1
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
2
|
Pulkkinen HH, Kivistö-Rahnasto A, Korpela H, Heikkilä M, Järveläinen N, Siimes S, Kilpeläinen L, Laham-Karam N, Ylä-Herttuala S, Laakkonen JP. BMP2 gene transfer induces pericardial effusion and inflammatory response in the ischemic porcine myocardium. Front Cardiovasc Med 2023; 10:1279613. [PMID: 38028463 PMCID: PMC10655027 DOI: 10.3389/fcvm.2023.1279613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pro-angiogenic gene therapy is being developed to treat coronary artery disease (CAD). We recently showed that bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor-A synergistically regulate endothelial cell sprouting in vitro. BMP2 was also shown to induce endocardial angiogenesis in neonatal mice post-myocardial infarction. In this study, we investigated the potential of BMP2 gene transfer to improve cardiomyocyte function and neovessel formation in a pig chronic myocardial infarction model. Ischemia was induced in domestic pigs by placing a bottleneck stent in the proximal part of the left anterior descending artery 14 days before gene transfer. Intramyocardial gene transfers with adenovirus vectors (1 × 1012 viral particles/pig) containing either human BMP2 (AdBMP2) or beta-galactosidase (AdLacZ) control gene were performed using a needle injection catheter. BMP2 transgene expression in the myocardium was detected with immunofluorescence staining in the gene transfer area 6 days after AdBMP2 administration. BMP2 gene transfer did not induce angiogenesis or cardiomyocyte proliferation in the ischemic pig myocardium as determined by the quantitations of CD31 or Ki-67 stainings, respectively. Accordingly, no changes in heart contractility were detected in left ventricular ejection fraction and strain measurements. However, BMP2 gene transfer induced pericardial effusion (AdBMP2: 9.41 ± 3.17 mm; AdLacZ: 3.07 ± 1.33 mm) that was measured by echocardiography. Furthermore, an increase in the number of immune cells and CD3+ T cells was found in the BMP2 gene transfer area. No changes were detected in the clinical chemistry analysis of pig serum or histology of the major organs, implicating that the gene transfer did not induce general toxicity, myocardial injury, or off-target effects. Finally, the levels of fibrosis and cardiomyocyte apoptosis detected by Sirius red or caspase 3 stainings, respectively, remained unaltered between the groups. Our results demonstrate that BMP2 gene transfer causes inflammatory changes and pericardial effusion in the adult ischemic myocardium, which thus does not support its therapeutic use in chronic CAD.
Collapse
Affiliation(s)
- H. H. Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A. Kivistö-Rahnasto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H. Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M. Heikkilä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L. Kilpeläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - J. P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Traxler D, Dannenberg V, Zlabinger K, Gugerell A, Mester-Tonczar J, Lukovic D, Spannbauer A, Hasimbegovic E, Kastrup J, Gyöngyösi M. Plasma Small Extracellular Vesicle Cardiac miRNA Expression in Patients with Ischemic Heart Failure, Randomized to Percutaneous Intramyocardial Treatment of Adipose Derived Stem Cells or Placebo: Subanalysis of the SCIENCE Study. Int J Mol Sci 2023; 24:10647. [PMID: 37445825 DOI: 10.3390/ijms241310647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small extracellular vesicles (EVs) and their cargo are an important component of cell-to-cell communication in cardiac disease. Allogeneic adipose derived stem cells (ADSCs) are thought to be a potential approach for cardiac regenerative therapy in ischemic heart disease. The SCIENCE study investigated the effect of ADSCs administered via intramyocardial injection on cardiac function in patients with ischemic heart disease. The aim of this substudy, based on samples from 15 patients, was to explore small EV miRNA dynamics after treatment with ADSCs compared to a placebo. Small EVs were isolated at several timepoints after the percutaneous intramyocardial application of ADSCs. No significant effect of ADSC treatment on small EV concentration was detected. After 12 months, the expression of miR-126 decreased significantly in ADSC patients, but not in the placebo-treated group. However, all cardiac miRNAs correlated with plasma cardiac biomarkers. In line with the overall negative results of the SCIENCE study, with the exception of one miR, we did not detect any significant regulation of small EV miRNAs in this patient collective.
Collapse
Affiliation(s)
- Denise Traxler
- Division of Cardiology, Department of Internal Medicine II and Department of Oral and Maxillofacial Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Varius Dannenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfred Gugerell
- Division of Cardiology, Department of Internal Medicine II, Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Kastrup
- Cardiology Stem Cell Centre, Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Henrik Harpestrengs Vej 4, 2100 Copenhagen, Denmark
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Wilczek J, Jadczyk T, Wojakowski W, Gołba KS. Left ventricular electrical potential measured by the NOGA XP electromechanical mapping method as a predictor of response to cardiac resynchronization therapy. Front Cardiovasc Med 2023; 10:1107415. [PMID: 37215549 PMCID: PMC10193837 DOI: 10.3389/fcvm.2023.1107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Objectives The aim of the study was to determine whether left ventricular electrical potential measured by electromechanical mapping with the NOGA XP system has predictive value for response to CRT. Background Approximately 30% of patients who undergo cardiac resynchronization therapy do not see the expected effects. Methods The group of 38 patients qualified for CRT implantation were included in the study, of which 33 patients were analyzed. A 15% reduction in ESV after 6 months of pacing was used as a criterion for a positive response to CRT. The mean value and sum of unipolar and bipolar potentials obtained by mapping with the NOGA XP system and their predictive value in relation to the effect of CRT were analyzed using a bulls-eye projection at three levels: 1) the global value of the left ventricular (LV) potentials, 2) the potentials of the individual LV walls and 3) the mean value of the potentials of the individual segments (basal and middle) of the individual LV walls. Results 24 patients met the criterion of a positive response to CRT vs. 9 non-responders. At the global analysis stage, the independent predictors of favorable response to CRT were the sum of the unipolar potential and bipolar mean potential. In the analysis of individual left ventricular walls, the mean bipolar potential of the anterior and posterior wall and in the unipolar system, mean septal potential was found to be an independent predictor of favorable response to CRT. In the detailed segmental analysis, the independent predictors were the bipolar potential of the mid-posterior wall segment and the basal anterior wall segment. Conclusions Measurement of bipolar and unipolar electrical potentials with the NOGA XP system is a valuable method for predicting a favorable response to CRT.
Collapse
Affiliation(s)
- Jacek Wilczek
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
- Electrocardiology Department, Upper Silesian Medical Center, Katowice, Poland
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Third Department of Cardiology, Upper Silesian Medical Center, Katowice, Poland
| | - Krzysztof S. Gołba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
- Electrocardiology Department, Upper Silesian Medical Center, Katowice, Poland
| |
Collapse
|
5
|
Korpela H, Lampela J, Airaksinen J, Järveläinen N, Siimes S, Valli K, Nieminen T, Turunen M, Grönman M, Saraste A, Knuuti J, Hakulinen M, Poutiainen P, Kärjä V, Nurro J, Ylä-Herttuala S. AAV2-VEGF-B gene therapy failed to induce angiogenesis in ischemic porcine myocardium due to inflammatory responses. Gene Ther 2022; 29:643-652. [PMID: 35132204 PMCID: PMC9684066 DOI: 10.1038/s41434-022-00322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/09/2023]
Abstract
Therapeutic angiogenesis induced by gene therapy is a promising approach to treat patients suffering from severe coronary artery disease. In small experimental animals, adeno-associated viruses (AAVs) have shown good transduction efficacy and long-term transgene expression in heart muscle and other tissues. However, it has been difficult to achieve cardiac-specific angiogenic effects with AAV vectors. We tested the hypothesis whether AAV2 gene transfer (1 × 1013 vg) of vascular endothelial growth factor B (VEGF-B186) together with immunosuppressive corticosteroid treatment can induce long-term cardiac-specific therapeutic effects in the porcine ischemic heart. Gene transfers were delivered percutaneously using direct intramyocardial injections, improving targeting and avoiding direct contact with blood, thus reducing the likelihood of immediate immune reactions. After 1- and 6-month time points, the capillary area was analyzed, myocardial perfusion reserve (MPR) was measured with radiowater positron emission tomography ([15O]H2O-PET), and fluorodeoxyglucose ([18F]FDG) uptake was used to evaluate myocardial viability. Clinical chemistry and immune responses were analyzed using standard methods. After 1- and 6-month follow-up, AAV2-VEGF-B186 gene transfer failed to induce angiogenesis and improve myocardial perfusion and viability. Here, we show that inflammatory responses attenuated the therapeutic effect of AAV2 gene transfer by significantly reducing successful transduction and long-term gene expression despite the efforts to reduce the likelihood of immune reactions and the use of targeted local gene transfer methods.
