1
|
Shirvalilou S, Khoei S, Afzalipour R, Ghaznavi H, Shirvaliloo M, Derakhti Z, Sheervalilou R. Targeting the undruggable in glioblastoma using nano-based intracellular drug delivery. Med Oncol 2024; 41:303. [PMID: 39470962 DOI: 10.1007/s12032-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Glioblastoma (GBM) is a highly prevalent and aggressive brain tumor in adults with limited treatment response, leading to a 5-year survival rate of less than 5%. Standard therapies, including surgery, radiation, and chemotherapy, often fall short due to the tumor's location, hypoxic conditions, and the challenge of complete removal. Moreover, brain metastases from cancers such as breast and melanoma carry similarly poor prognoses. Recent advancements in nanomedicine offer promising solutions for targeted GBM therapies, with nanoparticles (NPs) capable of delivering chemotherapy drugs or radiation sensitizers across the blood-brain barrier (BBB) to specific tumor sites. Leveraging the enhanced permeability and retention effect, NPs can preferentially accumulate in tumor tissues, where compromised BBB regions enhance delivery efficiency. By modifying NP characteristics such as size, shape, and surface charge, researchers have improved circulation times and cellular uptake, enhancing therapeutic efficacy. Recent studies show that combining photothermal therapy with magnetic hyperthermia using AuNPs and magnetic NPs induces ROS-dependent apoptosis and immunogenic cell death providing dual-targeted, immune-activating approaches. This review discusses the latest NP-based drug delivery strategies, including gene therapy, receptor-mediated transport, and multi-modal approaches like photothermal-magnetic hyperthermia combinations, all aimed at optimizing therapeutic outcomes for GBM.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | - Zahra Derakhti
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Cognet G, Muir A. Identifying metabolic limitations in the tumor microenvironment. SCIENCE ADVANCES 2024; 10:eadq7305. [PMID: 39356752 PMCID: PMC11446263 DOI: 10.1126/sciadv.adq7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Solid tumors are characterized by dysfunctional vasculature that limits perfusion and delivery of nutrients to the tumor microenvironment. Limited perfusion coupled with the high metabolic demand of growing tumors has led to the hypothesis that many tumors experience metabolic stress driven by limited availability of nutrients such as glucose, oxygen, and amino acids in the tumor. Such metabolic stress has important implications for the biology of cells in the microenvironment, affecting both disease progression and response to therapies. Recently, techniques have been developed to identify limiting nutrients and resulting metabolic stresses in solid tumors. These techniques have greatly expanded our understanding of the metabolic limitations in tumors. This review will discuss these experimental tools and the emerging picture of metabolic limitations in tumors arising from recent studies using these approaches.
Collapse
Affiliation(s)
- Guillaume Cognet
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Li J, Wang D, Tang F, Ling X, Zhang W, Zhang Z. Pan-cancer integrative analyses dissect the remodeling of endothelial cells in human cancers. Natl Sci Rev 2024; 11:nwae231. [PMID: 39345334 PMCID: PMC11429526 DOI: 10.1093/nsr/nwae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 10/01/2024] Open
Abstract
Therapeutics targeting tumor endothelial cells (TECs) have been explored for decades, with only suboptimal efficacy achieved, partly due to an insufficient understanding of the TEC heterogeneity across cancer patients. We integrated single-cell RNA-seq data of 575 cancer patients from 19 solid tumor types, comprehensively charting the TEC phenotypic diversities. Our analyses uncovered underappreciated compositional and functional heterogeneity in TECs from a pan-cancer perspective. Two subsets, CXCR4 + tip cells and SELE + veins, represented the prominent angiogenic and proinflammatory phenotypes of TECs, respectively. They exhibited distinct spatial organization patterns, and compared to adjacent non-tumor tissues, tumor tissue showed an increased prevalence of CXCR4 + tip cells, yet with SELE + veins depleted. Such functional and spatial characteristics underlie their differential associations with the response of anti-angiogenic therapies and immunotherapies. Our integrative resources and findings open new avenues to understand and clinically intervene in the tumor vasculature.
Collapse
Affiliation(s)
- Jinhu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinnan Ling
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
5
|
You S, Li S, Zeng L, Song J, Li Z, Li W, Ni H, Xiao X, Deng W, Li H, Lin W, Liang C, Zheng Y, Cheng SC, Xiao N, Tong M, Yu R, Huang J, Huang H, Xu H, Han J, Ren J, Mao K. Lymphatic-localized Treg-mregDC crosstalk limits antigen trafficking and restrains anti-tumor immunity. Cancer Cell 2024; 42:1415-1433.e12. [PMID: 39029466 DOI: 10.1016/j.ccell.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
The tumor microenvironment (TME) has a significant impact on tumor growth and immunotherapy efficacies. However, the precise cellular interactions and spatial organizations within the TME that drive these effects remain elusive. Using advanced multiplex imaging techniques, we have discovered that regulatory T cells (Tregs) accumulate around lymphatic vessels in the peripheral tumor stroma. This localized accumulation is facilitated by mature dendritic cells enriched in immunoregulatory molecules (mregDCs), which promote chemotaxis of Tregs, establishing a peri-lymphatic Treg-mregDC niche. Within this niche, mregDCs facilitate Treg activation, which in turn restrains the trafficking of tumor antigens to the draining mesenteric lymph nodes, thereby impeding the initiation of anti-tumor adaptive immune responses. Disrupting Treg recruitment to mregDCs inhibits tumor progression. Our study provides valuable insights into the organization of TME and how local crosstalk between lymphoid and myeloid cells suppresses anti-tumor immune responses.
