amab) with polymeric NPs was developed using bis-haloacetamide (BisHalide) rebridging chemistry, followed by click chemistry (NP-Fab BisHalide Ab and NP-Fc BisHalide Ab). For comparison purposes, mAb-immobilized NPs developed utilizing conventional conjugation methods, namely, N-hydroxysuccinimide (NHS) coupling and maleimide chemistry (NP-NHS Ab and NP-Mal Ab), were included. Next, flow cytometry and confocal microscopy experiments evaluated the actively targeted NPs (loaded with fluorescent dye) for cellular binding and uptake. Our results demonstrated the superior and selective binding and uptake of NP-Fab BisHalide Ab and NP-Fc BisHalide Ab into EMT6 cells by 19-fold and 13-fold, respectively. To evaluate the PDL1-dependent cell uptake and the selectivity of the treatments, a blocking step of the PDL1 receptor with Amab was performed prior to incubation with NP-Fab BisHalide Ab and NP-Fc BisHalide Ab. To our delight, the binding and uptake of fluorescent NPs were reduced significantly by 3-fold for NP-Fab BisHalide Ab, demonstrating the PDL1-mediated uptake. Moreover, NP-Fab BisHalide Ab and NP-Fc BisHalide Ab were entrapped with the paclitaxel payload, and their cytotoxicity was evaluated. They showed significant enhancements compared to free paclitaxel and NP-NHS Ab. Overall, this work will provide a facile conjugation method that could be implemented to actively target NPs with a plethora of therapeutic mAbs approved for various malignancies.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Duaa Abuarqoub
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Mohammad Al-natour
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Walhan Alshaer
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Qasem Abdallah
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Ezaldeen Esawi
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Malak Jaber
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Nour Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Bayan Y. Ghanim
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nidal Qinna
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Andrew G. Watts
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
17
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
18
|
McCoy KM, Ackerman ME, Grigoryan G. A comparison of antibody-antigen complex sequence-to-structure prediction methods and their systematic biases. Protein Sci 2024; 33:e5127. [PMID: 39167052 PMCID: PMC11337930 DOI: 10.1002/pro.5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer and RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower quality display significant structural biases at the level of tertiary motifs (TERMs) toward having fewer structural matches in non-antibody-containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that the scarcity of interfacial geometry data in the structural database may currently limit the application of ML to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
| | - Margaret E. Ackerman
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Thayer School of EngineeringDartmouth CollegeHanoverNew HampshireUSA
| | - Gevorg Grigoryan
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Department of Computer ScienceDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
19
|
Garaulet G, Báez BB, Medrano G, Rivas-Sánchez M, Sánchez-Alonso D, Martinez-Torrecuadrada JL, Mulero F. Radioimmunotheragnosis in Cancer Research. Cancers (Basel) 2024; 16:2896. [PMID: 39199666 PMCID: PMC11352548 DOI: 10.3390/cancers16162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.
Collapse
Affiliation(s)
- Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Bárbara Beatriz Báez
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Guillermo Medrano
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - María Rivas-Sánchez
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | - David Sánchez-Alonso
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| |
Collapse
|
20
|
Wei R, Liao X, Li J, Mu X, Ming Y, Peng Y. Novel humanized monoclonal antibodies against ROR1 for cancer therapy. Mol Cancer 2024; 23:165. [PMID: 39138527 PMCID: PMC11321157 DOI: 10.1186/s12943-024-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Overexpression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) contributes to cancer cell proliferation, survival and migration, playing crucial roles in tumor development. ROR1 has been proposed as a potential therapeutic target for cancer treatment. This study aimed to develop novel humanized ROR1 monoclonal antibodies and investigate their anti-tumor effects. METHODS ROR1 expression in tumor tissues and cell lines was analyzed by immunohistochemistry and flow cytometry. Antibodies from mouse hybridomas were humanized by the complementarity-determining region (CDR) grafting technique. Surface plasmon resonance spectroscopy, ELISA assay and flow cytometry were employed to characterize humanized antibodies. In vitro cellular assay and in vivo mouse experiment were conducted to comprehensively evaluate anti-tumor activity of these antibodies. RESULTS ROR1 exhibited dramatically higher expression in lung adenocarcinoma, liver cancer and breast cancer, and targeting ROR1 by short-hairpin RNAs significantly inhibited proliferation and migration of cancer cells. Two humanized ROR1 monoclonal antibodies were successfully developed, named h1B8 and h6D4, with high specificity and affinity to ROR1 protein. Moreover, these two antibodies effectively suppressed tumor growth in the lung cancer xenograft mouse model, c-Myc/Alb-cre liver cancer transgenic mouse model and MMTV-PyMT breast cancer mouse model. CONCLUSIONS Two humanized monoclonal antibodies targeting ROR1, h1B8 and h6D4, were successfully developed and exhibited remarkable anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Liao
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
21
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
22
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Velappan N, Biryukov SS, Rill NO, Klimko CP, Rosario-Acevedo R, Shoe JL, Hunter M, Dankmeyer JL, Fetterer DP, Bedinger D, Phipps ME, Watt AJ, Abergel RJ, Dichosa A, Kozimor SA, Cote CK, Lillo AM. Characterization of two affinity matured Anti-Yersinia pestis F1 human antibodies with medical countermeasure potential. PLoS One 2024; 19:e0305034. [PMID: 38954719 PMCID: PMC11218954 DOI: 10.1371/journal.pone.0305034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 μg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.