Collapse
Affiliation(s)
- Henna Korpela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Lampela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Airaksinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niko Järveläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Satu Siimes
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Valli
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Minttu Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Grönman
- Turku PET Centre, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Vesa Kärjä
- Kuopio University Hospital, Kuopio, Finland
| | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
6
|
Liu S, Li RG, Martin JF. The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. J Mol Cell Cardiol 2022; 168:98-106. [DOI: 10.1016/j.yjmcc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
7
|
Gyöngyösi M, Pokushalov E, Romanov A, Perin E, Hare JM, Kastrup J, Fernández-Avilés F, Sanz-Ruiz R, Mathur A, Wojakowski W, Martin-Rendon E, Pavo N, Pavo IJ, Hemetsberger R, Traxler D, Spannbauer A, Haller PM. Meta-Analysis of Percutaneous Endomyocardial Cell Therapy in Patients with Ischemic Heart Failure by Combination of Individual Patient Data (IPD) of ACCRUE and Publication-Based Aggregate Data. J Clin Med 2022; 11:jcm11113205. [PMID: 35683592 PMCID: PMC9181462 DOI: 10.3390/jcm11113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Individual patient data (IPD)-based meta-analysis (ACCRUE, meta-analysis of cell-based cardiac studies, NCT01098591) revealed an insufficient effect of intracoronary cell-based therapy in acute myocardial infarction. Patients with ischemic heart failure (iHF) have been treated with reparative cells using percutaneous endocardial, surgical, transvenous or intracoronary cell delivery methods, with variable effects in small randomized or cohort studies. The objective of this meta-analysis was to investigate the safety and efficacy of percutaneous transendocardial cell therapy in patients with iHF. Two investigators extracted the data. Individual patient data (IPD) (n = 8 studies) and publication-based (n = 10 studies) aggregate data were combined for the meta-analysis, including patients (n = 1715) with chronic iHF. The data are reported in accordance with PRISMA guidelines. The primary safety and efficacy endpoints were all-cause mortality and changes in global ejection fraction. The secondary safety and efficacy endpoints were major adverse events, hospitalization and changes in end-diastolic and end-systolic volumes. Post hoc analyses were performed using the IPD of eight studies to find predictive factors for treatment safety and efficacy. Cell therapy was significantly (p < 0.001) in favor of survival, major adverse events and hospitalization during follow-up. A forest plot analysis showed that cell therapy presents a significant benefit of increasing ejection fraction with a mean change of 2.51% (95% CI: 0.48; 4.54) between groups and of significantly decreasing end-systolic volume. The analysis of IPD data showed an improvement in the NYHA and CCS classes. Cell therapy significantly decreased the end-systolic volume in male patients; in patients with diabetes mellitus, hypertension or hyperlipidemia; and in those with previous myocardial infarction and baseline ejection fraction ≤ 45%. The catheter-based transendocardial delivery of regenerative cells proved to be safe and effective for improving mortality and cardiac performance. The greatest benefit was observed in male patients with significant atherosclerotic co-morbidities.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
- Correspondence: ; Tel.: +43-1-40400-46140
| | - Evgeny Pokushalov
- Center of the New and Modern Medical Technologies, 630090 Novosibirsk, Russia;
| | - Aleksander Romanov
- E. Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia;
| | - Emerson Perin
- Stem Cell Center and Adult Cardiology, Texas Heart Institute, Houston, TX 37660, USA;
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Ricardo Sanz-Ruiz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.F.-A.); (R.S.-R.)
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Wojcieh Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Enca Martin-Rendon
- R&D Division, National Health Service (NHS)-Blood and Transplant, Oxford Centre, Oxford OX3 9DU, UK;
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Imre J. Pavo
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rayyan Hemetsberger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.P.); (R.H.); (D.T.); (A.S.)
| | - Paul M. Haller
- Department of Cardiology, University Heart and Vascular Center UKE Hamburg, 20246 Hamburg, Germany;
| |
Collapse
|
8
|
Villegas-Martinez M, Krogh MR, Andersen ØS, Sletten OJ, Wajdan A, Odland HH, Elle OJ, Remme EW. Tracking Early Systolic Motion for Assessing Acute Response to Cardiac Resynchronization Therapy in Real Time. Front Physiol 2022; 13:903784. [PMID: 35721553 PMCID: PMC9201723 DOI: 10.3389/fphys.2022.903784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
An abnormal systolic motion is frequently observed in patients with left bundle branch block (LBBB), and it has been proposed as a predictor of response to cardiac resynchronization therapy (CRT). Our goal was to investigate if this motion can be monitored with miniaturized sensors feasible for clinical use to identify response to CRT in real time. Motion sensors were attached to the septum and the left ventricular (LV) lateral wall of eighteen anesthetized dogs. Recordings were performed during baseline, after induction of LBBB, and during biventricular pacing. The abnormal contraction pattern in LBBB was quantified by the septal flash index (SFI) equal to the early systolic shortening of the LV septal-to-lateral wall diameter divided by the maximum shortening achieved during ejection. In baseline, with normal electrical activation, there was limited early-systolic shortening and SFI was low (9 ± 8%). After induction of LBBB, this shortening and the SFI significantly increased (88 ± 34%, p < 0.001). Subsequently, CRT reduced it approximately back to baseline values (13 ± 13%, p < 0.001 vs. LBBB). The study showed the feasibility of using miniaturized sensors for continuous monitoring of the abnormal systolic motion of the LV in LBBB and how such sensors can be used to assess response to pacing in real time to guide CRT implantation.
Collapse
Affiliation(s)
- Manuel Villegas-Martinez
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Magnus Reinsfelt Krogh
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ole Jakob Sletten
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Department of Cardiology and Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ali Wajdan
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Hans Henrik Odland
- Department of Cardiology and Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ole Jakob Elle
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Espen W. Remme
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- *Correspondence: Espen W. Remme,
| |
Collapse
|
9
|
Gara E, Ong SG, Winkler J, Zlabinger K, Lukovic D, Merkely B, Emmert MY, Wolint P, Hoerstrup SP, Gyöngyösi M, Wu JC, Pavo N. Cell-Based HIF1α Gene Therapy Reduces Myocardial Scar and Enhances Angiopoietic Proteome, Transcriptomic and miRNA Expression in Experimental Chronic Left Ventricular Dysfunction. Front Bioeng Biotechnol 2022; 10:767985. [PMID: 35646882 PMCID: PMC9133350 DOI: 10.3389/fbioe.2022.767985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent preclinical investigations and clinical trials with stem cells mostly studied bone-marrow-derived mononuclear cells (BM-MNCs), which so far failed to meet clinically significant functional study endpoints. BM-MNCs containing small proportions of stem cells provide little regenerative potential, while mesenchymal stem cells (MSCs) promise effective therapy via paracrine impact. Genetic engineering for rationally enhancing paracrine effects of implanted stem cells is an attractive option for further development of therapeutic cardiac repair strategies. Non-viral, efficient transfection methods promise improved clinical translation, longevity and a high level of gene delivery. Hypoxia-induced factor 1α is responsible for pro-angiogenic, anti-apoptotic and anti-remodeling mechanisms. Here we aimed to apply a cellular gene therapy model in chronic ischemic heart failure in pigs. A non-viral circular minicircle DNA vector (MiCi) was used for in vitro transfection of porcine MSCs (pMSC) with HIF1α (pMSC-MiCi-HIF-1α). pMSCs-MiCi-HIF-1α were injected endomyocardially into the border zone of an anterior myocardial infarction one month post-reperfused-infarct. Cell injection was guided via 3D-guided NOGA electro-magnetic catheter delivery system. pMSC-MiCi-HIF-1α delivery improved cardiac output and reduced myocardial scar size. Abundances of pro-angiogenic proteins were analyzed 12, 24 h and 1 month after the delivery of the regenerative substances. In a protein array, the significantly increased angiogenesis proteins were Activin A, Angiopoietin, Artemin, Endothelin-1, MCP-1; and remodeling factors ADAMTS1, FGFs, TGFb1, MMPs, and Serpins. In a qPCR analysis, increased levels of angiopeptin, CXCL12, HIF-1α and miR-132 were found 24 h after cell-based gene delivery, compared to those in untreated animals with infarction and in control animals. Expression of angiopeptin increased already 12 h after treatment, and miR-1 expression was reduced at that time point. In total, pMSC overexpressing HIF-1α showed beneficial effects for treatment of ischemic injury, mediated by stimulation of angiogenesis.