Collapse
Affiliation(s)
- Siyuan You
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shuqin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Lingsu Zeng
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jinsheng Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Weiyun Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Xu Xiao
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenbo Deng
- Key Laboratory of Reproductive Health Research, Fujian Province University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongye Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Chenyu Liang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Yanfei Zheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Rongshan Yu
- School of Informatics, Xiamen University, Xiamen, Fujian 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Hongzhi Xu
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China
| | - Jianlin Ren
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01673-z. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
7
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Gunasekara N, Clauss D, Bloch W. Effects of Exercise-Induced Changes in Myokine Expression on the Tumor Microenvironment. Sports Med Int Open 2024; 8:a22831663. [PMID: 38933599 PMCID: PMC11204211 DOI: 10.1055/a-2283-1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/26/2024] [Indexed: 06/28/2024] Open
Abstract
In this narrative review, we summarize the direct and indirect effects that myokines have on the tumor microenvironment. We took studies of various cancer types and species into account. Systematic reviews and meta-analyses that matched the search terms were also considered. We searched databases for six months. As a narrative approach was chosen, no data was analyzed or reanalyzed. The goal of this narrative review is to create an overview on the topic to identify research gaps and answer the questions as to whether myokine expression may be relevant in cancer research in regard to the tumor microenvironment. Six commonly known myokines were chosen. We found strong links between the influence exercise has on interleukin-6, oncostatin M, secreted protein acidic and rich in cysteine, and irisin in the context of tumor progression and inhibition via interactions with the tumor microenvironment. It became clear that the effects of myokines on the tumor microenvironment can vary and contribute to disease progression or regression. Interactions among myokines and immune cells must also be considered and require further investigation. To date, no study has shown a clear connection, while multiple studies suggest further investigation of the topic, similar to the effects of exercise on myokine expression.
Collapse
Affiliation(s)
- Nadira Gunasekara
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Dorothea Clauss
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| |
Collapse
|
9
|
Bui TM, Yalom LK, Ning E, Urbanczyk JM, Ren X, Herrnreiter CJ, Disario JA, Wray B, Schipma MJ, Velichko YS, Sullivan DP, Abe K, Lauberth SM, Yang GY, Dulai PS, Hanauer SB, Sumagin R. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J Clin Invest 2024; 134:e174545. [PMID: 38329810 PMCID: PMC10977994 DOI: 10.1172/jci174545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lenore K. Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward Ning
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M. Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline J. Herrnreiter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jackson A. Disario
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Wray
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Schipma
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - David P. Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Parambir S. Dulai
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Chuaychob S, Lyu R, Tanaka M, Haginiwa A, Kitada A, Nakamura T, Yokokawa R. Mimicking angiogenic microenvironment of alveolar soft-part sarcoma in a microfluidic coculture vasculature chip. Proc Natl Acad Sci U S A 2024; 121:e2312472121. [PMID: 38502703 PMCID: PMC10990104 DOI: 10.1073/pnas.2312472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is a slow-growing soft tissue sarcoma with high mortality rates that affects adolescents and young adults. ASPS resists conventional chemotherapy; thus, decades of research have elucidated pathogenic mechanisms driving the disease, particularly its angiogenic capacities. Integrated blood vessels that are rich in pericytes (PCs) and metastatic potential are distinctive of ASPS. To mimic ASPS angiogenic microenvironment, a microfluidic coculture vasculature chip has been developed as a three-dimensional (3D) spheroid composed of mouse ASPS, a layer of PCs, and endothelial cells (ECs). This ASPS-on-a-chip provided functional and morphological similarity as the in vivo mouse model to elucidate the cellular crosstalk within the tumor vasculature before metastasis. We successfully reproduce ASPS spheroid and leaky vessels representing the unique tumor vasculature to assess effective drug delivery into the core of a solid tumor. Furthermore, this ASPS angiogenesis model enabled us to investigate the role of proteins in the intracellular trafficking of bioactive signals from ASPS to PCs and ECs during angiogenesis, including Rab27a and Sytl2. The results can help to develop drugs targeting the crosstalk between ASPS and the adjacent cells in the tumoral microenvironment.
Collapse
Affiliation(s)
- Surachada Chuaychob
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Ruyin Lyu
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo135-8550, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo160-8402, Japan
| | - Ayumi Haginiwa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Atsuya Kitada
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo160-8402, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto615-8540, Japan
| |
Collapse
|
11
|
