1
|
Dhakal B, Hari P, Chhabra S, Szabo A, Lum LG, Glass DD, Park JH, Donato M, Siegel DS, Felizardo TC, Fowler DH. Rapamycin-resistant polyclonal Th1/Tc1 cell therapy (RAPA-201) safely induces disease remissions in relapsed, refractory multiple myeloma. J Immunother Cancer 2025; 13:e010649. [PMID: 39875173 PMCID: PMC11781102 DOI: 10.1136/jitc-2024-010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (TCM) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context. METHODS The clinical trial (NCT04176380) evaluated RAPA-201 therapy in combination with fludarabine-sparing low-dose host conditioning for the treatment of patients with relapsed, refractory multiple myeloma (RRMM). RESULTS From December 2020 to December 2022, 14 patients with RRMM received a median of three RAPA-201 infusions (median dose, 80×106 cells). RAPA-201 drug products (DPs) were: polyclonal; enriched for TCM cells; reduced for immune checkpoint expression, including PD1, CD73, and LAIR1; and preferentially secreted Th1 cytokines. The median chemotherapy dose administered per cycle was 1,817 mg total for cyclophosphamide (range, 1,100-2,200) and 2.35 mg/M2 for pentostatin (range, 0-16). Nine of 14 patients (64%) achieved disease remission, with eight partial responses and one stringent complete response. Median progression-free survival was 6.0 months (range, 2.1 to>16.8 months). There were no toxicities of any grade attributable to RAPA-201, including no cytokine release syndrome and no immune effector cell-associated neurotoxicity syndrome. Only 4 of 14 patients (29%) had a serious adverse event (≥ grade 3) of any attribution. CONCLUSIONS Consistent with our hypothesis, ex vivo manufacturing using mTOR inhibition and IFN-α polarization consistently yielded a novel RAPA-201 DP that possessed a desirable phenotype relative to cytokine phenotype, memory status, and checkpoint expression. RAPA-201 recipients had preservation of T cell counts and Th1 cytokine secretion yet had increased T cell receptor clonality that associates with antitumor responses in the setting of monoclonal antibody checkpoint therapy. RAPA-201 therapy overcomes previous barriers to effective autologous polyclonal T-cell therapy, as it is feasible to manufacture, exquisitely safe to administer, and mediates remission in patients with RRMM. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT04176380.
Collapse
Affiliation(s)
- Binod Dhakal
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Parameswaran Hari
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Obsidian Therapeutics, Boston, Massachusetts, USA
| | - Saurabh Chhabra
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Mayo Clinic, Phoenix, Arizona, USA
| | - Aniko Szabo
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Michele Donato
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - David S Siegel
- Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | | |
Collapse
|
2
|
Jiang H, Limsuwannarot S, Kulhanek KR, Pal A, Rysavy LW, Su L, Labiad O, Testa S, Ogana H, Waghray D, Tao P, Jude KM, Seet CS, Crooks GM, Moding EJ, Garcia KC, Kalbasi A. IL-9 as a naturally orthogonal cytokine with optimal JAK/STAT signaling for engineered T cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633105. [PMID: 39868284 PMCID: PMC11760723 DOI: 10.1101/2025.01.15.633105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Arming T cells with a synthetically orthogonal IL-9 receptor (o9R) permits facile engraftment and potent anti-tumor functions. We considered whether the paucity of natural IL-9R expression could be exploited for T cell immunotherapy given that, in mice, high doses of IL-9 were well-tolerated without discernible immune modulation. Compared to o9R, T cells engineered with IL-9R exhibit superior tissue infiltration, stemness, and anti-tumor activity. These qualities are consistent with a stronger JAK/STAT signal, which in addition to STAT1/3/5, unexpectedly includes STAT4 (canonically associated with IL-12 but not common γ-chain cytokines). IL-9R T cells are exquisitely sensitive to perturbations of proximal signaling, including structure-guided attenuation, amplification, and rebalancing of JAK/STAT signals. Biased IL-9R mutants uncover STAT1 as a rheostat between proliferative stem-like and terminally differentiated effector states. In summary, we identify native IL-9/IL-9R as a natural cytokine-receptor pair with near-orthogonal qualities and an optimal JAK/STAT signaling profile for engineered T cell therapy.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Sam Limsuwannarot
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Kayla R. Kulhanek
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Stanford Center for Cancer Cell Therapy
- These authors contributed equally to this work
| | - Aastha Pal
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Lea W. Rysavy
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- These authors contributed equally to this work
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Ossama Labiad
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Stefano Testa
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Heather Ogana
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Deepa Waghray
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Kevin M. Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
| | - Christopher S. Seet
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University School of Medicine. Stanford, CA, 94305, USA
- Stanford Center for Cancer Cell Therapy
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94143, USA
- Lead contact
| |
Collapse
|
3
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Arabi S, Fadaee M, Kazemi T, Rahmani M. Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies. J Drug Target 2025:1-12. [PMID: 39754507 DOI: 10.1080/1061186x.2024.2449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
Collapse
Affiliation(s)
- Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammadreza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
5
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Liu Z, Li YR, Yang Y, Zhu Y, Yuan W, Hoffman T, Wu Y, Zhu E, Zarubova J, Shen J, Nan H, Yeh KW, Hasani-Sadrabadi MM, Zhu Y, Fang Y, Ge X, Li Z, Soto J, Hsiai T, Yang L, Li S. Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat Biomed Eng 2024; 8:1615-1633. [PMID: 39455719 DOI: 10.1038/s41551-024-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8+ T cells and to the suppression of the formation of regulatory T cells. Notably, activating and expanding chimaeric antigen receptor (CAR) T cells with SynVACs led to a CAR-transduction efficiency of approximately 90% and to substantial increases in T memory stem cells. The engineered CAR T cells eliminated tumour cells in a mouse model of human lymphoma, suppressed tumour growth in mice with human ovarian cancer xenografts, persisted for longer periods and reduced tumour-recurrence risk. Our findings underscore the crucial roles of viscoelasticity in T-cell engineering and highlight the utility of SynVACs in cancer therapy.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Youcheng Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haochen Nan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yichen Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinyang Ge
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhizhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Tsao ST, Gu M, Xiong Q, Deng Y, Deng T, Fu C, Zhao Z, Zhang H, Liu C, Zhong X, Xiang F, Huang F, Wang H. Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy. Vaccines (Basel) 2024; 12:1348. [PMID: 39772010 PMCID: PMC11680398 DOI: 10.3390/vaccines12121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells. Methods: Four different CAR-T manufacturing processes were first proposed and examined by flow cytometry in regard to cell viability, T-cell purity and activation, CAR expression, and cell apoptosis. The selected two processes, 48H DASH CAR-T and 72H DASH CAR-T, were applied to the subsequent functional assessments, including T-cell differentiation, antigen-dependent cytotoxicity and expansion, cytokines secretion profile, and in vivo anti-tumor efficacy. Results: We demonstrated that rapidly manufactured CAR-T cells generated within 48-72 h was feasible and exhibited increased naïve and memory T-cell ratios, a distinctive secretory profile, superior expansion capacity, and enhanced in vitro and in vivo anti-tumor activity compared to conventionally manufactured CAR-T cells. Conclusions: Our findings suggest that "DASH CAR-T" process is a valuable platform in reducing CAR-T manufacturing time and producing high-efficacy CAR-T cells for future clinical application.