Collapse
Affiliation(s)
- Nileena Velappan
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - David P. Fetterer
- Biostatisitics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | | | - Mary E. Phipps
- Los Alamos National Laboratory, Center Alamos for Integrated Nanotechnologies, Los Alamos, NM, United States of America
| | - Austin J. Watt
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, CA, United States of America
| | - Armand Dichosa
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Stosh A. Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Antonietta M. Lillo
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| |
Collapse
|
24
|
Dou B, Wang K, Chen Y, Wang P. Programmable DNA Nanomachine Integrated with Electrochemically Controlled Atom Transfer Radical Polymerization for Antibody Detection at Picomolar Level. Anal Chem 2024; 96:10594-10600. [PMID: 38904276 DOI: 10.1021/acs.analchem.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Keming Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
25
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Wang M, Ying T, Wu Y. Single-domain antibodies as therapeutics for solid tumor treatment. Acta Pharm Sin B 2024; 14:2854-2868. [PMID: 39027249 PMCID: PMC11252471 DOI: 10.1016/j.apsb.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
Single-domain antibodies (sdAbs), initially identified in camelids or sharks and commonly referred to as nanobodies or VNARs, have emerged as a promising alternative to conventional therapeutic antibodies. These sdAbs have many superior physicochemical and pharmacological properties, including small size, good solubility and thermostability, easier accessible epitopes, and strong tissue penetration. However, the inherent challenges associated with the animal origin of sdAbs limit their clinical use. In recent years, various innovative humanization technologies, including complementarity-determining region (CDR) grafting or complete engineering of fully human sdAbs, have been developed to mitigate potential immunogenicity issues and enhance their compatibility. This review provides a comprehensive exploration of sdAbs, emphasizing their distinctive features and the progress in humanization methodologies. In addition, we provide an overview of the recent progress in developing drugs and therapeutic strategies based on sdAbs and their potential in solid tumor treatment, such as sdAb-drug conjugates, multispecific sdAbs, sdAb-based delivery systems, and sdAb-based cell therapy.
Collapse
Affiliation(s)
- Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
27
|
Wang Z, Kang M, Ebrahimpour A, Chen C, Ge X. Fc engineering by monoclonal mammalian cell display for improved affinity and selectivity towards FcγRs. Antib Ther 2024; 7:209-220. [PMID: 39036072 PMCID: PMC11259757 DOI: 10.1093/abt/tbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Fc optimization can significantly enhance therapeutic efficacy of monoclonal antibodies. However, existing Fc engineering approaches are sub-optimal with noted limitations, such as inappropriate glycosylation, polyclonal libraries, and utilizing fragment but not full-length IgG display. Applying cell cycle arrested recombinase-mediated cassette exchange, this study constructed high-quality monoclonal Fc libraries in CHO cells, displayed full-length IgG on cell surface, and preformed ratiometric fluorescence activated cell sorting (FACS) with the antigen and individual FcγRs. Identified Fc variants were quantitatively evaluated by flow cytometry, ELISA, kinetic and steady-state binding affinity measurements, and cytotoxicity assays. An error-prone Fc library focusing on the hinge-CH2 region was constructed in CHO cells with a functional diversity of 7.5 × 106. Panels of novel Fc variants with enhanced affinity and selectivity for FcγRs were isolated. Particularly, clone 2a-10 (G236E/K288R/K290W/K320M) showed increased binding strength towards FcγRIIa-131R and 131H allotypes with kinetic dissociation constants (KD-K) of 140 nM and 220 nM, respectively, while reduced binding strength towards FcγRIIb compared to WT Fc; clone 2b-1 (K222I/V302E/L328F/K334E) had KD-K of 180 nM towards FcγRIIb; clone 3a-2 (P247L/K248E/K334I) exhibited KD-K of 190 nM and 100 nM towards FcγRIIIa-176F and 176 V allotypes, respectively, and improved potency of 2.0 ng/ml in ADCC assays. Key mutation hotspots were identified, including P247 for FcγRIIIa, K290 for FcγRIIa, and K334 for FcγRIIb bindings. Discovery of Fc variants with enhanced affinity and selectivity towards individual FcγR and the identification of novel mutation hotspots provide valuable insights for further Fc optimization and serve as a foundation for advancing antibody therapeutics development.
