1
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
2
|
Zhang Z, Wu K, Wu Z, Xiao Y, Wang Y, Lin Q, Wang C, Zhu Q, Xiao Y, Liu Q. A case of pioneering subcutaneous implantable cardioverter defibrillator intervention in Timothy syndrome. BMC Pediatr 2024; 24:729. [PMID: 39533234 PMCID: PMC11558885 DOI: 10.1186/s12887-024-05216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
This case report presents a notable instance of subcutaneous implantable cardioverter defibrillator (S-ICD) implantation in a 9-year-old patient diagnosed with Timothy syndrome (TS), which is a rare condition characterized by mutations in the CACNA1c gene. Conventional therapies often have limited efficacy in managing TS. This case is significant, as it represents the youngest age for S-ICD implantation recorded in mainland China. While the absence of ventricular arrhythmias during hospitalization and follow-up is encouraging, it is not sufficient to conclusively establish the safety and feasibility of this intervention in young TS patients. Further research is needed to evaluate the long-term outcomes and to consider S-ICD as a potential standard treatment option for TS. Additionally, there is a need for a more detailed exploration of the molecular mechanisms underlying gene therapy and personalized interventions.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zhihong Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yefeng Wang
- Department of Cardiology, Hunan Children's Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Cancan Wang
- First Clinical College, Changsha Medical University, Changsha, 410219, Hunan Province, People's Republic of China
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
3
|
Fernández-Morales JC, Toth N, Bayram P, Rienzo T, Morad M. Loss-of-function W4645R mutation in the RyR2-caffeine binding site: implications for synchrony and arrhythmogenesis. Cell Calcium 2024; 123:102925. [PMID: 38908063 PMCID: PMC11392648 DOI: 10.1016/j.ceca.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
AIMS Previous studies have identified RyR2 W4645R mutation, located in the caffeine-binding site, to associate with CPVT1 pathology. Caffeine binding to its site is thought to displace the carboxyl-terminal domain to Ca2+-binding, allowing the tryptophan residue (W4645) to regulate Ca2+ sensitivity of RyR2. To gain insights into regulation of RyR2 Ca2+-binding and its interaction with caffeine-binding site, we introduced W4645R-RyR2 point mutation via CRISPR/Cas9 gene-editing in human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) and characterized their Ca2+-signaling phenotype compared to WT hiPSCCMs. METHODS AND RESULTS W4645R-RyR2 cardiomyocytes had: (1) no significant change in ICa magnitude or voltage-dependence; (2) slightly reduced CICR; (3) altered relaxation kinetics of Ca2+-transients with no change in isoproterenol sensitivity; (4) complete loss of caffeine-triggered Ca2+ release; (5) larger SR Ca2+ leak resulting in 40 % lower SR Ca2+ content, as determined by myocytes' response to 4-CmC; (6) lower incidence of calcium sparks and asynchronous spontaneous SR Ca2+ releases. CONCLUSIONS W4645R-RyR2 mutation induces loss of caffeine-triggered SR Ca2+ release and enhances SR Ca2+ leak that underlie asynchronous spontaneous Ca2+ releases, triggering arrhythmia and impairing cardiac function.
Collapse
Affiliation(s)
| | - Noemi Toth
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Pinar Bayram
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Taylor Rienzo
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA; Department of Regenerative Medicine and Cell Biology, MUSC,Charleston, SC, USA.
| |
Collapse
|
4
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2024:10.1007/s12013-024-01581-6. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
6
|
Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc 2024; 13:e036555. [PMID: 39291488 DOI: 10.1161/jaha.124.036555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Yuxuan Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Jiaqiao Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Dandan Jia
- School of Exercise and health Shanghai University of Sport Shanghai China
| |
Collapse
|
7
|
Kiseleva DG, Dzhabrailov VD, Aitova AA, Turchaninova EA, Tsvelaya VA, Kazakova MA, Plyusnina TY, Markin AM. Arrhythmogenic Potential of Myocardial Edema: The Interstitial Osmolality Induces Spiral Waves and Multiple Excitation Wavelets. Biomedicines 2024; 12:1770. [PMID: 39200234 PMCID: PMC11351629 DOI: 10.3390/biomedicines12081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Myocardial edema is a common symptom of pathological processes in the heart, causing aggravation of cardiovascular diseases and leading to irreversible myocardial remodeling. Patient-based studies show that myocardial edema is associated with arrhythmias. Currently, there are no studies that have examined how edema may influence changes in calcium dynamics in the functional syncytium. We performed optical mapping of calcium dynamics on a monolayer of neonatal rat cardiomyocytes with Fluo-4. The osmolality of the solutions was adjusted using the NaCl content. The initial Tyrode solution contained 140 mM NaCl (1T) and the hypoosmotic solutions contained 105 (0.75T) and 70 mM NaCl (0.5T). This study demonstrated a sharp decrease in the calcium wave propagation speed with a decrease in the solution osmolality. The successive decrease in osmolality also showed a transition from a normal wavefront to spiral wave and multiple wavelets of excitation with wave break. Our study demonstrated that, in a cellular model, hypoosmolality and, as a consequence, myocardial edema, could potentially lead to fatal ventricular arrhythmias, which to our knowledge has not been studied before. At 0.75T spiral waves appeared, whereas multiple wavelets of excitation occurred in 0.5T, which had not been recorded previously in a two-dimensional monolayer under conditions of cell edema without changes in the pacing protocol.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vitalii D. Dzhabrailov
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aleria A. Aitova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| | - Elena A. Turchaninova
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Valeriya A. Tsvelaya
- ITMO University, 191002 Saint-Petersburg, Russia; (V.D.D.); (V.A.T.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Maria A. Kazakova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Tatiana Yu. Plyusnina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia;
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
8
|
Scacchi S, Pavarino LF, Mazzanti A, Trancuccio A, Priori SG, Colli Franzone P. Transmural APD heterogeneity determines ventricular arrhythmogenesis in LQT8 syndrome: Insights from Bidomain computational modeling. PLoS One 2024; 19:e0305248. [PMID: 38968219 PMCID: PMC11226139 DOI: 10.1371/journal.pone.0305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024] Open
Abstract
Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.