Wang L, Liu J. Dopamine Polymerization-Mediated Surface Functionalization toward Advanced Bacterial Therapeutics. Acc Chem Res 2024; 57:945-956. [PMID: 38422996 DOI: 10.1021/acs.accounts.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacteria-based therapy has spotlighted an unprecedented potential in treating a range of diseases, given that bacteria can be used as both drug vehicles and therapeutic agents. However, the use of bacteria for disease treatment often suffers from unsatisfactory outcomes, due largely to their suboptimal bioavailability, dose-dependent toxicity, and low targeting colonization. In the past few years, substantial efforts have been devoted to tackling these difficulties, among which methods capable of integrating bacteria with multiple functions have been extensively pursued. Different from conventional genetic engineering and modern synthetic bioengineering, surface modification of bacteria has emerged as a simple yet flexible strategy to introduce different functional motifs. Polydopamine, which can be easily formed via in situ dopamine oxidation and self-polymerization, is an appealing biomimetic polymer that has been widely applied for interfacial modification and functionalization. By virtue of its catechol groups, polydopamine can be efficiently codeposited with a multitude of functional elements on diverse surfaces.In this Account, we summarize the recent advances from our group with a focus on the interfacial polymerization-mediated functionalization of bacteria for advanced microbial therapy. First, we present the optimized strategy for bacterial surface modification under cytocompatible conditions by in situ dopamine polymerization. Taking advantage of the hydrogen bonding, π-π stacking, Michael addition, and Schiff base reaction with polydopamine, diverse functional small molecules and macromolecules are facilely codeposited onto the bacterial surface. Namely, monomodal, dual-modal, and multimodal surface modification of bacteria can be achieved by dopamine self-deposition, codeposition with a unitary composition, and codeposition with a set of multiple components, respectively. Second, we outline the regulation of bacterial functions by surface modification. The formed polydopamine surface endows bacteria with the ability to resist in vivo insults, such as gastrointestinal tract stressors and immune clearance, resulting in greatly improved bioavailability. Integration with specific ligands or therapeutic components enables the modified bacteria to increase targeting accumulation and colonization at lesion sites or play synergistic effects in disease treatment. Bacteria codeposited with different bioactive moieties, such as protein antigens, antibodies, and immunoadjuvants, are even able to actively interact with the host, particularly to elicit immune responses by either suppressing immune overactivation to promote the reversion of pathological inflammations or provoking protective innate and/or adaptive immunity to inhibit pathogenic invaders. Third, we highlight the applications of surface-modified bacteria as multifunctional living therapeutics in disease treatment, especially alleviating inflammatory bowel diseases via oral delivery and intervening in different types of cancer through systemic or intratumoral injection. Finally, we discuss the challenges and prospects of dopamine polymerization-mediated multifunctionalization for preparing advanced bacterial therapeutics as well as their bench to bedside translation. We anticipate that this Account can provide an insightful overview of bacterial therapy and inspire innovative thinking and new efforts to develop next-generation living therapeutics for treating various diseases.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
13
|
Zhang N, Zhou J, Li S, Cai W, Ru B, Hu J, Liu W, Liu X, Tong X, Zheng X. Advances in Nanoplatforms for Immunotherapy Applications Targeting the Tumor Microenvironment. Mol Pharm 2024; 21:410-426. [PMID: 38170627 DOI: 10.1021/acs.molpharmaceut.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer immunotherapy is a treatment method that activates or enhances the autoimmune response of the body to fight tumor growth and metastasis, has fewer toxic side effects and a longer-lasting efficacy than radiotherapy and chemotherapy, and has become an important means for the clinical treatment of cancer. However, clinical results from immunotherapy have shown that most patients lack responsiveness to immunotherapy and cannot benefit from this treatment strategy. The tumor microenvironment (TME) plays a critical role in the response to immunotherapy. The TME typically prevents effective lymphocyte activation, reducing their infiltration, and inhibiting the infiltration of effector T cells. According to the characteristic differences between the TME and normal tissues, various nanoplatforms with TME targeting and regulation properties have been developed for more precise regulation of the TME and have the ability to codeliver a variety of active pharmaceutical ingredients, thereby reducing systemic toxicity and improving the therapeutic effect of antitumor. In addition, the precise structural design of the nanoplatform can integrate specific functional motifs, such as surface-targeted ligands, degradable backbones, and TME stimulus-responsive components, into nanomedicines, thereby reshaping the tumor microenvironment, improving the body's immunosuppressive state, and enhancing the permeability of drugs in tumor tissues, in order to achieve controlled and stimulus-triggered release of load cargo. In this review, the physiological characteristics of the TME and the latest research regarding the application of TME-regulated nanoplatforms in improving antitumor immunotherapy will be described. Furthermore, the existing problems and further applications perspectives of TME-regulated platforms for cancer immunotherapy will also be discussed.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Junyu Zhou
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shun Li
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wenjun Cai
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Bin Ru
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiaqi Hu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wenlong Liu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xuanxi Liu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiangmin Tong
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaoyan Zheng
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| |
Collapse
|
14
|
Zachou ME, Kouloulias V, Chalkia M, Efstathopoulos E, Platoni K. The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers (Basel) 2024; 16:393. [PMID: 38254881 PMCID: PMC11154327 DOI: 10.3390/cancers16020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This article presents a comprehensive review of nanoparticle-assisted treatment approaches for soft tissue sarcoma (STS). STS, a heterogeneous group of mesenchymal-origin tumors with aggressive behavior and low overall survival rates, necessitates the exploration of innovative therapeutic interventions. In contrast to conventional treatments like surgery, radiotherapy (RT), hyperthermia (HT), and chemotherapy, nanomedicine offers promising advancements in STS management. This review focuses on recent research in nanoparticle applications, including their role in enhancing RT and HT efficacy through improved drug delivery systems, novel radiosensitizers, and imaging agents. Reviewing the current state of nanoparticle-assisted therapies, this paper sheds light on their potential to revolutionize soft tissue sarcoma treatment and improve patient therapy outcomes.