Collapse
Affiliation(s)
- Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Afshin Ebrahimpour
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler St, Houston, TX 77030, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, 900 University Ave, Reverside, CA 92521, United States
| |
Collapse
|
28
|
Ma J, Ding L, Peng X, Jiang L, Liu G. Recent Advances of Engineered Cell Membrane-Based Nanotherapeutics to Combat Inflammatory Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308646. [PMID: 38334202 DOI: 10.1002/smll.202308646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
An immune reaction known as inflammation serves as a shield from external danger signals, but an overactive immune system may additionally lead to tissue damage and even a variety of inflammatory disorders. By inheriting biological functionalities and serving as both a therapeutic medication and a drug carrier, cell membrane-based nanotherapeutics offer the potential to treat inflammatory disorders. To further strengthen the anti-inflammatory benefits of natural cell membranes, researchers alter and optimize the membranes using engineering methods. This review focuses on engineered cell membrane-based nanotherapeutics (ECMNs) and their application in treating inflammation-related diseases. Specifically, this article discusses the methods of engineering cell membranes for inflammatory diseases and examines the progress of ECMNs in inflammation-targeted therapy, inflammation-neutralizing therapy, and inflammation-immunomodulatory therapy. Additionally, the article looks into the perspectives and challenges of ECMNs in inflammatory treatment and offers suggestions as well as guidance to encourage further investigations and implementations in this area.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuqi Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
29
|
McCoy KM, Ackerman ME, Grigoryan G. A Comparison of Antibody-Antigen Complex Sequence-to-Structure Prediction Methods and their Systematic Biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585121. [PMID: 38979267 PMCID: PMC11230293 DOI: 10.1101/2024.03.15.585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer, RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower-quality display significant structural biases at the level of tertiary motifs (TERMs) towards having fewer structural matches in non-antibody containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that scarcity of interfacial geometry data in the structural database may currently limit application of machine learning to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
30
|
Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T, Verma AK. Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review. ACS OMEGA 2024; 9:26838-26862. [PMID: 38947800 PMCID: PMC11209897 DOI: 10.1021/acsomega.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection. The historical evolution of aptamers and their diverse applications in nanomedicine are discussed, emphasizing their pivotal role in targeted drug delivery, precision medicine and therapeutics. Furthermore, we explore the integration of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), Internet of Medical Things (IoMT), and nanotechnology in aptameric development, illustrating how these cutting-edge technologies are revolutionizing the selection and optimization of aptamers for tailored biomedical applications. This paper also discusses challenges in computational methods for advancing aptamers, including reliable prediction models, extensive data analysis, and multiomics data incorporation. It also addresses ethical concerns and restrictions related to AI and IoT use in aptamer research. The paper examines progress in computer simulations for nanomedicine. By elucidating the importance of aptamers, understanding their superiority over antibodies, and exploring the historical context and challenges, this review serves as a valuable resource for researchers and practitioners aiming to harness the full potential of aptamers in the rapidly evolving field of nanomedicine.
Collapse
Affiliation(s)
- Shubham Kumar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Neeta Raj Sharma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhuri Girdhar
- Division
of Research and Development, Lovely Professional
University, Phagwara 144401, Punjab, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, MVJ4+R95 Jimma, Ethiopia
| | - Awadhesh Kumar Verma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| |
Collapse
|
31
|
Broer LN, Knapen DG, de Groot DJA, Mol PG, Kosterink JG, de Vries EG, Lub-de Hooge MN. Monoclonal antibody biosimilars for cancer treatment. iScience 2024; 27:110115. [PMID: 38974466 PMCID: PMC11225859 DOI: 10.1016/j.isci.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Monoclonal antibodies are important cancer medicines. The European Medicines Agency (EMA) approved 48 and the Food and Drug Administration (FDA) 56 anticancer monoclonal antibody-based therapies. Their high prices burden healthcare systems and hamper global drug access. Biosimilars could retain costs and expand the availability of monoclonal antibodies. In Europe, five rituximab biosimilars, six trastuzumab biosimilars, and eight bevacizumab biosimilars are available as anti-cancer drugs. To gain insight into the biosimilar landscape for cancer treatment, we performed a literature search and analysis. In this review, we summarize cancer monoclonal antibodies' properties crucial for the desired pharmacology and point out sources of variability. The analytical assessment of all EMA-approved bevacizumab biosimilars is highlighted to illustrate this variability. The global landscape of investigational and approved biosimilars is mapped, and the challenges for access to cancer biosimilars are identified.