Collapse
Affiliation(s)
- Edit Gara
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Johannes Winkler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bela Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Wolint
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Stendahl JC, Liu Z, Boutagy NE, Nataneli E, Daghighian F, Sinusas AJ. Prototype device for endoventricular beta-emitting radiotracer detection and molecularly-guided intervention. J Nucl Cardiol 2022; 29:663-676. [PMID: 32820423 PMCID: PMC7895860 DOI: 10.1007/s12350-020-02317-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have set out to develop a catheter-based theranostic system that: (a) identifies diseased and at-risk myocardium via endocardial detection of systemically delivered β-emitting radiotracers and (b) utilizes molecular signals to guide delivery of therapeutics to appropriate tissue via direct intramyocardial injection. METHODS Our prototype device consists of a miniature β-radiation detector contained within the tip of a flexible intravascular catheter. The catheter can be adapted to incorporate an injection port and retractable needle for therapeutic delivery. The performance of the β-detection catheter was assessed in vitro with various β-emitting radionuclides and ex vivo in hearts of pigs following systemic injection of 18F-fluorodeoxyglucose (18F-FDG) at 1-week post-myocardial infarction. Regional catheter-based endocardial measurements of 18F activity were compared to regional tissue activity from PET/CT images and gamma counting. RESULTS The β-detection catheter demonstrated sensitive in vitro detection of β-radiation from 22Na (β+), 18F (β+), and 204Tl (β-), with minimal sensitivity to γ-radiation. For 18F, the catheter demonstrated a sensitivity of 4067 counts/s/μCi in contact and a spatial resolution of 1.1 mm FWHM. Ex vivo measurements of endocardial 18F activity with the β-detection catheter in the chronic pig infarct model demonstrated good qualitative and quantitative correlation with regional tissue activity from PET/CT images and gamma counting. CONCLUSION The prototype β-detection catheter demonstrates sensitive and selective detection of β- and β+ emissions over a wide range of energies and enables high-fidelity ex vivo characterization of endocardial activity from systemically delivered 18F-FDG.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhao Liu
- Department of Biomedical Engineering, Yale University, School of Engineering and Applied Science, New Haven, CT, 06520, USA
| | - Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Eliahoo Nataneli
- IntraMedical Imaging, LLC, 12569 Crenshaw Blvd, Hawthorne, CA, 90250, USA
| | - Farhad Daghighian
- IntraMedical Imaging, LLC, 12569 Crenshaw Blvd, Hawthorne, CA, 90250, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520-8017, USA.
- Department of Biomedical Engineering, Yale University, School of Engineering and Applied Science, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review presents the current state of imaging approaches that enable real-time molecular imaging in the interventional suite and discusses the potential future use of integrated nuclear imaging and fluoroscopy for intraprocedural guidance in the evaluation and treatment of both cardiovascular and oncological diseases. RECENT FINDINGS Although there are no commercially available real-time hybrid nuclear imaging devices that are approved for use in the interventional suite, prototype open gantry hybrid nuclear imaging and x-ray c-arm imaging systems and theranostic catheter for location radiotracer detection are currently undergoing development and testing by multiple groups. The integration of physiological and molecular targeted nuclear imaging for real-time delivery of targeted theranostics in the interventional laboratory may enable more personalized care for a wide variety of cardiovascular procedures and improve patient outcomes.
Collapse
|
13
|
Siimes S, Järveläinen N, Korpela H, Ylä-Herttuala S. Endocardial Gene Delivery Using NOGA Catheter System. Methods Mol Biol 2022; 2573:179-187. [PMID: 36040595 DOI: 10.1007/978-1-0716-2707-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NOGA/MyoStar system uses low magnetic fields and endomyocardial electrical parameters, allowing precise endomyocardial injections of therapeutic agents to ischemic yet viable myocardium which is most likely to respond to the treatment. Preclinical and clinical studies have shown that NOGA/MyoStar guided intramyocardial injections are safe, feasible and a minimally invasive way to deliver gene therapy to the heart. Here we describe how to perform electroanatomical mapping and injections to hibernating myocardium in the preclinical studies.
Collapse
Affiliation(s)
- Satu Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niko Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland. .,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
14
|
Korpela H, Hätinen OP, Nieminen T, Mallick R, Toivanen P, Airaksinen J, Valli K, Hakulinen M, Poutiainen P, Nurro J, Ylä-Herttuala S. Adenoviral VEGF-B186R127S gene transfer induces angiogenesis and improves perfusion in ischemic heart. iScience 2021; 24:103533. [PMID: 34917905 PMCID: PMC8666349 DOI: 10.1016/j.isci.2021.103533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias. AdVEGF-B186R127S induces angiogenesis and improves perfusion in the ischemic heart No significant side effects were observed after AdVEGF-B186R127S therapy VEGF-B186 is angiogenic only prior to its proteolytic processing C-terminal fragment of VEGF-B186 is associated with ventricular arrhythmias
Collapse
Affiliation(s)
- Henna Korpela
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli-Pekka Hätinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Rahul Mallick
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pyry Toivanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Airaksinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Valli
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Jussi Nurro
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Liu S, Li K, Wagner Florencio L, Tang L, Heallen TR, Leach JP, Wang Y, Grisanti F, Willerson JT, Perin EC, Zhang S, Martin JF. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci Transl Med 2021; 13:13/600/eabd6892. [PMID: 34193613 DOI: 10.1126/scitranslmed.abd6892] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/03/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.
Collapse
Affiliation(s)
| | - Ke Li
- Texas Heart Institute, Houston, TX, USA
| | | | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - John P Leach
- Department of Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Francisco Grisanti
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Sui Zhang
- Texas Heart Institute, Houston, TX, USA
| | - James F Martin
- Texas Heart Institute, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Center for Organ Repair and Renewal and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Zoppo F, Gagno G, Perazza L, Cocciolo A, Mugnai G, Vaccari D, Calzolari V. Electroanatomic voltage mapping for tissue characterization beyond arrhythmia definition: A systematic review. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1432-1448. [PMID: 34096635 DOI: 10.1111/pace.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) reconstruction by means of electroanatomic mapping (EAM) systems, allows for the understanding of the mechanism of focal or re-entrant arrhythmic circuits, which can be identified by means of dynamic (activation and propagation) and static (voltage) color-coded maps. However, besides this conventional use, EAM may offer helpful anatomical and functional information for tissue characterisation in several clinical settings. Today, data regarding electromechanical myocardial viability, scar detection in ischaemic and nonischaemic cardiomyopathy and arrhythmogenic right ventricle dysplasia (ARVC/D) definition are mostly consolidated, while emerging results are becoming available in contexts such as Brugada syndrome and cardiac resynchronisation therapy (CRT) implant procedures. As part of an invasive procedure, EAM has not yet been widely adopted as a stand-alone tool in the diagnostic path. We aim to review the data in the current literature regarding the use of 3D EAM systems beyond the definition of arrhythmia.
Collapse
Affiliation(s)
- Franco Zoppo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giulia Gagno
- Dipartimento di Cardiologia, Azienda Sanitaria Universitaria Giuliano Isontina, ed Università degli Studi di Trieste, Trieste, Italy
| | - Luca Perazza
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Andrea Cocciolo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giacomo Mugnai
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Arzignano, Vicenza, Italy
| | - Diego Vaccari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Feltre, Belluno, Italy
| | - Vittorio Calzolari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Treviso, Treviso, Italy
| |
Collapse
|
17
|
Jadczyk T, Kurzelowski R, Golba KS, Wilczek J, Caluori G, Maffessanti F, Biernat J, Gruszczynska K, Cybulska M, Emmert MY, Parma Z, Baranski K, Dutka M, Kalanska-Lukasik B, Starek Z, Wojakowski W. Local electromechanical alterations determine the left ventricle rotational dynamics in CRT-eligible heart failure patients. Sci Rep 2021; 11:3267. [PMID: 33547401 PMCID: PMC7865069 DOI: 10.1038/s41598-021-82793-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Left ventricle, LV wringing wall motion relies on physiological muscle fiber orientation, fibrotic status, and electromechanics (EM). The loss of proper EM activation can lead to rigid-body-type (RBT) LV rotation, which is associated with advanced heart failure (HF) and challenges in resynchronization. To describe the EM coupling and scar tissue burden with respect to rotational patterns observed on the LV in patients with ischemic heart failure with reduced ejection fraction (HFrEF) left bundle branch block (LBBB). Thirty patients with HFrEF/LBBB underwent EM analysis of the left ventricle using an invasive electro-mechanical catheter mapping system (NOGA XP, Biosense Webster). The following parameters were evaluated: rotation angle; rotation velocity; unipolar/bipolar voltage; local activation time, LAT; local electro-mechanical delay, LEMD; total electro-mechanical delay, TEMD. Patients underwent late-gadolinium enhancement cMRI when possible. The different LV rotation pattern served as sole parameter for patients’ grouping into two categories: wringing rotation (Group A, n = 6) and RBT rotation (Group B, n = 24). All parameters were aggregated into a nine segment, three sector and whole LV models, and compared at multiple scales. Segmental statistical analysis in Group B revealed significant inhomogeneities, across the LV, regarding voltage level, scar burdening, and LEMD changes: correlation analysis showed correspondently a loss of synchronization between electrical (LAT) and mechanical activation (TEMD). On contrary, Group A (relatively low number of patients) did not present significant differences in LEMD across LV segments, therefore electrical (LAT) and mechanical (TEMD) activation were well synchronized. Fibrosis burden was in general associated with areas of low voltage. The rotational behavior of LV in HF/LBBB patients is determined by the local alteration of EM coupling. These findings serve as a strong basic groundwork for a hypothesis that EM analysis may predict CRT response. Clinical trial registration: SUM No. KNW/0022/KB1/17/15.