Collapse
Affiliation(s)
- Maria-Eleni Zachou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| | | | | | | | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| |
Collapse
|
15
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
16
|
Cai Y, Zhu B, Shan X, Zhou L, Sun X, Xia A, Wu B, Yu Y, Zhu HH, Zhang P, Li Y. Inhibiting Endothelial Cell-Mediated T Lymphocyte Apoptosis with Integrin-Targeting Peptide-Drug Conjugate Filaments for Chemoimmunotherapy of Triple-Negative Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306676. [PMID: 37847869 DOI: 10.1002/adma.202306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Tumor-associated endothelial cells (TECs) limit antitumor immunity via inducing apoptosis of infiltrating T lymphocytes through a Fas ligand (FasL) mediated mechanism. Herein, this work creates a peptide-drug conjugate (PDC) by linking 7-ethyl-10-hydroxycamptothecin (SN38) to hydrophilic segments with either RGDR or HKD motif at their C-terminus through a glutathione-responsive linker. The PDCs spontaneously assemble into filaments in aqueous solution. The PDC filaments containing 1% of SN38-RGDR (SN38-HKD/RGDR) effectively target triple-negative breast cancer (TNBC) cells and TECs with upregulated expression of integrin, and induce immunogenic cell death (ICD) of tumor cells and FasL downregulation of TECs. SN38-HKD/RGDR increases infiltration, activity, and viability of CD8+ T cells, and thus inhibits the growth of primary tumors and pulmonary metastasis. This study highlights the synergistic modulation of cancerous cells and TECs with integrin-targeting PDC filaments as a promising strategy for TNBC chemoimmunotherapy.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xujie Sun
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Anqi Xia
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Binhao Wu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Shandong, 264000, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, 264000, China
| |
Collapse
|
17
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
18
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
19
|
Riahi K, Dirba I, Ablets Y, Filatova A, Sultana SN, Adabifiroozjaei E, Molina-Luna L, Nuber UA, Gutfleisch O. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake. NANOSCALE ADVANCES 2023; 5:5859-5869. [PMID: 37881718 PMCID: PMC10597555 DOI: 10.1039/d3na00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
This work examines the effect of changing the ratio of different surfactants in single-core iron-based nanoparticles with respect to their specific absorption rate in the context of magnetic hyperthermia and cellular uptake by human umbilical vein endothelial cells (HUVEC). Three types of magnetic nanoparticles were synthesized by separately adding oleic acid or oleylamine or a mixture of both (oleic acid/oleylamine) as surfactants. A carefully controlled thermal decomposition synthesis process led to monodispersed nanoparticles with a narrow size distribution. Spherical-shaped nanoparticles were mainly obtained for those synthesized with oleic acid, while the shape changed upon adding oleylamine. The combined use of oleic acid and oleylamine as surfactants in single-core iron-based nanoparticles resulted in a substantial saturation magnetization, reaching up to 140 A m2 kg-1 at room temperature. The interplay between these surfactants played a crucial role in achieving this high magnetic saturation. By modifying the surface of the magnetic nanoparticles using a mixture of two surfactants, the magnetic fluid hyperthermia heating rate was significantly improved compared to using a single surfactant type. This improvement can be attributed to the larger effective anisotropy achieved through the modification with both (oleic acid/oleylamine). The mixture of surfactants enhances the control of interparticle distance and influences the strength of dipolar interactions, ultimately leading to enhanced heating efficiency. Functionalization of the oleic acid-coated nanoparticles with trimethoxysilane results in the formation of a core-shell structure Fe@Fe3O4, showing exchange bias (EB) associated with the exchange anisotropy between the shell and the core. The biomedical relevance of our synthesized Fe@Fe3O4 nanoparticles was demonstrated by their efficient uptake by human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. This remarkable cellular uptake highlights the potential of these nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- K Riahi
- Functional Materials, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 16 64287 Darmstadt Germany
| | - I Dirba
- Functional Materials, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 16 64287 Darmstadt Germany
| | - Y Ablets
- Functional Materials, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 16 64287 Darmstadt Germany
| | - A Filatova
- Stem Cell and Developmental Biology, Technical University of Darmstadt 64287 Darmstadt Germany
| | - S N Sultana
- Functional Materials, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 16 64287 Darmstadt Germany
- Advanced Electron Microscopy Division, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 22 64287 Darmstadt Germany
| | - E Adabifiroozjaei
- Advanced Electron Microscopy Division, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 22 64287 Darmstadt Germany
| | - L Molina-Luna
- Advanced Electron Microscopy Division, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 22 64287 Darmstadt Germany
| | - U A Nuber
- Stem Cell and Developmental Biology, Technical University of Darmstadt 64287 Darmstadt Germany
| | - O Gutfleisch
- Functional Materials, Institute of Materials Science, Technical University of Darmstadt Peter-Grünberg-Str. 16 64287 Darmstadt Germany
| |
Collapse
|
20
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
21
|
Jung E, Lee YH, Ou S, Kim TY, Shin SY. EGR1 Regulation of Vasculogenic Mimicry in the MDA-MB-231 Triple-Negative Breast Cancer Cell Line through the Upregulation of KLF4 Expression. Int J Mol Sci 2023; 24:14375. [PMID: 37762678 PMCID: PMC10532327 DOI: 10.3390/ijms241814375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Sukjin Ou
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Tae Yoon Kim
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic of Korea; (E.J.); (Y.H.L.); (S.O.); (T.Y.K.)
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
23
|
Dencks S, Schmitz G. Ultrasound localization microscopy. Z Med Phys 2023; 33:292-308. [PMID: 37328329 PMCID: PMC10517400 DOI: 10.1016/j.zemedi.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound Localization Microscopy (ULM) is an emerging technique that provides impressive super-resolved images of microvasculature, i.e., images with much better resolution than the conventional diffraction-limited ultrasound techniques and is already taking its first steps from preclinical to clinical applications. In comparison to the established perfusion or flow measurement methods, namely contrast-enhanced ultrasound (CEUS) and Doppler techniques, ULM allows imaging and flow measurements even down to the capillary level. As ULM can be realized as a post-processing method, conventional ultrasound systems can be used for. ULM relies on the localization of single microbubbles (MB) of commercial, clinically approved contrast agents. In general, these very small and strong scatterers with typical radii of 1-3 µm are imaged much larger in ultrasound images than they actually are due to the point spread function of the imaging system. However, by applying appropriate methods, these MBs can be localized with sub-pixel precision. Then, by tracking MBs over successive frames of image sequences, not only the morphology of vascular trees but also functional information such as flow velocities or directions can be obtained and visualized. In addition, quantitative parameters can be derived to describe pathological and physiological changes in the microvasculature. In this review, the general concept of ULM and conditions for its applicability to microvessel imaging are explained. Based on this, various aspects of the different processing steps for a concrete implementation are discussed. The trade-off between complete reconstruction of the microvasculature and the necessary measurement time as well as the implementation in 3D are reviewed in more detail, as they are the focus of current research. Through an overview of potential or already realized preclinical and clinical applications - pathologic angiogenesis or degeneration of vessels, physiological angiogenesis, or the general understanding of organ or tissue function - the great potential of ULM is demonstrated.
