1
|
Nattel S. Arrhythmia-Induced Atrial Cardiomyopathy: Clinical Relevance and Role of Premature Extrasystole Coupling Interval. JACC Clin Electrophysiol 2025; 11:43-45. [PMID: 39880543 DOI: 10.1016/j.jacep.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Wijdeveld LFJM, Collinet ACT, Huiskes FG, Brundel BJJM. Metabolomics in atrial fibrillation - A review and meta-analysis of blood, tissue and animal models. J Mol Cell Cardiol 2024; 197:108-124. [PMID: 39476947 DOI: 10.1016/j.yjmcc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia associated with severe cardiovascular complications. AF presents a growing global challenge, however, current treatment strategies for AF do not address the underlying pathophysiology. To advance diagnosis and treatment of AF, a deeper understanding of AF root causes is needed. Metabolomics is a fast approach to identify, quantify and analyze metabolites in a given sample, such as human serum or atrial tissue. In the past two decades, metabolomics have enabled research on metabolite biomarkers to predict AF, metabolic features of AF, and testing metabolic mechanisms of AF in animal models. Due to the field's rapid evolution, the methods of AF metabolomics studies have not always been optimal. Metabolomics research has lacked standardization and requires expertise to face methodological challenges. PURPOSE OF THE REVIEW We summarize and meta-analyze metabolomics research on AF in human plasma and serum, atrial tissue, and animal models. We present the current progress on metabolic biomarkers candidates, metabolic features of clinical AF, and the translation of metabolomics findings from animal to human. We additionally discuss strengths and weaknesses of the metabolomics method and highlight opportunities for future AF metabolomics research.
Collapse
Affiliation(s)
- Leonoor F J M Wijdeveld
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA 02142, Cambridge, United States
| | - Amelie C T Collinet
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Fabries G Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Iwamiya S, Ihara K, Nitta G, Sasano T. Atrial Fibrillation and Underlying Structural and Electrophysiological Heterogeneity. Int J Mol Sci 2024; 25:10193. [PMID: 39337682 PMCID: PMC11432636 DOI: 10.3390/ijms251810193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As atrial fibrillation (AF) progresses from initial paroxysmal episodes to the persistent phase, maintaining sinus rhythm for an extended period through pharmacotherapy and catheter ablation becomes difficult. A major cause of the deteriorated treatment outcome is the atrial structural and electrophysiological heterogeneity, which AF itself can exacerbate. This heterogeneity exists or manifests in various dimensions, including anatomically segmental structural features, the distribution of histological fibrosis and the autonomic nervous system, sarcolemmal ion channels, and electrophysiological properties. All these types of heterogeneity are closely related to the development of AF. Recognizing the heterogeneity provides a valuable approach to comprehending the underlying mechanisms in the complex excitatory patterns of AF and the determining factors that govern the seemingly chaotic propagation. Furthermore, substrate modification based on heterogeneity is a potential therapeutic strategy. This review aims to consolidate the current knowledge on structural and electrophysiological atrial heterogeneity and its relation to the pathogenesis of AF, drawing insights from clinical studies, animal and cell experiments, molecular basis, and computer-based approaches, to advance our understanding of the pathophysiology and management of AF.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Giichi Nitta
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Casado-Arroyo R, Bernardi M, Sabouret P, Franculli G, Tamargo J, Spadafora L, Lellouche N, Biondi-Zoccai G, Toth PP, Banach M. Investigative agents for atrial fibrillation: agonists and stimulants, progress and expectations. Expert Opin Investig Drugs 2024; 33:967-978. [PMID: 39096248 DOI: 10.1080/13543784.2024.2388583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Its prevalence has increased due to worldwide populations that are aging in combination with the growing incidence of risk factors associated. Recent advances in our understanding of AF pathophysiology and the identification of nodal players involved in AF-promoting atrial remodeling highlights potential opportunities for new therapeutic approaches. AREAS COVERED This detailed review summarizes recent developments in the field antiarrhythmic drugs in the field AF. EXPERT OPINION The current situation is far than optimal. Despite clear unmet needs in drug development in the field of AF treatment, the current development of new drugs is absent. The need for a molecule with absence of cardiac and non-cardiac toxicity in the short and long term is a limitation in the field. Improvement in the understanding of AF genetics, pathophysiology, molecular alterations, big data and artificial intelligence with the objective to provide a personalized AF treatment will be the cornerstone of AF treatment in the coming years.
Collapse
Affiliation(s)
- Ruben Casado-Arroyo
- Department of Cardiology, H.U.B.-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pierre Sabouret
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, Paris, France
- Collège National des Cardiologues Français (CNCF), Paris, France
| | - Giuseppe Franculli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicolas Lellouche
- Service de Cardiologie, AP-HP, University Hospital Henri Mondor, Créteil, France
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz Lodz Poland, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute Lodz Poland, Lodz, Poland
| |
Collapse
|
5
|
Jiayu L, Xiaofeng L, Jinhong C, Fangjun D, Boya F, Xin Z, Zidong C, Rui T, Lu Y, Shule Q, Runying W, Wuxun D. Study on the mechanisms and Pharmacodynamic substances of Lian-Gui-Ning-Xin-Tang on Arrhythmia Therapy based on Pharmacodynamic-Pharmacokinetic associations. Heliyon 2024; 10:e36104. [PMID: 39253118 PMCID: PMC11381611 DOI: 10.1016/j.heliyon.2024.e36104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background The Chinese herbal compound Lian-Gui-Ning-Xin-Tang (LGNXT), composed of 9 herbs, has a significant antiarrhythmic effect. Previous studies have confirmed that preventing intracellular Ca2+ overload and maintaining intracellular Ca2+ homeostasis may be the important antiarrhythmic mechanisms of LGNXT. Recent studies are focused on elucidating the mechanisms and pharmacodynamic substances of LGNXT. Purpose 1) To investigate the antiarrhythmic mechanisms of LGNXT; 2) to explore the association of pharmacodynamics (PD) and pharmacokinetics (PK) of the potential pharmacodynamic substances in LGNXT to further verify the mechanisms of action. Methods First, pharmacodynamic studies were conducted to determine the effect of LGNXT in arrhythmia at the electrophysiological, molecular, and tissue levels, and the "effect-time" relationship of LGNXT was further proposed. Next, an HPLC-MS/MS method was established to identify the "dose-time" relationship of the 9 potential compounds. Combining the "effect-time" and "dose-time" curves, the active ingredients closely related to the inhibition of inflammation, oxidative stress, and energy metabolism were identified to further verify the mechanisms and pharmacodynamic substances of LGNXT. Results Pretreatment with LGNXT could delay the occurrence of arrhythmias and reduce their duration and severity. LGNXT exerted antiarrhythmic effects by inhibiting MDA, LPO, IL-6, and cAMP; restoring Cx43 coupling function; and upregulating SOD, Ca2+-ATPase, and Na+-K+-ATPase levels. PK-PD association showed that nobiletin, methylophiopogonanone A, trigonelline, cinnamic acid, liquiritin, dehydropolisic acid, berberine, and puerarin were the main pharmacodynamic substances responsible for inhibiting the inflammatory response in arrhythmia. Methylophiopogonanone A, dehydropalingic acid, nobiletin, trigonelline, berberine, and puerarin in LGNXT exerted antiarrhythmic effects by inhibiting oxidative stress. Dehydropalingic acid, berberine, cinnamic acid, liquiritin, puerarin, trigonelline, methylophiopogonanone A, nobiletin, and tetrahydropalmatine exerted antiarrhythmic effects by inhibiting the energy-metabolism process. Conclusions LGNXT had a positive intervention effect on arrhythmias, especially ventricular tachyarrhythmias, which could inhibit inflammation, oxidative stress, and energy metabolism; positively stabilize the structure, and remodify the function of myocardial cell membranes. Additionally, the PD-PK association study revealed that methylophiopogonanone A, berberine, trigonelline, liquiritin, puerarin, tetrahydropalmatine, nobiletin, dehydropachymic acid, and cinnamic acid directly targeted inflammation, oxidative stress, and energy metabolism, which could be considered the pharmacodynamic substances of LGNXT. Thus, the antiarrhythmic mechanisms of LGNXT were further elucidated.