Collapse
Affiliation(s)
- Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy
| | - Luca F. Pavarino
- Dipartimento di Matematica, Università degli Studi di Pavia, Pavia, Italy
| | - Andrea Mazzanti
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Trancuccio
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia G. Priori
- Molecular Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | |
Collapse
|
9
|
Pironet A, Vandewiele F, Vennekens R. Exploring the role of TRPM4 in calcium-dependent triggered activity and cardiac arrhythmias. J Physiol 2024; 602:1605-1621. [PMID: 37128952 DOI: 10.1113/jp283831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Cardiac arrhythmias pose a major threat to a patient's health, yet prove to be often difficult to predict, prevent and treat. A key mechanism in the occurrence of arrhythmias is disturbed Ca2+ homeostasis in cardiac muscle cells. As a Ca2+-activated non-selective cation channel, TRPM4 has been linked to Ca2+-induced arrhythmias, potentially contributing to translating an increase in intracellular Ca2+ concentration into membrane depolarisation and an increase in cellular excitability. Indeed, evidence from genetically modified mice, analysis of mutations in human patients and the identification of a TRPM4 blocking compound that can be applied in vivo further underscore this hypothesis. Here, we provide an overview of these data in the context of our current understanding of Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Andy Pironet
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frone Vandewiele
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Centre for Brain and Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Gandon-Renard M, Val-Blasco A, Oughlis C, Gerbaud P, Lefebvre F, Gomez S, Journé C, Courilleau D, Mercier-Nomé F, Pereira L, Benitah JP, Gómez AM, Mercadier JJ. Dual effect of cardiac FKBP12.6 overexpression on excitation-contraction coupling and the incidence of ventricular arrhythmia depending on its expression level. J Mol Cell Cardiol 2024; 188:15-29. [PMID: 38224852 DOI: 10.1016/j.yjmcc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
FKBP12.6, a binding protein to the immunosuppressant FK506, which also binds the ryanodine receptor (RyR2) in the heart, has been proposed to regulate RyR2 function and to have antiarrhythmic properties. However, the level of FKBP12.6 expression in normal hearts remains elusive and some controversies still persist regarding its effects, both in basal conditions and during β-adrenergic stimulation. We quantified FKBP12.6 in the left ventricles (LV) of WT (wild-type) mice and in two novel transgenic models expressing distinct levels of FKBP12.6, using a custom-made specific anti-FKBP12.6 antibody and a recombinant protein. FKBP12.6 level in WT LV was very low (0.16 ± 0.02 nmol/g of LV), indicating that <15% RyR2 monomers are bound to the protein. Mice with 14.1 ± 0.2 nmol of FKBP12.6 per g of LV (TG1) had mild cardiac hypertrophy and normal function and were protected against epinephrine/caffeine-evoked arrhythmias. The ventricular myocytes showed higher [Ca2+]i transient amplitudes than WT myocytes and normal SR-Ca2+ load, while fewer myocytes showed Ca2+ sparks. TG1 cardiomyocytes responded to 50 nM Isoproterenol increasing these [Ca2+]i parameters and producing RyR2-Ser2808 phosphorylation. Mice with more than twice the TG1 FKBP12.6 value (TG2) showed marked cardiac hypertrophy with calcineurin activation and more arrhythmias than WT mice during β-adrenergic stimulation, challenging the protective potential of high FKBP12.6. RyR2R420Q CPVT mice overexpressing FKBP12.6 showed fewer proarrhythmic events and decreased incidence and duration of stress-induced bidirectional ventricular tachycardia. Our study, therefore, quantifies for the first time endogenous FKBP12.6 in the mouse heart, questioning its physiological relevance, at least at rest due its low level. By contrast, our work demonstrates that with caution FKBP12.6 remains an interesting target for the development of new antiarrhythmic therapies.
Collapse
Affiliation(s)
- Marine Gandon-Renard
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Almudena Val-Blasco
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Célia Oughlis
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Pascale Gerbaud
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Florence Lefebvre
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Susana Gomez
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Clément Journé
- Fédération de Recherche en Imagerie Multimodale (FRIM), Université Paris Cité, 75018 Paris, France
| | | | - Françoise Mercier-Nomé
- UMS-IPSIT, Université Paris-Saclay, 91400 Orsay, France; Inflammation, Microbiome and Immunosurveillance, Inserm UMR-996, Université Paris-Saclay, 92140 Clamart, France
| | - Laetitia Pereira
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Pierre Benitah
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France
| | - Ana Maria Gómez
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France.
| | - Jean-Jacques Mercadier
- Signalling and Cardiovascular Pathophysiology, Inserm UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France; Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
12
|
Xiao L, Chen XJ, Feng JK, Li WN, Yuan S, Hu Y. Natural products as the calcium channel blockers for the treatment of arrhythmia: Advance and prospect. Fitoterapia 2023; 169:105600. [PMID: 37419421 DOI: 10.1016/j.fitote.2023.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Arrhythmia is one of the commonly heart diseases with observed abnormal heart-beat rhythm that caused by the obstacles of cardiac activity and conduction. The arrhythmic pathogenesis is complex and capricious and related with other cardiovascular diseases that may lead to heart failure and sudden death. In particular, calcium overload is recognized as the main reason causing arrhythmia through inducing apoptosis in cardiomyocytes. Moreover, calcium channel blockers have been widely used as the routine drugs for the treatment of arrhythmia, but the different arrhythmic complications and adverse effects limit their further applications and demand new drug discovery. Natural products have always been the rich minerals for the development of new drugs that could be employed as the versatile player for the discovery of safe and effective anti-arrhythmia drugs with new mechanisms. In this review, we summarized natural products with the activity against calcium signaling and the relevant mechanism of actions. We are expected to provide an inspiration for the pharmaceutical chemists to develop more potent calcium channel blockers for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Lu Xiao
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | | | - Wei-Na Li
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
14
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Liu Y, Zheng Y, Tse G, Bazoukis G, Letsas K, Goudis C, Korantzopoulos P, Li G, Liu T. Association between sick sinus syndrome and atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol 2023; 381:20-36. [PMID: 37023861 DOI: 10.1016/j.ijcard.2023.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
AIMS Sick sinus syndrome (SSS) and atrial fibrillation (AF) frequently coexist and show a bidirectional relationship. This systematic review and meta-analysis aimed to decipher the precise relationship between SSS and AF, further exploring and comparing different therapy strategies on the occurrence or progression of AF in patients with SSS. METHODS AND RESULTS A systematic literature search was conducted until November 2022. A total of 35 articles with 37,550 patients were included. Patients with SSS were associated with new-onset AF compared to those without SSS. Catheter ablation was associated with a lower risk of AF recurrence, AF progression, all-cause mortality, stroke and hospitalization of heart failure compared to pacemaker therapy. Regarding the different pacing strategies for SSS, VVI/VVIR has higher risk of new-onset AF than DDD/DDDR. No significant difference was found between AAI/AAIR and DDD/DDDR, as well as between DDD/DDDR and minimal ventricular pacing (MVP) for AF recurrence. AAI/AAIR was associated with higher risk of all-cause mortality when compared to DDD/DDDR, but lower risk of cardiac death when compared to DDD/DDDR. Right atrial septum pacing was associated with a similar risk of new-onset AF or AF recurrence compared to right atrial appendage pacing. CONCLUSION SSS is associated with a higher risk of AF. For patients with both SSS and AF, catheter ablation should be considered. This meta-analysis re-emphasizes that high percentage of ventricular pacing should be avoided in patients with SSS in order to decrease AF burden and mortality.
Collapse
Affiliation(s)
- Ying Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yi Zheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; Kent and Medway Medical School, University of Kent and Canterbury Christ Church University, Canterbury, Kent, UK; School of Nursing and Health Studies, Hong Kong, Metropolitan University, Hong Kong, China
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Inomenon Polition Amerikis, Larnaca, Cyprus; Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
| | - Konstantinos Letsas
- Laboratory of Cardiac Electrophysiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Christos Goudis
- Department of Cardiology, Serres General Hospital, 45110 Serres, Greece
| | | | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
16
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
17
|
Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach. Biochem Genet 2022; 61:471-505. [PMID: 36104591 PMCID: PMC9473477 DOI: 10.1007/s10528-022-10280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has been disseminated worldwide. Although there are several treatments for COVID-19, its control is currently suboptimal. Therefore, the development of novel strategies to treat COVID-19 is necessary. Ion channels are located on the membranes of all excitable cells and many intracellular organelles and are key components involved in various biological processes. They are a target of interest when searching for drug targets. This study aimed to reveal the relevant molecular features of ion channel genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 datasets) were obtained from the Gene Expression Omnibus (GEO) database. Ion channel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) database. The RStudio software was used to process the data based on the corresponding R language package to identify ion channel-associated differentially expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional and pathway enrichment analyses were performed using the Enrichr web tool. The STRING database was used to generate a protein-protein interaction (PPI) network, and the Cytoscape software was used to screen for hub genes in the PPI network based on the cytoHubba plug-in. Transcription factors (TF)-DEG, DEG-microRNA (miRNA) and DEG-disease association networks were constructed using the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were subjected to enrichment analysis based on the DSigDB using the Enrichr web tool to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-associated DEGs were identified. GO functional analysis showed that the DEGs were integral components of the plasma membrane and were mainly involved in inorganic cation transmembrane transport and ion channel activity functions. Pathway analysis showed that the DEGs were mainly involved in nicotine addiction, calcium regulation in the cardiac cell and neuronal system pathways. The top 10 hub genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The TF-DEG and DEG-miRNA networks revealed significant TFs (FOXC1, GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129-2-3p). Gene-disease association network analysis revealed that the DEGs were closely associated with intellectual disability and cerebellar ataxia. Drug-target enrichment analysis showed that the relevant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochloride and 4-aminopyridine. The results of this study provide a valuable basis for exploring the mechanisms of ion channel genes in COVID-19 and clues for developing therapeutic strategies for COVID-19.