Collapse
Affiliation(s)
- Linda N. Broer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daan G. Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Derk-Jan A. de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter G.M. Mol
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jos G.W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pharmaco-, Therapy-, Epidemiology- and Economy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Kimura R, Noda D, Liu Z, Shi W, Akutsu R, Tagaya M. Biological Surface Layer Formation on Bioceramic Particles for Protein Adsorption. Biomimetics (Basel) 2024; 9:347. [PMID: 38921227 PMCID: PMC11201679 DOI: 10.3390/biomimetics9060347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
In the biomedical fields of bone regenerative therapy, the immobilization of proteins on the bioceramic particles to maintain their highly ordered structures is significantly important. In this review, we comprehensively discussed the importance of the specific surface layer, which can be called "non-apatitic layer", affecting the immobilization of proteins on particles such as hydroxyapatite and amorphous silica. It was suggested that the water molecules and ions contained in the non-apatitic layer can determine and control the protein immobilization states. In amorphous silica particles, the direct interactions between proteins and silanol groups make it difficult to immobilize the proteins and maintain their highly ordered structures. Thus, the importance of the formation of a surface layer consisting of water molecules and ions (i.e., a non-apatitic layer) on the particle surfaces for immobilizing proteins and maintaining their highly ordered structures was suggested and described. In particular, chlorine-containing amorphous silica particles were also described, which can effectively form the surface layer of protein immobilization carriers. The design of the bio-interactive and bio-compatible surfaces for protein immobilization while maintaining the highly ordered structures will improve cell adhesion and tissue formation, thereby contributing to the construction of social infrastructures to support super-aged society.
Collapse
Affiliation(s)
| | | | | | | | | | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| |
Collapse
|
33
|
Tiwari P, Yadav K, Shukla RP, Bakshi AK, Panwar D, Das S, Mishra PR. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch Biochem Biophys 2024; 756:110022. [PMID: 38697343 DOI: 10.1016/j.abb.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Cancer treatment has seen significant advancements with the introduction of Onco-immunotherapies (OIMTs). Although some of these therapies have received approval for use, others are either undergoing testing or are still in the early stages of development. Challenges persist in making immunotherapy widely applicable to cancer treatment. To maximize the benefits of immunotherapy and minimize potential side effects, it's essential to improve response rates across different immunotherapy methods. A promising development in this area is the use of extracellular vesicles (EVs) as novel delivery systems. These small vesicles can effectively deliver immunotherapies, enhancing their effectiveness and reducing harmful side effects. This article discusses the importance of integrating nanomedicines into OIMTs, highlighting the challenges with current anti-OIMT methods. It also explores key considerations for designing nanomedicines tailored for OIMTs, aiming to improve upon existing immunotherapy techniques. Additionally, the article looks into innovative approaches like biomimicry and the use of natural biomaterial-based nanocarriers (NCs). These advancements have the potential to transform the delivery of immunotherapy. Lastly, the article addresses the challenges of moving OIMTs from theory to clinical practice, providing insights into the future of using advanced nanotechnology in cancer treatment.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Sweety Das
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
34
|
Tassano M, Camacho X, Freire T, Perroni C, da Costa V, Cabrera M, García MF, Fernandez M, Gambini JP, Cabral P, Osinaga E. Enhanced Tumor Targeting of Radiolabeled Mouse/Human Chimeric Anti-Tn Antibody in Losartan-Treated Mice Bearing Tn-Expressing Lung Tumors. Cancer Biother Radiopharm 2024; 39:337-348. [PMID: 38215243 DOI: 10.1089/cbr.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Aim: ChiTn, a mouse/human chimeric anti-Tn monoclonal antibody, was radiolabeled with iodine-131 (131I) and technetium-99m (99mTc) to assess its biodistribution and internalization in Tn-expressing (Tn+) and wild-type (Tn-) LL/2 lung cancer cells. Results: Selective accumulation and gradual internalization of ChiTn were observed in Tn+ cells. Biodistribution in mice with both Tn+ or Tn- lung tumors indicated that the uptake of radiolabeled ChiTn within tumors increased over time. Dual-labeling experiments with 99mTc and 131I showed different biodistribution patterns, with 99mTc exhibiting higher values in the liver, spleen, and kidneys, while 131I showed higher uptake in the thyroid and stomach. However, tumor uptake did not significantly differ between Tn+ and Tn- tumors. To improve tumor targeting, Losartan, an antihypertensive drug known to enhance tumor perfusion and drug delivery, was investigated. Biodistribution studies in Losartan-treated mice revealed significantly higher radiolabeled ChiTn uptake in Tn+ tumors. No significant changes were observed in the uptake of the control molecule IgG-HYNIC™99mTc. Conclusions: These findings demonstrate the enhanced tumor targeting of radiolabeled ChiTn in Losartan-treated mice with Tn-expressing lung tumors. They highlight the potential of ChiTn as a theranostic agent for cancer treatment and emphasize the importance of Losartan as an adjunctive treatment to improve tumor perfusion and drug delivery.