Collapse
Affiliation(s)
- Liang Jiayu
- Department of TCM, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Hangzhou 310003, China
| | - Li Xiaofeng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Chen Jinhong
- School of Rehabilitation Medicine, Shandong Second Medical University, Shandong Weifang, 261053, China
| | - Deng Fangjun
- Department of Cardiology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300091, China
| | - Fan Boya
- Department of Medical qualification examination, National Administration of Traditional Chinese Medicine TCM Qualification Certification Center, Beijing 100120, China
| | - Zhen Xin
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Cong Zidong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Tao Rui
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Yu Lu
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Qian Shule
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Wang Runying
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Du Wuxun
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| |
Collapse
|
6
|
Zhao X, Huang L, Hu J, Jin N, Hong J, Chen X. The association between systemic inflammation markers and paroxysmal atrial fibrillation. BMC Cardiovasc Disord 2024; 24:334. [PMID: 38961330 PMCID: PMC11223271 DOI: 10.1186/s12872-024-04004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Systemic inflammation markers have recently been identified as being associated with cardiac disorders. However, limited research has been conducted to estimate the pre-diagnostic associations between these markers and paroxysmal atrial fibrillation (PAF). Our aim is to identify potential biomarkers for early detection of PAF. METHODS 91 participants in the PAF group and 97 participants in the non-PAF group were included in this study. We investigated the correlations between three systemic inflammation markers, namely the systemic immune inflammation index (SII), system inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI), and PAF. RESULTS The proportion of patients with PAF gradually increased with increasing logSII, logSIRI, and logAISI tertiles. Compared to those in the lowest tertiles, the PAF risks in the highest logSII and logSIRI tertiles were 3.2-fold and 2.9-fold, respectively. Conversely, there was no significant correlation observed between logAISI and PAF risk within the highest tertile of logAISI. The restricted cubic splines (RCS) analysis revealed a non-linear relationship between the elevation of systemic inflammation markers and PAF risk. Specifically, the incidence of PAF is respectively increased by 56%, 95%, and 150% for each standard deviation increase in these variables. The ROC curve analysis of logSII, logSIRI and logAISI showed that they had AUC of 0.6, 0.7 and 0.6, respectively. It also demonstrated favorable sensitivity and specificity of these systemic inflammation markers in detecting the presence of PAF. CONCLUSIONS In conclusion, our study reveals significant positive correlations between SII, SIRI, and AISI with the incidence of PAF.
Collapse
Affiliation(s)
- Xuechen Zhao
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China.
| | - Jianan Hu
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China
| | - Nake Jin
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China
| | - Jun Hong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China
| | - Xudong Chen
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, 1155 Binhai 2nd Road, Hangzhou Bay New Area, Ningbo, 315336, China
| |
Collapse
|
7
|
Zhu X, Lv M, Cheng T, Zhou Y, Yuan G, Chu Y, Luan Y, Song Q, Hu Y. Bibliometric analysis of atrial fibrillation and ion channels. Heart Rhythm 2024; 21:1161-1169. [PMID: 38280618 DOI: 10.1016/j.hrthm.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Atrial fibrillation (AF) is a common clinical malignant arrhythmia with an increasing global incidence. Ion channel dysfunction is an important mechanism in the development of AF. In this study, we used bibliometrics to analyze the studies of ion channels and AF, aiming to provide inspiration and reference for researchers. A total of 3179 literature citations were obtained from Web of Science core databases. Analysis software included Excel 2019, VOSviewer 1.6.16, and CiteSpace 5.7.R2. This field of research has been growing since 1985. The most active country is the United States. The University of Montreal is the most important research institution. The journal Cardiovascular Research has published the largest number of articles in this field. Stanley Nattel and Dobromir Dobrev are the most frequently cited authors. The most cited literature was published in Nature and Science. Cardiac electrophysiology, gene expression, pathogenesis of AF, and AF prevention and treatment are the hot topics for this field research. Cardiac fibrillation and catheter ablation may be future research hotspots in this field.
Collapse
Affiliation(s)
- Xueping Zhu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lv
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Cheng
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Luan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qingqiao Song
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
9
|
Förster CY, Künzel SR, Shityakov S, Stavrakis S. Synergistic Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence? Int J Mol Sci 2024; 25:4689. [PMID: 38731908 PMCID: PMC11083177 DOI: 10.3390/ijms25094689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.
Collapse
Affiliation(s)
- Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Stephan R. Künzel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Tamargo J, Villacastín J, Caballero R, Delpón E. Drug-induced atrial fibrillation. A narrative review of a forgotten adverse effect. Pharmacol Res 2024; 200:107077. [PMID: 38244650 DOI: 10.1016/j.phrs.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased morbidity and mortality. There is clinical evidence that an increasing number of cardiovascular and non-cardiovascular drugs, mainly anticancer drugs, can induce AF either in patients with or without pre-existing cardiac disorders, but drug-induced AF (DIAF) has not received the attention that it might deserve. In many cases DIAF is asymptomatic and paroxysmal and patients recover sinus rhythm spontaneously, but sometimes, DIAF persists, and it is necessary to perform a cardioversion. Furthermore, DIAF is not mentioned in clinical guidelines on the treatment of AF. The risk of DIAF increases in elderly and in patients treated with polypharmacy and with risk factors and comorbidities that commonly coexist with AF. This is the case of cancer patients. Under these circumstances ascribing causality of DIAF to a given drug often represents a clinical challenge. We review the incidence, the pathophysiological mechanisms, risk factors, clinical relevance, and treatment of DIAF. Because of the limited information presently available, further research is needed to obtain a deeper insight into DIAF. Meanwhile, it is important that clinicians are aware of the problem that DIAF represents, recognize which drugs may cause DIAF, and consider the possibility that a drug may be responsible for a new-onset AF episode.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Julián Villacastín
- Hospital Clínico San Carlos, CardioRed1, Universidad Complutense de Madrid, CIBERCV, 28040 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain.
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
12
|
Vyas A, Desai R, Vasavada A, Ghadge N, Jain A, Pandya D, Lavie CJ. Intersection of sepsis, atrial fibrillation, and severe obesity: a population-based analysis in the United States. Int J Obes (Lond) 2024; 48:224-230. [PMID: 37898714 DOI: 10.1038/s41366-023-01403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is an indicator of poor prognosis in patients with sepsis and can increase the risk of stroke and mortality. Data on the impact of severe obesity on the outcomes of sepsis complicated by AF remains poorly understood. METHODS National Inpatient Sample (2018) and ICD-10 CM codes were used to identify the principal sepsis admissions with AF. We assessed comorbidities and outcomes of sepsis in people without obesity (BMI < 30) vs. non-severe obesity (BMI 30-35) and severe obesity (BMI > 35) cohorts. We also did a subgroup analysis to further stratify obesity based on metabolic health and analyzed the findings. The primary outcomes were the prevalence and adjusted odds of AF, AF-associated stroke, and all-cause mortality in sepsis by obesity status. Multivariable regression analyses were adjusted for patient- and hospital-level characteristics and comorbidities. RESULTS Our main analysis showed that of the 1,345,595 sepsis admissions, the severe obesity cohort was the youngest (median age 59 vs. non-severe 64 and people without obesity 68 years). Patients with obesity, who were often female, were more likely to have hypertension, diabetes, congestive heart failure, chronic pulmonary disease, and chronic kidney disease. The crude prevalence of AF was highest in non-severe obesity (19.9%). The adjusted odds of AF in non-severe obesity (OR 1.21; 95% CI:1.16-1.27) and severe obesity patients with sepsis (OR 1.49; 95% CI:1.43-1.55) were significantly higher than in people without obesity (p < 0.001). Paradoxically, the rates of AF-associated stroke (1%, 1.5%, and 1.7%) and in-hospital mortality (3.3%, 4.9%, and 7.1%) were lowest in the severe obesity cohort vs. the non-severe and people without obesity cohorts, respectively. On multivariable regression analyses, the all-cause mortality revealed lower odds in sepsis-AF patients with severe obesity (OR 0.78; 95% CI:0.67-0.91) or non-severe obesity (OR 0.63; 95% CI:0.54-0.74) vs. people without obesity. There was no significant difference in stroke risk. CONCLUSIONS A higher prevalence of cardiovascular comorbidities can be linked to a higher risk of AF in people with obesity and sepsis. Paradoxically, lower rates of stroke and all-cause mortality secondary to AF in people with obesity and sepsis warrant further investigation.
Collapse
Affiliation(s)
- Ankit Vyas
- Department of Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, TX, USA
| | | | - Advait Vasavada
- Department of Medicine, M. P. Shah Medical College, Jamnagar, Gujarat, India
| | | | - Akhil Jain
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, USA
| | - Dishita Pandya
- Division of Cardiology, East Carolina University, ECU Health Medical Center, Greenville, NC, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
13
|
Chand S, Patel J, Tripathi A, Thapa S, Frishman WH, Aronow WS. Exploring the Intricate Interplay Between Obesity and Atrial Fibrillation: Mechanisms, Management, and Clinical Implications. Cardiol Rev 2024:00045415-990000000-00195. [PMID: 38230951 DOI: 10.1097/crd.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Atrial fibrillation (AF) stands as a prevalent and escalating cardiac arrhythmia in the United States, with obesity emerging as a prominent modifiable risk factor. This article explores the intricate relationship between obesity and AF, delving into the multifaceted pathophysiological mechanisms linking the 2 conditions. Various factors, such as autonomic dysfunction, left atrial stretch, inflammation, and hormonal imbalances, contribute to the initiation and perpetuation of AF in obese individuals. The Atrial Fibrillation Better Care pathway, emphasizing lifestyle modifications and weight loss strategies, emerges as a practical guideline for managing AF in obesity. This comprehensive review underscores the critical role of obesity as a significant modifiable risk factor for AF, urging a proactive approach to its management. Implementing the Atrial Fibrillation Better Care approach, focusing on encouraging physical activity, promoting healthy dietary habits, and raising awareness about the risks associated with obesity prove essential in preventing and mitigating the burden of AF in the obese population.