Collapse
|
18
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
19
|
Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng 2022; 6:372-388. [PMID: 35478228 DOI: 10.1038/s41551-022-00884-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.
Collapse
|
20
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
21
|
Kistamás K, Hézső T, Horváth B, Nánási PP. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels (Austin) 2021; 15:1-19. [PMID: 33258400 PMCID: PMC7757849 DOI: 10.1080/19336950.2020.1854986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac late sodium current (INa,late) is the small sustained component of the sodium current active during the plateau phase of the action potential. Several studies demonstrated that augmentation of the current can lead to cardiac arrhythmias; therefore, INa,late is considered as a promising antiarrhythmic target. Fundamentally, enlarged INa,late increases Na+ influx into the cell, which, in turn, is converted to elevated intracellular Ca2+ concentration through the Na+/Ca2+ exchanger. The excessive Ca2+ load is known to be proarrhythmic. This review describes the behavior of the voltage-gated Na+ channels generating INa,late in health and disease and aims to discuss the physiology and pathophysiology of Na+ and Ca2+ homeostasis in context with the enhanced INa,late demonstrating also the currently accessible antiarrhythmic choices.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Monteiro O, Bhaskar A, Ng AKM, Murdoch CE, Baptista-Hon DT. Computer-based virtual laboratory simulations: LabHEART cardiac physiology practical. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:856-868. [PMID: 34473584 DOI: 10.1152/advan.00094.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Practical demonstration of cardiomyocyte function requires substantial preparation, a source of freshly isolated animal hearts, and specialized equipment. Even where such resources are available, it is not conducive for demonstration to any more than a few students at a time. These approaches are also not consistent with the 3R principle (replacement, reduction, and refinement) of ethical use of animals. We present an implementation of the LabHEART software, developed by Donald Bers and Jose Puglisi, for medical students. Prior to the activity, students had lectures covering the physiological and pharmacological aspects of cardiac excitation-contraction (EC) coupling. We used this problem-based activity to help students consolidate their knowledge and to allow a hands-on approach to explore the key features of EC coupling. Students simulate and measure action potentials, intracellular calcium changes, and cardiomyocyte contraction. They also apply drugs that target ion channels (e.g., nifedipine or tetrodotoxin) or sympathetic input (using isoproterenol) and explore changes to EC coupling. Furthermore, by modifying the biophysical parameters of key ion channels involved in the electrical activity of the heart, students also explore the effect of channelopathies such as long QT syndromes. We describe approaches to implement this activity in a flipped classroom format, with recorded lecture materials provided ahead of the practical to facilitate active learning. We also describe our experiences implementing this activity online. The content and difficulty of the activity can be altered to suit individual courses and is also amenable to promote peer-driven learning.
Collapse
Affiliation(s)
- Olivia Monteiro
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Anna K M Ng
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Daniel T Baptista-Hon
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau S.A.R., China
- Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
23
|
Zhang X, Wei X, Bai G, Huang X, Hu S, Mao H, Liu P. Identification of Three Potential Prognostic Genes in Platinum-Resistant Ovarian Cancer via Integrated Bioinformatics Analysis. Cancer Manag Res 2021; 13:8629-8646. [PMID: 34824550 PMCID: PMC8607279 DOI: 10.2147/cmar.s336672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal gynecologic malignancy. Resistance to platinum-based chemotherapy affects the overall survival of patients. This study used an integrated bioinformatics to find the poorly understood molecular mechanisms underlying platinum resistance in ovarian cancer. Methods Based on the RNA-seq data of tissues in The Cancer Genome Atlas (TCGA) and RNA-seq data of cells from the Cancer Cell Encyclopedia (CCLE), we integrated differentially expressed genes (DEGs) in ovarian cancer tissue and cells. After screening for DEGs related to platinum resistance, we conducted survival analysis and built protein interaction networks to identify genes that may affect prognosis and interact with each other. Least absolute shrinkage and selection operator (Lasso) regression analysis was used to construct a predictive model. Immunohistochemistry and Western blot were used to validate the results. Finally, gene set enrichment analysis (GSEA) was performed on the expression of genes individually. Results We found that ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), calsequestrin 2 (CASQ2) and ryanodine receptor 2 (RYR2) interacted with each other and could predict resistance to platinum-based therapy, correlating negatively with prognosis. Moreover, we constructed a predictive model based on nine genes, including ATP1A2 and CASQ2. Immunohistochemistry and Western blot validated the upregulation of these genes in ovarian cancer tissue samples and cell lines. The immunohistochemistry results also confirmed the prognostic value of ATP1A2, CASQ2 and RYR2. GSEA predicted that ATP1A2, CASQ2 and RYR2 may act on the KRAS and mTORC1 pathways and participate in metabolic reprogramming and regulation of calcium homeostasis in platinum-resistant cells. Conclusion ATP1A2, CASQ2 and RYR2 were highly expressed in platinum-resistant ovarian cancer. ATP1A2 and CASQ2 were related to the prognosis of platinum-resistant ovarian cancer patients. These genes might act on KARS and mTORC1 pathways and participate in metabolic reprogramming and regulation of calcium homeostasis in platinum-resistant cells.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Gaigai Bai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xueyao Huang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Shunxue Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Key Laboratory of Gynecology Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
D'Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Brugada Syndrome: Warning of a Systemic Condition? Front Cardiovasc Med 2021; 8:771349. [PMID: 34722688 PMCID: PMC8553994 DOI: 10.3389/fcvm.2021.771349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is a hereditary disorder, characterized by a specific electrocardiogram pattern and highly related to an increased risk of sudden cardiac death. BrS has been associated with other cardiac and non-cardiac pathologies, probably because of protein expression shared by the heart and other tissue types. In fact, the most commonly found mutated gene in BrS, SCN5A, is expressed throughout nearly the entire body. Consistent with this, large meals and alcohol consumption can trigger arrhythmic events in patients with BrS, suggesting a role for organs involved in the digestive and metabolic pathways. Ajmaline, a drug used to diagnose BrS, can have side effects on non-cardiac tissues, such as the liver, further supporting the idea of a role for organs involved in the digestive and metabolic pathways in BrS. The BrS electrocardiogram (ECG) sign has been associated with neural, digestive, and metabolic pathways, and potential biomarkers for BrS have been found in the serum or plasma. Here, we review the known associations between BrS and various organ systems, and demonstrate support for the hypothesis that BrS is not only a cardiac disorder, but rather a systemic one that affects virtually the whole body. Any time that the BrS ECG sign is found, it should be considered not a single disease, but rather the final step in any number of pathways that ultimately threaten the patient's life. A multi-omics approach would be appropriate to study this syndrome, including genetics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, resulting eventually in a biomarker for BrS and the ability to diagnose this syndrome using a minimally invasive blood test, avoiding the risk associated with ajmaline testing.