Collapse
Affiliation(s)
- Shih-Ting Tsao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Mingyuan Gu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Qinghui Xiong
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Yingzhi Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Tian Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Chengbing Fu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Zihao Zhao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haoyu Zhang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Cuicui Liu
- Department of Regulatory Affairs, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Xiong Zhong
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fang Xiang
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fei Huang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haiying Wang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| |
Collapse
|
8
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
9
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2024:noae203. [PMID: 39450490 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
10
|
Maneechai K, Khopanlert W, Noiperm P, Udomsak P, Viboonjuntra P, Julamanee J. Generation of ex vivo autologous hematopoietic stem cell-derived T lymphocytes for cancer immunotherapy. Heliyon 2024; 10:e38447. [PMID: 39398019 PMCID: PMC11467635 DOI: 10.1016/j.heliyon.2024.e38447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
CD19CAR-T cell therapy demonstrated promising outcomes in relapsed/refractory B-cell malignancies. Nonetheless, the limited T-cell function and ineffective T-cell apheresis for therapeutic purposes are still concern in heavily pretreated patients. We investigated the feasibility of generating hematopoietic stem cell-derived T lymphocytes (HSC-T) for cancer immunotherapy. The patients' autologous peripheral blood HSCs were enriched for CD34+ and CD3+ cells. The CD34+ cells were then cultured following three steps of lymphoid progenitor differentiation, T-cell differentiation, and T-cell maturation processes. HSC-T cells were successfully generated with robust fold expansion of 3735 times. After lymphoid progenitor differentiation, CD5+ and CD7+ cells remarkably increased (65-84 %) while CD34+ cells consequentially declined. The mature CD3+ cells were detected up to 40 % and 90 % on days 42 and 52, respectively. The majority of HSC-T population was naïve phenotype compared to CD3-T cells (73 % vs 34 %) and CD8:CD4 ratio was 2:1. The higher level of cytokine and cytotoxic granule secretion in HSC-T was observed after activation. HSC-T cells were assessed for clinical application and found that CD19CAR-transduced HSC-T cells demonstrated higher cytokine secretion and a trend of superior cytotoxicity against CD19+ target cells compared to control CAR-T cells. A chronic antigen stimulation assay revealed similar T-cell proliferation, stemness, and exhaustion phenotypes among CAR-T cell types. In conclusions, autologous HSC-T was feasible to generate with preserved T-cell efficacy. The HSC-T cells are potentially utilized as an alternative option for cellular immunotherapy.
Collapse
Affiliation(s)
- Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Anatomical Pathology Unit, Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Panarat Noiperm
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Phakaporn Udomsak
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| |
Collapse
|
11
|
Zhang Q, Su C, Luo Y, Zheng F, Liang CL, Chen Y, Liu H, Qiu F, Liu Y, Feng W, Dai Z. Astragalus polysaccharide enhances antitumoral effects of chimeric antigen receptor- engineered (CAR) T cells by increasing CD122 +CXCR3 +PD-1 - memory T cells. Biomed Pharmacother 2024; 179:117401. [PMID: 39243425 DOI: 10.1016/j.biopha.2024.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Chimeric antigen receptor-engineered T (CAR-T) cell therapy of cancer has been a hotspot and promising. However, due to rapid exhaustion, CAR-T cells are less effective in solid tumors than in hematological ones. CD122+CXCR3+ memory T cells are characterized with longevity, self-renewal and great antitumoral capacity. Thus, it's compelling to induce memory CAR-T cells to enhance their efficacy on solid tumors. Astragalus polysaccharide (APS) has reportedly exhibited antitumoral effects. However, it's unclear if APS has an impact on CD8+ memory T cell generation or persistence. Using two human cancer cell lines, here we found that APS significantly improved the persistence of GPC3-targeted CAR-T cells and enhanced their suppression of tumor growth in both Huh7 and HepG2 xenograft models of hepatocellular carcinoma. APS increased CD122+/CXCR3+ memory T cells, but decreased their PD-1+ subset within CD8+ CAR-T cells in tumor-bearing mice, while these effects of APS were also confirmed with in vitro experiments. Moreover, APS augmented the expression of chemokines CXCL9/CXCL10 by the tumor in vivo and in vitro. It also enhanced the proliferation and chemotaxis/migration of CAR-T cells in vitro. Finally, APS promoted the phosphorylation of STAT5 in CD8+ CAR-T cells, whereas inhibition of STAT5 activation reversed these in vitro effects of APS. Therefore, APS enhanced the antitumoral effects of CD8+ CAR-T cells by promoting formation/persistence of CD122+/CXCR3+/PD-1- memory T cells and their migration to the tumor.
Collapse
Affiliation(s)
- Qunfang Zhang
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chunzhao Su
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yini Luo
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yunshan Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenxuan Feng
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
12
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
13
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Fang M, Allen A, Luo C, Finn JD. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy. Front Immunol 2024; 15:1457629. [PMID: 39281684 PMCID: PMC11392856 DOI: 10.3389/fimmu.2024.1457629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a revolutionary tool in cell therapies due to their ability to differentiate into various cell types, unlimited supply, and potential as off-the-shelf cell products. New advances in iPSC-derived immune cells have generated potent iNK and iT cells which showed robust killing of cancer cells in animal models and clinical trials. With the advent of advanced genome editing technologies that enable the development of highly engineered cells, here we outline 12 strategies to engineer iPSCs to overcome limitations and challenges of current cell-based immunotherapies, including safety switches, stealth edits, avoiding graft-versus-host disease (GvHD), targeting, reduced lymphodepletion, efficient differentiation, increased in vivo persistence, stemness, metabolic fitness, homing/trafficking, and overcoming suppressive tumor microenvironment and stromal cell barrier. With the development of advanced genome editing techniques, it is now possible to insert large DNA sequences into precise genomic locations without the need for DNA double strand breaks, enabling the potential for multiplexed knock out and insertion. These technological breakthroughs have made it possible to engineer complex cell therapy products at unprecedented speed and efficiency. The combination of iPSC derived iNK, iT and advanced gene editing techniques provides new opportunities and could lead to a new era for next generation of cell immunotherapies.
Collapse
Affiliation(s)
- Minggang Fang
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Alexander Allen
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Chong Luo
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Jonathan D Finn
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| |
Collapse
|
15
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Schelker RC, Fioravanti J, Mastrogiovanni F, Baldwin JG, Rana N, Li P, Chen P, Vadász T, Spolski R, Heuser-Loy C, Slavkovic-Lukic D, Noronha P, Damiano G, Raccosta L, Maggioni D, Pullugula S, Lin JX, Oh J, Grandinetti P, Lecce M, Hesse L, Kocks E, Martín-Santos A, Gebhard C, Telford WG, Ji Y, Restifo NP, Russo V, Rehli M, Herr W, Leonard WJ, Gattinoni L. LIM-domain-only 4 (LMO4) enhances CD8 + T-cell stemness and tumor rejection by boosting IL-21-STAT3 signaling. Signal Transduct Target Ther 2024; 9:199. [PMID: 39117617 PMCID: PMC11310520 DOI: 10.1038/s41392-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.