Collapse
Affiliation(s)
- Tomasz Jadczyk
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland.,Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Radoslaw Kurzelowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - Krzysztof S Golba
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Jacek Wilczek
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Guido Caluori
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic.,IHU-LIRYC, Inserm U1045 (CRBCT), Bordeaux, France
| | - Francesco Maffessanti
- Center for Computational Medicine in Cardiology, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Jolanta Biernat
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | | | - Magdalena Cybulska
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland
| | - Maximilian Y Emmert
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Zofia Parma
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - Kamil Baranski
- Department of Epidemiology, Medical University of Silesia, Katowice, Poland
| | - Mieczyslaw Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Bielsko-Biała, Poland
| | - Barbara Kalanska-Lukasik
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic.,1st Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Disease, Medical University of Silesia, Ziołowa 45-47, Katowice, Poland.
| |
Collapse
|
18
|
Favorable Response to CD34+ Cell Therapy Is Associated with a Decrease of Galectin-3 Levels in Patients with Chronic Heart Failure. DISEASE MARKERS 2019; 2019:8636930. [PMID: 31885743 PMCID: PMC6925830 DOI: 10.1155/2019/8636930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Background Galectin-3 plasma levels (gal-3) were shown to correlate with the scar burden in chronic heart failure (CHF) setting. As scar burden predicts response to stem cell therapy, we sought to explore a correlation between gal-3 and response to CD34+ cell transplantation in patients with CHF. Methods We performed a post hoc analysis of patients, enrolled in 2 prospective trials investigating the clinical effects of CD34+ cell therapy in patients with ischemic cardiomyopathy (ICMP) and nonischemic dilated cardiomyopathy (DCMP). CD34+ cells were mobilized by G-CSF, collected via apheresis, and injected transendocardially using NOGA system. Patients were followed for 3 months and demographic, echocardiographic, and biochemical parameters and gal-3 were analyzed at baseline and at follow-up. Response to cell therapy was defined as an LVEF increase of ≥5%. Results 61 patients were included in the analysis. The mean age of patients was 52 years and 83% were male. DCMP and ICMP were present in 69% and 31% of patients, respectively. The average serum creatinine was 86 ± 23 μmol/L, NT-proBNP 1132 (IQR 350-2279) pg/mL, and LVEF 30 ± 6%. Gal-3 at baseline and at 3 months did not differ significantly (13.4 ± 5.5 ng/mL vs. 13.1 ± 5.8 ng/mL; p = 0.72), and there were no differences in baseline gal-3 with respect to heart failure etiology (15.1 ± 7.2 ng/mL in ICMP vs. 12.7 ± 4.3 ng/mL in DCMP; p = 0.12). Comparing responders (N = 49) to nonresponders (N = 18), we found no differences in baseline gal-3 (13.6 ± 5.7 ng/mL vs. 13.2 ± 4.9 ng/mL; p = 0.80). However, responders had significantly lower gal-3 at 3-month follow-up (12.1 ± 4.0 ng/mL vs. 15.7 ± 8.4 ng/mL; p < 0.05). Also, responders demonstrated a significant decrease in gal-3 over 3 months, while in nonresponders, an increase in gal-3 occurred (−1.5 ± 5.4 ng/mL vs. +2.7 ± 4.3 ng/mL; p = 0.01). Conclusions In patients with chronic heart failure undergoing CD34+ cell therapy, a decrease in galectin-3 plasma levels is associated with beneficial response to this treatment modality. Further prospective data is warranted to confirm our findings and to deepen our understanding of the role of gal-3 in the field of stem cell therapy.
Collapse
|
19
|
van den Broek HT, Wenker S, van de Leur R, Doevendans PA, Chamuleau SAJ, van Slochteren FJ, van Es R. 3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging. J Cardiovasc Transl Res 2019; 12:517-527. [PMID: 31338795 PMCID: PMC6854049 DOI: 10.1007/s12265-019-09899-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard for infarct imaging is late gadolinium-enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electromechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D electromechanical maps were 3D registered to LGE-MRI. A multivariable mixed-effects logistic regression model was fitted to predict the presence of infarct based on EMM parameters. Furthermore, we correlated feature-tracking strain parameters to EMM measures of local mechanical deformation. We registered 787 EMM points from 13 animals to the corresponding MRI locations. The mean registration error was 2.5 ± 1.16 mm. Our model showed a strong ability to predict the presence of infarction (C-statistic = 0.85). Strain parameters were only weakly correlated to EMM measures. The model is accurate in discriminating infarcted from healthy myocardium. Unipolar and bipolar voltages were the strongest predictors.
Collapse
Affiliation(s)
| | - Steven Wenker
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger van de Leur
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- CMH, Utrecht, Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
21
|
Effect of Ischemic Preconditioning and Postconditioning on Exosome-Rich Fraction microRNA Levels, in Relation with Electrophysiological Parameters and Ventricular Arrhythmia in Experimental Closed-Chest Reperfused Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20092140. [PMID: 31052231 PMCID: PMC6540096 DOI: 10.3390/ijms20092140] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated the antiarrhythmic effects of ischemic preconditioning (IPC) and postconditioning (PostC) by intracardiac electrocardiogram (ECG) and measured circulating microRNAs (miRs) that are related to cardiac conduction. Domestic pigs underwent 90-min. percutaneous occlusion of the mid left anterior coronary artery, followed by reperfusion. The animals were divided into three groups: acute myocardial infarction (AMI, n = 7), ischemic preconditioning-acute myocardial infarction (IPC-AMI) (n = 9), or AMI-PostC (n = 5). IPC was induced by three 5-min. episodes of repetitive ischemia/reperfusion cycles (rI/R) before AMI. PostC was induced by six 30-s rI/R immediately after induction of reperfusion 90 min after occlusion. Before the angiographic procedure, a NOGA endocardial mapping catheter was placed again the distal anterior ventricular endocardium to record the intracardiac electrogram (R-amplitude, ST-Elevation, ST-area under the curve (AUC), QRS width, and corrected QT time (QTc)) during the entire procedure. An arrhythmia score was calculated. Cardiac MRI was performed after one-month. IPC led to significantly lower ST-elevation, heart rate, and arrhythmia score during ischemia. PostC induced a rapid recovery of R-amplitude, decrease in QTc, and lower arrhythmia score during reperfusion. Slightly higher levels of miR-26 and miR-133 were observed in AMI compared to groups IPC-AMI and AMI-PostC. Significantly lower levels of miR-1, miR-208, and miR-328 were measured in the AMI-PostC group as compared to animals in group AMI and IPC-AMI. The arrhythmia score was not significantly associated with miRNA plasma levels. Cardiac MRI showed significantly smaller infarct size in the IPC-AMI group when compared to the AMI and AMI-PostC groups. Thus, IPC led to better left ventricular ejection fraction at one-month and it exerted antiarrhythmic effects during ischemia, whereas PostC exhibited antiarrhythmic properties after reperfusion, with significant downregulaton of ischemia-related miRNAs.
Collapse
|
22
|
Ferrini A, Stevens MM, Sattler S, Rosenthal N. Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation. Front Cardiovasc Med 2019; 6:26. [PMID: 30949485 PMCID: PMC6437044 DOI: 10.3389/fcvm.2019.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Myocardial Infarction (MI) is the most common cardiovascular disease. An average-sized MI causes the loss of up to 1 billion cardiomyocytes and the adult heart lacks the capacity to replace them. Although post-MI treatment has dramatically improved survival rates over the last few decades, more than 20% of patients affected by MI will subsequently develop heart failure (HF), an incurable condition where the contracting myocardium is transformed into an akinetic, fibrotic scar, unable to meet the body's need for blood supply. Excessive inflammation and persistent immune auto-reactivity have been suggested to contribute to post-MI tissue damage and exacerbate HF development. Two newly emerging fields of biomedical research, immunomodulatory therapies and cardiac bioengineering, provide potential options to target the causative mechanisms underlying HF development. Combining these two fields to develop biomaterials for delivery of immunomodulatory bioactive molecules holds great promise for HF therapy. Specifically, minimally invasive delivery of injectable hydrogels, loaded with bioactive factors with angiogenic, proliferative, anti-apoptotic and immunomodulatory functions, is a promising route for influencing the cascade of immune events post-MI, preventing adverse left ventricular remodeling, and offering protection from early inflammation to fibrosis. Here we provide an updated overview on the main injectable hydrogel systems and bioactive factors that have been tested in animal models with promising results and discuss the challenges to be addressed for accelerating the development of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Arianna Ferrini
- Department of Materials, Imperial College London, London, United Kingdom,National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom,Department of Bioengineering, Imperial College London, London, United Kingdom,Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom,The Jackson Laboratory, Bar Harbor, ME, United States,*Correspondence: Nadia Rosenthal
| |
Collapse
|
23
|
Paitazoglou C, Bergmann MW, Vrtovec B, Chamuleau SAJ, van Klarenbosch B, Wojakowski W, Michalewska-Włudarczyk A, Gyöngyösi M, Ekblond A, Haack-Sørensen M, Jaquet K, Vrangbaek K, Kastrup J. Rationale and design of the European multicentre study on Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE (SCIENCE). Eur J Heart Fail 2019; 21:1032-1041. [PMID: 30790396 PMCID: PMC6774320 DOI: 10.1002/ejhf.1412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
AIMS Ischaemic heart failure (IHF) patients have a poor prognosis even with current guideline-derived therapy. Intramyocardial injections of autologous or allogeneic mesenchymal stromal cells might improve cardiac function leading to better clinical outcome. METHODS The SCIENCE (Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE) consortium has initiated a Horizon 2020 funded multicentre phase II study in six European countries. It is a double-blind, placebo-controlled trial testing the safety and efficacy of allogeneic Cardiology Stem Cell Centre Adipose-derived Stromal Cells (CSCC_ASC) from healthy donors or placebo in 138 symptomatic IHF patients. Main inclusion criteria are New York Heart Association class II-III, left ventricular ejection fraction < 45% and N-terminal pro-B-type natriuretic peptide levels > 300 pg/mL. Patients are randomized in a 2:1 pattern to receive intramyocardial injections of either CSCC_ASC or placebo. CSCC_ASC and placebo treatments are prepared centralized at Rigshospitalet in 5 mL vials as an off-the-shelf product. Vials are distributed to all clinical partners and stored in nitrogen vapour tanks ready to be used directly after thawing. A total of 100 × 106 CSCC_ASC or placebo are injected directly into viable myocardium in the infarct border zone using the NOGA XP system (BDS, Cordis, Johnson & Johnson, USA). Primary endpoint is a centralized core-laboratory assessed change in left ventricular end-systolic volume at 6-month follow-up measured by echocardiography. The trial started in January 2017, 58 patients were included and treated until July 2018. CONCLUSION The SCIENCE trial will provide clinical data on efficacy and safety of intramyocardial cell therapy of allogeneic adipose-derived stromal cells from healthy donors in patients with IHF.