Collapse
Affiliation(s)
- Stefanie Dencks
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany.
| | - Georg Schmitz
- Lehrstuhl für Medizintechnik, Fakultät für Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
24
|
Bates ME, Libring S, Reinhart-King CA. Forces exerted and transduced by cancer-associated fibroblasts during cancer progression. Biol Cell 2023; 115:e2200104. [PMID: 37224184 PMCID: PMC10757454 DOI: 10.1111/boc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
25
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
26
|
Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, Li X. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal 2023; 13:239-254. [PMID: 37102112 PMCID: PMC10123947 DOI: 10.1016/j.jpha.2022.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Flavonoids such as baohuoside I and icaritin are the major active compounds in Epimedii Folium (EF) and possess excellent therapeutic effects on various diseases. Encouragingly, in 2022, icaritin soft capsules were approved to reach the market for the treatment of hepatocellular carcinoma (HCC) by National Medical Products Administration (NMPA) of China. Moreover, recent studies demonstrate that icaritin can serve as immune-modulating agent to exert anti-tumor effects. Nonetheless, both production efficiency and clinical applications of epimedium flavonoids have been restrained because of their low content, poor bioavailability, and unfavorable in vivo delivery efficiency. Recently, various strategies, including enzyme engineering and nanotechnology, have been developed to increase productivity and activity, improve delivery efficiency, and enhance therapeutic effects of epimedium flavonoids. In this review, the structure-activity relationship of epimedium flavonoids is described. Then, enzymatic engineering strategies for increasing the productivity of highly active baohuoside I and icaritin are discussed. The nanomedicines for overcoming in vivo delivery barriers and improving therapeutic effects of various diseases are summarized. Finally, the challenges and an outlook on clinical translation of epimedium flavonoids are proposed.
Collapse
Affiliation(s)
- Yi Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiulan Luo
- College of Fashion & Design, Jiaxing Nanhu University, Jiaxing, Zhejiang, 314001, China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
27
|
Jung E, Ou S, Ahn SS, Yeo H, Lee YH, Shin SY. The JNK-EGR1 signaling axis promotes TNF-α-induced endothelial differentiation of human mesenchymal stem cells via VEGFR2 expression. Cell Death Differ 2023; 30:356-368. [PMID: 36371601 PMCID: PMC9950069 DOI: 10.1038/s41418-022-01088-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into endothelial cells; however, the mechanisms underlying this process in the tumor microenvironment (TME) remain elusive. This study shows that tumor necrosis factor alpha (TNF-α), a key cytokine present in the TME, promotes the endothelial differentiation of MSCs by inducing vascular endothelial growth factor receptor 2 (VEGFR2) gene expression. EGR1 is a member of the zinc-finger transcription factor family induced by TNF-α. Our findings indicate that EGR1 directly binds to the VEGFR2 promoter and transactivates VEGFR2 expression. We also demonstrate that EGR1 forms a complex with c-JUN activated by c-JUN N-terminal kinase (JNK) to promote VEGFR2 transcription and endothelial differentiation in MSCs in response to TNF-α stimulation. The shRNA-mediated silencing of EGR1 or c-JUN abrogates TNF-α-induced VEGFR2 transcription and the endothelial differentiation of MSCs. To further evaluated the role of EGR1 in the endothelial differentiation of BM-MSCs, we used a syngenic tumor implantation model. 4T1 mouse mammary tumor cells were injected subcutaneously into BALB/c mice with primary mBM-MSCs isolated from wild-type (Egr1+/+) or Egr1-null (Egr1-/-) mice. CD31-positive cells were predominantly observed at the border of the tumor in the 4T1 plus wild-type MSC group, while staining less in the 4T1 alone or 4T1 plus Egr1-null MSC group. Collectively, these findings demonstrate that the JNK-EGR1 signaling axis plays a crucial role in the TNF-α-induced endothelial differentiation of MSCs in the TME, which could be a potential therapeutic target for solid tumors vasculatures.
Collapse
Affiliation(s)
- Euitaek Jung
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sukjin Ou
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yeo
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Lifescience, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
28
|
Kumar S. Perfusion-Based Fluorescent Dye Labeling to Sort Cancer Cells Based on Their Distance from Blood Vessels. Methods Mol Biol 2023; 2572:55-66. [PMID: 36161407 DOI: 10.1007/978-1-0716-2703-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor vasculature is the major extrinsic factor that shapes Intra-tumoral heterogeneity (ITH). Non-uniform exposure of microenvironmental cues greatly impacts cancer cell phenotypes leading to ITH, which exacerbates therapy resistance. This raises a need to study the influence of non-uniform perfusion patterns and the resulting heterogeneity that persists within the tumor microenvironment (TME). A method was developed to identify cancer cells based on their proximity to functional blood vessels (BVs) called perfusion-based fluorescent dye labeling of cells (PFDLC). PFDLC works on the principle of perfusion, where a freely diffusible nuclear binding fluorescent dye (Hoechst 33342) is injected intravenously (i.v.) through a tail vein into atumor-bearing mice. The tumors are retrieved post dye perfusion, dissociated into single cells, and sorted based on their dye uptake proportional to their distance from the nearest blood capillary. This method is amenable to multi-omics as well as functional assays.
Collapse
Affiliation(s)
- Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
29
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
30
|
Faria P, Pacheco C, Moura RP, Sarmento B, Martins C. Multifunctional nanomedicine strategies to manage brain diseases. Drug Deliv Transl Res 2022; 13:1322-1342. [PMID: 36344871 DOI: 10.1007/s13346-022-01256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Brain diseases represent a substantial social and economic burden, currently affecting one in six individuals worldwide. Brain research has been focus of great attention in order to unravel the pathogenesis and complexity of brain diseases at the cellular, molecular, and microenvironmental levels. Due to the intrinsic nature of the brain, the presence of the highly restrictive blood-brain barrier (BBB), and the pathophysiology of most diseases, therapies can hardly be considered successful purely by the administration of one drug to a patient. Apart from improving pharmacokinetic parameters, tailoring biodistribution, and reducing the number of side effects, nanomedicines are able to actively co-target the therapeutics to the brain parenchyma and brain lesions, as well as to achieve the delivery of multiple cargos with therapeutic, diagnostic, and theranostic properties. Among other multivalent effects that can be personalized according to the disease needs, this represents a promising class of novel nanosystems, termed multifunctional nanomedicines. Herein, we review the principal mechanisms of therapeutic resistance of the most prevalent brain diseases, how to overcome this therapeutic resistance through the use of multifunctional nanomedicines that tackle multiple fronts of the disease microenvironment, and the promising therapeutic responses achieved by some of the most cutting-edge multifunctional nanomedicines reported in literature.