Collapse
Affiliation(s)
- Roland C Schelker
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabio Mastrogiovanni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jeremy G Baldwin
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nisha Rana
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timea Vadász
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Heuser-Loy
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Pedro Noronha
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Giuseppe Damiano
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Sree Pullugula
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Grandinetti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Lecce
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Leo Hesse
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Emilia Kocks
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Claudia Gebhard
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - William G Telford
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yun Ji
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- National Center for Tumor Diseases, WERA Site, Würzburg-Erlangen-Regensburg-Augsburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- University of Regensburg, Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Slavkovic-Lukic D, Gattinoni L. Nanowires engineer naive T cells for immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:1085-1086. [PMID: 38802668 DOI: 10.1038/s41565-024-01651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
- University of Regensburg, Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
18
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Pandit S, Agarwalla P, Song F, Jansson A, Dotti G, Brudno Y. Implantable CAR T cell factories enhance solid tumor treatment. Biomaterials 2024; 308:122580. [PMID: 38640784 PMCID: PMC11125516 DOI: 10.1016/j.biomaterials.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has produced revolutionary success in hematological cancers such as leukemia and lymphoma. Nonetheless, its translation to solid tumors faces challenges due to manufacturing complexities, short-lived in vivo persistence, and transient therapeutic impact. We introduce 'Drydux' - an innovative macroporous biomaterial scaffold designed for rapid, efficient in-situ generation of tumor-specific CAR T cells. Drydux expedites CAR T cell preparation with a mere three-day turnaround from patient blood collection, presenting a cost-effective, streamlined alternative to conventional methodologies. Notably, Drydux-enabled CAR T cells provide prolonged in vivo release, functionality, and enhanced persistence exceeding 150 days, with cells transitioning to memory phenotypes. Unlike conventional CAR T cell therapy, which offered only temporary tumor control, equivalent Drydux cell doses induced lasting tumor remission in various animal tumor models, including systemic lymphoma, peritoneal ovarian cancer, metastatic lung cancer, and orthotopic pancreatic cancer. Drydux's approach holds promise in revolutionizing solid tumor CAR T cell therapy by delivering durable, rapid, and cost-effective treatments and broadening patient accessibility to this groundbreaking therapy.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pritha Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton Jansson
- Department of Product Development, Production and Design, School of Engineering, Jönköping University, Sweden
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Niu Q, Zhang H, Wang F, Xu X, Luo Y, He B, Shi M, Jiang E, Feng X. GSNOR overexpression enhances CAR-T cell stemness and anti-tumor function by enforcing mitochondrial fitness. Mol Ther 2024; 32:1875-1894. [PMID: 38549378 PMCID: PMC11184305 DOI: 10.1016/j.ymthe.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/27/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell has been developed as a promising agent for patients with refractory or relapsed lymphoma and leukemia, but not all the recipients could achieve a long-lasting remission. The limited capacity of in vivo expansion and memory differentiation post activation is one of the major reasons for suboptimal CAR-T therapeutic efficiency. Nitric oxide (NO) plays multifaceted roles in mitochondrial dynamics and T cell activation, but its function on CAR-T cell persistence and anti-tumor efficacy remains unknown. Herein, we found the continuous signaling from CAR not only promotes excessive NO production, but also suppressed S-nitrosoglutathione reductase (GSNOR) expression in T cells, which collectively led to increased protein S-nitrosylation, resulting in impaired mitochondrial fitness and deficiency of T cell stemness. Intriguingly, enforced expression of GSNOR promoted memory differentiation of CAR-T cell after immune activation, rendered CAR-T better resistance to mitochondrial dysfunction, further enhanced CAR-T cell expansion and anti-tumor capacity in vitro and in a mouse tumor model. Thus, we revealed a critical role of NO in restricting CAR-T cell persistence and functionality, and defined that GSNOR overexpression may provide a solution to combat NO stress and render patients with more durable protection from CAR-T therapy.
Collapse
Affiliation(s)
- Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Fang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xing Xu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China; Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
21
|
Takayanagi SI, Chuganji S, Tanaka M, Wang B, Hasegawa S, Fukumoto K, Wasano N, Kakitani M, Ochiai N, Kawai Y, Ueda T, Ishikawa A, Kurimoto Y, Fukui A, Kamibayashi S, Imai E, Kunisato A, Nozawa H, Kaneko S. A culture method with berbamine, a plant alkaloid, enhances CAR-T cell efficacy through modulating cellular metabolism. Commun Biol 2024; 7:685. [PMID: 38834758 PMCID: PMC11150386 DOI: 10.1038/s42003-024-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Memory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells. BBM is identified through cell-based screening of chemical compounds using induced pluripotent stem cell-derived T cells, leading to improved viability with a memory T cell phenotype. Transcriptomics and metabolomics using stem cell memory T cells reveal that BBM broadly enhances lipid metabolism. Furthermore, the addition of BBM downregulates the phosphorylation of p38 mitogen-activated protein kinase and enhanced mitochondrial respiration. CD19-CAR-T cells cultured with BBM also extend the survival of leukaemia mouse models due to their superior in vivo persistence. This technology offers a straightforward approach to enhancing the antitumor efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Shin-Ichiro Takayanagi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan.
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Biomedical Science Research Laboratories 2, Research Division, Kyowa Kirin Co., Ltd., Tokyo, Japan.
| | - Sayaka Chuganji
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Tanaka
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Bo Wang
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Saki Hasegawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Fukumoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nariaki Wasano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Makoto Kakitani
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Nakaba Ochiai
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuki Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiro Ishikawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuko Kurimoto
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Asami Fukui
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sanae Kamibayashi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eri Imai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Kunisato
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hajime Nozawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Yang QQ, Zhang HY, Duan XH, Li MH, Sun J, Tian LX, Dong JC, Kong LW. Astragaloside IV targeting autophagy of T cells improves inflammation of asthma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:699-713. [PMID: 38213072 DOI: 10.1080/10286020.2023.2294069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
Astragaloside IV (AST) has been confirmed to have antiasthmatic effects. However, the underline mechanism is unclear. The study aimed to explore the treatment mechanism of AST based on autophagy of memory T cells. AST treatment significantly decreased the number of T effector cells in asthma mice blood and the nude mice that received AST-treated TCMs had relieved inflammation compared with the untreated group; meanwhile, we found that AST significantly decreased the autophagy level and inhibited OX40/OX40L signal pathway of lymphocytes. The results highlighted that AST regulated autophagy to inhibit differentiation of effector T-cell phenotype.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 200040, China
| | - Hong-Ying Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xiao-Hong Duan
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Mi-Hui Li
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jing Sun
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Li-Xia Tian
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 201508, China
| | - Jing-Cheng Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Ling-Wen Kong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| |
Collapse
|
23
|
Ingels J, De Cock L, Stevens D, Mayer RL, Théry F, Sanchez GS, Vermijlen D, Weening K, De Smet S, Lootens N, Brusseel M, Verstraete T, Buyle J, Van Houtte E, Devreker P, Heyns K, De Munter S, Van Lint S, Goetgeluk G, Bonte S, Billiet L, Pille M, Jansen H, Pascal E, Deseins L, Vantomme L, Verdonckt M, Roelandt R, Eekhout T, Vandamme N, Leclercq G, Taghon T, Kerre T, Vanommeslaeghe F, Dhondt A, Ferdinande L, Van Dorpe J, Desender L, De Ryck F, Vermassen F, Surmont V, Impens F, Menten B, Vermaelen K, Vandekerckhove B. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep Med 2024; 5:101516. [PMID: 38626769 PMCID: PMC11148567 DOI: 10.1016/j.xcrm.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.