Collapse
Affiliation(s)
| | | | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Steven A J Chamuleau
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas van Klarenbosch
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Kai Jaquet
- Department of Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Karsten Vrangbaek
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Development of a transplant injection device for optimal distribution and retention of human induced pluripotent stem cell‒derived cardiomyocytes. J Heart Lung Transplant 2019; 38:203-214. [DOI: 10.1016/j.healun.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
|
25
|
Validation of a novel stand-alone software tool for image guided cardiac catheter therapy. Int J Cardiovasc Imaging 2019; 35:225-235. [PMID: 30689193 PMCID: PMC6428788 DOI: 10.1007/s10554-019-01541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Comparison of the targeting accuracy of a new software method for MRI-fluoroscopy guided endomyocardial interventions with a clinically available 3D endocardial electromechanical mapping system. The new CARTBox2 software enables therapy target selection based on infarction transmurality and local myocardial wall thickness deduced from preoperative MRI scans. The selected targets are stored in standard DICOM datasets. Fusion of these datasets with live fluoroscopy enables real-time visualization of MRI defined targets during fluoroscopy guided interventions without the need for external hardware. In ten pigs (60–75 kg), late gadolinium enhanced (LGE) MRI scans were performed 4 weeks after a 90-min LAD occlusion. Subsequently, 10–16 targeted fluorescent biomaterial injections were delivered in the infarct border zone (IBZ) using either the NOGA 3D-mapping system or CARTBox2. The primary endpoint was the distance of the injections to the IBZ on histology. Secondary endpoints were total procedure time, fluoroscopy time and dose, and the number of ventricular arrhythmias. The average distance of the injections to the IBZ was similar for CARTBox2 (0.5 ± 3.2 mm) and NOGA (− 0.7 ± 2.2 mm; p = 0.52). Injection procedures with CARTBox2 and NOGA required 69 ± 12 and 60 ± 17 min, respectively (p = 0.36). The required endocardial mapping procedure with NOGA prior to injections, leads to a significantly longer total procedure time (p < 0.001) with NOGA. Fluoroscopy time with NOGA (18.7 ± 11.0 min) was significantly lower than with CARTBox2 (43.4 ± 6.5 min; p = 0.0003). Procedures with CARTBox2 show a trend towards less ventricular arrhythmias compared to NOGA. CARTBox2 is an accurate and fast software-only system to facilitate cardiac catheter therapy based on gold standard MRI imaging and live fluoroscopy.
Collapse
|
26
|
Vrtovec B, Poglajen G, Sever M, Zemljic G, Frljak S, Cerar A, Cukjati M, Jaklic M, Cernelc P, Haddad F, Wu JC. Effects of Repetitive Transendocardial CD34
+
Cell Transplantation in Patients With Nonischemic Dilated Cardiomyopathy. Circ Res 2018; 123:389-396. [DOI: 10.1161/circresaha.117.312170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bojan Vrtovec
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | - Gregor Poglajen
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | | | - Gregor Zemljic
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | - Sabina Frljak
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | - Andraz Cerar
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | - Marko Cukjati
- UMC Ljubljana, Slovenia; National Blood Transfusion Institute, Ljubljana, Slovenia (M.C.)
| | - Martina Jaklic
- From the Advanced Heart Failure and Transplantation Center (B.V., G.P., G.Z., S.F., A.C., M.J.)
| | | | - François Haddad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (F.H., J.C.W.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (F.H., J.C.W.)
| |
Collapse
|
27
|
Maffessanti F, Prinzen FW, Conte G, Regoli F, Caputo ML, Suerder D, Moccetti T, Faletra F, Krause R, Auricchio A. Integrated Assessment of Left Ventricular Electrical Activation and Myocardial Strain Mapping in Heart Failure Patients. JACC Clin Electrophysiol 2018; 4:138-146. [DOI: 10.1016/j.jacep.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
|
28
|
Gwizdala A, Rozwadowska N, Kolanowski TJ, Malcher A, Cieplucha A, Perek B, Seniuk W, Straburzynska-Migaj E, Oko-Sarnowska Z, Cholewinski W, Michalak M, Grajek S, Kurpisz M. Safety, feasibility and effectiveness of first in-human administration of muscle-derived stem/progenitor cells modified with connexin-43 gene for treatment of advanced chronic heart failure. Eur J Heart Fail 2017; 19:148-157. [PMID: 28052545 DOI: 10.1002/ejhf.700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/29/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
AIMS To assess the safety and efficacy of transendocardial delivery of muscle-derived stem/progenitor cells with connexin-43 overexpression (Cx-43-MDS/PC) in advanced heart failure (HF). METHODS AND RESULTS Thirteen subjects with advanced HF, New York Heart Association (NYHA) class II-III were enrolled and treated with targeted injection of Cx-43-MDS/PCs and then monitored for at least 6 months. Overexpression of Cx43 (Cx43+) was significantly higher in all but one subject (Cx43-). Injection of MDS/PCs was associated with significant improvement of exercise capacity: NYHA (3 ± 0 vs. 1.8 ± 0.7, P = 0.003), exercise duration (388.69 ± 141.83 s vs. 462.08 ± 176.69 s, P = 0.025), peak oxygen consumption (14.38 ± 3.97 vs. 15.83 ± 3.74 ml/kg.min, P = 0.022) and oxygen pulse (10.58 ± 2.89 vs. 18.88 ± 22.63 mLO2 /heart rate, P = 0.012). Levels of BNP, left ventricular (LV) ejection fraction and LV end-diastolic volumes tended to improve. There was a significant improvement of the mean unipolar voltage amplitudes measured for the injected segments and the entire left ventricle (9.62 ± 2.64 vs. 11.62 ± 3.50 mV, P = 0.014 and 8.83 ± 2.80 vs. 10.22 ± 3.41 mV, P = 0.041, respectively). No deaths were documented, Cx43+ (n = 12) subjects presented no significant ventricular arrhythmia; one Cx43- subject suffered from ventricular tachycardia (successfully treated with amiodarone). CONCLUSIONS Injection of Cx-43-MDS/PCs in patients with severe HF led to significant improvement in exercise capacity and myocardial viability of the injected segments while inducing no significant ventricular arrhythmia. This may arise from improved electrical coupling of the injected cells and injured myocardium and thus better in-situ mechanical cooperation of both cell types. Therefore, further clinical studies with Cx43+ MDS/PCs are warranted.
Collapse
Affiliation(s)
- Adrian Gwizdala
- Poznan University of Medical Sciences, 1st Department of Cardiology, Poznan, Poland
| | - Natalia Rozwadowska
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Tomasz Jan Kolanowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Agnieszka Malcher
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| | - Aleksandra Cieplucha
- Poznan University of Medical Sciences, 1st Department of Cardiology, Poznan, Poland
| | - Bartlomiej Perek
- Poznan University of Medical Sciences, Department of Cardiac Surgery, Poznan, Poland
| | - Wojciech Seniuk
- Poznan University of Medical Sciences, 1st Department of Cardiology, Poznan, Poland
| | | | - Zofia Oko-Sarnowska
- Poznan University of Medical Sciences, 1st Department of Cardiology, Poznan, Poland
| | - Witold Cholewinski
- Greater Poland Cancer Centre, Nuclear Medicine Department, Poznan, Poland
| | - Michal Michalak
- Poznan University of Medical Sciences, Department of Statistics, Poznan, Poland
| | - Stefan Grajek
- Poznan University of Medical Sciences, 1st Department of Cardiology, Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics Polish Academy of Sciences, ul. Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
29
|
Kim MC, Kim YS, Kang WS, Lee KH, Cho M, Hong MH, Lim KS, Jeong MH, Ahn Y. Intramyocardial Injection of Stem Cells in Pig Myocardial Infarction Model: The First Trial in Korea. J Korean Med Sci 2017; 32:1708-1712. [PMID: 28875618 PMCID: PMC5592188 DOI: 10.3346/jkms.2017.32.10.1708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/01/2017] [Indexed: 11/20/2022] Open
Abstract
Although cell therapy is emerged for cardiac repair, its efficacy is modest by intracoronary infusion. Therefore, we established the intramyocardial delivery technique using a left ventricular (LV) mapping system (NOGA® XP) using 18 pigs. After adipose tissue-derived mesenchymal stem cells (ATSCs) were delivered intramyocardially to porcine infarcted heart, LV ejection fraction (EF) was increased, and LV chamber size was decreased. We proved the therapeutic effect of intramyocardial injection of ATSC through a LV mapping system in the porcine model for the first time in Korea. The adoption of this technique may accelerate the translation into a clinical application in the near future.