Collapse
Affiliation(s)
- Swati Chand
- From the Departments of Cardiology
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Jay Patel
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Ashish Tripathi
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Sangharsha Thapa
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H Frishman
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- From the Departments of Cardiology
- Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
14
|
Kjeldsen ST, Nissen SD, Saljic A, Hesselkilde EM, Carstensen H, Sattler SM, Jespersen T, Linz D, Hopster-Iversen C, Kutieleh R, Sanders P, Buhl R. Structural and electro-anatomical characterization of the equine pulmonary veins: implications for atrial fibrillation. J Vet Cardiol 2024; 52:1-13. [PMID: 38290222 DOI: 10.1016/j.jvc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION/OBJECTIVES Spontaneous pulmonary vein (PV) activity triggers atrial fibrillation (AF) in humans. Although AF frequently occurs in horses, the origin remains unknown. This study investigated the structural and electro-anatomical properties of equine PVs to determine the potential presence of an arrhythmogenic substrate. ANIMALS, MATERIALS AND METHODS Endocardial three-dimensional electro-anatomical mapping (EnSite Precision) using high-density (HD) catheters was performed in 13 sedated horses in sinus rhythm. Left atrium (LA) access was obtained retrogradely through the carotid artery. Post-mortem, tissue was harvested from the LA, right atrium (RA), and PVs for histological characterization and quantification of ion channel expression using immunohistochemical analysis. RESULTS Geometry, activation maps, and voltage maps of the PVs were created and a median of four ostia were identified. Areas of reduced conduction were found at the veno-atrial junction. The mean myocardial sleeve length varied from 28 ± 13 to 49 ± 22 mm. The PV voltage was 1.2 ± 1.4 mV and lower than the LA (3.4 ± 0.9 mV, P < 0.001). The fibrosis percentage was higher in PV myocardium (26.1 ± 6.6 %) than LA (14.5 ± 5.0 %, P = 0.003). L-type calcium channel (CaV1.2) expression was higher in PVs than LA (P = 0.001). T-type calcium channels (CaV3.3), connexin-43, ryanodine receptor-2, and small conductance calcium-activated potassium channel-3 was expressed in PVs. CONCLUSIONS The veno-atrial junction had lower voltages, increased structural heterogeneity and areas of slower conduction. Myocardial sleeves had variable lengths, and a different ion channel expression compared to the atria. Heterogeneous properties of the PVs interacting with the adjacent LA likely provide the milieu for re-entry and AF initiation.
Collapse
Affiliation(s)
- S T Kjeldsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark.
| | - S D Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - A Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - E M Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - H Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - S M Sattler
- Department of Cardiology, Herlev and Gentofte University Hospital, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - T Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - D Linz
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 632, 6229 ER Maastricht, Netherlands
| | - C Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - R Kutieleh
- Abbott Medical, 214 Greenhill Road, SA 5063, Australia
| | - P Sanders
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital and University of Adelaide, Port Rd, SA 5000, Australia
| | - R Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| |
Collapse
|
15
|
Wen JL, Ruan ZB, Wang F, Hu Y. Progress of circRNA/lncRNA-miRNA-mRNA axis in atrial fibrillation. PeerJ 2023; 11:e16604. [PMID: 38144204 PMCID: PMC10740593 DOI: 10.7717/peerj.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia that requires effective biomarkers and therapeutic targets for clinical management. In recent years, non-coding RNAs (ncRNAs) have emerged as key players in the pathogenesis of AF, particularly through the ceRNA (competitive endogenous RNA) mechanism. By acting as ceRNAs, ncRNAs can competitively bind to miRNAs and modulate the expression of target mRNAs, thereby influencing the biological behavior of AF. The ceRNA axis has shown promise as a diagnostic and prognostic biomarker for AF. This review provides a comprehensive overview of the roles of ncRNAs in the development and progression of AF, highlighting the intricate crosstalk between different ncRNAs in AF pathophysiology. Furthermore, we discuss the potential implications of targeting the circRNA/lncRNA-miRNA-mRNA axis for the diagnosis, prognosis, and therapeutic intervention of AF.
Collapse
Affiliation(s)
- Jia-le Wen
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Fei Wang
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yuhua Hu
- Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
17
|
Li N, Li YJ, Guo XJ, Wu SH, Jiang WF, Zhang DL, Wang KW, Li L, Sun YM, Xu YJ, Yang YQ, Qiu XB. Discovery of TBX20 as a Novel Gene Underlying Atrial Fibrillation. BIOLOGY 2023; 12:1186. [PMID: 37759586 PMCID: PMC10525918 DOI: 10.3390/biology12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Atrial fibrillation (AF), the most prevalent type of sustained cardiac dysrhythmia globally, confers strikingly enhanced risks for cognitive dysfunction, stroke, chronic cardiac failure, and sudden cardiovascular demise. Aggregating studies underscore the crucial roles of inherited determinants in the occurrence and perpetuation of AF. However, due to conspicuous genetic heterogeneity, the inherited defects accounting for AF remain largely indefinite. Here, via whole-genome genotyping with genetic markers and a linkage assay in a family suffering from AF, a new AF-causative locus was located at human chromosome 7p14.2-p14.3, a ~4.89 cM (~4.43-Mb) interval between the markers D7S526 and D7S2250. An exome-wide sequencing assay unveiled that, at the defined locus, the mutation in the TBX20 gene, NM_001077653.2: c.695A>G; p.(His232Arg), was solely co-segregated with AF in the family. Additionally, a Sanger sequencing assay of TBX20 in another family suffering from AF uncovered a novel mutation, NM_001077653.2: c.862G>C; p.(Asp288His). Neither of the two mutations were observed in 600 unrelated control individuals. Functional investigations demonstrated that the two mutations both significantly reduced the transactivation of the target gene KCNH2 (a well-established AF-causing gene) and the ability to bind the promoter of KCNH2, while they had no effect on the nuclear distribution of TBX20. Conclusively, these findings reveal a new AF-causative locus at human chromosome 7p14.2-p14.3 and strongly indicate TBX20 as a novel AF-predisposing gene, shedding light on the mechanism underlying AF and suggesting clinical significance for the allele-specific treatment of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Dao-Liang Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China;
| | - Kun-Wei Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| |
Collapse
|
18
|
Parra-Lucares A, Villa E, Romero-Hernández E, Méndez-Valdés G, Retamal C, Vizcarra G, Henríquez I, Maldonado-Morales EAJ, Grant-Palza JH, Ruíz-Tagle S, Estrada-Bobadilla V, Toro L. Tic-Tac: A Translational Approach in Mechanisms Associated with Irregular Heartbeat and Sinus Rhythm Restoration in Atrial Fibrillation Patients. Int J Mol Sci 2023; 24:12859. [PMID: 37629037 PMCID: PMC10454641 DOI: 10.3390/ijms241612859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac condition predominantly affecting older adults, characterized by irregular heartbeat rhythm. The condition often leads to significant disability and increased mortality rates. Traditionally, two therapeutic strategies have been employed for its treatment: heart rate control and rhythm control. Recent clinical studies have emphasized the critical role of early restoration of sinus rhythm in improving patient outcomes. The persistence of the irregular rhythm allows for the progression and structural remodeling of the atria, eventually leading to irreversible stages, as observed clinically when AF becomes permanent. Cardioversion to sinus rhythm alters this progression pattern through mechanisms that are still being studied. In this review, we provide an in-depth analysis of the pathophysiological mechanisms responsible for maintaining AF and how they are modified during sinus rhythm restoration using existing therapeutic strategies at different stages of clinical investigation. Moreover, we explore potential future therapeutic approaches, including the promising prospect of gene therapy.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Gabriel Méndez-Valdés
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Catalina Retamal
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Ignacio Henríquez
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Juan H. Grant-Palza
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sofía Ruíz-Tagle
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
19
|
Butova X, Myachina T, Simonova R, Kochurova A, Mukhlynina E, Kopylova G, Shchepkin D, Khokhlova A. The inter-chamber differences in the contractile function between left and right atrial cardiomyocytes in atrial fibrillation in rats. Front Cardiovasc Med 2023; 10:1203093. [PMID: 37608813 PMCID: PMC10440706 DOI: 10.3389/fcvm.2023.1203093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction The left and right atria (LA, RA) work under different mechanical and metabolic environments that may cause an intrinsic inter-chamber diversity in structure and functional properties between atrial cardiomyocytes (CM) in norm and provoke their different responsiveness to pathological conditions. In this study, we assessed a LA vs. RA difference in CM contractility in paroxysmal atrial fibrillation (AF) and underlying mechanisms. Methods We investigated the contractile function of single isolated CM from LA and RA using a 7-day acetylcholine (ACh)-CaCl2 AF model in rats. We compared auxotonic force, sarcomere length dynamics, cytosolic calcium ([Ca2+]i) transients, intracellular ROS and NO production in LA and RA CM, and analyzed the phosphorylation levels of contractile proteins and actin-myosin interaction using an in vitro motility assay. Results AF resulted in more prominent structural and functional changes in LA myocardium, reducing sarcomere shortening amplitude, and velocity of sarcomere relengthening in mechanically non-loaded LA CM, which was associated with the increased ROS production, decreased NO production, reduced myofibrillar content, and decreased phosphorylation of cardiac myosin binding protein C and troponin I. However, in mechanically loaded CM, AF depressed the auxotonic force amplitude and kinetics in RA CM, while force characteristics were preserved in LA CM. Discussion Thus, inter-atrial differences are increased in paroxysmal AF and affected by the mechanical load that may contribute to the maintenance and progression of AF.