Collapse
|
31
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
32
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
33
|
Li L, Liu N, Zhang H, Tao R, Zhao S, Chen Z, Fu Z, Li W, Xu L, Liu Y, Yu J, Yuan S. Potential 18F-RGD PET/CT and DCE-MRI Imaging-Based Biomarkers for Postoperative Survival Prediction Among Patients With Newly Diagnosed Glioblastoma Treated With Bevacizumab and Chemoradiotherapy. Front Oncol 2022; 12:848266. [PMID: 36091179 PMCID: PMC9459034 DOI: 10.3389/fonc.2022.848266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the ability of potential imaging biomarkers based on 18F-AlF-NOTA-PRGD2 positron emission tomography/computed tomography (18F-RGD PET/CT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging to predict the response to bevacizumab combined with conventional therapy in postoperative newly diagnosed glioblastoma. Methods Twenty patients with newly diagnosed with glioblastoma after surgery were prospectively enrolled to receive bevacizumab plus conventional concurrent radiotherapy and temozolomide (CCRT). 18F-RGD PET/CT and DCE-MRI were performed at baseline, week 3, and week 10 for each patient. Statistical methods included the analysis of variance (ANOVA), Kaplan–Meier method and Cox proportional hazard analysis. Results All patients completed CCRT plus bevacizumab therapy without interruption. The median follow-up time was 33.9 months (95% confidence interval [CI], 28.3-39.5 months). The median progression-free survival (PFS) and overall survival (OS) was 9.66 months (95% CI, 6.20-13.12 months) and 15.89 months (95% CI, 13.89-17.78), respectively. Treatment was generally well tolerated, and there were no Treatment emergent adverse events (TEAEs) with a toxicity grade equal to or exceeding 3 or that led to termination of treatment or patient death.Over the treatment interval of bevacizumab therapy from week 3 to week 10, patients with a large decrease of SUVmean was associated with a better PFS with a hazard ratio (HR) of 6.562, 95% CI (1.318-32.667), p=0.022. According to Kaplan-Meier analysis, patients with a decrease in the SUVmean of more than 0.115 on 18F-RGD PET/CT had a longer PFS than those with a decrease in the SUVmean of 0.115 or less (12.25 months vs.7.46 months, p=0.009). For OS, only a small decrease of Ktrans was also found to have certain prognostic value (HR=0.986, 95% CI (0.975-0.998), p=0.023). Patients with a decrease in Ktrans larger than 37.03 (min-1) on DCE-MRI had worse OS than those with a decrease in Ktrans of 37.03 (min-1) or less (15.93 months vs. 26.42 months, p=0.044). Conclusion 18F-RGD PET/CT and DCE-MRI may be valuable in evaluating the response of glioblastoma to treatment with the combination of bevacizumab and CCRT, with a greater decrease in SUVmean predicting better PFS as well as a small decrease in Ktrans predicting improved OS.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ning Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhang
- Department of Oncology, Linyi Cancer Hospital, Linyi, China
| | - Rongjie Tao
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqiang Zhao
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhaoqiu Chen
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zheng Fu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Xu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuhui Liu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu,
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Shuanghu Yuan, ; Jinming Yu,
| |
Collapse
|
34
|
Miyazaki T, Chen S, Florinas S, Igarashi K, Matsumoto Y, Yamasoba T, Xu ZQ, Wu H, Gao C, Kataoka K, Christie RJ, Cabral H. A Hoechst Reporter Enables Visualization of Drug Engagement In Vitro and In Vivo: Toward Safe and Effective Nanodrug Delivery. ACS NANO 2022; 16:12290-12304. [PMID: 35942986 DOI: 10.1021/acsnano.2c03170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.
Collapse
Affiliation(s)
- Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Shaoyi Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Stelios Florinas
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Kazunori Igarashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ze-Qi Xu
- SynChem, Inc., Elk Grove Village, Illinois 60007, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - R James Christie
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
- Biologics Engineering, AstraZeneca Oncology R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Tumor Temperature: Friend or Foe of Virus-Based Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10082024. [PMID: 36009571 PMCID: PMC9405776 DOI: 10.3390/biomedicines10082024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The temperature of a solid tumor is often dissimilar to baseline body temperature and, compared to healthy tissues, may be elevated, reduced, or a mix of both. The temperature of a tumor is dependent on metabolic activity and vascularization and can change due to tumor progression, treatment, or cancer type. Despite the need to function optimally within temperature-variable tumors, oncolytic viruses (OVs) are primarily tested at 37 °C in vitro. Furthermore, animal species utilized to test oncolytic viruses, such as mice, dogs, cats, and non-human primates, poorly recapitulate the temperature profile of humans. In this review, we discuss the importance of temperature as a variable for OV immunotherapy of solid tumors. Accumulating evidence supports that the temperature sensitivity of OVs lies on a spectrum, with some OVs likely hindered but others enhanced by elevated temperatures. We suggest that in vitro temperature sensitivity screening be performed for all OVs destined for the clinic to identify potential hinderances or benefits with regard to elevated temperature. Furthermore, we provide recommendations for the clinical use of temperature and OVs.