Collapse
Affiliation(s)
- Sara D'Imperio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
25
|
Greene D, Barton M, Luchko T, Shiferaw Y. Computational Analysis of Binding Interactions between the Ryanodine Receptor Type 2 and Calmodulin. J Phys Chem B 2021; 125:10720-10735. [PMID: 34533024 DOI: 10.1021/acs.jpcb.1c03896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to a variety of cardiac arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). RyR2 is regulated by calmodulin (CaM), and mutations that disrupt their interaction can cause aberrant calcium release, leading to an arrhythmia. It was recently shown that increasing the RyR2-CaM binding affinity could rescue a defective CPVT-related RyR2 channel to near wild-type behavior. However, the interactions that determine the binding affinity at the RyR2-CaM binding interface are not well understood. In this study, we identify the key domains and interactions, including several new interactions, involved in the binding of CaM to RyR2. Also, our comparison between the wild-type and V3599K mutant suggests how the RyR2-CaM binding affinity can be increased via a change in the central and N-terminal lobe binding contacts for CaM. This computational approach provides new insights into the effect of a mutation at the RyR2-CaM binding interface, and it may find utility in drug design for the future treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Michael Barton
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Tyler Luchko
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California 91330, United States
| |
Collapse
|
26
|
Bone mineral density and risk of cardiovascular disease in men and women: the HUNT study. Eur J Epidemiol 2021; 36:1169-1177. [PMID: 34515906 PMCID: PMC8629874 DOI: 10.1007/s10654-021-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
The association between bone mineral density (BMD) and cardiovascular disease (CVD) is not fully understood. We evaluated BMD as a risk factor for cardiovascular disease and specifically atrial fibrillation (AF), acute myocardial infarction (AMI), ischemic (IS) and hemorrhagic stroke (HS) and heart failure (HF) in men and women. This prospective population cohort utilized data on 22 857 adults from the second and third surveys of the HUNT Study in Norway free from CVD at baseline. BMD was measured using single and dual-energy X-ray absorptiometry in the non-dominant distal forearm and T-score was calculated. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated from adjusted cox proportional hazards models. The analyses were sex-stratified, and models were adjusted for age, age-squared, BMI, physical activity, smoking status, alcohol use, and education level. Additionally, in women, we adjusted for estrogen use and postmenopause. During a mean follow-up of 13.6 ± 5.7 years, 2 928 individuals (12.8%) developed fatal or non-fatal CVD, 1 020 AF (4.5%), 1 172 AMI (5.1%), 1 389 IS (6.1%), 264 HS (1.1%), and 464 HF (2.0%). For every 1 unit decrease in BMD T-score the HR for any CVD was 1.01 (95% CI 0.98 to 1.04) in women and 0.99 (95% CI 0.94 to 1.03) in men. Point estimates for the four cardiovascular outcomes ranged from slightly protective (HR 0.95 for AF in men) to slightly deleterious (HR 1.12 for HS in men). We found no evidence of association of lower distal forearm BMD with CVD, AF, AMI, IS, HS, and HF.
Collapse
|
27
|
Song J, Luo Y, Jiang Y, He J. Advances in the Molecular Genetics of Catecholaminergic Polymorphic Ventricular Tachycardia. Front Pharmacol 2021; 12:718208. [PMID: 34483927 PMCID: PMC8415552 DOI: 10.3389/fphar.2021.718208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia is a primary arrhythmogenic syndrome with genetic features most commonly seen in adolescents, with syncope and sudden death following exercise or agitation as the main clinical manifestations. The mechanism of its occurrence is related to the aberrant release of Ca2+ from cardiomyocytes caused by abnormal RyR2 channels or CASQ2 proteins under conditions of sympathetic excitation, thus inducing a delayed posterior exertional pole, manifested by sympathetic excitation inducing adrenaline secretion, resulting in bidirectional or polymorphic ventricular tachycardia. The mortality rate of the disease is high, but patients usually do not have organic heart disease, the clinical manifestations may not be obvious, and no significant abnormal changes in the QT interval are often observed on electrocardiography. Therefore, the disease is often easily missed and misdiagnosed. A number of genetic mutations have been linked to the development of this disease, and the mechanisms are different. In this paper, we would like to summarize the possible genes related to catecholaminergic polymorphic ventricular tachycardia in order to review the genetic tests currently performed, and to further promote the development of genetic testing techniques and deepen the research on the molecular level of this disease.
Collapse
Affiliation(s)
- Junxia Song
- Departments of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanhong Luo
- Endocrinology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Jiang
- Departments of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianfeng He
- Departments of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Sun Z, Wang L, Han L, Wang Y, Zhou Y, Li Q, Wu Y, Talabieke S, Hou Y, Wu L, Liu R, Fu Z, You H, Li BY, Zheng Y, Luo D. Functional Calsequestrin-1 Is Expressed in the Heart and Its Deficiency Is Causally Related to Malignant Hyperthermia-Like Arrhythmia. Circulation 2021; 144:788-804. [PMID: 34162222 DOI: 10.1161/circulationaha.121.053255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca2+ and regulate its release in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often suffer from arrhythmia for which the underlying mechanism remains unknown. Methods: Working hearts from conventional (Casq1-KO) and cardiac-specific (Casq1-CKO) Casq1 knockout mice were monitored in vivo and ex vivo by electrocardiogram and electrical mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes (NRVMs) with knockdown, over-expression or truncation of the Casq1 gene. Conformational change in both Casqs was determined by crosslinking Western blot analysis. Results: Like MH/EHS patients, Casq1-KO and Casq1-CKO mice had faster basal heart rate, and ventricular tachycardia upon exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electrical triggering also occurred in Casq1-KO hearts ex vivo. Accordingly, the ventricular cardiomyocytes from Casq1-CKO mice displayed dantrolene-sensitive increased Ca2+ waves and diastole premature Ca2+ transients/oscillations upon isoflurane. NRVMs with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients upon isoflurane, while cells over-expressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C-terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with RyR2 in the ventricular SR. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41ºC induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/RyR2 interaction and increased RyR2 activity in the ventricle. Conclusions: Casq1 is expressed in the heart, where it regulates SR Ca2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on RyR2-mediated Ca2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.
Collapse
Affiliation(s)
- Zhipeng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Luqi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Lu Han
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Yue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Yuan Zhou
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, P. R. China
| | - Shaletanati Talabieke
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine; National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang 050200, P. R. China
| | - Lulin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Ronghua Liu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Zhiping Fu
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Hongjie You
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| | - Dali Luo
- Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
29
|
Blancard M, Touat-Hamici Z, Aguilar-Sanchez Y, Yin L, Vaksmann G, Roux-Buisson N, Fressart V, Denjoy I, Klug D, Neyroud N, Ramos-Franco J, Gomez AM, Guicheney P. A Type 2 Ryanodine Receptor Variant in the Helical Domain 2 Associated with an Impairment of the Adrenergic Response. J Pers Med 2021; 11:579. [PMID: 34202968 PMCID: PMC8235491 DOI: 10.3390/jpm11060579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is triggered by exercise or acute emotion in patients with normal resting electrocardiogram. The major disease-causing gene is RYR2, encoding the cardiac ryanodine receptor (RyR2). We report a novel RYR2 variant, p.Asp3291Val, outside the four CPVT mutation hotspots, in three CPVT families with numerous sudden deaths. This missense variant was first identified in a four-generation family, where eight sudden cardiac deaths occurred before the age of 30 in the context of adrenergic stress. All affected subjects harbored at least one copy of the RYR2 variant. Three affected sisters were homozygous for the variant. The same variant was found in two additional CPVT families. It is located in the helical domain 2 and changes a negatively charged amino acid widely conserved through evolution. Functional analysis of D3291V channels revealed a normal response to cytosolic Ca2+, a markedly reduced luminal Ca2+ sensitivity and, more importantly, an absence of normal response to 8-bromo-cAMP and forskolin stimulation in both transfected HEK293 and HL-1 cells. Our data support that the D3291V-RyR2 is a loss-of-function RyR2 variant responsible for an atypical form of CPVT inducing a mild dysfunction in basal conditions but leading potentially to fatal events through its unresponsiveness to adrenergic stimulation.