Collapse
Affiliation(s)
- Marcos Tassano
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ximena Camacho
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulacion y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Carolina Perroni
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Valeria da Costa
- Laboratorio de Inmunomodulacion y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Mirel Cabrera
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Maria Fernanda García
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Fernandez
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Gambini
- Centro de Medicina Nuclear e Imagenología Molecular, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Cabral
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Inmunomodulacion y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
35
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
36
|
Li B, Wang Z, Liu Z, Tao Y, Sha C, He M, Li X. DrugMetric: quantitative drug-likeness scoring based on chemical space distance. Brief Bioinform 2024; 25:bbae321. [PMID: 38975893 PMCID: PMC11229036 DOI: 10.1093/bib/bbae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
The process of drug discovery is widely known to be lengthy and resource-intensive. Artificial Intelligence approaches bring hope for accelerating the identification of molecules with the necessary properties for drug development. Drug-likeness assessment is crucial for the virtual screening of candidate drugs. However, traditional methods like Quantitative Estimation of Drug-likeness (QED) struggle to distinguish between drug and non-drug molecules accurately. Additionally, some deep learning-based binary classification models heavily rely on selecting training negative sets. To address these challenges, we introduce a novel unsupervised learning framework called DrugMetric, an innovative framework for quantitatively assessing drug-likeness based on the chemical space distance. DrugMetric blends the powerful learning ability of variational autoencoders with the discriminative ability of the Gaussian Mixture Model. This synergy enables DrugMetric to identify significant differences in drug-likeness across different datasets effectively. Moreover, DrugMetric incorporates principles of ensemble learning to enhance its predictive capabilities. Upon testing over a variety of tasks and datasets, DrugMetric consistently showcases superior scoring and classification performance. It excels in quantifying drug-likeness and accurately distinguishing candidate drugs from non-drugs, surpassing traditional methods including QED. This work highlights DrugMetric as a practical tool for drug-likeness scoring, facilitating the acceleration of virtual drug screening, and has potential applications in other biochemical fields.
Collapse
Affiliation(s)
- Bowen Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
| | - Zhen Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Ziqi Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 Zhejiang, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
| | - Min He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xiaolin Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- ElasticMind Inc, Hangzhou, 310018 Zhejiang, China
| |
Collapse
|
37
|
Qin LJ, Xu H, Li LP, Li SH, Xu SY, Chen K, Yang T, Wang FH, Zuo L, Zeng L, Wang HY. CD20 highCD138 low tumor-infiltrating lymphocytes predominantly related to cytokine‒cytokine receptor interactions are associated with favorable outcomes in neuroblastoma patients. Heliyon 2024; 10:e30901. [PMID: 38774103 PMCID: PMC11107243 DOI: 10.1016/j.heliyon.2024.e30901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Recent advances have revealed that the role of the immune system is prominent in the antitumor response. In the present study, it is aimed to provide an expression profile of tumor-infiltrating lymphocytes (TILs), including mature B cells, plasma cells, and their clinical relevance in neuroblastoma. The expression of CD20 and CD138 was analyzed in the Cangelosi786 dataset (n = 769) as a training dataset and in our cohort (n = 120) as a validation cohort. CD20 high expression was positively associated with favorable overall survival (OS) and event-free survival (EFS) (OS: P < 0.001; EFS: P < 0.001) in the training dataset, whereas CD138 high expression was associated with poor OS and EFS (OS: P < 0.001; EFS: P < 0.001) in both the training and validation datasets. Accordingly, a combined pattern of CD20 and CD138 expression was developed, whereby neuroblastoma patients with CD20highCD138low expression had a consistently favorable OS and EFS compared with those with CD20lowCD138high expression in both the training and validation cohorts (P < 0.0001 and P < 0.01, respectively). Examination of potential molecular functions revealed that signaling pathways, including cytokine‒cytokine receptor interactions, chemokine, and the NF-kappa B signaling pathways, were involved. Differentially expressed genes, such as BMP7, IL7R, BIRC3, CCR7, CXCR5, CCL21, and CCL19, predominantly play important roles in predicting the survival of neuroblastoma patients. Our study proposes that a new combination of CD20 and CD138 signatures is associated with neuroblastoma patient survival. The related signaling pathways reflect the close associations among the number of TILs, cytokine abundance and patient outcomes and provide therapeutic insights into neuroblastoma.