Collapse
Affiliation(s)
- Joline Ingels
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Laurenz De Cock
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Dieter Stevens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Rupert L Mayer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Fabien Théry
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Saskia De Smet
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Nele Lootens
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Marieke Brusseel
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Tasja Verstraete
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jolien Buyle
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Eva Van Houtte
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Pam Devreker
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Kelly Heyns
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lucas Deseins
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Maarten Verdonckt
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Ria Roelandt
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Thomas Eekhout
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Niels Vandamme
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tessa Kerre
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium; Hematology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Floris Vanommeslaeghe
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Annemieke Dhondt
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Ferdinande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Desender
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frederic De Ryck
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frank Vermassen
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Veerle Surmont
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Björn Menten
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| |
Collapse
|
24
|
Guo J, Wang C, Luo N, Wu Y, Huang W, Zhu J, Shi W, Ding J, Ge Y, Liu C, Lu Z, Bast RC, Ai G, Yang W, Wang R, Li C, Chen R, Liu S, Jin H, Zhao B, Cheng Z. IL-2-free tumor-infiltrating lymphocyte therapy with PD-1 blockade demonstrates potent efficacy in advanced gynecologic cancer. BMC Med 2024; 22:207. [PMID: 38769543 PMCID: PMC11106999 DOI: 10.1186/s12916-024-03420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION NCT04766320, Jan 04, 2021.
Collapse
Affiliation(s)
- Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jihui Zhu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihui Shi
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinye Ding
- Tongji University School of Medicine, Shanghai, China
| | - Yao Ge
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhong Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
| | - Huajun Jin
- Shanghai Juncell Therapeutics, Shanghai, China
| | - Binghui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Wang L, Jin G, Zhou Q, Liu Y, Zhao X, Li Z, Yin N, Peng M. Induction of immortal-like and functional CAR T cells by defined factors. J Exp Med 2024; 221:e20232368. [PMID: 38530240 PMCID: PMC10965394 DOI: 10.1084/jem.20232368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Long-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF. The induction of CARTIF cells depends on the repression of two factors, BCOR and ZC3H12A, and requires antigen or CAR tonic signaling. Reprogrammed CARTIF cells possess almost infinite stemness, similar to induced pluripotent stem cells while retaining the functionality of mature T cells, resulting in superior antitumor effects. Following the elimination of target cells, CARTIF cells enter a metabolically dormant state, persisting in vivo with a saturable niche and providing memory protection. TIF represents a novel state of T cells with unprecedented stemness, which confers long-term functional persistence of CAR T cells in vivo and holds broad potential in T cell therapies.
Collapse
Affiliation(s)
- Lixia Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiuping Zhou
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yanyan Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
26
|
Restifo NP, Gattinoni L. Synthetic soldiers: Turning T cells into immortal warriors. J Exp Med 2024; 221:e20240258. [PMID: 38634804 PMCID: PMC11032022 DOI: 10.1084/jem.20240258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The creation of synthetic T cell states has captivated the field of cell-based therapies. Wang et al. (https://doi.org/10.1084/jem.20232368) describe how disruption of BCOR and ZC3H12A unleashes anti-tumor T cells with unprecedented lifespan and killer instinct. Are we witnessing the birth of immortal super-soldiers in medicine?
Collapse
Affiliation(s)
- Nicholas P. Restifo
- Marble Therapeutics, Boston, MA, USA
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
- Center for Immunomedicine in Transplantation and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Yu T, Wang K, Wang J, Liu Y, Meng T, Hu F, Yuan H. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment. J Control Release 2024; 369:199-214. [PMID: 38537717 DOI: 10.1016/j.jconrel.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/24/2024]
Abstract
We found that immunosuppressive monocytic-myeloid-derived suppressor cells (M-MDSCs) were more likely to be recruited by glioblastoma (GBM) through adhesion molecules on GBM-associated endothelial cells upregulated post-chemoradiotherapy. These cells are continuously generated during tumor progression, entering tumors and expressing PD-L1 at a high level, allowing GBM to exhaust T cells and evade attack from the immune system, thereby facilitating GBM relapse. αLy-6C-LAMP is composed of (i) drug cores with slightly negative charges condensed by cationic protamine and plasmids encoding PD-L1 trap protein, (ii) pre-formulated cationic liposomes targeted to Ly-6C for encapsulating the drug cores, and (iii) a layer of red blood cell membrane on the surface for effectuating long-circulation. αLy-6C-LAMP persistently targets peripheral, especially splenic, M-MDSCs and delivers secretory PD-L1 trap plasmids, leveraging M-MDSCs to transport the plasmids crossing the blood-brain barrier (BBB), thus expressing PD-L1 trap protein in tumors to inhibit PD-1/PD-L1 pathway. Our proposed drug delivery strategy involving intermediaries presents an efficient cross-BBB drug delivery concept that incorporates live-cell targeting and long-circulating nanotechnology to address GBM recurrence.
Collapse
Affiliation(s)
- Tong Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Yupeng Liu
- Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
28
|
Camargo CP, Alapan Y, Muhuri AK, Lucas SN, Thomas SN. Single-cell adhesive profiling in an optofluidic device elucidates CD8 + T lymphocyte phenotypes in inflamed vasculature-like microenvironments. CELL REPORTS METHODS 2024; 4:100743. [PMID: 38554703 PMCID: PMC11046032 DOI: 10.1016/j.crmeth.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Tissue infiltration by circulating leukocytes occurs via adhesive interactions with the local vasculature, but how the adhesive quality of circulating cells guides the homing of specific phenotypes to different vascular microenvironments remains undefined. We developed an optofluidic system enabling fluorescent labeling of photoactivatable cells based on their adhesive rolling velocity in an inflamed vasculature-mimicking microfluidic device under physiological fluid flow. In so doing, single-cell level multidimensional profiling of cellular characteristics could be characterized and related to the associated adhesive phenotype. When applied to CD8+ T cells, ligand/receptor expression profiles and subtypes associated with adhesion were revealed, providing insight into inflamed tissue infiltration capabilities of specific CD8+ T lymphocyte subsets and how local vascular microenvironmental features may regulate the quality of cellular infiltration. This methodology facilitates rapid screening of cell populations for enhanced homing capabilities under defined biochemical and biophysical microenvironments, relevant to leukocyte homing modulation in multiple pathologies.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Samuel N Lucas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA; Winship Cancer Institute, Emory University, Atlanta 30322, GA, USA.