Collapse
Affiliation(s)
- Malorie Blancard
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Zahia Touat-Hamici
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Yuriana Aguilar-Sanchez
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Liheng Yin
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Guy Vaksmann
- Service de Cardiologie Pédiatrique, Hôpital Privé de la Louvière, 59042 Lille, France;
| | | | | | - Isabelle Denjoy
- Département de Cardiologie, Centre de Référence des Maladies Cardiaques Héréditaires, Hôpital Bichat, AP-HP, 75018 Paris, France;
| | - Didier Klug
- Hôpital Cardiologique, CHRU de Lille, 59000 Lille, France;
| | - Nathalie Neyroud
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Josefina Ramos-Franco
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Ana Maria Gomez
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Pascale Guicheney
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| |
Collapse
|
30
|
Brugada-Terradellas C, Hellemans A, Brugada P, Smets P. Sudden cardiac death: A comparative review of humans, dogs and cats. Vet J 2021; 274:105696. [PMID: 34148018 DOI: 10.1016/j.tvjl.2021.105696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Sudden death is one of the most common causes of death in humans in Western countries. Approximately 85% of these cases are of cardiac origin. In dogs and cats, sudden cardiac death (SCD) also commonly occurs, but fewer pathophysiological and prevalence data are available. Both structural, primarily 'electrical' and ischemic heart diseases are known to cause SCD, many of which share similar underlying arrhythmogenic mechanisms between humans and companion animals. As for underlying genetics, numerous mutations on multiple loci have been related to SCD in humans, but only a few mutations associated with dilated cardiomyopathy and SCD have been identified in dogs, e.g. in the phospholamban and titin genes. Information published from human medicine can therefore inform future veterinary studies, but also dogs and cats could act as spontaneous models of SCD in humans. Further research in both fields is therefore warranted to better understand the pathophysiology, genetics, and prevention of SCD.
Collapse
Affiliation(s)
- Celine Brugada-Terradellas
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Arnaut Hellemans
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Pedro Brugada
- Pedro Brugada, Cardiovascular Division, UZ Brussel - VUB, Avenue du Laerbeek 101, 1090 Brussels, Belgium
| | - Pascale Smets
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
31
|
Functional evaluation of human ion channel variants using automated electrophysiology. Methods Enzymol 2021; 654:383-405. [PMID: 34120723 DOI: 10.1016/bs.mie.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patch clamp recording enabled a revolution in cellular electrophysiology, and is useful for evaluating the functional consequences of ion channel gene mutations or variants associated with human disorders called channelopathies. However, due to massive growth of genetic testing in medical practice and research, the number of known ion channel variants has exploded into the thousands. Fortunately, automated methods for performing patch clamp recording have emerged as important tools to address the explosion in ion channel variants. In this chapter, we present our approach to harnessing automated electrophysiology to study a human voltage-gated potassium channel gene (KCNQ1), which harbors hundreds of mutations associated with genetic disorders of heart rhythm including the congenital long-QT syndrome. We include protocols for performing high efficiency electroporation of heterologous cells with recombinant KCNQ1 plasmid DNA and for automated planar patch recording including data analysis. These methods can be adapted for studying other voltage-gated ion channels.
Collapse
|
32
|
WWP2 and PPP1R3A are abnormally regulated in arrhythmia-induced cardiac damage. 3 Biotech 2021; 11:185. [PMID: 33927976 DOI: 10.1007/s13205-021-02719-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022] Open
Abstract
The present work aimed to identify the roles of WWP2 (an E3 ubiquitin-protein ligase) and protein phosphatase 1 regulatory subunit 3A (PPP1R3A) in different pathological stages of cardiac arrhythmia development. Leptin-deficient mice (C57BLKS-Leprdb/Leprdb) were used for the development of initial and severe stages of cardiac arrhythmia. Histology, ECG, immunohistochemistry and Western blotting were used to analyse cardiac arrhythmia, WWP2 and PPP1R3A expression. Histopathological studies of 4-month-old mice showed cardiac degeneration, cellular lesions, and swollen tissue structure with loss of tissue elasticity, indicative of the initial condition of cardiac arrhythmia. The leptin-deficient 7-month-old mice showed cardiac tissue hardening with increased secretion of extracellular matrix. The development of initial- and severe-cardiac arrhythmia was further evident with electrocardiogram studies, which showed more PP interval variations as the disease progressed. At the molecular level, WWP2 showed marginal upregulation in the initial stages of arrhythmia and was predominantly expressed within nuclei. WWP2 was overexpressed 6.6-fold in the severe stage of cardiac arrhythmia and was spread throughout the tissue layer. Interestingly, PPP1R3A was significantly overexpressed in initial cardiac arrhythmia conditions, but was downregulated and restricted to more nuclear expression in advanced cardiac arrhythmia. Silencing of PPP1R3A, enhances the expression of WWP2 to 5.3-fold in initial stages, but remarkable variation not observed in advanced cardiac arrhythmia conditions. Our results suggest that PPP1R3A had a control over WWP2 in the initial stages of cardiac arrhythmia. In particular, PPP1R3A overexpression implies its potential protective effect in initial cardiac arrhythmia stages.
Collapse
|
33
|
Liu G, Liu Z, Cao N. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Arch 2021; 473:1087-1097. [DOI: 10.1007/s00424-021-02542-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
|
34
|
Touat-Hamici Z, Blancard M, Ma R, Lin L, Iddir Y, Denjoy I, Leenhardt A, Yuchi Z, Guicheney P. A SPRY1 domain cardiac ryanodine receptor variant associated with short-coupled torsade de pointes. Sci Rep 2021; 11:5243. [PMID: 33664309 PMCID: PMC7970841 DOI: 10.1038/s41598-021-84373-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic ventricular fibrillation (IVF) causes sudden death in young adult patients without structural or ischemic heart disease. Most IVF cases are sporadic and some patients present with short-coupled torsade de pointes, the genetics of which are poorly understood. A man who had a first syncope at the age of 35 presented with frequent short-coupled premature ventricular beats with bursts of polymorphic ventricular tachycardia and then died suddenly. By exome sequencing, we identified three rare variants: p.I784F in the SPRY1 of the ryanodine receptor 2 (RyR2), p.A96S in connexin 40 (Cx40), reported to affect electrical coupling and cardiac conduction, and a nonsense p.R244X in the cardiac-specific troponin I-interacting kinase (TNNI3K). We assessed intracellular Ca2+ handling in WT and mutant human RYR2 transfected HEK293 cells by fluorescent microscopy and an enhanced store overload-induced Ca2+ release in response to cytosolic Ca2+ was observed in RyR2-I784F cells. In addition, crystal structures and thermal melting temperatures revealed a conformational change in the I784F-SPRY1 domain compared to the WT-domain. The novel RyR2-I784F variant in SPRY1 domain causes a leaky channel under non-stress conditions. The presence of several variants affecting Ca2+ handling and cardiac conduction suggests a possible oligogenic origin for the ectopies originating from Purkinje fibres.