Collapse
Affiliation(s)
- Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Raisa Simonova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Elena Mukhlynina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Galina Kopylova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
20
|
Shu H, Cheng J, Li N, Zhang Z, Nie J, Peng Y, Wang Y, Wang DW, Zhou N. Obesity and atrial fibrillation: a narrative review from arrhythmogenic mechanisms to clinical significance. Cardiovasc Diabetol 2023; 22:192. [PMID: 37516824 PMCID: PMC10387211 DOI: 10.1186/s12933-023-01913-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023] Open
Abstract
The prevalence of obesity and atrial fibrillation (AF), which are inextricably linked, is rapidly increasing worldwide. Obesity rates are higher among patients with AF than healthy individuals. Some epidemiological data indicated that obese patients were more likely to develop AF, but others reported no significant correlation. Obesity-related hypertension, diabetes, and obstructive sleep apnea are all associated with AF. Additionally, increased epicardial fat, systemic inflammation, and oxidative stress caused by obesity can induce atrial enlargement, inflammatory activation, local myocardial fibrosis, and electrical conduction abnormalities, all of which led to AF and promoted its persistence. Weight loss reduced the risk and reversed natural progression of AF, which may be due to its anti-fibrosis and inflammation effect. However, fluctuations in weight offset the benefits of weight loss. Therefore, the importance of steady weight loss urges clinicians to incorporate weight management interventions in the treatment of patients with AF. In this review, we discuss the epidemiology of obesity and AF, summarize the mechanisms by which obesity triggers AF, and explain how weight loss improves the prognosis of AF.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jia Cheng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
21
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
22
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Wang X, Xu X, Wang W, Huang H, Liu F, Wan C, Yao Q, Li H, Zhang Z, Song Z. Risk factors associated with left atrial appendage thrombosis in patients with non-valvular atrial fibrillation by transesophageal echocardiography. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023:10.1007/s10554-023-02841-x. [PMID: 37149503 DOI: 10.1007/s10554-023-02841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE This study investigated possible mechanism of left atrial appendage (LAA) thrombosis and constructed a model to evaluate the future risk of LAA thrombosis and spontaneous echo contrast (SEC) in non-valvular atrial fibrillation (NVAF) patients. METHODS This retrospective study included 2591 patients diagnosed with NVAF. Patients were divided based on the presence of transesophageal echocardiography (TEE) into a thrombus group, SEC group, and control group. General, biochemical, and echocardiography data of the three groups were analyzed. The variables independently associated with LAA thrombosis and SEC were determined by the logistic regression analysis. A nomogram was constituted based on the regression analysis and the discriminatory ability was analyzed by receiver operating characteristic (ROC) curve. RESULTS LAA thrombosis and SEC were present in 110 (4.2%) patients and 103 (3.9%) patients, respectively. AF type (OR = 1.857), previous stroke (OR = 1.924), fibrinogen (OR = 1.636), diameters of the left atria (OR = 1.094), left ventricular ejection fraction (OR = 0.938), and LAA maximum caliber (OR = 1.238) resulted as independent risk factors for LAA thrombosis and SEC. The area under curve of the nomogram established by multivariate logistic regression was 0.824. Conclusions; Through the study, 6 independent risk factors related to the LAA thrombosis and SEC were found, and an effective nomogram was constructed to predict the LAA thrombosis and SEC in NVAF patients.
Collapse
Affiliation(s)
- Xingpeng Wang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenting Wang
- Department of Medical Ultrasonics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haiyun Huang
- Department of Medical Ultrasonics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Feng Liu
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Chen Wan
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qing Yao
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huakang Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| | - Zhiyuan Song
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
24
|
Peukert S, Gulgeze Efthymiou HB, Mo R, Peng Y, Ma F, Barbe G, Bebernitz G, Fridrich C, Buono C, Williams ET, Daniels T, Li L, Zhang X, Adachi Y, Abe M, Taggart AKP. Discovery of a brain-sparing GIRK1/4 inhibitor for pharmacological cardioversion of atrial fibrillation. Bioorg Med Chem Lett 2023; 85:129237. [PMID: 36924945 DOI: 10.1016/j.bmcl.2023.129237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and a significant risk factor for ischemic stroke and heart failure. Marketed anti-arrhythmic drugs can restore sinus rhythm, but with limited efficacy and significant toxicities, including potential to induce ventricular arrhythmia. Atrial-selective ion channel drugs are expected to restore and maintain sinus rhythm without risk of ventricular arrhythmia. One such atrial-selective channel target is GIRK1/4 (G-protein regulated inwardly rectifying potassium channel 1/4). Here we describe 14b, a potent GIRK1/4 inhibitor developed to cardiovert AF to sinus rhythm while minimizing central nervous system exposure - an issue with preceding GIRK1/4 clinical candidates.
Collapse
Affiliation(s)
- Stefan Peukert
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | - Ruowei Mo
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yunshan Peng
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fupeng Ma
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guillaume Barbe
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Cary Fridrich
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chiara Buono
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Eric T Williams
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Thomas Daniels
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lisha Li
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xia Zhang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yuichiro Adachi
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mie Abe
- Former Novartis Employee, USA
| | - Andrew K P Taggart
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Casini S, Marchal GA, Kawasaki M, Fabrizi B, Wesselink R, Nariswari FA, Neefs J, van den Berg NWE, Driessen AHG, de Groot JR, Verkerk AO, Remme CA. Differential Sodium Current Remodelling Identifies Distinct Cellular Proarrhythmic Mechanisms in Paroxysmal vs Persistent Atrial Fibrillation. Can J Cardiol 2023; 39:277-288. [PMID: 36586483 DOI: 10.1016/j.cjca.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying progression from paroxysmal to persistent atrial fibrillation (AF) are not fully understood, but alterations in (late) sodium current (INa) have been proposed. Human studies investigating electrophysiological changes at the paroxysmal stage of AF are sparse, with the majority employing right atrial appendage cardiomyocytes (CMs). We here investigated action potential (AP) characteristics and (late) INa remodelling in left atrial appendage CMs (LAA-CMs) from patients with paroxysmal and persistent AF and patients in sinus rhythm (SR), as well as the potential contribution of the "neuronal" sodium channel SCN10A/NaV1.8. METHODS Peak INa, late INa and AP properties were investigated through patch-clamp analysis on single LAA-CMs, whereas quantitative polymerase chain reaction was used to assess SCN5A/SCN10A expression levels in LAA tissue. RESULTS In paroxysmal and persistent AF LAA-CMs, AP duration was shorter than in SR LAA-CMs. Compared with SR, peak INa and SCN5A expression were significantly decreased in paroxysmal AF, whereas they were restored to SR levels in persistent AF. Conversely, although late INa was unchanged in paroxysmal AF compared with SR, it was significantly increased in persistent AF. Peak or late Nav1.8-based INa was not detected in persistent AF LAA-CMs. Similarly, expression of SCN10A was not observed in LAAs at any stage. CONCLUSIONS Our findings demonstrate differences in (late) INa remodeling in LAA-CMs from patients with paroxysmal vs persistent AF, indicating distinct cellular proarrhythmic mechanisms in different AF forms. These observations are of particular relevance when considering potential pharmacologic approaches targeting (late) INa in AF.