Collapse
Affiliation(s)
- Liang-Jun Qin
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Li-Ping Li
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Shu-Hua Li
- Department of Paediatric Outpatient, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Shuo-Yu Xu
- Bio-totem Pte. Ltd., Foshan, 528231, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Feng-Hua Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| |
Collapse
|
38
|
Hao J, Lv Y, Xiao X, Li L, Yu C. Sensing antibody functions with a novel CCR8-responsive engineered cell. Acta Biochim Pol 2024; 71:12185. [PMID: 38721308 PMCID: PMC11077357 DOI: 10.3389/abp.2024.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/29/2024] [Indexed: 05/15/2024]
Abstract
Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.
Collapse
Affiliation(s)
- Jianyu Hao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, China
| | - Lidan Li
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Giron LB, Liu Q, Adeniji OS, Yin X, Kannan T, Ding J, Lu DY, Langan S, Zhang J, Azevedo JLLC, Li SH, Shalygin S, Azadi P, Hanna DB, Ofotokun I, Lazar J, Fischl MA, Haberlen S, Macatangay B, Adimora AA, Jamieson BD, Rinaldo C, Merenstein D, Roan NR, Kutsch O, Gange S, Wolinsky SM, Witt MD, Post WS, Kossenkov A, Landay AL, Frank I, Tien PC, Gross R, Brown TT, Abdel-Mohsen M. Immunoglobulin G N-glycan markers of accelerated biological aging during chronic HIV infection. Nat Commun 2024; 15:3035. [PMID: 38600088 PMCID: PMC11006954 DOI: 10.1038/s41467-024-47279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.
Collapse
Affiliation(s)
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | - David Y Lu
- The Wistar Institute, Philadelphia, PA, USA
- Cornell University, New York, NY, USA
| | | | | | | | - Shuk Hang Li
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason Lazar
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Margaret A Fischl
- Division of Infectious Disease, Department of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - Olaf Kutsch
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mallory D Witt
- Lundquist Institute of Biomedical Research at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Ian Frank
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Phyllis C Tien
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Gross
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
40
|
Besli N, Bulut Hİ, Onaran İ, Carmena-Bargueño M, Pérez-Sánchez H. Comparative assessment of different anti-CD147/Basigin 2 antibodies as a potential therapeutic anticancer target by molecular modeling and dynamic simulation. Mol Divers 2024:10.1007/s11030-024-10832-w. [PMID: 38587771 DOI: 10.1007/s11030-024-10832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Cluster of differentiation 147 (CD147) is an attractive target for anticancer therapy since it is pivotal in developing and progressing several of malignant tumors in the context of its high expression levels. Although anti-CD147 antibodies by different laboratories are designed for the Ig-like domains of CD147, there is a demand to provide priority among these anti-CD147 antibodies for developing of therapeutic anti-CD147 antibody before experimental validations. This study uses molecular docking and dynamic simulation techniques to compare the binding modes and affinities of nine antibody models against the Ig-like domains of CD147. After obtaining the model antibodies by homology modeling via Robetta, we predicted the CDRs of nine antibodies and the epitopes of CD147 to reach more accurate results for antigen affinity in molecular docking. Next, from HADDOCK 2.4., we meticulously handpicked the most superior model clusters (Z-Score: - 2.5 to - 1.2) and identified that meplazumab had higher affinities according to the success rate as the percentage of a scoring scale. We achieved stable simulations of CD147-antibody interaction. Our outcomes hold hypothetical importance for further experimental cancer research on the design and development of the relevant model antibodies.