Collapse
Affiliation(s)
- Zahia Touat-Hamici
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Malorie Blancard
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifang Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yasmine Iddir
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France
- Département d'Oncologie Pédiatrique Laboratoire RTOP «Recherche Translationnelle en Oncologie Pédiatrique»-INSERM U830, Institut Curie, Paris, France
| | - Isabelle Denjoy
- Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, AP-HP, Hôpital Bichat, 75018, Paris, France
- Université de Paris, INSERM, U1166, 75013, Paris, France
| | - Antoine Leenhardt
- Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, AP-HP, Hôpital Bichat, 75018, Paris, France
- Université de Paris, INSERM, U1166, 75013, Paris, France
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Pascale Guicheney
- INSERM, UMRS 1166, Faculté de Médecine Sorbonne-Université, Unité de Recherche sur les Maladies Cardiovasculaires et Métaboliques, 91, boulevard de l'Hôpital, 75013, Paris, France.
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France.
| |
Collapse
|
35
|
Zhang XH, Wei H, Xia Y, Morad M. Calcium signaling consequences of RyR2 mutations associated with CPVT1 introduced via CRISPR/Cas9 gene editing in human-induced pluripotent stem cell-derived cardiomyocytes: Comparison of RyR2-R420Q, F2483I, and Q4201R. Heart Rhythm 2021; 18:250-260. [PMID: 32931925 PMCID: PMC7893824 DOI: 10.1016/j.hrthm.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) created from patients with catecholaminergic polymorphic ventricular tachycardia 1 (CPVT1) have been used to study CPVT1 arrhythmia. OBJECTIVE The purpose of this study was to evaluate the Ca2+ signaling aberrancies and pharmacological sensitivities of 3 CRISPR/Cas9-introduced CPVT1 mutations located in different molecular domains of ryanodine receptor 2 (RyR2). METHODS CRISPR/Cas9-engineered hiPSC-CMs carrying RyR2 mutations-R420Q, Q4201R, and F2483I-were voltage clamped, and their electrophysiology, pharmacology, and Ca2+ signaling phenotypes measured using total internal reflection fluorescence microscopy. RESULTS R420Q and Q4201R mutant hiPSC-CMs exhibit irregular, long-lasting, spatially wandering Ca2+ sparks and aberrant Ca2+ releases similar to F2483I unlike the wild-type myocytes. Large sarcoplasmic reticulum (SR) Ca2+ leaks and smaller SR Ca2+ contents were detected in cells expressing Q4201R and F2483I, but not R420Q. Fractional Ca2+ release and calcium-induced calcium release gain were higher in Q4201R than in R420Q and F2483I hiPSC-CMs. JTV519 was equally effective in suppressing Ca2+ sparks, waves, and SR Ca2+ leaks in hiPSC-CMs derived from all 3 mutant lines. Flecainide and dantrolene similarly suppressed SR Ca2+ leaks, but were less effective in decreasing spark frequency and durations. CONCLUSION CRISPR/Cas9 gene editing of hiPSCs provides a novel approach in studying CPVT1-associated RyR2 mutations and suggests that Ca2+-signaling aberrancies and drug sensitivities may vary depending on the mutation site.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Hua Wei
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Yanli Xia
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina.
| |
Collapse
|
36
|
Koponen M, Marjamaa A, Tuiskula AM, Viitasalo M, Nallinmaa-Luoto T, Leinonen JT, Widen E, Toivonen L, Kontula K, Swan H. Genealogy and clinical course of catecholaminergic polymorphic ventricular tachycardia caused by the ryanodine receptor type 2 P2328S mutation. PLoS One 2020; 15:e0243649. [PMID: 33315912 PMCID: PMC7735638 DOI: 10.1371/journal.pone.0243649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inherited arrhythmic disease associated with a risk of syncope and sudden cardiac death (SCD). Aims We aimed at identifying RYR2 P2328S founder mutation carriers and describing the clinical course associated with the mutation. Methods The study population was drawn from the Finnish Inherited Cardiac Disorder Research Registry, and from the present genealogical study. Kaplan-Meier graphs, log-rank test and Cox regression model were used to evaluate the clinical course. Results Genealogical study revealed a common ancestor couple living in the late 17th century. A total of 1837 living descendants were tested for RYR2 P2328S mutation unveiling 62 mutation carriers aged mean 39±23 years old. No arrhythmic deaths were documented among genotyped subjects, but 11 SCDs were detected in non-genotyped family members since 1970. Three genotyped patients (5%) suffered an aborted cardiac arrest (ACA), and 15 (25%) had a syncope triggered by exercise or stress. Rate of cardiac events was higher among patients who in exercise stress test showed a maximum rate of premature ventricular contractions >30/min (68% vs 17%, p<0.01; hazard ratio = 7.1, p = 0.02), in comparison to patients without the respective finding. A cardioverter-defibrillator (ICD) was implanted to 13 (22%) patients, with an appropriate ICD shock in four (31%) subjects. All ICD shocks, one ACA, and one syncope occurred during β-blocker medication. Conclusions Previously undiagnosed CPVT patients may be identified by well-conducted genealogical studies. The RYR2 P2328S mutation causes a potentially severe phenotype, but its expression is variable, thus calling for additional studies on modifying factors.
Collapse
Affiliation(s)
- Mikael Koponen
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Annukka Marjamaa
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Annukka M. Tuiskula
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Laboratory of Genetics, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Matti Viitasalo
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Jaakko T. Leinonen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Lauri Toivonen
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
37
|
Spinozzi S, Liu C, Chen Z, Feng W, Zhang L, Ouyang K, Evans SM, Chen J. Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes. Circ Heart Fail 2020; 13:e006935. [PMID: 32635769 PMCID: PMC7583668 DOI: 10.1161/circheartfailure.120.006935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. METHODS Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca2+ transient studies were conducted. RESULTS Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P<0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P<0.05). CONCLUSIONS Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.
Collapse
MESH Headings
- Age Factors
- Animals
- Calcium/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Mice
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Microtubules/metabolism
- Microtubules/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ze’e Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lunfeng Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Reduced Function of the Glutathione S-Transferase S1 Suppresses Behavioral Hyperexcitability in Drosophila Expressing Mutant Voltage-Gated Sodium Channels. G3-GENES GENOMES GENETICS 2020; 10:1327-1340. [PMID: 32054635 PMCID: PMC7144092 DOI: 10.1534/g3.119.401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu. Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss. Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes.
Collapse
|
39
|
Kannankeril PJ, Shoemaker MB, Gayle KA, Fountain D, Roden DM, Knollmann BC. Atropine-induced sinus tachycardia protects against exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Europace 2020; 22:643-648. [PMID: 32091590 DOI: 10.1093/europace/euaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by exercise-induced ventricular arrhythmias, sudden death, and sinus bradycardia. Elevating supraventricular rates with pacing or atropine protects against catecholaminergic ventricular arrhythmias in a CPVT mouse model. We tested the hypothesis that increasing sinus heart rate (HR) with atropine prevents exercise-induced ventricular arrhythmias in CPVT patients. METHODS AND RESULTS We performed a prospective open-label trial of atropine prior to exercise in CPVT patients (clinicaltrials.gov NCT02927223). Subjects performed a baseline standard Bruce treadmill test on their usual medical regimen. After a 2-h recovery period, subjects performed a second exercise test after parasympathetic block with atropine (0.04 mg/kg intravenous). The primary outcome measure was the total number of ventricular ectopic beats during exercise. All six subjects (5 men, 22-57 years old) completed the study with no adverse events. Atropine increased resting sinus rate from median 52 b.p.m. (range 52-64) to 98 b.p.m. (84-119), P = 0.02. Peak HRs (149 b.p.m., range 136-181 vs. 149 b.p.m., range 127-182, P = 0.46) and exercise duration (612 s, range 544-733 vs. 584 s, range 543-742, P = 0.22) were not statistically different. All subjects had ventricular ectopy during the baseline exercise test. Atropine pre-treatment significantly decreased the median number of ventricular ectopic beats from 46 (6-192) to 0 (0-29), P = 0.026; ventricular ectopy was completely eliminated in 4/6 subjects. CONCLUSION Elevating sinus rates with atropine reduces or eliminates exercise-induced ventricular ectopy in patients with CPVT. Increasing supraventricular rates may represent a novel therapeutic strategy in CPVT.