Collapse
Affiliation(s)
- Simona Casini
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| | - Gerard A Marchal
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, location University of Amsterdam, Department of Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands; Amsterdam UMC, location University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Effects of apocynin on ISO-induced delayed afterdepolarizations in rat atrial myocytes and the underlying mechanisms. Biochem Biophys Res Commun 2023; 638:36-42. [PMID: 36436340 DOI: 10.1016/j.bbrc.2022.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
We aimed to investigate the effect of apocynin (APO) on delayed afterdepolarizations (DADs) in rat atrial myocytes and the underlying mechanisms. Rat atrial myocytes were isolated by a Langendorff perfusion apparatus. DADs were induced by isoproterenol (ISO). Action potentials (APs) and ion currents were recorded by the whole-cell clamp technique. The fluorescent indicator fluo-4 was used to visualize intracellular Ca2+ transients, and western blotting was used to measure the expression of related proteins. The incidence of DADs in rat atrial myocytes increased significantly after ISO treatment, leading to an increased incidence of triggered activity (TA). The incidence of ISO-induced DADs and TA were reduced by 100.0 μM APO from 48.89% to 25.56% and 17.78% to 5.56%, respectively. In the range of 3.0 μM-300.0 μM, the effect of APO was concentration dependent, with a half maximal inhibitory concentration (IC50) of 120.1 μM and a Hill coefficient of 1.063. APO reversed the increase in transient inward current (Iti) and Na+/Ca2+-exchange current (INCX) densities induced by ISO in atrial myocytes. The frequency of spontaneous Ca2+ transients in atrial myocytes was reduced by 100.0 μM APO. Compared with ISO, APO downregulated the expression of NOX2 and increased the phosphorylation of PLNSer16 and the sarcoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) level; however, it had little effect on ryanodine-receptor channel type-2 (RyR2). These findings showed that APO may block Iti and INCX and reduce intracellular Ca2+ levels in rat atrial myocytes, thus reducing the incidence of ISO-induced DADs and TA.
Collapse
|
27
|
Bizhanov KA, Аbzaliyev KB, Baimbetov AK, Sarsenbayeva AB, Lyan E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J Cardiovasc Electrophysiol 2023; 34:153-165. [PMID: 36434795 DOI: 10.1111/jce.15759] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The last three decades have been characterized by an exponential increase in knowledge and advances in the clinical management of atrial fibrillation. The purpose of the study is to provide an overview of the pathogenesis of nonvalvular atrial fibrillation and a comprehensive investigation of the epidemiological data associated with various risk factors for atrial fibrillation. The leading research methods are analysis and synthesis, comparison, observation, induction and deduction, and grouping method. Research has shown that old age, male gender, and European descent are important risk factors for developing atrial fibrillation. Other modifiable risk factors include a sedentary lifestyle, smoking, obesity, diabetes mellitus, obstructive sleep apnea, and high blood pressure predisposing to atrial fibrillation, and each has been shown to induce structural and electrical atrial remodeling. Both heart failure and myocardial infarction increase the risk of developing atrial fibrillation and vice versa creating feedback that increases mortality. The review is a comprehensive study of the epidemiological data linking nonmodifiable and modifiable risk factors for atrial fibrillation, and the pathophysiological data supporting the relationship between each risk factor and the occurrence of atrial fibrillation. This may be necessary for the practice of the treatment of the cardiac system.
Collapse
Affiliation(s)
- Kenzhebek A Bizhanov
- Department of Health Policy and Organization, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan.,Department of Interventional Cardiology and Arrhythmology, National Scientific Center of Surgery named after A.N. Syzganov, Almaty, Republic of Kazakhstan
| | - Kuat B Аbzaliyev
- Сonsultative and Diagnostic Center, Research Institute of Cardiology and Internal Diseases, Almaty, Republic of Kazakhstan
| | - Adil K Baimbetov
- Department of Interventional Cardiology and Arrhythmology, National Scientific Center of Surgery named after A.N. Syzganov, Almaty, Republic of Kazakhstan
| | - Akmoldir B Sarsenbayeva
- Department of Interventional Cardiology and Arrhythmology, National Scientific Center of Surgery named after A.N. Syzganov, Almaty, Republic of Kazakhstan
| | - Evgeny Lyan
- Cardiovascular Center, University Clinic Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
28
|
Silva CAO, Morillo CA, Leite-Castro C, González-Otero R, Bessani M, González R, Castellanos JC, Otero L. Machine learning for atrial fibrillation risk prediction in patients with sleep apnea and coronary artery disease. Front Cardiovasc Med 2022; 9:1050409. [PMID: 36568544 PMCID: PMC9768180 DOI: 10.3389/fcvm.2022.1050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background Patients with sleep apnea (SA) and coronary artery disease (CAD) are at higher risk of atrial fibrillation (AF) than the general population. Our objectives were: to evaluate the role of CAD and SA in determining AF risk through cluster and survival analysis, and to develop a risk model for predicting AF. Methods Electronic medical record (EMR) database from 22,302 individuals including 10,202 individuals with AF, CAD, and SA, and 12,100 individuals without these diseases were analyzed using K-means clustering technique; k-nearest neighbor (kNN) algorithm and survival analysis. Age, sex, and diseases developed for each individual during 9 years were used for cluster and survival analysis. Results The risk models for AF, CAD, and SA were identified with high accuracy and sensitivity (0.98). Cluster analysis showed that CAD and high blood pressure (HBP) are the most prevalent diseases in the AF group, HBP is the most prevalent disease in CAD; and HBP and CAD are the most prevalent diseases in the SA group. Survival analysis demonstrated that individuals with HBP, CAD, and SA had a 1.5-fold increased risk of developing AF [hazard ratio (HR): 1.49, 95% CI: 1.18-1.87, p = 0.0041; HR: 1.46, 95% CI: 1.09-1.96, p = 0.01; HR: 1.54, 95% CI: 1.22-1.94, p = 0.0039, respectively] and individuals with chronic kidney disease (CKD) developed AF approximately 50% earlier than patients without these comorbidities in a period of 7 years (HR: 3.36, 95% CI: 1.46-7.73, p = 0.0023). Comorbidities that contributed to develop AF earlier in females compared to males in the group of 50-64 years were HBP (HR: 3.75 95% CI: 1.08-13, p = 0.04) CAD and SA in the group of 60-75 years were (HR: 2.4 95% CI: 1.18-4.86, p = 0.02; HR: 2.51, 95% CI: 1.14-5.52, p = 0.02, respectively). Conclusion Machine learning based algorithms demonstrated that CAD, SA, HBP, and CKD are significant risk factors for developing AF in a Latin-American population.
Collapse
Affiliation(s)
- Carlos A. O. Silva
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A. Morillo
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Cristiano Leite-Castro
- Departamento de Engenharia Elétrica, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael González-Otero
- Departamento de Economía, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michel Bessani
- Departamento de Engenharia Elétrica, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Julio C. Castellanos
- Departamento de Dirección General, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Liliana Otero
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia,*Correspondence: Liliana Otero,
| |
Collapse
|
29
|
He K, Liang W, Liu S, Bian L, Xu Y, Luo C, Li Y, Yue H, Yang C, Wu Z. Long-term single-lead electrocardiogram monitoring to detect new-onset postoperative atrial fibrillation in patients after cardiac surgery. Front Cardiovasc Med 2022; 9:1001883. [PMID: 36211573 PMCID: PMC9537630 DOI: 10.3389/fcvm.2022.1001883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Postoperative atrial fibrillation (POAF) is often associated with serious complications. In this study, we collected long-term single-lead electrocardiograms (ECGs) of patients with preoperative sinus rhythm to build statistical models and machine learning models to predict POAF. Methods All patients with preoperative sinus rhythm who underwent cardiac surgery were enrolled and we collected long-term ECG data 24 h before surgery and 7 days after surgery by single-lead ECG. The patients were divided into a POAF group a no-POAF group. A clinical model and a clinical + ECG model were constructed. The ECG parameters were designed and support vector machine (SVM) was selected to build a machine learning model and evaluate its prediction efficiency. Results A total of 100 patients were included. The detection rate of POAF in long-term ECG monitoring was 31% and that in conventional monitoring was 19%. We calculated 7 P-wave parameters, Pmax (167 ± 31 ms vs. 184 ± 37 ms, P = 0.018), Pstd (15 ± 7 vs. 19 ± 11, P = 0.031), and PWd (62 ± 28 ms vs. 80 ± 35 ms, P = 0.008) were significantly different. The AUC of the clinical model (sex, age, LA diameter, GFR, mechanical ventilation time) was 0.86. Clinical + ECG model (sex, age, LA diameter, GFR, mechanical ventilation time, Pmax, Pstd, PWd), AUC was 0.89. In the machine learning model, the accuracy (Ac) of the train set and test set was above 80 and 60%, respectively. Conclusion Long-term ECG monitoring could significantly improve the detection rate of POAF. The clinical + ECG model and the machine learning model based on P-wave parameters can predict POAF.