| |
Collapse
|
29
|
Hou Q, Wang P, Kong X, Chen J, Yao C, Luo X, Li Y, Jin Z, Wu X. Higher TIGIT+ γδ T CM cells may predict poor prognosis in younger adult patients with non-acute promyelocytic AML. Front Immunol 2024; 15:1321126. [PMID: 38711501 PMCID: PMC11070478 DOI: 10.3389/fimmu.2024.1321126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/metabolism
- Male
- Female
- Adult
- Middle Aged
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- Aged
- Memory T Cells/immunology
- Memory T Cells/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Immunologic Memory
- Leukemia, Promyelocytic, Acute/immunology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/mortality
- Immunophenotyping
Collapse
Affiliation(s)
- Qi Hou
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Kong
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Junjie Chen
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Chao Yao
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaodan Luo
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
30
|
Hanssens H, Meeus F, De Vlaeminck Y, Lecocq Q, Puttemans J, Debie P, De Groof TWM, Goyvaerts C, De Veirman K, Breckpot K, Devoogdt N. Scrutiny of chimeric antigen receptor activation by the extracellular domain: experience with single domain antibodies targeting multiple myeloma cells highlights the need for case-by-case optimization. Front Immunol 2024; 15:1389018. [PMID: 38720898 PMCID: PMC11077437 DOI: 10.3389/fimmu.2024.1389018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.
Collapse
Affiliation(s)
- Heleen Hanssens
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Hematology and Immunology (HEIM), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieterjan Debie
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Timo W. M. De Groof
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology (HEIM), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
Lo Presti V, Meringa A, Dunnebach E, van Velzen A, Moreira AV, Stam RW, Kotecha RS, Krippner-Heidenreich A, Heidenreich OT, Plantinga M, Cornel A, Sebestyen Z, Kuball J, van Til NP, Nierkens S. Combining CRISPR-Cas9 and TCR exchange to generate a safe and efficient cord blood-derived T cell product for pediatric relapsed AML. J Immunother Cancer 2024; 12:e008174. [PMID: 38580329 PMCID: PMC11002379 DOI: 10.1136/jitc-2023-008174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRβ (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.
Collapse
Affiliation(s)
- Vania Lo Presti
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Angelo Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alice van Velzen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelisa Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niek P van Til
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Imodoye SO, Adedokun KA, Bello IO. From complexity to clarity: unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem Cell Biol 2024; 161:299-323. [PMID: 38189822 DOI: 10.1007/s00418-023-02258-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Despite the tremendous clinical successes recorded in the landscape of cancer therapy, tumor heterogeneity remains a formidable challenge to successful cancer treatment. In recent years, the emergence of high-throughput technologies has advanced our understanding of the variables influencing tumor heterogeneity beyond intrinsic tumor characteristics. Emerging knowledge shows that drivers of tumor heterogeneity are not only intrinsic to cancer cells but can also emanate from their microenvironment, which significantly favors tumor progression and impairs therapeutic response. Although much has been explored to understand the fundamentals of the influence of innate tumor factors on cancer diversity, the roles of the tumor microenvironment (TME) are often undervalued. It is therefore imperative that a clear understanding of the interactions between the TME and other tumor intrinsic factors underlying the plastic molecular behaviors of cancers be identified to develop patient-specific treatment strategies. This review highlights the roles of the TME as an emerging factor in tumor heterogeneity. More particularly, we discuss the role of the TME in the context of tumor heterogeneity and explore the cutting-edge diagnostic and therapeutic approaches that could be used to resolve this recurring clinical conundrum. We conclude by speculating on exciting research questions that can advance our understanding of tumor heterogeneity with the goal of developing customized therapeutic solutions.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ibrahim O Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
- Department of Pathology, University of Helsinki, Haartmaninkatu 3, 00014, Helsinki, Finland.
| |
Collapse
|
33
|
García-García L, G. Sánchez E, Ivanova M, Pastora K, Alcántara-Sánchez C, García-Martínez J, Martín-Antonio B, Ramírez M, González-Murillo Á. Choosing T-cell sources determines CAR-T cell activity in neuroblastoma. Front Immunol 2024; 15:1375833. [PMID: 38601159 PMCID: PMC11004344 DOI: 10.3389/fimmu.2024.1375833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The clinical success of chimeric antigen receptor-modified T cells (CAR-T cells) for hematological malignancies has not been reproduced for solid tumors, partly due to the lack of cancer-type specific antigens. In this work, we used a novel combinatorial approach consisting of a versatile anti-FITC CAR-T effector cells plus an FITC-conjugated neuroblastoma (NB)-targeting linker, an FITC-conjugated monoclonal antibody (Dinutuximab) that recognizes GD2. Methods We compared cord blood (CB), and CD45RA-enriched peripheral blood leukapheresis product (45RA) as allogeneic sources of T cells, using peripheral blood (PB) as a control to choose the best condition for anti-FITC CAR-T production. Cells were manufactured under two cytokine conditions (IL-2 versus IL-7+IL-15+IL-21) with or without CD3/CD28 stimulation. Immune phenotype, vector copy number, and genomic integrity of the final products were determined for cell characterization and quality control assessment. Functionality and antitumor capacity of CB/45RA-derived anti-FITC CAR-T cells were analyzed in co-culture with different anti-GD2-FITC labeled NB cell lines. Results The IL-7+IL-15+IL-21 cocktail, in addition to co-stimulation signals, resulted in a favorable cell proliferation rate and maintained less differentiated immune phenotypes in both CB and 45RA T cells. Therefore, it was used for CAR-T cell manufacturing and further characterization. CB and CD45RA-derived anti-FITC CAR-T cells cultured with IL-7+IL-15+IL-21 retained a predominantly naïve phenotype compared with controls. In the presence of the NB-FITC targeting, CD4+ CB-derived anti-FITC CAR-T cells showed the highest values of co-stimulatory receptors OX40 and 4-1BB, and CD8+ CAR-T cells exhibited high levels of PD-1 and 4-1BB and low levels of TIM3 and OX40, compared with CAR-T cells form the other sources studied. CB-derived anti-FITC CAR-T cells released the highest amounts of cytokines (IFN-γ and TNF-α) into co-culture supernatants. The viability of NB target cells decreased to 30% when co-cultured with CB-derived CAR-T cells during 48h. Conclusion CB and 45RA-derived T cells may be used as allogeneic sources of T cells to produce CAR-T cells. Moreover, ex vivo culture with IL-7+IL-15+IL-21 could favor CAR-T products with a longer persistence in the host. Our strategy may complement the current use of Dinutuximab in treating NB through its combination with a targeted CAR-T cell approach.