Collapse
Affiliation(s)
- Prince J Kannankeril
- Thomas P. Graham Jr. Division of Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Children's Way, Suite 5230, Nashville, TN 37232-9119, USA.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Benjamin Shoemaker
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn A Gayle
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Darlene Fountain
- Thomas P. Graham Jr. Division of Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Children's Way, Suite 5230, Nashville, TN 37232-9119, USA.,Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Pourrier M, Fedida D. The Emergence of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform to Model Arrhythmogenic Diseases. Int J Mol Sci 2020; 21:ijms21020657. [PMID: 31963859 PMCID: PMC7013748 DOI: 10.3390/ijms21020657] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
There is a need for improved in vitro models of inherited cardiac diseases to better understand basic cellular and molecular mechanisms and advance drug development. Most of these diseases are associated with arrhythmias, as a result of mutations in ion channel or ion channel-modulatory proteins. Thus far, the electrophysiological phenotype of these mutations has been typically studied using transgenic animal models and heterologous expression systems. Although they have played a major role in advancing the understanding of the pathophysiology of arrhythmogenesis, more physiological and predictive preclinical models are necessary to optimize the treatment strategy for individual patients. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have generated much interest as an alternative tool to model arrhythmogenic diseases. They provide a unique opportunity to recapitulate the native-like environment required for mutated proteins to reproduce the human cellular disease phenotype. However, it is also important to recognize the limitations of this technology, specifically their fetal electrophysiological phenotype, which differentiates them from adult human myocytes. In this review, we provide an overview of the major inherited arrhythmogenic cardiac diseases modeled using hiPSC-CMs and for which the cellular disease phenotype has been somewhat characterized.
Collapse
Affiliation(s)
- Marc Pourrier
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- IonsGate Preclinical Services Inc., Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
42
|
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare congenital arrhythmogenic disorder induced by physical or emotional stress. It mainly affects children and younger adults and is characterized by rapid polymorphic and bidirectional ventricular tachycardia. Symptoms can include dizziness, palpitations, and presyncope, which may progress to syncope, hypotonia, convulsive movements, and sudden cardiac death. CPVT is the result of perturbations in Ca ion handling in the sarcoplasmic reticulum of cardiac myocytes. Mutations in the cardiac ryanodine receptor gene and the calsequestrin isoform 2 gene are most commonly seen in familial CPVT patients. Under catecholaminergic stimulation, either mutation can result in an excess Ca load during diastole resulting in delayed after depolarization and subsequent arrhythmogenesis. The current first-line treatment for CPVT is β-blocker therapy. Other therapeutic interventions that can be used in conjunction with β-blockers include moderate exercise training, flecainide, left cardiac sympathetic denervation, and implantable cardioverter-defibrillators. Several potential therapeutic interventions, including verapamil, dantrolene, JTV519, and gene therapy, are also discussed.
Collapse
|
43
|
Han D, Xu L, Liu P, Liu Y, Sun C, Yin Y. Allicin disrupts cardiac Cav1.2 channels via trafficking. PHARMACEUTICAL BIOLOGY 2019; 57:245-249. [PMID: 30929547 PMCID: PMC6450490 DOI: 10.1080/13880209.2019.1577469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/06/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
CONTEXT Allicin is a potential antiarrhythmic agent. The antiarrhythmic properties of allicin rely on its blockade of various cardiac ion channels. The l-type calcium (Cav1.2) channel provides a pivotal substrate for cardiac electrophysiologic activities. The mechanism of allicin on Cav1.2 remains unclear. OBJECTIVE This study evaluated the potential of allicin on the synthesis and trafficking of Cav1.2 channels. MATERIALS AND METHODS Primary cardiomyocytes (CMs) from neonatal Sprague-Dawley (SD) rats were exposed to allicin (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL) for 24 and 48 h. The CellTiter-Glo assay was performed to measure CM viability. Western blot with grayscale analysis and confocal laser scanning microscopy were used to evaluate the effects of allicin on the synthesis and trafficking of Cav1.2 channel proteins in primary CMs. RESULTS There was no significant difference in apoptotic toxicity from the actual cell viability (p > 0.05) in any group (0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 μg/mL allicin), except that viability in the 0.001 and 0.01 μg/mL groups at 24 h were significantly greater (137.37 and 135.96%) (p < 0.05). Western blot with grayscale analysis revealed no substantial inhibition by allicin of the synthesis of Cav1.2 proteins. Confocal laser scanning microscopy revealed trafficking dysfunction of Cav1.2 channels caused by allicin in primary CMs. CONCLUSION This study is the first to demonstrate that allicin inhibits cardiac Cav1.2 channels by disrupting trafficking, possibly mediating its antiarrhythmic benefits. Therefore, allicin might serve as a new antiarrhythmic agent in the future.
Collapse
Affiliation(s)
- Dan Han
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingping Xu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xianyang Central Hospital, Xianyang, China
| | - Peng Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingying Liu
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chaofeng Sun
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanrong Yin
- Arrhythmia Unit, Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
44
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Nouira S, Chabrak S, Ouragini H. Clinical and genetic investigation of catecholaminergic polymorphic ventricular tachycardia in a consanguineous Tunisian family. Acta Cardiol 2019; 75:677-680. [PMID: 31453761 DOI: 10.1080/00015385.2019.1658374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare disease presenting with syncopal events and sudden cardiac death at a young age in the absence of structural heart disease. Two major genes have been shown to be responsible for CPVT: RYR2 and CASQ2 genes involved in calcium homeostasis. Methods: We report here clinical and molecular investigation of a consanguineous Tunisian family including three affected members. Involvement of RYR2 and CASQ2 genes was investigated. Results: Mutation screening for RYR2 gene showed that no mutation were detected in the coding sequence. A novel variation c.572C/T was identified in CASQ2 gene leading to a p.Pro191Leu. Conclusion: To our knowledge, this is the first clinical and genetic investigation of CPVT in North Africa.
Collapse
Affiliation(s)
- Sonia Nouira
- Laboratory of Molecular and Cellular Haematology, Pasteur Institute of Tunis, Université Tunis ElManar, Tunis, Tunisia
- Molecular Biology Cell and Biotechnology Department, Higher Institute of Biotechnology of Monastir, Université de Monastir, Monastir, Tunisia
| | - Sonia Chabrak
- Cardiology Department, La Rabta Hospital, Tunis, Tunisia
| | - Houyem Ouragini
- Laboratory of Molecular and Cellular Haematology, Pasteur Institute of Tunis, Université Tunis ElManar, Tunis, Tunisia
| |
Collapse
|
46
|
Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration? Int J Mol Sci 2019; 20:ijms20163986. [PMID: 31426283 PMCID: PMC6721231 DOI: 10.3390/ijms20163986] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by sudden death in young people and featured by fibro-adipose myocardium replacement, malignant arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways, and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative mechanism involves a defect in the expression and/or activity of the cardiac Ca2+ handling machinery, focusing on the available data supporting this hypothesis. The Ca2+ toolkit is heavily remodeled in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins involved in excitation‒contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As a consequence, the sarcoplasmic reticulum becomes more eager to release Ca2+, thereby inducing delayed afterdepolarizations and impairing cardiac contractility. These data are supported by preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes. Assessing the involvement of Ca2+ signaling in the pathogenesis of ACM could be beneficial in the treatment of this life-threatening disease.