Collapse
|
36
|
Munir MU. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers (Basel) 2022; 14:cancers14122904. [PMID: 35740570 PMCID: PMC9221319 DOI: 10.3390/cancers14122904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Nanomedicine has been under investigation for several years to improve the efficiency of chemotherapeutics, having minimal pharmacological effects clinically. Ineffective tumor penetration is mediated by tumor environments, including limited vascular system, rising cancer cells, higher interstitial pressure, and extra-cellular matrix, among other things. Thus far, numerous methods to increase nanomedicine access to tumors have been described, including the manipulation of tumor micro-environments and the improvement of nanomedicine characteristics; however, such outdated approaches still have shortcomings. Multi-functional convertible nanocarriers have recently been developed as an innovative nanomedicine generation with excellent tumor infiltration abilities, such as tumor-penetrating peptide-mediated transcellular transport. The developments and limitations of nanomedicines, as well as expectations for better outcomes of tumor penetration, are discussed in this review.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
37
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
38
|
Compact Smartphone-Based Laser Speckle Contrast Imaging Endoscope Device for Point-of-Care Blood Flow Monitoring. BIOSENSORS 2022; 12:bios12060398. [PMID: 35735546 PMCID: PMC9220785 DOI: 10.3390/bios12060398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Laser speckle contrast imaging (LSCI) is a powerful visualization tool for quantifying blood flow in tissues, providing simplicity of configuration, ease of use, and intuitive results. With recent advancements, smartphone and camera technologies are suitable for the development of smartphone-based LSCI applications for point-of-care (POC) diagnosis. A smartphone-based portable LSCI endoscope system was validated for POC diagnosis of vascular disorders. The endoscope consisted of compact LED and laser illumination, imaging optics, and a flexible fiberscope assembled in a 3D-printed hand-held cartridge for access to body cavities and organs. A smartphone’s rear camera was mounted thereto, enabling endoscopy, LSCI image acquisition, and processing. Blood flow imaging was calibrated in a perfused tissue phantom consisting of a microparticle solution pumped at known rates through tissue-mimicking gel and validated in a live rat model of BBN-induced bladder cancer. Raw LSCI images successfully visualized phantom flow: speckle flow index showed linearity with the pump flow rate. In the rat model, healthy and cancerous bladders were distinguishable in structure and vasculature. The smartphone-based low-cost portable mobile endoscope for monitoring blood flow and perfusion shows promise for preclinical applications and may be suitable for primary diagnosis at home or as a cost-effective POC testing assay.
Collapse
|
39
|
González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, Balderas-Rentería I, Arredondo-Espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Xiao L, Xin J. Advances in Clinical Oncology Research on 99mTc-3PRGD2 SPECT Imaging. Front Oncol 2022; 12:898764. [PMID: 35712468 PMCID: PMC9195171 DOI: 10.3389/fonc.2022.898764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The integrin alpha(α)v beta(β)3 receptor is ubiquitous in malignant tumors and has a certain level of specificity for tumors. Technetium-99m hydrazinonicotinamide-dimeric cyclic arginyl-glycyl-aspartic acid peptide with three polyethylene glycol spacers (99mTc-3PRGD2) can bind specifically to the integrin αvβ3 receptor with high selectivity and strong affinity. Thus, it can specifically mark tumors and regions with angiogenesis for tumor detection and be used in single-photon emission computed tomography (SPECT) imaging. This modality has good application value for diagnosing and treating tumor lesions, such as those in the lung, breast, esophagus, head, and neck. This review provides an overview of the current clinical research progress of 99mTc-3PRGD2 SPECT imaging for tumor lesions, including for the diagnosis and differential diagnosis of tumors in different body parts, evaluation of related metastases, and evaluation of efficacy. In addition, the future clinical application prospects and possibilities of 99mTc-3PRGD2 SPECT imaging are further discussed.
Collapse
|
41
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
42
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Giordo R, Wehbe Z, Paliogiannis P, Eid AH, Mangoni AA, Pintus G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin Cancer Biol 2022; 86:784-804. [DOI: 10.1016/j.semcancer.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
44
|
Ayoub NM, Jaradat SK, Al-Shami KM, Alkhalifa AE. Targeting Angiogenesis in Breast Cancer: Current Evidence and Future Perspectives of Novel Anti-Angiogenic Approaches. Front Pharmacol 2022; 13:838133. [PMID: 35281942 PMCID: PMC8913593 DOI: 10.3389/fphar.2022.838133] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a vital process for the growth and dissemination of solid cancers. Numerous molecular pathways are known to drive angiogenic switch in cancer cells promoting the growth of new blood vessels and increased incidence of distant metastasis. Several angiogenesis inhibitors are clinically available for the treatment of different types of advanced solid cancers. These inhibitors mostly belong to monoclonal antibodies or small-molecule tyrosine kinase inhibitors targeting the classical vascular endothelial growth factor (VEGF) and its receptors. Nevertheless, breast cancer is one example of solid tumors that had constantly failed to respond to angiogenesis inhibitors in terms of improved survival outcomes of patients. Accordingly, it is of paramount importance to assess the molecular mechanisms driving angiogenic signaling in breast cancer to explore suitable drug targets that can be further investigated in preclinical and clinical settings. This review summarizes the current evidence for the effect of clinically available anti-angiogenic drugs in breast cancer treatment. Further, major mechanisms associated with intrinsic or acquired resistance to anti-VEGF therapy are discussed. The review also describes evidence from preclinical and clinical studies on targeting novel non-VEGF angiogenic pathways in breast cancer and several approaches to the normalization of tumor vasculature by targeting pericytes, utilization of microRNAs and extracellular tumor-associate vesicles, using immunotherapeutic drugs, and nanotechnology.