Collapse
Affiliation(s)
- Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Wan Seok Kang
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Ki Hong Lee
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Meeyoung Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Moon Hwa Hong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Kyung Seob Lim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea.
| |
Collapse
|
30
|
Kumar V, Liu R, Kinnick RR, Gregory A, Alizad A, Belohlavek M, Fatemi M. Unambiguous Identification and Visualization of an Acoustically Active Catheter by Ultrasound Imaging in Real Time: Theory, Algorithm, and Phantom Experiments. IEEE Trans Biomed Eng 2017; 65:1468-1475. [PMID: 28952929 DOI: 10.1109/tbme.2017.2749245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Ultrasound-guided biopsies and minimally invasive procedures have been used in numerous medical applications, including catheter guidance. The biggest challenge for catheter guidance by ultrasound lies in distinguishing the catheter from neighboring tissue, as well as the ability to differentiate the catheter body from its tip. METHODS In our previous work, we introduced a functional prototype of an acoustically active catheter, in which a miniature piezoelectric crystal allowed accurate localization of the catheter tip by pulsed wave (PW) Doppler imaging and Doppler spectrogram. In this paper, the theory behind the symmetric Doppler shift due to the interaction of ultrasound wave with a vibrating piezoelectric crystal is explained. The theory is validated in an experimental continuous flow phantom setup. A novel algorithm, symmetric frequency detection algorithm, is presented for identification and visualization of the catheter tip in real time along with B-mode and PW Doppler. RESULTS The catheter tip is identified with a distinct color differentiable from common Doppler colors with a frame rate varying from 22 to 50 Hz. The catheter tip can be visualized in a small region of 2.4 mm in the elevational direction. CONCLUSION The algorithm can be implemented in most clinical ultrasound machines with minor additions to the PW Doppler processing algorithm. The algorithm is optimized to be robust for a variety of blood flow velocities and is shown to perform well when the signal from the blood is on par in amplitude with the catheter signal. SIGNIFICANCE Unambiguous and distinct visualization of catheter tip facilitates real-time tracking of the catheter and aids minimally invasive procedures.
Collapse
|
31
|
Pavo N, Lukovic D, Zlabinger K, Lorant D, Goliasch G, Winkler J, Pils D, Auer K, Ankersmit HJ, Giricz Z, Sárközy M, Jakab A, Garamvölgyi R, Emmert MY, Hoerstrup SP, Hausenloy DJ, Ferdinandy P, Maurer G, Gyöngyösi M. Intrinsic remote conditioning of the myocardium as a comprehensive cardiac response to ischemia and reperfusion. Oncotarget 2017; 8:67227-67240. [PMID: 28978029 PMCID: PMC5620169 DOI: 10.18632/oncotarget.18438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that distal anterior wall ischemia/reperfusion induces gene expression changes in the proximal anterior myocardial area, involving genes responsible for cardiac remodeling. Here we investigated the molecular signals of the ischemia non-affected remote lateral and posterior regions and present gene expression profiles of the entire left ventricle by using our novel and straightforward method of 2D and 3D image reconstruction. Five or 24h after repetitive 10min ischemia/reperfusion without subsequent infarction, pig hearts were explanted and myocardial samples from 52 equally distributed locations of the left ventricle were collected. Expressional changes of seven genes of interest (HIF-1α; caspase-3, transcription factor GATA4; myocyte enhancer factor 2C /MEF2c/; hexokinase 2 /HK2/; clusterin /CLU/ and excision repair cross-complementation group 4 /ERCC4/) were measured by qPCR. 2D and 3D gene expression maps were constructed by projecting the fold changes on the NOGA anatomical mapping coordinates. Caspase-3, GATA4, HK2, CLU, and ERCC4 were up-regulated region-specifically in the ischemic zone at 5 h post ischemia/reperfusion injury. Overexpression of GATA4, clusterin and ERCC4 persisted after 24 h. HK2 showed strong up-regulation in the ischemic zone and down-regulation in remote areas at 5 h, and was severely reduced in all heart regions at 24 h. These results indicate a quick onset of regulation of apoptosis-related genes, which is partially reversed in the late phase of ischemia/reperfusion cardioprotection, and highlight variations between ischemic and unaffected myocardium over time. The NOGA 2D and 3D construction system is an attractive method to visualize expressional variations in the myocardium.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - David Lorant
- Department of Anaesthesiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Auer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Jakab
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for MR-Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Rita Garamvölgyi
- Institute of Diagnostic Imaging and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Maximilian Y. Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Maffessanti F, Wanten J, Potse M, Regoli F, Caputo ML, Conte G, Sürder D, Illner A, Krause R, Moccetti T, Auricchio A, Prinzen FW. The relation between local repolarization and T-wave morphology in heart failure patients. Int J Cardiol 2017; 241:270-276. [DOI: 10.1016/j.ijcard.2017.02.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 11/16/2022]
|
33
|
Abstract
INTRODUCTION Over the past decade, it has become clear that long-term engraftment of any ex vivo expanded cell product transplanted into injured myocardium is modest and all therapeutic regeneration is mediated by stimulation of endogenous repair rather than differentiation of transplanted cells into working myocardium. Given that increasing the retention of transplanted cells boosts myocardial function, focus on the fundamental mechanisms limiting retention and survival of transplanted cells may enable strategies to help to restore normal cardiac function. Areas covered: This review outlines the challenges confronting cardiac engraftment of ex vivo expanded cells and explores means of enhancing cell-mediated repair of injured myocardium. Expert opinion: Stem cell therapy has already come a long way in terms of regenerating damaged hearts though the poor retention of transplanted cells limits the full potential of truly cardiotrophic cell products. Multifaceted strategies directed towards fundamental mechanisms limiting the long-term survival of transplanted cells will be needed to enhance transplanted cell retention and cell-mediated repair of damaged myocardium for cardiac cell therapy to reach its full potential.
Collapse
Affiliation(s)
| | - Darryl R Davis
- a University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
34
|
Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction – From cardioprotection to functional repair in a translational pig infarction model. Biomaterials 2017; 122:48-62. [DOI: 10.1016/j.biomaterials.2016.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
|
35
|
Bervar M, Kozelj M, Poglajen G, Sever M, Zemljic G, Frljak S, Cukjati M, Cernelc P, Haddad F, Vrtovec B. Effects of Transendocardial CD34 + Cell Transplantation on Diastolic Parameters in Patients with Nonischemic Dilated Cardiomyopathy. Stem Cells Transl Med 2017; 6:1515-1521. [PMID: 28296283 PMCID: PMC5689759 DOI: 10.1002/sctm.16-0331] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
We sought to evaluate the physiological background and the effects of CD34+ cell transplantation on diastolic parameters in nonischemic dilated cardiomyopathy patients (DCM). We enrolled 38 DCM patients with NYHA class III and LVEF < 40% who underwent transendocardial CD34+ cell transplantation. Peripheral blood CD34+ cells were mobilized by G‐CSF, collected via apheresis, and injected transendocardially in the areas of myocardial hibernation. Patients were followed for 1 year. At baseline, estimated filling pressures were significantly elevated (E/e′ ≥ 15) in 18 patients (Group A), and moderately elevated (E/e ′< 15) in 20 patients (Group B). The groups did not differ in age (54 ± 9 years vs. 52 ± 10 years; p = .62), gender (male: 85% vs. 78%; p = .57), or LVEF (31 ± 7% vs. 34 ± 6%; p = .37). When compared to Group B patients in Group A had more segments with myocardial scar (4.9 ± 2.7 vs. 2.7 ± 2.9; p = .03), myocardial hibernation (2.2 ± 1.6 vs. 0.9 ± 1.1; p = .02), and longer average local relaxation time on electroanatomical mapping (378 ± 41 ms vs. 333 ± 34 ms, p = .01). During follow‐up there was an improvement in diastolic parameters in Group A (E/e′: from 24.3 ± 12.1 to 16.3 ± 8.0; p = .005), but not in Group B (E/e′: from 10.2 ± 3.7 to 13.2 ± 9.1; p = .19). Accordingly, in Group A, we found an increase in 6‐minute walk distance (from 463 ± 83 m to 546 ± 91 m; p = .03), and a decrease in NT‐proBNP (from 2140 ± 1743 pg/ml to 863 ± 836 pg/ml; p = .02). In nonischemic DCM, diastolic dysfunction appears to correlate with areas of myocardial scar and hibernation. Transendocardial CD34+ cell transplantation may improve diastolic parameters in this patient cohort. Stem Cells Translational Medicine2017;6:1515–1521
Collapse
Affiliation(s)
| | | | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| | - Matjaz Sever
- Department of Hematology, UMC Ljubljana, Slovenia
| | - Gregor Zemljic
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia
| | - Marko Cukjati
- National Blood Transfusion Institute, Ljubljana, Slovenia
| | | | - François Haddad
- Stanford University School of Medicine, Stanford, California, USA
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, UMC Ljubljana, Slovenia.,Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
36
|
Electroanatomic Properties of the Myocardium Predict Response to CD34+ Cell Therapy in Patients With Ischemic and Nonischemic Heart Failure. J Card Fail 2017; 23:153-160. [DOI: 10.1016/j.cardfail.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/24/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
|
37
|
Hibernating substrate of ventricular tachycardia: a three-dimensional metabolic and electro-anatomic assessment. J Interv Card Electrophysiol 2017; 48:247-254. [DOI: 10.1007/s10840-016-0219-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
38
|
Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun 2017; 8:13724. [PMID: 28045024 PMCID: PMC5512648 DOI: 10.1038/ncomms13724] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration.