Collapse
Affiliation(s)
- Lorena García-García
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elena G. Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Mariya Ivanova
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Keren Pastora
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Alcántara-Sánchez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García-Martínez
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Ramírez
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| | - África González-Murillo
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Advanced Therapies Unit, Fundación Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Progenitor and Cell Therapy Research Group, La Princesa Institute of Health Research, Madrid, Spain
| |
Collapse
|
34
|
Wu Y, Han W, Tang X, Liu J, Guo Z, Li Z, Cai C, Que L. B7-H3 suppresses CD8 + T cell immunologic function through reprogramming glycolytic metabolism. J Cancer 2024; 15:2505-2517. [PMID: 38577598 PMCID: PMC10988323 DOI: 10.7150/jca.90819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Malignant neoplasms pose a formidable threat to human well-being. Prior studies have documented the extensive expression of B7 homolog 3 (B7-H3 or CD276) across various tumors, affecting glucose metabolism. Yet, the link between metabolic modulation and immune responses remains largely unexplored. Our study reveals a significant association between B7-H3 expression and advanced tumor stages, lymph node metastasis, and tumor location in oral squamous cell carcinoma (OSCC). We further elucidate B7-H3's role in mediating glucose competition between cancer cells and CD8+ T cells. Through co-culturing tumor cells with flow cytometry-sorted CD8+ T cells, we measured glucose uptake and lactate secretion in both cell types. Additionally, we assessed interferon-gamma (IFN-γ) release and the immune and exhaustion status of CD8+ T cells. Our findings indicate that B7-H3 enhances glycolysis in OSCC and malignant melanoma, while simultaneously inhibiting CD8+ T cell glycolysis. Silencing B7-H3 led to increased IFN-γ secretion in co-cultures, highlighting its significant role in modulating CD8+ T cell functions within the tumor microenvironment and its impact on tumorigenicity. We also demonstrate that glycolysis inhibition can be mitigated by exogenous glucose supplementation. Mechanistically, our study suggests B7-H3's influence on metabolism might be mediated through the phosphoinositide3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway. This research unveils how B7-H3 affects immune functions via metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Que
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
35
|
Hasani-Sadrabadi MM, Majedi FS, Zarubova J, Thauland TJ, Arumugaswami V, Hsiai TK, Bouchard LS, Butte MJ, Li S. Harnessing Biomaterials to Amplify Immunity in Aged Mice through T Memory Stem Cells. ACS NANO 2024; 18:6908-6926. [PMID: 38381620 DOI: 10.1021/acsnano.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3β together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.
Collapse
Affiliation(s)
| | - Fatemeh S Majedi
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Jana Zarubova
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Vaithilingaraja Arumugaswami
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Molecular and Medical Pharmacology, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Louis-S Bouchard
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Chemistry and Biochemistry, University of California Los Angeles; Los Angeles, California 90095 United States
- The Molecular Biology Institute, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, California 90095 United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, California 90095 United States
| |
Collapse
|
36
|
Cianciotti BC, Magnani ZI, Ugolini A, Camisa B, Merelli I, Vavassori V, Potenza A, Imparato A, Manfredi F, Abbati D, Perani L, Spinelli A, Shifrut E, Ciceri F, Vago L, Di Micco R, Naldini L, Genovese P, Ruggiero E, Bonini C. TIM-3, LAG-3, or 2B4 gene disruptions increase the anti-tumor response of engineered T cells. Front Immunol 2024; 15:1315283. [PMID: 38510235 PMCID: PMC10953820 DOI: 10.3389/fimmu.2024.1315283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.
Collapse
Affiliation(s)
| | - Zulma Irene Magnani
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Ugolini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Valentina Vavassori
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Imparato
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Perani
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eric Shifrut
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Vago
- Università Vita-Salute San Raffaele, Milan, Italy
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Pietro Genovese
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA, United States
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
37
|
Wang X, Lu L, Hong X, Wu L, Yang C, Wang Y, Li W, Yang Y, Cao D, Di W, Deng L. Cell-intrinsic PD-L1 ablation sustains effector CD8 + T cell responses and promotes antitumor T cell therapy. Cell Rep 2024; 43:113712. [PMID: 38294903 DOI: 10.1016/j.celrep.2024.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/13/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Adoptive cell therapies are emerging forms of immunotherapy that reprogram T cells for enhanced antitumor responses. Although surface programmed cell death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) engagement inhibits antitumor immunity, the role of cell-intrinsic PD-L1 in adoptive T cell therapy remains unknown. Here, we found that intracellular PD-L1 was enriched in tumor-infiltrating CD8+ T cells of cancer patients. PD-L1 ablation promoted antitumor immune responses and the maintenance of an effector-like state of therapeutic CD8+ T cells, while blockade of surface PD-L1 was unable to impact on their expansion and function. Moreover, cell-intrinsic PD-L1 impeded CD8+ T cell activity, which partially relied on mTORC1 signaling. Furthermore, endogenous tumor-reactive CD8+ T cells were motivated by BATF3-driven dendritic cells after adoptive transfer of PD-L1-deficient therapeutic CD8+ T cells. This role of cell-intrinsic PD-L1 in therapeutic CD8+ T cell dysfunction highlights that disrupting cell-intrinsic PD-L1 in CD8+ T cells represents a viable approach to improving T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochuan Hong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingling Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanqin Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
38
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
39
|
Jaeger-Ruckstuhl CA, Lo Y, Fulton E, Waltner OG, Shabaneh TB, Simon S, Muthuraman PV, Correnti CE, Newsom OJ, Engstrom IA, Kanaan SB, Bhise SS, Peralta JMC, Ruff R, Price JP, Stull SM, Stevens AR, Bugos G, Kluesner MG, Voillet V, Muhunthan V, Morrish F, Olson JM, Gottardo R, Sarthy JF, Henikoff S, Sullivan LB, Furlan SN, Riddell SR. Signaling via a CD27-TRAF2-SHP-1 axis during naive T cell activation promotes memory-associated gene regulatory networks. Immunity 2024; 57:287-302.e12. [PMID: 38354704 PMCID: PMC10967230 DOI: 10.1016/j.immuni.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Elena Fulton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Olivia G Waltner
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pranav V Muthuraman
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oliver J Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sami B Kanaan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shruti S Bhise
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jobelle M C Peralta
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Jason P Price
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sylvia M Stull
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew R Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitchell G Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Fionnuala Morrish
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Raphaël Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Swiss Institute of Bioinformatics, University of Lausanne and Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jay F Sarthy
- Seattle Children's Hospital, Seattle, WA 98105, USA; Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Scott N Furlan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Prasongtanakij S, Preedagasamzin S, Jittorntrum B, Anurathapan U, Puavilai T, Niparuck P, Chantrathammachart P, Piyajaroenkij T, Uaesoontrachoon K, Uchibori R, Ozawa K, Ohmine K, Hongeng S. Cytotoxicity and exhaustion markers of chimeric antigen receptor T cells targeting BCMA in multiple myeloma cell lines between patients and healthy donors. Eur J Haematol 2024; 112:248-256. [PMID: 37222081 DOI: 10.1111/ejh.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Multiple myeloma (MM) accounts for 10% of hematologic malignancies. However, most of the patients suffered from relapsed/refractory disease. We would like to expand CAR T cell therapy to treat MM using our current platform. METHODS BCMA CAR T lymphocytes were generated for volunteers or MM patients. The transduction efficiency was detected by the ddPCR technique. Immunophenotyping and exhaustion markers were monitored by flow cytometry. The efficacy of BCMA CAR T cells was tested using coculturing with BCMA CAR or mock, and the positive and negative targets, K562/hBCMA-ECTM and K562, respectively. RESULTS BCMA CAR T cells were generated from consented volunteers or MM patients and could be detected CAR BCMA expression at a mean of 4.07 ± 1.95 or 4.65 ± 1.21 copies/cell, respectively. Those modified T cells were primarily effector memory T cells. Our BCMA CAR T cells could explicitly eradicate the K562/hBCMA-ECTM cell line while the K562 cell line survived. Interestingly, the BCMA CAR, mock T cells, and peripheral blood mononuclear cells from MM patients expressed similar levels of the exhaustion makers, TIM-3, LAG-3, and PD1. CONCLUSIONS Our BCMA CAR T cells, mainly effector/effector memory, could eliminate BCMA-expressing cells in vitro and had similar levels of exhaustion markers among different populations.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Research, Academics and Innovation Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarinthip Preedagasamzin