Collapse
Affiliation(s)
- Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
- *Correspondence: Nehad M. Ayoub,
| | - Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Kamal M. Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Amer E. Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
45
|
Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Semin Cancer Biol 2022; 86:886-908. [DOI: 10.1016/j.semcancer.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
46
|
Cinnamaldehyde Downregulation of Sept9 Inhibits Glioma Progression through Suppressing Hif-1α via the Pi3k/Akt Signaling Pathway. DISEASE MARKERS 2022; 2022:6530934. [PMID: 35096204 PMCID: PMC8791712 DOI: 10.1155/2022/6530934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023]
Abstract
Purpose Cinnamaldehyde (CA) is the main ingredient in cinnamon, and it has been proven to have an inhibitory effect on many different tumor types. However, it lacks effect on glioma. This paper explores the effect CA has on glioma cells U87 and U251 at the cellular and molecular levels. Methods The relationship between Hif-1α and Sept9 was found by CGGA. Cell Viability Assay (CCK8) was made to detect the proliferation ability. The scratch experiment and the transwell experiment were applied to the migration and invasion ability. Annexin V-FITC/PI were used to detect the cell apoptosis. Western blotting was used to determine the specified protein level. Results Cell proliferation assay results revealed CA to inhibit the proliferation of glioma cells in a dose-dependent manner. It promoted apoptosis for upregulating the expression of Bax and downregulating the expression of Bcl-2. Wound Healing Assay and transwell test found CA to have anti-invasion ability and that it upregulated the expression of E-cadherin and downregulated the expressions of MMP-2 and MMP-9. The molecular mechanism was studied from a tumor microenvironment (TME) perspective. Pi3k inhibitor (LY294002) was used for interfering with cells, and the results found CA to demonstrate a similar effect. Hif-1α and Sept9 expressions were inhibited, and Akt and p-Akt were also inhibited. By using CoCl2 to make hypoxia, CA was discovered to inhibit the high expression of Hif-1α and Sept9, demonstrating a correlation with the Pi3k/Akt pathway. It is suggested that the mechanism of Sept9 under hypoxia regulation can be realized through the Pi3k/Akt pathway. Conclusions This study proves for the first time that CA is an effective drug for inhibiting the proliferation of glioma through Sept9 and reveals Sept9 to be related to the Pi3k/Akt pathway in terms of tumor microenvironment, providing a molecular basis for the further study of CA in glioma treatment.
Collapse
|
47
|
Li JH, O’Sullivan TE. Back to the Future: Spatiotemporal Determinants of NK Cell Antitumor Function. Front Immunol 2022; 12:816658. [PMID: 35082797 PMCID: PMC8785903 DOI: 10.3389/fimmu.2021.816658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.
Collapse
Affiliation(s)
- Joey H. Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Medical Scientist Training Program, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
48
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
49
|
Michallek F, Huisman H, Hamm B, Elezkurtaj S, Maxeiner A, Dewey M. Prediction of prostate cancer grade using fractal analysis of perfusion MRI: retrospective proof-of-principle study. Eur Radiol 2021; 32:3236-3247. [PMID: 34913991 PMCID: PMC9038862 DOI: 10.1007/s00330-021-08394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Multiparametric MRI has high diagnostic accuracy for detecting prostate cancer, but non-invasive prediction of tumor grade remains challenging. Characterizing tumor perfusion by exploiting the fractal nature of vascular anatomy might elucidate the aggressive potential of a tumor. This study introduces the concept of fractal analysis for characterizing prostate cancer perfusion and reports about its usefulness for non-invasive prediction of tumor grade. METHODS We retrospectively analyzed the openly available PROSTATEx dataset with 112 cancer foci in 99 patients. In all patients, histological grading groups specified by the International Society of Urological Pathology (ISUP) were obtained from in-bore MRI-guided biopsy. Fractal analysis of dynamic contrast-enhanced perfusion MRI sequences was performed, yielding fractal dimension (FD) as quantitative descriptor. Two-class and multiclass diagnostic accuracy was analyzed using area under the curve (AUC) receiver operating characteristic analysis, and optimal FD cutoffs were established. Additionally, we compared fractal analysis to conventional apparent diffusion coefficient (ADC) measurements. RESULTS Fractal analysis of perfusion allowed accurate differentiation of non-significant (group 1) and clinically significant (groups 2-5) cancer with a sensitivity of 91% (confidence interval [CI]: 83-96%) and a specificity of 86% (CI: 73-94%). FD correlated linearly with ISUP groups (r2 = 0.874, p < 0.001). Significant groupwise differences were obtained between low, intermediate, and high ISUP group 1-4 (p ≤ 0.001) but not group 5 tumors. Fractal analysis of perfusion was significantly more reliable than ADC in predicting non-significant and clinically significant cancer (AUCFD = 0.97 versus AUCADC = 0.77, p < 0.001). CONCLUSION Fractal analysis of perfusion MRI accurately predicts prostate cancer grading in low-, intermediate-, and high-, but not highest-grade, tumors. KEY POINTS • In 112 prostate carcinomas, fractal analysis of MR perfusion imaging accurately differentiated low-, intermediate-, and high-grade cancer (ISUP grade groups 1-4). • Fractal analysis detected clinically significant prostate cancer with a sensitivity of 91% (83-96%) and a specificity of 86% (73-94%). • Fractal dimension of perfusion at the tumor margin may provide an imaging biomarker to predict prostate cancer grading.
Collapse
Affiliation(s)
- Florian Michallek
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Henkjan Huisman
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Maxeiner
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
50
|
Modulation of the Blood-Brain Barrier for Drug Delivery to Brain. Pharmaceutics 2021; 13:pharmaceutics13122024. [PMID: 34959306 PMCID: PMC8708282 DOI: 10.3390/pharmaceutics13122024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) precisely controls brain microenvironment and neural activity by regulating substance transport into and out of the brain. However, it severely hinders drug entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modulation of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis, possesses the potential to increase BBB permeability and improve intracranial drug concentrations and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and investigated preclinically and/or clinically. This review describes conventional and emerging BBB modulation strategies and related mechanisms, and safety issues according to BBB structures and functions, to try to give more promising directions for designing more reasonable preclinical and clinical studies.
Collapse
|