Collapse
|
47
|
Park SJ, Zhang D, Qi Y, Li Y, Lee KY, Bezzerides VJ, Yang P, Xia S, Kim SL, Liu X, Lu F, Pasqualini FS, Campbell PH, Geva J, Roberts AE, Kleber AG, Abrams DJ, Pu WT, Parker KK. Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From Engineered Human Heart Tissue. Circulation 2019; 140:390-404. [PMID: 31311300 PMCID: PMC6750809 DOI: 10.1161/circulationaha.119.039711] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.).,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu (Y.L.)
| | - Keel Yong Lee
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Vassilios J Bezzerides
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China (D.Z., Y.Q., P.Y., S.X.)
| | - Sean L Kim
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Fujian Lu
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA
| | - Judith Geva
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Andre G Kleber
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (A.G.K.)
| | - Dominic J Abrams
- Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - William T Pu
- Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.)
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences (S.-J.P., K.Y.L., S.L.K., F.S.P., P.H.C., K.K.P.), Harvard University, Cambridge, MA.,Harvard Stem Cell Institute (W.T.P., K.K.P.), Harvard University, Cambridge, MA.,Department of Cardiology, Boston Children's Hospital, MA (D.Z., Y.L., V.J.B., X.L., F.L., J.G., A.E.R., D.J.A., W.T.P., K.K.P.).,Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul, South Korea (K.K.P.). Dr Park is currently at the Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University School of Medicine, Atlanta
| |
Collapse
|
48
|
Nanou E, Catterall WA. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2019; 98:466-481. [PMID: 29723500 DOI: 10.1016/j.neuron.2018.03.017] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Voltage-gated calcium channels couple depolarization of the cell-surface membrane to entry of calcium, which triggers secretion, contraction, neurotransmission, gene expression, and other physiological responses. They are encoded by ten genes, which generate three voltage-gated calcium channel subfamilies: CaV1; CaV2; and CaV3. At synapses, CaV2 channels form large signaling complexes in the presynaptic nerve terminal, which are responsible for the calcium entry that triggers neurotransmitter release and short-term presynaptic plasticity. CaV1 channels form signaling complexes in postsynaptic dendrites and dendritic spines, where their calcium entry induces long-term potentiation. These calcium channels are the targets of mutations and polymorphisms that alter their function and/or regulation and cause neuropsychiatric diseases, including migraine headache, cerebellar ataxia, autism, schizophrenia, bipolar disorder, and depression. This article reviews the molecular properties of calcium channels, considers their multiple roles in synaptic plasticity, and discusses their potential involvement in this wide range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Evanthia Nanou
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
49
|
Liu C, Spinozzi S, Chen JY, Fang X, Feng W, Perkins G, Cattaneo P, Guimarães-Camboa N, Dalton ND, Peterson KL, Wu T, Ouyang K, Fu XD, Evans SM, Chen J. Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation. Circulation 2019; 140:55-66. [PMID: 30982350 PMCID: PMC6889818 DOI: 10.1161/circulationaha.119.039751] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Membrane contact sites are fundamental for transmission and translation of signals in multicellular organisms. The junctional membrane complexes in the cardiac dyads, where transverse (T) tubules are juxtaposed to the sarcoplasmic reticulum, are a prime example. T-tubule uncoupling and remodeling are well-known features of cardiac disease and heart failure. Even subtle alterations in the association between T-tubules and the junctional sarcoplasmic reticulum can cause serious cardiac disorders. NEXN (nexilin) has been identified as an actin-binding protein, and multiple mutations in the NEXN gene are associated with cardiac diseases, but the precise role of NEXN in heart function and disease is still unknown. METHODS Nexn global and cardiomyocyte-specific knockout mice were generated. Comprehensive phenotypic and RNA sequencing and mass spectrometry analyses were performed. Heart tissue samples and isolated single cardiomyocytes were analyzed by electron and confocal microscopy. RESULTS Global and cardiomyocyte-specific loss of Nexn in mice resulted in a rapidly progressive dilated cardiomyopathy. In vivo and in vitro analyses revealed that NEXN interacted with junctional sarcoplasmic reticulum proteins, was essential for optimal calcium transients, and was required for initiation of T-tubule invagination and formation. CONCLUSIONS These results demonstrated that NEXN is a pivotal component of the junctional membrane complex and is required for initiation and formation of T-tubules, thus providing insight into mechanisms underlying cardiomyopathy in patients with mutations in NEXN.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cells, Cultured
- Intercellular Junctions/genetics
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/deficiency
- Microfilament Proteins/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Paola Cattaneo
- National Research Council, Institute of Genetics and Biomedical Research, Milan 20138, Italy
- Humanitas Clinical and Research Center, Rozzano 20089, Italy
| | - Nuno Guimarães-Camboa
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Berlin 13347, Germany
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
50
|
Basaki M, Tabandeh MR, Aminlari M, Asasi K, Mohsenifard E, Abdi-Hachesoo B. Sequence and expression analysis of cardiac ryanodine receptor 2 in broilers that died from sudden death syndrome. Avian Pathol 2019; 48:444-453. [PMID: 31081346 DOI: 10.1080/03079457.2019.1618439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sudden death syndrome (SDS) is a stress-related disease in broilers with no diagnostic clinical or necropsy findings. SDS is associated with ventricular tachycardia (VT) and ventricular fibrillation (VF); however, its pathogenesis is not precisely described at the molecular level. Dysfunction of ryanodine receptor 2 (RYR2), that controls rapid release of Ca2+ from the sarcoplasmic reticulum (SR) into the cytosol during muscle contraction, has been associated with VT and sudden cardiac death (SCD) in human patients with structurally normal heart, but there is no report describing abnormalities in RYR2 in diseased broilers. In order to advance our knowledge on the molecular mechanisms predisposing broilers to fatal arrhythmia, the present study was conducted to determine the occurrence of possible mutations and changes in the expression level of the chicken RYR2 gene (chRYR2) in broilers that died from SDS. An increase in mRNA expression level and nine novel point mutations in chRYR2 were found in relation to SDS. In conclusion, susceptibility to lethal cardiac arrhythmia in SDS may be associated with specific changes in intracellular Ca2+ cycling components such as RYR2 due to mutation and dysregulation. Finding the probable association of SDS with gene defects can be applied to select for chickens with lower susceptibility to SDS and decrease the poultry industry losses due to SDS mortality. RESEARCH HIGHLIGHTS Investigation of the occurrence of possible mutations and changes in the expression level of chicken RYR2 gene (chRYR2) in broilers that died from SDS. Increase in the mRNA expression level of chRYR2 in relation to SDS. Nine novel point mutations in chRYR2 of broilers that died from SDS. Possible connection between susceptibility to lethal cardiac arrhythmia in SDS and changes in intracellular Ca2+ cycling machinery, such as RYR2, due to mutation and dysregulation.
Collapse
Affiliation(s)
- M Basaki
- Department of Basic Sciences, School of Veterinary Medicine, University of Tabriz , Tabriz , Iran
| | - M R Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz , Iran
| | - M Aminlari
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - K Asasi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - E Mohsenifard
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - B Abdi-Hachesoo
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|