Stem cells exert their beneficial effects through secretion of regenerative factors. Here, the authors take the membranes and secreted factors from cardiac stem cells and generate a synthetic cell-mimicking microparticle, which, on injection in a mouse model of myocardial infarction, improves cardiac function.
Collapse
|
39
|
Gyöngyösi M, Giurgea GA, Syeda B, Charwat S, Marzluf B, Mascherbauer J, Jakab A, Zimba A, Sárközy M, Pavo N, Sochor H, Graf S, Lang I, Maurer G, Bergler-Klein J. Long-Term Outcome of Combined (Percutaneous Intramyocardial and Intracoronary) Application of Autologous Bone Marrow Mononuclear Cells Post Myocardial Infarction: The 5-Year MYSTAR Study. PLoS One 2016; 11:e0164908. [PMID: 27764157 PMCID: PMC5072601 DOI: 10.1371/journal.pone.0164908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
Objective The long-term (5-year) outcome of early (3–6 weeks after acute myocardial infarction [AMI], BM-MNC Early group) and late (3–4 months after AMI, BM-MNC Late group) combined (percutaneous intramyocardial and intracoronary) delivery of autologous bone marrow mononuclear cells (BM-MNCs) was evaluated in patients with ejection fractions (EF) between 30–45% post-AMI. Methods Major adverse cardiac and cerebrovascular events (MACCE) and hospitalization were recorded. Left (LV) and right (RV) ventricular function were measured by transthoracic echocardiography. Cardiac magnetic resonance imaging (MRI) and myocardial single photon emission computed tomography was performed in a subgroup of patients. Pre-cell therapy myocardial voltage values of treated areas (assessed by NOGA mapping) were correlated with clinical outcome. Results Five-year MACCE incidences (7.4%. vs 24.1%) and the composite of all adverse events (11.1% vs 27.6%) were not different between the Early and Late treatment groups. The significant LV-EF increase at 1-year follow-up was preserved at the 5-year control (from baseline to 5-year: 5.3%, 95% CI:0.5–10.1, and 5.7%, 95% CI:1.7–9.6, p<0.05 in the Early and Late groups, respectively), with no significant changes between 1- and 5-year follow-ups. Similarly, RVEF increased significantly from baseline to the 5-year follow-up (Early group: 5.4%, 95% CI:1.0–9.6; and Late group: 8.4%, 95% CI:4.5–12.3). Lower baseline levels of myocardial viability of the treated cardiac area (6.3±2.4 vs 8.2±3.0 mV, p<0.05) were associated with incidence of MACCE. Conclusions Percutaneous combined delivery of autologous BM-MNCs is feasible and safe after 5 years, and may result in sustained improvement of cardiac function at 5 years in patients with low EF post-AMI (Clinicaltrials.gov NCT01395212).
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Georgiana-Aura Giurgea
- Department of Angiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bonni Syeda
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Silvia Charwat
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Beatrice Marzluf
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia Mascherbauer
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andras Jakab
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Abelina Zimba
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Márta Sárközy
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Noemi Pavo
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Heinz Sochor
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Senta Graf
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Gerald Maurer
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Department of Cardiology, Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
40
|
Park K, Lai D, Handberg EM, Moyé L, Perin EC, Pepine CJ, Anderson RD. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy. Tex Heart Inst J 2016; 43:291-6. [PMID: 27547135 DOI: 10.14503/thij-15-5341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34(+) count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34(+) levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation.
Collapse
|
41
|
Garbayo E, Gavira JJ, de Yebenes MG, Pelacho B, Abizanda G, Lana H, Blanco-Prieto MJ, Prosper F. Catheter-based Intramyocardial Injection of FGF1 or NRG1-loaded MPs Improves Cardiac Function in a Preclinical Model of Ischemia-Reperfusion. Sci Rep 2016; 6:25932. [PMID: 27184924 PMCID: PMC4868965 DOI: 10.1038/srep25932] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Juan José Gavira
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Hematology, Cardiology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Manuel Garcia de Yebenes
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Hematology, Cardiology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Beatriz Pelacho
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Hematology, Cardiology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Gloria Abizanda
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Hematology, Cardiology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Hugo Lana
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - María José Blanco-Prieto
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigacion Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Hematology, Cardiology and Cell Therapy, Clínica Universidad de Navarra and Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| |
Collapse
|
42
|
Matkar PN, Leong-Poi H, Singh KK. Cardiac gene therapy: are we there yet? Gene Ther 2016; 23:635-48. [DOI: 10.1038/gt.2016.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 01/19/2023]
|
43
|
Vrtovec B, Sever M, Jensterle M, Poglajen G, Janez A, Kravos N, Zemljic G, Cukjati M, Cernelc P, Haddad F, Wu JC, Jorde UP. Efficacy of CD34+ Stem Cell Therapy in Nonischemic Dilated Cardiomyopathy Is Absent in Patients With Diabetes but Preserved in Patients With Insulin Resistance. Stem Cells Transl Med 2016; 5:632-8. [PMID: 27025690 DOI: 10.5966/sctm.2015-0172] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We evaluated the association of diabetes and insulin resistance with the response to cell therapy in patients with nonischemic dilated cardiomyopathy (DCM). A total of 45 outpatients with DCM received granulocyte colony-stimulating factor for 5 days. CD34(+) cells were then collected by apheresis and injected transendocardially. Twelve patients had diabetes mellitus (DM group), 17 had insulin resistance (IR group), and 16 displayed normal glucose metabolism (no-IR group). After stimulation, we found higher numbers of CD34(+) cells in the IR group (94 ± 73 × 10(6) cells per liter) than in the no-IR group (54 ± 35 × 10(6) cells per liter) or DM group (31 ± 20 × 10(6) cells per liter; p = .005). Similarly, apheresis yielded the highest numbers of CD34(+) cells in the IR group (IR group, 216 ± 110 × 10(6) cells; no-IR group, 127 ± 82 × 10(6) cells; DM group, 77 ± 83 × 10(6) cells; p = .002). Six months after cell therapy, we found an increase in left ventricular ejection fraction in the IR group (+5.6% ± 6.9%) and the no-IR group (+4.4% ± 7.2%) but not in the DM group (-0.9% ± 5.4%; p = .035). The N-terminal pro-brain natriuretic peptide levels decreased in the IR and no-IR groups, but not in the DM group (-606 ± 850 pg/ml; -698 ± 1,105 pg/ml; and +238 ± 963 pg/ml, respectively; p = .034). Transendocardial CD34(+) cell therapy appears to be ineffective in DCM patients with diabetes. IR was associated with improved CD34(+) stem cell mobilization and a preserved clinical response to cell therapy. SIGNIFICANCE The present study is the first clinical study directly evaluating the effects of altered glucose metabolism on the efficacy of CD34(+) stem cell therapy in patients with nonischemic dilated cardiomyopathy. The results offer critical insights into the physiology of stem cell mobilization in heart failure and possibly an explanation for the often conflicting results obtained with stem cell therapy for heart failure. These results demonstrate that patients with dilated cardiomyopathy and diabetes do not benefit from autologous CD34(+) cell therapy. This finding could serve as a useful tool when selecting heart failure patients for future clinical studies in the field of stem cell therapy.