Collapse
Affiliation(s)
- Kang He
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Weitao Liang
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Sen Liu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Longrong Bian
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Xu
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Cong Luo
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yifan Li
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Cuiwei Yang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Zhong Wu,
| |
Collapse
|
30
|
Thibault S, Ton AT, Huynh F, Fiset C. Connexin Lateralization Contributes to Male Susceptibility to Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms231810696. [PMID: 36142603 PMCID: PMC9506269 DOI: 10.3390/ijms231810696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Men have a higher risk of developing atrial fibrillation (AF) than women, though the reason for this is unknown. Here, we compared atrial electrical and structural properties in male and female mice and explored the contribution of sex hormones. Cellular electrophysiological studies revealed that action potential configuration, Na+ and K+ currents were similar in atrial myocytes from male and female mice (4–5 months). Immunofluorescence showed that male atrial myocytes had more lateralization of connexins 40 (63 ± 4%) and 43 (66 ± 4%) than females (Cx40: 45 ± 4%, p = 0.006; Cx43: 44 ± 4%, p = 0.002), with no difference in mRNA expression. Atrial mass was significantly higher in males. Atrial myocyte dimensions were also larger in males. Atrial fibrosis was low and similar between sexes. Orchiectomy (ORC) abolished sex differences in AF susceptibility (M: 65%; ORC: 38%, p = 0.050) by reducing connexin lateralization and myocyte dimensions. Ovariectomy (OVX) did not influence AF susceptibility (F: 42%; OVX: 33%). This study shows that prior to the development of age-related remodeling, male mice have more connexin lateralization and larger atria and atrial myocyte than females. Orchiectomy reduced AF susceptibility in males by decreasing connexin lateralization and atrial myocyte size, supporting a role for androgens. These sex differences in AF substrates may contribute to male predisposition to AF.
Collapse
Affiliation(s)
- Simon Thibault
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
- Faculty of Pharmacy, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Anh-Tuan Ton
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
- Faculty of Pharmacy, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - François Huynh
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
- Faculty of Pharmacy, Université de Montreal, Montreal, QC H3T 1J4, Canada
| | - Céline Fiset
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
- Faculty of Pharmacy, Université de Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-3763330
| |
Collapse
|
31
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
32
|
Farinha JM, Gupta D, Lip GYH. Frequent premature atrial contractions as a signalling marker of atrial cardiomyopathy, incident atrial fibrillation and stroke. Cardiovasc Res 2022; 119:429-439. [PMID: 35388889 PMCID: PMC10064848 DOI: 10.1093/cvr/cvac054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
Premature atrial contractions are a common cardiac phenomenon. Although previously considered a benign electrocardiographic finding, they have now been associated with a higher risk of incident atrial fibrillation and other adverse outcomes such as stroke and all-cause mortality. Since premature atrial contractions can be associated with these adverse clinical outcomes independently of atrial fibrillation occurrence, different explanations have being proposed. The concept of atrial cardiomyopathy, where atrial fibrillation would be an epiphenomenon outside the causal pathway between premature atrial contractions and stroke has received traction recently. This concept suggests that structural, functional and biochemical changes in the atria lead to arrhythmia occurrence and thromboembolic events. Some consensus about diagnosis and treatment of this condition have been published, but this is based on scarce evidence, highlighting the need for a clear definition of excessive premature atrial contractions and for prospective studies regarding antiarrhythmic therapies, anticoagulation or molecular targets in this group of patients.
Collapse
Affiliation(s)
- José Maria Farinha
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
33
|
Li H, Liang Y, Song X, Liu-Huo WS, Chen W, Tang C, Zhao L, Bai X. Efficacy and safety of vernakalant for cardioversion of recent-onset atrial fibrillation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29038. [PMID: 35451413 PMCID: PMC8913090 DOI: 10.1097/md.0000000000029038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common tachyarrhythmia encountered in clinical practice and is associated with substantial morbidity and mortality. This study aimed to determine the efficacy and safety of vernakalant for cardioversion of recent-onset AF. METHODS A comprehensive systematic literature search will be conducted in Cochrane Library, PubMed, Web of Science, EMBASE, for randomized controlled trials (RCTs) about the vernakalant with AF. Two reviewers will independently assess the quality of the selected studies according to the Cochrane Collaboration's tool for RCTs. The bias risk of the RCT will be assessed by the Cochrane risk of bias (ROB) tool. The quality of the evidence will be evaluated by Grading of Recommendations Assessment Development and Evaluation (GRADE) system. Results from these questions will be graphed and assessed using Review Manager 5.3. RESULTS The results of this meta-analysis will be published in a peer-reviewed journal. CONCLUSION This review will evaluate the safety and efficacy of vernakalant for patients with AF, provide more recommendations for patients or researchers, and high-level evidence for clinical decision-making.
Collapse
Affiliation(s)
- Hong Li
- Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liang
- Southwest Medical University, Luzhou, Sichuan, China
| | - Xuejing Song
- Southwest Medical University, Luzhou, Sichuan, China
| | - Wu-Sha Liu-Huo
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Chen
- Southwest Medical University, Luzhou, Sichuan, China
| | - Chao Tang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lizhi Zhao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Bai
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
Paroxysmal Atrial Fibrillation in Horses: Pathophysiology, Diagnostics and Clinical Aspects. Animals (Basel) 2022; 12:ani12060698. [PMID: 35327097 PMCID: PMC8944606 DOI: 10.3390/ani12060698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in horses causing poor performance. As in humans, the condition can be intermittent in nature, known as paroxysmal atrial fibrillation (pAF). This review covers the literature relating to pAF in horses and includes references to the human literature to compare pathophysiology, clinical presentation, diagnostic tools and treatment. The arrhythmia is diagnosed by auscultation and electrocardiography (ECG), and clinical signs can vary from sudden loss of racing performance to reduced fitness or no signs at all. If left untreated, pAF may promote electrical, functional and structural remodeling of the myocardium, thus creating a substrate that is able to maintain the arrhythmia, which over time may progress into permanent AF. Long-term ECG monitoring is essential for diagnosing the condition and fully understanding the duration and frequency of pAF episodes. The potential to adapt human cardiac monitoring systems and computational ECG analysis is therefore of interest and may benefit future diagnostic tools in equine medicine.
Collapse
|
35
|
An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, Gao Y, Xing Y. Promising Antioxidative Effect of Berberine in Cardiovascular Diseases. Front Pharmacol 2022; 13:865353. [PMID: 35321323 PMCID: PMC8936808 DOI: 10.3389/fphar.2022.865353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, has been used in Chinese traditional medicine for over 3,000 years. BBR has been shown in both traditional and modern medicine to have a wide range of pharmacological actions, including hypoglycemic, hypolipidemic, anti-obesity, hepatoprotective, anti-inflammatory, and antioxidant activities. The unregulated reaction chain induced by oxidative stress as a crucial mechanism result in myocardial damage, which is involved in the pathogenesis and progression of many cardiovascular diseases (CVDs). Numerous researches have established that BBR protects myocardium and may be beneficial in the treatment of CVDs. Given that the pivotal role of oxidative stress in CVDs, the pharmacological effects of BBR in the treatment and/or management of CVDs have strongly attracted the attention of scholars. Therefore, this review sums up the prevention and treatment mechanisms of BBR in CVDs from in vitro, in vivo, and finally to the clinical field trials timely. We summarized the antioxidant stress of BBR in the management of coronary atherosclerosis and myocardial ischemia/reperfusion; it also analyzes the pathogenesis of oxidative stress in arrhythmia and heart failure and the therapeutic effects of BBR. In short, BBR is a hopeful drug candidate for the treatment of CVDs, which can intervene in the process of CVDs from multiple angles and different aspects. Therefore, if we want to apply it to the clinic on a large scale, more comprehensive, intensive, and detailed researches are needed to be carried out to clarify the molecular mechanism and targets of BBR.
Collapse
Affiliation(s)
- Na An
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guoxia Zhang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chao Yuan
- Dezhou Second People’s Hospital, Dezhou, China
| | - Fan Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Zhong X, Jiao H, Gao J, Teng J. Autonomic Tone Variations Prior to Onset of Paroxysmal Atrial Fibrillation. Med Sci Monit 2022; 28:e934028. [PMID: 35149667 PMCID: PMC8848582 DOI: 10.12659/msm.934028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Variations of heart rate variability (HRV) before paroxysmal atrial fibrillation (PAF) onset are still controversial. We aimed to observe the autonomic tone variations before PAF onset based on HRV analysis. MATERIAL AND METHODS We prospectively investigated 24-h Holter recordings of 60 patients with PAF (M/F: 34/26) and 40 healthy people in sinus rhythm (M/F: 18/12). According to clinical information and Poincare scatter plot, 60 PAF patients were divided into sympathetic group (n=20) and vagus group (n=40). Time domain and frequency domain parameters of HRV were respectively measured before PAF episodes in 3 subgroups. Five time periods were studied using the ANOVA. RESULTS No significant variations were observed for the HRV parameters during 60 minutes preceding PAF in sympathetic group. A significant and linear change in SDNN, RMSSD, PNN50, HF and LF/HF during 60 minutes preceding PAF onset in vagus group. Compared with controls, RMSSD, LF and HF were significantly longer in patients with PAF during 60 minutes before PAF. Comparing sympathetic group and vagus group, we observed the same pattern of autonomic variations with a progressive decrease in LF and HF. A progressive decrease in PNN50 and LF/HF of sympathetic group and a significant increase in PNN50 and LF/HF of vagus group were also observed. CONCLUSIONS Patients with PAF mediated by different autonomic nerves have HRV variations, especially vagus PAF, there was a progressive increase with vagal tone during 60 minutes before PAF onset. The findings may help clinicians better intervene in PAF.