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bunyada Jittorntrum
- Research, Academics and Innovation Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teeraya Puavilai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Thanakrit Piyajaroenkij
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Ryosuke Uchibori
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
| | - Keiya Ozawa
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
| | - Ken Ohmine
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
- Department of Medicine, School of Medicine, Jichi Medical University, Tochigi-ken, Japan
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
42
|
Hou D, Wan H, Katz JL, Wang S, Castro BA, Vazquez-Cervantes GI, Arrieta VA, Dhiantravan S, Najem H, Rashidi A, Chia TY, Arjmandi T, Collado J, Billingham L, Lopez-Rosas A, Han Y, Sonabend AM, Heimberger AB, Zhang P, Miska J, Lee-Chang C. Antigen-presenting B cells promote TCF-1 + PD1 - stem-like CD8 + T-cell proliferation in glioblastoma. Front Immunol 2024; 14:1295218. [PMID: 38268923 PMCID: PMC10806106 DOI: 10.3389/fimmu.2023.1295218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.
Collapse
Affiliation(s)
- David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Brandyn A. Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tzu-yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tarlan Arjmandi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biotechnology, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jimena Collado
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Lou and Jean Malnati Brain Tumor Institute, Chicago, IL, United States
| |
Collapse
|
43
|
Collier C, Wucherer K, McWhorter M, Jenkins C, Bartlett A, Roychoudhuri R, Eil R. Intracellular K+ Limits T-cell Exhaustion and Preserves Antitumor Function. Cancer Immunol Res 2024; 12:36-47. [PMID: 38063845 PMCID: PMC10765769 DOI: 10.1158/2326-6066.cir-23-0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
T cells are often compromised within cancers, allowing disease progression. We previously found that intratumoral elevations in extracellular K+, related to ongoing cell death, constrained CD8+ T-cell Akt-mTOR signaling and effector function. To alleviate K+-mediated T-cell dysfunction, we pursued genetic means to lower intracellular K+. CD8+ T cells robustly and dynamically express the Na+/K+ ATPase, among other K+ transporters. CRISPR-Cas9-mediated disruption of the Atp1a1 locus lowered intracellular K+ and elevated the resting membrane potential (i.e., Vm, Ψ). Despite compromised Ca2+ influx, Atp1a1-deficient T cells harbored tonic hyperactivity in multiple signal transduction cascades, along with a phenotype of exhaustion in mouse and human CD8+ T cells. Provision of exogenous K+ restored intracellular levels in Atp1a1-deficient T cells and prevented damaging levels of reactive oxygen species (ROS), and both antioxidant treatment and exogenous K+ prevented Atp1a1-deficient T-cell exhaustion in vitro. T cells lacking Atp1a1 had compromised persistence and antitumor activity in a syngeneic model of orthotopic murine melanoma. Translational application of these findings will require balancing the beneficial aspects of intracellular K+ with the ROS-dependent nature of T-cell effector function. See related Spotlight by Banuelos and Borges da Silva, p. 6.
Collapse
Affiliation(s)
- Camille Collier
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly Wucherer
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Matthew McWhorter
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Chelsea Jenkins
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Alexandra Bartlett
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Eil
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
44
|
Ucgul E, Guven DC, Ucgul AN, Ozbay Y, Onur MR, Akin S. Factors Influencing Immunotherapy Outcomes in Cancer: Sarcopenia and Systemic Inflammation. Cancer Control 2024; 31:10732748241302248. [PMID: 39547932 PMCID: PMC11569492 DOI: 10.1177/10732748241302248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Immunotherapy has shown promise in treating various subtypes of metastatic cancers, but many patients are frail and may have compromised immune systems, which can influence treatment outcomes. Sarcopenia, a condition characterized by loss of muscle mass and systemic inflammation, is a potential factor that may negatively impact the response to immunotherapy. However, more data must be collected on the extent of its influence. Therefore, this study aims to investigate the effects of sarcopenia, systemic inflammation, and Eastern Cooperative Oncology Group Performance Status (ECOG PS) on the response to immunotherapy. METHODS We enrolled 100 patients treated with immune checkpoint inhibitors between 2015 and 2021 who underwent computed tomography of the abdomen before the first immunotherapy dose. This study was conducted retrospectively. Gender-specific thresholds were used for the diagnosis of sarcopenia. C-reactive protein (CRP), erythrocyte sedimentation rate, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), albumin, and lactate dehydrogenase (LDH) were used as markers of systemic inflammation. Systemic inflammatory markers and sarcopenia were assessed using univariable and multivariable analyses for overall survival (OS) and progression-free survival (PFS). RESULTS Sarcopenia was found to be a significant prognostic factor associated with poor PFS (HR, 2.33; 95% confidence interval [CI], 1.45-3.74; P < 0.001). In addition, hypoalbuminemia was identified as a significant prognostic factor for predicting OS (HR, 2.10; 95% CI, 1.21-3.66; P = 0.008). CONCLUSIONS Closer monitoring and prevention of sarcopenia may enhance both OS and PFS. Additionally, our composite model may assist oncologists in predicting responses to immunotherapy more accurately. However, further prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Enes Ucgul
- Division of Endocrinology and Metabolism, Etlik City Hospital, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Aybala Nur Ucgul
- Department of Radiation Oncology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Yakup Ozbay
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ruhi Onur
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Serkan Akin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
45
|
Luo Y, Gao L, Liu J, Yang L, Wang L, Lai X, Gao S, Liu L, Zhao L, Ye Y, Wang M, Shen L, Cao WW, Wang D, Li W, Zhang X, Huang H. Donor-derived Anti-CD19 CAR T cells GC007g for relapsed or refractory B-cell acute lymphoblastic leukemia after allogeneic HSCT: a phase 1 trial. EClinicalMedicine 2024; 67:102377. [PMID: 38204488 PMCID: PMC10776428 DOI: 10.1016/j.eclinm.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Background Although chimeric antigen receptor-modified T cells (CAR T) cell therapy has been widely reported in improving the outcomes of B-cell acute lymphoblastic leukemia (B-ALL), less research about the feasibility and safety of donor-derived CAR T after allogeneic hematopoietic stem cell transplantation (allo-HSCT) was reported. Methods This phase 1 clinical trial aims to evaluate safety and efficacy of donor-derived anti-CD19 CAR T cells (GC007g) in B-ALL patients who relapsed after allo-HSCT. This trial is registered with ClinicalTrials.gov, NCT04516551. Findings Between 15 March 2021 and 19 May 2022, fifteen patients were screened, three patients were excluded due to withdraw of consent, donor's reason, and death, respectively. Patients received donor-derived CAR T cells infusions at 6 × 105/kg (n = 3) or 2 × 106/kg (n = 6) dose level. The median time from HSCT to relapse was 185 days (range, 81-2063). The median age of patients was 31 years (range 21-48). Seven patients (77.8%) had BCR-ABL fusion gene. CAR T cells expanded in vivo and the median time to reach Cmax was 9 days (range, 7-11). One patient had hyperbilirubinemia after GC007g infusion which was defined as a dose-limiting toxicity. All patients experienced CRS and hematological adverse events. Three patients had acute graft-versus-host-disease (grade I, n = 1; grade II, n = 1; grade IV, n = 1) and all resolved after treatment. They received CAR T cells from matched sister, haploidentical matched father and sisiter, respectively. At 28 days after infusion, all patients achieved complete remission with/without incomplete hematologic recovery (CRi/CR) with undetectable MRD. At a median follow-up of 475 days (range 322-732), seven patients remained in CR/CRi while two had CD19-negative relapse. The overall response rates (ORR) were 100% (9/9), 88.9% (8/9), and 75% (6/8) at 3 month, 6 month, and 12 month, respectively. The 1-year progression-free and overall survival were 77.8% and 85.7%, respectively. Interpretation GC007g expanded and induced durable remission in patients with B-ALL relapsed after allo-HSCT, with manageable safety profiles. Funding Gracell Biotechnologies Inc.