Collapse
Affiliation(s)
- Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Ljubljana University Medical Centre, Ljubljana, Slovenia Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Matjaz Sever
- Department of Hematology, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Diabetes and Endocrinology, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Andrej Janez
- Department of Diabetes and Endocrinology, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Nika Kravos
- Department of Diabetes and Endocrinology, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Gregor Zemljic
- Advanced Heart Failure and Transplantation Center, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Marko Cukjati
- National Blood Transfusion Institute, Ljubljana, Slovenia
| | - Peter Cernelc
- Department of Hematology, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - François Haddad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Ulrich P Jorde
- Heart Failure and Advanced Cardiac Therapies Institute, Division of Cardiology, Montefiore Medical Center/Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
44
|
van Slochteren FJ, van Es R, Gyöngyösi M, van der Spoel TIG, Koudstaal S, Leiner T, Doevendans PA, Chamuleau SAJ. Three dimensional fusion of electromechanical mapping and magnetic resonance imaging for real-time navigation of intramyocardial cell injections in a porcine model of chronic myocardial infarction. Int J Cardiovasc Imaging 2016; 32:833-43. [PMID: 26883433 PMCID: PMC4853462 DOI: 10.1007/s10554-016-0852-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/07/2016] [Indexed: 11/15/2022]
Abstract
For cardiac regenerative therapy intramyocardial catheter guided cell transplantations are targeted to the infarct border zone (IBZ) i.e. the closest region of viable myocardium in the vicinity of the infarct area. For optimal therapeutic effect this area should be accurately identified. However late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the gold standard technique to determine the infarct size and location, electromechanical mapping (EMM) is used to guide percutaneous intramyocardial injections to the IBZ. Since EMM has a low spatial resolution, we aim to develop a practical and accurate technique to fuse EMM with LGE-MRI to guide intramyocardial injections. LGE-MRI and EMM were obtained in 17 pigs with chronic myocardial infarction created by balloon occlusion of LCX and LAD coronary arteries. LGE-MRI and EMM datasets were registered using our in-house developed 3D CartBox image registration software toolbox to assess: (1) the feasibility of the 3D CartBox toolbox, (2) the EMM values measured in the areas with a distinct infarct transmurality (IT), and (3) the highest sensitivity and specificity of the EMM to assess IT and define the IBZ. Registration of LGE-MRI and EMM resulted in a mean error of 3.01 ± 1.94 mm between the LGE-MRI mesh and EMM points. The highest sensitivity and specificity were found for UV <9.4 mV and bipolar voltage <1.2 mV to respectively identify IT of ≥5 and ≥97.5 %. The 3D CartBox image registration toolbox enables registration of EMM data on pre-acquired MRI during the EMM guided procedure and allows physicians to easily guide injections to the most optimal injection location for cardiac regenerative therapy and harness the full therapeutic effect of the therapy.
Collapse
Affiliation(s)
- F J van Slochteren
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - R van Es
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - M Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - T I G van der Spoel
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - S Koudstaal
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - T Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P A Doevendans
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - S A J Chamuleau
- Department of Cardiology, University Medical Center Utrecht, E03.511, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.,Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| |
Collapse
|
45
|
Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, Premer C, Kanelidis AJ, McCall F, Wang B, Balkan W, Rodriguez J, Rosado M, Morales A, Hatzistergos K, Natsumeda M, Margitich I, Schulman IH, Gomes SA, Mushtaq M, DiFede DL, Fishman JE, Pattany P, Zambrano JP, Heldman AW, Hare JM. Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. J Am Coll Cardiol 2016; 66:1990-1999. [PMID: 26516002 DOI: 10.1016/j.jacc.2015.08.879] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit(+) cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. Using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, we previously showed that these 2 cell types act synergistically. OBJECTIVES To more accurately model clinical applications for heart failure, this study tested whether the combination of autologous MSCs and CSCs produce greater improvement in cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy. METHODS Three months after ischemia/reperfusion injury, Göttingen swine received transendocardial injections with MSCs alone (n = 6) or in combination with cardiac-derived CSCs (n = 8), or placebo (vehicle; n = 6). Cardiac functional and anatomic parameters were assessed using cardiac magnetic resonance at baseline and before and after therapy. RESULTS Both groups of cell-treated animals exhibited significantly reduced scar size (MSCs -44.1 ± 6.8%; CSC/MSC -37.2 ± 5.4%; placebo -12.9 ± 4.2%; p < 0.0001), increased viable tissue, and improved wall motion relative to placebo 3 months post-injection. Ejection fraction (EF) improved (MSCs 2.9 ± 1.6 EF units; CSC/MSC 6.9 ± 2.8 EF units; placebo 2.5 ± 1.6 EF units; p = 0.0009), as did stroke volume, cardiac output, and diastolic strain only in the combination-treated animals, which also exhibited increased cardiomyocyte mitotic activity. CONCLUSIONS These findings illustrate that interactions between MSCs and CSCs enhance cardiac performance more than MSCs alone, establish the safety of autologous cell combination strategies, and support the development of second-generation cell therapeutic products.
Collapse
Affiliation(s)
- Vasileios Karantalis
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Viky Y Suncion-Loescher
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Luiza Bagno
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samuel Golpanian
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristina Sanina
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Courtney Premer
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony J Kanelidis
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Frederic McCall
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Bo Wang
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Wayne Balkan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jose Rodriguez
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Marcos Rosado
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Azorides Morales
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos Hatzistergos
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Makoto Natsumeda
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Irene Margitich
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivonne Hernandez Schulman
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samirah A Gomes
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Muzammil Mushtaq
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Darcy L DiFede
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pradip Pattany
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Alan W Heldman
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
46
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|
47
|
Vela D, Gahremanpour A, Buja LM. Method for sectioning and sampling hearts for histologic evaluation after delivery of biological agents by transendocardial injection. Cardiovasc Pathol 2015; 24:304-9. [DOI: 10.1016/j.carpath.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/20/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022] Open
|
48
|
Pape ACH, Bakker MH, Tseng CCS, Bastings MMC, Koudstaal S, Agostoni P, Chamuleau SAJ, Dankers PYW. An Injectable and Drug-loaded Supramolecular Hydrogel for Local Catheter Injection into the Pig Heart. J Vis Exp 2015:e52450. [PMID: 26132631 PMCID: PMC4544772 DOI: 10.3791/52450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Regeneration of lost myocardium is an important goal for future therapies because of the increasing occurrence of chronic ischemic heart failure and the limited access to donor hearts. An example of a treatment to recover the function of the heart consists of the local delivery of drugs and bioactives from a hydrogel. In this paper a method is introduced to formulate and inject a drug-loaded hydrogel non-invasively and side-specific into the pig heart using a long, flexible catheter. The use of 3-D electromechanical mapping and injection via a catheter allows side-specific treatment of the myocardium. To provide a hydrogel compatible with this catheter, a supramolecular hydrogel is used because of the convenient switching from a gel to a solution state using environmental triggers. At basic pH this ureido-pyrimidinone modified poly(ethylene glycol) acts as a Newtonian fluid which can be easily injected, but at physiological pH the solution rapidly switches into a gel. These mild switching conditions allow for the incorporation of bioactive drugs and bioactive species, such as growth factors and exosomes as we present here in both in vitro and in vivo experiments. The in vitro experiments give an on forehand indication of the gel stability and drug release, which allows for tuning of the gel and release properties before the subsequent application in vivo. This combination allows for the optimal tuning of the gel to the used bioactive compounds and species, and the injection system.
Collapse
Affiliation(s)
- A C H Pape
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology
| | - Maarten H Bakker
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology
| | - Cheyenne C S Tseng
- Department of Cardiology, Division Heart and Lungs, Interuniversity Cardiology Institute of the Netherlands (ICIN), University Medical Center Utrecht
| | - Maartje M C Bastings
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology
| | - Stefan Koudstaal
- Department of Cardiology, Division Heart and Lungs, Interuniversity Cardiology Institute of the Netherlands (ICIN), University Medical Center Utrecht
| | - Pierfrancesco Agostoni
- Department of Cardiology, Division Heart and Lungs, Interuniversity Cardiology Institute of the Netherlands (ICIN), University Medical Center Utrecht
| | - Steven A J Chamuleau
- Department of Cardiology, Division Heart and Lungs, Interuniversity Cardiology Institute of the Netherlands (ICIN), University Medical Center Utrecht
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology;
| |
Collapse
|
49
|
Kroon W, Lumens J, Potse M, Suerder D, Klersy C, Regoli F, Murzilli R, Moccetti T, Delhaas T, Krause R, Prinzen FW, Auricchio A. In vivo electromechanical assessment of heart failure patients with prolonged QRS duration. Heart Rhythm 2015; 12:1259-67. [DOI: 10.1016/j.hrthm.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/15/2022]
|
50
|
Pavo N, Emmert MY, Giricz Z, Varga ZV, Ankersmit HJ, Maurer G, Hoerstrup SP, Ferdinandy P, Wu JC, Gyöngyösi M. On-line visualization of ischemic burden during repetitive ischemia/reperfusion. JACC Cardiovasc Imaging 2015; 7:956-8. [PMID: 25212802 DOI: 10.1016/j.jcmg.2014.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Swiss Center for Regenerative Medicine, University Hospital and University of Zurich, Zurich, Switzerland; Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Simon P Hoerstrup
- Swiss Center for Regenerative Medicine, University Hospital and University of Zurich, Zurich, Switzerland; Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Joseph C Wu
- Stanford Cardiovascular Institute and Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|