Collapse
Affiliation(s)
- Nail Besli
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Halil İbrahim Bulut
- Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İlhan Onaran
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Miguel Carmena-Bargueño
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain.
| |
Collapse
|
41
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|
42
|
Grandclément C, Estoppey C, Dheilly E, Panagopoulou M, Monney T, Dreyfus C, Loyau J, Labanca V, Drake A, De Angelis S, Rubod A, Frei J, Caro LN, Blein S, Martini E, Chimen M, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoelen C, Pellat-Deceunynck C, Moreau P, Mbow ML, Srivastava A, Dyson MR, Zhukovsky EA, Perro M, Sammicheli S. Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma. Nat Commun 2024; 15:2054. [PMID: 38448430 PMCID: PMC10917784 DOI: 10.1038/s41467-024-46310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma.
Collapse
Affiliation(s)
| | - C Estoppey
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Dheilly
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | | | - T Monney
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - C Dreyfus
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Loyau
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - V Labanca
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Drake
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S De Angelis
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Rubod
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - J Frei
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - L N Caro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - S Blein
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E Martini
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Chimen
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - T Matthes
- Haematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, 1211, Geneva, Switzerland
| | - Z Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - C M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - J R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, UK
| | - E Menoret
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Kervoelen
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - C Pellat-Deceunynck
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - P Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - M L Mbow
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - A Srivastava
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M R Dyson
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - E A Zhukovsky
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland
| | - M Perro
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| | - S Sammicheli
- Ichnos Glenmark Innovation, Lausanne, CH, Switzerland.
| |
Collapse
|
43
|
Liubomirski Y, Tiram G, Scomparin A, Gnaim S, Das S, Gholap S, Ge L, Yeini E, Shelef O, Zauberman A, Berger N, Kalimi D, Toister-Achituv M, Schröter C, Dickgiesser S, Tonillo J, Shan M, Deutsch C, Sweeney-Lasch S, Shabat D, Satchi-Fainaro R. Potent antitumor activity of anti-HER2 antibody-topoisomerase I inhibitor conjugate based on self-immolative dendritic dimeric-linker. J Control Release 2024; 367:148-157. [PMID: 38228272 DOI: 10.1016/j.jconrel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of anticancer therapeutics, with 14 ADCs already approved worldwide. We developed unique linker technologies for the bioconjugation of drug molecules with controlled-release applications. We synthesized cathepsin-cleavable ADCs using a dimeric prodrug system based on a self-immolative dendritic scaffold, resulting in a high drug-antibody ratio (DAR) with the potential to reach 16 payloads due to its dendritic structure, increased stability in the circulation and efficient release profile of a highly cytotoxic payload at the targeted site. Using our novel cleavable linker technologies, we conjugated the anti-human epidermal growth factor receptor 2 (anti-HER2) antibody, trastuzumab, with topoisomerase I inhibitors, exatecan or belotecan. The newly synthesized ADCs were tested in vitro on mammary carcinoma cells overexpressing human HER2, demonstrating a substantial inhibitory effect on the proliferation of HER2-positive cells. Importantly, a single dose of our trastuzumab-based ADCs administered in vivo to mice bearing HER2-positive tumors, showed a dose-dependent inhibition of tumor growth and survival benefit, with the most potent antitumor effects observed at 10 mg/kg, which resulted in complete tumor regression and survival of 100% of the mice. Overall, our novel dendritic technologies using the protease-cleavable Val-Cit linker present an opportunity for the development of highly selective and potent controlled-released therapeutic payloads. This strategy could potentially lead to the development of novel and effective ADC technologies for patients diagnosed with HER2-positive cancers. Moreover, our proposed ADC linker technology can be implemented in additional medical conditions such as other malignancies as well as autoimmune diseases that overexpress targets, other than HER2.