Collapse
Affiliation(s)
- Xia Zhong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Huachen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jinchao Gao
- Department of Traditional Chinese Medicine Ophthalmology, Liaocheng Eye Hospital, Liaocheng, Shandong, China (mainland)
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
37
|
Wei P, Long D, Tan Y, Xing W, Li X, Yang K, Liu H. Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns. Front Cardiovasc Med 2022; 8:726694. [PMID: 35004871 PMCID: PMC8739471 DOI: 10.3389/fcvm.2021.726694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature. Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3′,5′-monophosphate (cGMP)-PKG, and cyclic adenosine 3′,5′-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA. Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments.
Collapse
Affiliation(s)
- Penglu Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dehuai Long
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yupei Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xing
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiang Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Institute of Medical Intelligence, Beijing Jiaotong University, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Chen H, Ma Y, Wang Y, Luo H, Xiao Z, Chen Z, Liu Q, Xiao Y. Progress of Pathogenesis in Pediatric Multifocal Atrial Tachycardia. Front Pediatr 2022; 10:922464. [PMID: 35813391 PMCID: PMC9256911 DOI: 10.3389/fped.2022.922464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Multifocal atrial tachycardia (MAT) is defined as irregular P-P, R-R, and P-R intervals, isoelectric baseline between P waves, and ventricular rate over 100 beats/min. Although the prognosis of pediatric MAT in most patients is favorable, adverse outcomes of MAT have been reported, such as cardiogenic death (3%), respiratory failure (6%), or persistent arrhythmia (7%), due to delayed diagnosis and poorly controlled MAT. Previous studies demonstrated that pediatric MAT is associated with multiple enhanced automatic lesions located in the atrium or abnormal automaticity of a single lesion located in the pulmonary veins via multiple pathways to trigger electrical activity. Recent studies indicated that pediatric MAT is associated with the formation of a re-entry loop, abnormal automaticity, and triggering activity. The occurrence of pediatric MAT is affected by gestational disease, congenital heart disease, post-cardiac surgery, pulmonary hypertension, and infectious diseases, which promote MAT via inflammation, redistribution of the autonomic nervous system, and abnormal ion channels. However, the pathogenesis of MAT needs to be explored. This review is aimed to summarize and analyze the pathogenesis in pediatric MAT.
Collapse
Affiliation(s)
- Huaiyang Chen
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| | - Yingxu Ma
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Haiyan Luo
- Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| | - Zhi Chen
- Hunan Children's Hospital, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| |
Collapse
|
39
|
Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci 2021; 23:ijms23010006. [PMID: 35008432 PMCID: PMC8744894 DOI: 10.3390/ijms23010006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia managed in clinical practice, and it is linked to an increased risk of death, stroke, and peripheral embolism. The Global Burden of Disease shows that the estimated prevalence of AF is up to 33.5 million patients. So far, successful therapeutic techniques have been implemented, with a high health-care cost burden. As a result, identifying modifiable risk factors for AF and suitable preventive measures may play a significant role in enhancing community health and lowering health-care system expenditures. Several mechanisms, including electrical and structural remodeling of atrial tissue, have been proposed to contribute to the development of AF. This review article discusses the predisposing factors in AF including the different pathogenic mechanisms, sedentary lifestyle, and dietary habits, as well as the potential genetic burden.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- Correspondence: ; Tel.: +30-213-2088099; Fax: +30-213-2088676
| | - Emmanouil P. Vardas
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- Department of Cardiology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.P.V.); (P.T.); (A.S.A.); (E.O.); (D.T.)
| |
Collapse
|
40
|
Avalon JC, Fuqua J, Miller T, Deskins S, Wakefield C, King A, Inderbitzin-Brooks S, Bianco C, Veltri L, Fang W, Craig M, Kanate A, Ross K, Malla M, Patel B. Pre-existing cardiovascular disease increases risk of atrial arrhythmia and mortality in cancer patients treated with Ibrutinib. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2021; 7:38. [PMID: 34798905 PMCID: PMC8603583 DOI: 10.1186/s40959-021-00125-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022]
Abstract
Background Ibrutinib is a Bruton’s tyrosine kinase inhibitor used in the treatment of hematological malignancies. The most common cardiotoxicity associated with ibrutinib is atrial arrhythmia (atrial fibrillation and flutter). It is known that patients with cardiovascular disease (CVD) are at an increased risk for developing atrial arrhythmia. However, the rate of atrial arrhythmia in patients with pre-existing CVD treated with ibrutinib is unknown. Objective This study examined whether patients with pre-existing CVD are at a higher risk for developing atrial arrhythmias compared to those without prior CVD. Methods A single-institution retrospective chart review of patients with no prior history of atrial arrhythmia treated with ibrutinib from 2012 to 2020 was performed. Patients were grouped into two cohorts: those with CVD (known history of coronary artery disease, heart failure, pulmonary hypertension, at least moderate valvular heart disease, or device implantation) and those without CVD. The primary outcome was incidence of atrial arrhythmia, and the secondary outcomes were all-cause mortality, risk of bleeding, and discontinuation of ibrutinib. The predictors of atrial arrhythmia (namely atrial fibrillation) were assessed using logistic regression. A Cox-Proportional Hazard model was created for mortality. Results Patients were followed for a median of 1.1 years. Among 217 patients treated with ibrutinib, the rate of new-onset atrial arrhythmia was nearly threefold higher in the cohort with CVD compared to the cohort without CVD (17% vs 7%, p = 0.02). Patients with CVD also demonstrated increased adjusted all-cause mortality (OR 1.9, 95% CI 1.06-3.41, p = 0.01) and decreased survival probability (43% vs 54%, p = 0.04) compared to those without CVD over the follow-up period. There were no differences in risk of bleeding or discontinuation between the two cohorts. Conclusions Pre-existing cardiovascular disease was associated with significantly higher rates of atrial arrhythmia and mortality in patients with hematological malignancies managed with ibrutinib.
Collapse
Affiliation(s)
| | - Jacob Fuqua
- West Virginia University School of Medicine, Morgantown, USA
| | - Tyler Miller
- West Virginia University School of Medicine, Morgantown, USA
| | - Seth Deskins
- West Virginia University School of Medicine, Morgantown, USA
| | | | - Austin King
- West Virginia University School of Medicine, Morgantown, USA
| | | | - Christopher Bianco
- West Virginia University Heart and Vascular Institute, Morgantown, WV, 26506, USA
| | - Lauren Veltri
- West Virginia University Mary Babb Randolph Cancer Institute, Morgantown, USA
| | - Wei Fang
- West Virginia Clinical and Translational Science Institute, Morgantown, USA
| | - Michael Craig
- West Virginia University Mary Babb Randolph Cancer Institute, Morgantown, USA
| | - Abraham Kanate
- West Virginia University Mary Babb Randolph Cancer Institute, Morgantown, USA
| | - Kelly Ross
- West Virginia University Mary Babb Randolph Cancer Institute, Morgantown, USA
| | - Midhun Malla
- West Virginia University Mary Babb Randolph Cancer Institute, Morgantown, USA
| | - Brijesh Patel
- West Virginia University Heart and Vascular Institute, Morgantown, WV, 26506, USA.
| |
Collapse
|
41
|
Anjewierden S, Wazni OM, Vince DG, Kanj M, Saliba W, Fedewa RJ. Cyclic Variation of Spectral Parameters for the Differentiation of Atrial Myocardium Before and Immediately Following Radiofrequency Ablation. ULTRASONIC IMAGING 2021; 43:299-307. [PMID: 34510970 DOI: 10.1177/01617346211046314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiofrequency ablation (RFA) is a common treatment of atrial fibrillation. However, current treatment is associated with a greater than 20% recurrence rate, in part due to inadequate monitoring of tissue viability during ablation. Spectral parameters, in particular cyclic variation of integrated backscatter (CVIB), have shown promise as early indicators of myocardial recovery from ischemia. Our aim was to demonstrate the use of spectral parameters to differentiate atrial myocardium before and after radiofrequency ablation. An AcuNav 10 F catheter was used to collect radiofrequency signals from the posterior wall of the left atrium of patients before and immediately after RFA for AF. The normalized power spectrum was obtained and three spectral parameters (integrated backscatter [IB], slope, and intercept) were extracted across two continuous heart cycles. Parameters were gated for ventricular end-diastole and compared before and after ablation. Additionally, the cyclic variation of each of these three parameters was generated as an average of the variation across the two recorded heart cycles. Data from 14 patients before and after ablation demonstrated a significant difference in the magnitude of the cyclic variation of integrated backscatter (9.0 vs. 6.0 dB, p < .001) and cyclic variation of the intercept (14.0 vs. 11.5 dB, p = .04). No significant difference was noted in the magnitude of the cyclic variation of the slope. Among spectral parameters gated for end-diastole, significant differences were noted in the slope (-4.39 vs. -3.73 dB/MHz, p = .002) and intercept (16.8 vs. 11.9 dB, p = .002). No significant difference was noted in the integrated backscatter. Spectral parameters are able to differentiate atrial myocardium before and immediately following ablation and may be useful in monitoring atrial ablations.