Collapse
Affiliation(s)
- Yi Luo
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Chongqing, China
| | - Jia Liu
- Gracell Biotechnologies Ind., Shanghai, China
| | - Luxin Yang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lu Wang
- Medical Center of Hematology, Xinqiao Hospital, Chongqing, China
| | - Xiaoyu Lai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Shichun Gao
- Medical Center of Hematology, Xinqiao Hospital, Chongqing, China
| | - Lizhen Liu
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lu Zhao
- Medical Center of Hematology, Xinqiao Hospital, Chongqing, China
| | - Yishan Ye
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | | | | | | | - Dongrui Wang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wenling Li
- Gracell Biotechnologies Ind., Shanghai, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Chongqing, China
| | - He Huang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
46
|
Slavkovic-Lukic D, Fioravanti J, Martín-Santos A, Han E, Zhou J, Gattinoni L. Rapid Screening of CAR T Cell Functional Improvement Strategies by Highly Multiplexed Single-Cell Secretomics. Methods Mol Biol 2024; 2748:135-149. [PMID: 38070113 DOI: 10.1007/978-1-0716-3593-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The functional fitness of CAR T cells plays a crucial role in determining their clinical efficacy. Several strategies are being explored to increase cellular fitness, but screening these approaches in vivo is expensive and time-consuming, limiting the number of strategies that can be tested at one time. The presence of polyfunctional CAR T cells has emerged as a critical parameter correlating with clinical responses. However, even sophisticated multiplexed secretomic assays often fail to detect differences in cytokine release due to the functional heterogeneity of CAR T cell products. Here, we describe a highly multiplexed single-cell secretomic assay based on the IsoLight platform to rapidly evaluate the impact of new pharmacologic or gene-engineering approaches aiming at improving CAR T cell function. As a key study, we focus on CD19-specific CAR CD8+ T cells modulated by miR-155 overexpression, but the protocol can be applied to characterize other functional immune cell modulation strategies.
Collapse
Affiliation(s)
- Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Edward Han
- IsoPlexis Corporation, Branford, CT, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany.
- University of Regensburg, Regensburg, Germany.
| |
Collapse
|
47
|
Liu Y, Wang T, Ma W, Jia Z, Wang Q, Zhang M, Luo Y, Sun H. Metabolic reprogramming in the tumor microenvironment: unleashing T cell stemness for enhanced cancer immunotherapy. Front Pharmacol 2023; 14:1327717. [PMID: 38169800 PMCID: PMC10758489 DOI: 10.3389/fphar.2023.1327717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
T cells play a pivotal role in the immune system by distinguishing between various harmful pathogens and cancerous cells within the human body and initiating an immune response. Within the tumor microenvironment (TME), immune effector T cells encounter both immunosuppressive cells and factors that hinder their functionality. Additionally, they endure robust and persistent antigenic stimulation, often leading to exhaustion and apoptosis. However, the stemness of T cells, characterized by their ability to survive and self-renew over extended periods, represents a primary target in immune checkpoint therapies such as anti-PD-1 therapy. T cell stemness encompasses specific memory T cell subsets and progenitor-exhausted T cells with stem cell-like properties. Therefore, understanding the impact of the TME on T cell stemness, including factors like K+, lactate, and H+, holds significant importance and can facilitate the mitigation of terminal T-cell depletion, the identification of potential resilient biomarkers or therapeutic targets resistant to immune checkpoint therapies, and ultimately lead to sustained anti-tumor effects. Thus, it offers a novel perspective for advancing tumor immunotherapy.
Collapse
Affiliation(s)
- Youhan Liu
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Tao Wang
- Department of Pediatric Surgery, Zibo Central Hospital, Zibo, China
| | - Wen Ma
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Maoling Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Hongmei Sun
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
48
|
Chen R, Chen L, Wang C, Zhu H, Gu L, Li Y, Xiong X, Chen G, Jian Z. CAR-T treatment for cancer: prospects and challenges. Front Oncol 2023; 13:1288383. [PMID: 38115906 PMCID: PMC10728652 DOI: 10.3389/fonc.2023.1288383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy has been widely used in hematological malignancies and has achieved remarkable results, but its long-term efficacy in solid tumors is greatly limited by factors such as the tumor microenvironment (TME). In this paper, we discuss the latest research and future views on CAR-T cell cancer immunotherapy, compare the different characteristics of traditional immunotherapy and CAR-T cell therapy, introduce the latest progress in CAR-T cell immunotherapy, and analyze the obstacles that hinder the efficacy of CAR-T cell therapy, including immunosuppressive factors, metabolic energy deficiency, and physical barriers. We then further discuss the latest therapeutic strategies to overcome these barriers, as well as management decisions regarding the possible safety issues of CAR-T cell therapy, to facilitate solutions to the limited use of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst Pharmacol 2023; 12:1577-1590. [PMID: 37448343 PMCID: PMC10681459 DOI: 10.1002/psp4.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.
Collapse
Affiliation(s)
| | | | - Cassian Yee
- Department of Melanoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of ImmunologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | |
Collapse
|