Collapse
Affiliation(s)
- Yulia Liubomirski
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Samer Gnaim
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sayantan Das
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sachin Gholap
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liang Ge
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omri Shelef
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Arie Zauberman
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Nir Berger
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Doron Kalimi
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Mira Toister-Achituv
- Inter-Lab, a subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | | | | | | | - Min Shan
- Merck KGaA, Darmstadt, 64293, Germany
| | | | | | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
44
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
45
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
46
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
47
|
Kotemul K, Kasinrerk W, Takheaw N. CD99 tumor associated antigen is a potential target for antibody therapy of T-cell acute lymphoblastic leukemia. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:96-107. [PMID: 38468825 PMCID: PMC10925484 DOI: 10.37349/etat.2024.00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Monoclonal antibodies (mAbs) are an effective drug for targeted immunotherapy in several cancer types. However, so far, no antibody has been successfully developed for certain types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is an aggressive hematologic malignancy. T-ALL patients who are treated with chemotherapeutic drugs frequently relapse and become drug resistant. Therefore, antibody-based therapy is promising for T-ALL treatment. To successfully develop an antibody-based therapy for T-ALL, antibodies that induce death in malignant T cells but not in nonmalignant T cells are required to avoid the induction of secondary T-cell immunodeficiency. In this review, CD99 tumor associated antigen, which is highly expressed on malignant T cells and lowly expressed on nonmalignant T cells, is proposed to be a potential target for antibody therapy of T-ALL. Since certain clones of anti-CD99 mAbs induce apoptosis only in malignant T cells, these anti-CD99 mAbs might be a promising antibody drug for the treatment of T-ALL with high efficiency and low adverse effects. Moreover, over the past 25 years, many clones of anti-CD99 mAbs have been studied for their direct effects on T-ALL. These outcomes are gathered here.
Collapse
Affiliation(s)
- Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
48
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
49
|
Wang Z, Huang AS, Tang L, Wang J, Wang G. Microfluidic-assisted single-cell RNA sequencing facilitates the development of neutralizing monoclonal antibodies against SARS-CoV-2. LAB ON A CHIP 2024; 24:642-657. [PMID: 38165771 DOI: 10.1039/d3lc00749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Amelia Siqi Huang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Lingfang Tang
- Dalton Academy, The Affiliated High School of Peking University, Beijing, 100190, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
50
|
Munoz J, Flinn IW, Cohen JB, Sachs J, Exter B, Ranger A, Harris P, Payumo F, Nath R, Hamadani M, Westin JR, Bachanova V. Results from a Phase 1 Study of ACTR707 in Combination with Rituximab in Patients with Relapsed or Refractory CD20 + B Cell Lymphoma. Transplant Cell Ther 2024; 30:241.e1-241.e8. [PMID: 37898374 DOI: 10.1016/j.jtct.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
The antibody-coupled T cell receptor (ACTR) platform is an autologous engineered T cell therapy combining the cell-killing ability of T cells and the tumor-targeting ability of coadministered antibodies. Activation of the T cell product ACTR707 is dependent on the engagement of antibody bound to target cells via the CD16 domain of the chimeric receptor (CD16V-CD28-CD3ζ). ACTR707 in combination with the anti-CD20 monoclonal antibody rituximab was evaluated in the ATTCK-20-03 study, a multisite, single-arm, open-label phase I trial in B cell non-Hodgkin lymphoma (NHL). The primary objectives of this study were to evaluate the safety of the combination of ACTR707 and rituximab and to determine a recommended phase 2 dose (RP2D). Secondary objectives included evaluation of antitumor activity and ACTR T cell persistence. The study design included an ACTR707 cell dose escalation phase and an expansion phase at the RP2D. Escalating dose levels of ACTR707 in combination with rituximab were explored in 5 dose cohorts, with 25 subjects receiving study treatment. Subjects received lymphodepleting chemotherapy (cyclophosphamide 400 mg/m2/day and fludarabine 30 mg/m2/day) for 3 days, followed by rituximab 375 mg/m2 and, 24 to 48 hours later, a single dose of ACTR707. Additional doses of rituximab were administered every 3 weeks until disease progression, unacceptable toxicity, or investigator decision. Blood samples were collected at various time points to assess levels of rituximab, cytokines, inflammatory markers, and ACTR707 T cells. The overall response rate of ACTR707 plus rituximab was 56% (14 of 25) across all dose levels. Ten subjects (40.0%) achieved a complete response, with the longest duration of 586 days (range, 85 to 586 days), and 4 subjects (16.0%) experienced a partial response, with the longest duration of 130 days (range, 44 to 130 days). Only 1 case of cytokine release syndrome (grade 2) and no events of neurotoxicity were reported. There were no dose-limiting toxicities or events leading to death. ACTR707 plus rituximab resulted in only 1 adverse event (neutropenia), leading to study discontinuation of rituximab. The ATTCK-20-03 trial serves as proof of principle regarding the ACTR approach that potentially could be used with other antibodies targeting other markers in other malignancies. Although the ACTR707 program has been discontinued, these results may support other programs in the use of similar novel approaches of antibody-coupled T cell activation.
Collapse
Affiliation(s)
- Javier Munoz
- Banner MD Anderson Cancer Center, Gilbert, Arizona.
| | - Ian W Flinn
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
| | | | | | - Ann Ranger
- Unum Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | | | - Mehdi Hamadani
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jason R Westin
- University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|