Collapse
Affiliation(s)
- Scott Anjewierden
- Community Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Oussama M Wazni
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - D Geoffrey Vince
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed Kanj
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Walid Saliba
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Russell J Fedewa
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
42
|
Avula UMR, Dridi H, Chen BX, Yuan Q, Katchman AN, Reiken SR, Desai AD, Parsons S, Baksh H, Ma E, Dasrat P, Ji R, Lin Y, Sison C, Lederer WJ, Joca HC, Ward CW, Greiser M, Marks AR, Marx SO, Wan EY. Attenuating persistent sodium current-induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress. JCI Insight 2021; 6:e147371. [PMID: 34710060 PMCID: PMC8675199 DOI: 10.1172/jci.insight.147371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
Collapse
Affiliation(s)
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, and
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Haajra Baksh
- Division of Cardiology, Department of Medicine, and
| | - Elaine Ma
- Division of Cardiology, Department of Medicine, and
| | | | - Ruiping Ji
- Division of Cardiology, Department of Medicine, and
| | - Yejun Lin
- Division of Cardiology, Department of Medicine, and
| | | | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Christopher W. Ward
- Center for Biomedical Engineering and Technology and Department of Physiology and
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology and
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics and Clyde & Helen Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, and
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
43
|
Mi X, Ding WG, Toyoda F, Kojima A, Omatsu-Kanbe M, Matsuura H. Selective activation of adrenoceptors potentiates I Ks current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J Mol Cell Cardiol 2021; 161:86-97. [PMID: 34375616 DOI: 10.1016/j.yjmcc.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Delayed rectifier K+ current (IKs) is a key contributor to repolarization of action potentials. This study investigated the mechanisms underlying the adrenoceptor-induced potentiation of IKs in pulmonary vein cardiomyocytes (PVC). PVC were isolated from guinea pig pulmonary vein. The action potentials and IKs current were recorded using perforated and conventional whole-cell patch-clamp techniques. The expression of IKs was examined using immunocytochemistry and Western blotting. KCNQ1, a IKs pore-forming protein was detected as a signal band approximately 100 kDa in size, and its immunofluorescence signal was found to be mainly localized on the cell membrane. The IKs current in PVC was markedly enhanced by both β1- and β2-adrenoceptor stimulation with a negative voltage shift in the current activation, although the potentiation was more effectively induced by β2-adrenoceptor stimulation than β1-adrenoceptor stimulation. Both β-adrenoceptor-mediated increases in IKs were attenuated by treatment with the adenylyl cyclase (AC) inhibitor or protein kinase A (PKA) inhibitor. Furthermore, the IKs current was increased by α1-adrenoceptor agonist but attenuated by the protein kinase C (PKC) inhibitor. PVC exhibited action potentials in normal Tyrode solution which was slightly reduced by HMR-1556 a selective IKs blocker. However, HMR-1556 markedly reduced the β-adrenoceptor-potentiated firing rate. The stimulatory effects of β- and α1-adrenoceptor on IKs in PVC are mediated via the PKA and PKC signal pathways. HMR-1556 effectively reduced the firing rate under β-adrenoceptor activation, suggesting that the functional role of IKs might increase during sympathetic excitation under in vivo conditions.
Collapse
Affiliation(s)
- Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
44
|
Late Sodium Current in Atrial Cardiomyocytes Contributes to the Induced and Spontaneous Atrial Fibrillation in Rabbit Hearts. J Cardiovasc Pharmacol 2021; 76:437-444. [PMID: 32675747 DOI: 10.1097/fjc.0000000000000883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased late sodium current (INa) induces long QT syndrome 3 with increased risk of atrial fibrillation (AF). The role of atrial late INa in the induction of AF and in the treatment of AF was determined in this study. AF parameters were measured in isolated rabbit hearts exposed to late INa enhancer and inhibitors. Late INa from isolated atrial and ventricular myocytes were measured using whole-cell patch-clamp techniques. We found that induced-AF by programmed S1S2 stimulation and spontaneous episodes of AF were recorded in hearts exposed to either low (0.1-3 nM) or high (3-10 nM) concentrations of ATX-II (n = 10). Prolongations in atrial monophasic action potential duration at 90% completion of repolarization and effective refractory period by ATX-II (0.1-15 nM) were greater in hearts paced at slow than at fast rates (n = 5-10, P < 0.05). Both endogenous and ATX-II-enhanced late INa density were greater in atrial than that in ventricular myocytes (n = 9 and 8, P < 0.05). Eleclazine and ranolazine reduced AF window and AF burden in association with the inhibition of both endogenous and enhanced atrial late INa with half maximal inhibitory concentrations (IC50) of 1.14 and 9.78, and 0.94 and 8.31 μM, respectively. The IC50s for eleclazine and ranolazine to inhibit peak INa were 20.67 and 101.79 μM, respectively, in atrial myocytes. In conclusion, enhanced late INa in atrial myocytes increases the susceptibility for AF. Inhibition of either endogenous or enhanced late INa, with increased atrial potency of drugs is feasible for the treatment of AF.
Collapse
|
45
|
Hu J, Zhang JJ, Li L, Wang SL, Yang HT, Fan XW, Zhang LM, Hu GL, Fu HX, Song WF, Yan LJ, Liu JJ, Wu JT, Kong B. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II by reducing TGF-β1/Smads pathway activation. J Cell Mol Med 2021; 25:6746-6759. [PMID: 34132026 PMCID: PMC8278085 DOI: 10.1111/jcmm.16678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis serves a critical role in driving atrial remodelling‐mediated atrial fibrillation (AF). Abnormal levels of the transcription factor PU.1, a key regulator of fibrosis, are associated with cardiac injury and dysfunction following acute viral myocarditis. However, the role of PU.1 in atrial fibrosis and vulnerability to AF remain unclear. Here, an in vivo atrial fibrosis model was developed by the continuous infusion of C57 mice with subcutaneous Ang‐II, while the in vitro model comprised atrial fibroblasts that were isolated and cultured. The expression of PU.1 was significantly up‐regulated in the Ang‐II‐induced group compared with the sham/control group in vivo and in vitro. Moreover, protein expression along the TGF‐β1/Smads pathway and the proliferation and differentiation of atrial fibroblasts induced by Ang‐II were significantly higher in the Ang‐II‐induced group than in the sham/control group. These effects were attenuated by exposure to DB1976, a PU.1 inhibitor, both in vivo and in vitro. Importantly, in vitro treatment with small interfering RNA against Smad3 (key protein of TGF‐β1/Smads signalling pathway) diminished these Ang‐II‐mediated effects, and the si‐Smad3‐mediated effects were, in turn, antagonized by the addition of a PU.1‐overexpression adenoviral vector. Finally, PU.1 inhibition reduced the atrial fibrosis induced by Ang‐II and attenuated vulnerability to AF, at least in part through the TGF‐β1/Smads pathway. Overall, the study implicates PU.1 as a potential therapeutic target to inhibit Ang‐II‐induced atrial fibrosis and vulnerability to AF.
Collapse
Affiliation(s)
- Juan Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| | - Li Li
- Department of Cardiology, Qitai Farm Hospital, Xinjiang, China
| | - Shan-Ling Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Tao Yang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wei Fan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei-Ming Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Ling Hu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Jie Yan
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Liu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| |
Collapse
|
46
|
Yano M, Egami Y, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Matsunaga-Lee Y, Shutta R, Nishino M, Tanouchi J. Impact of myocardial injury and inflammation due to ablation on the short-term and mid-term outcomes: Cryoballoon versus laser balloon ablation. Int J Cardiol 2021; 338:102-108. [PMID: 34126131 DOI: 10.1016/j.ijcard.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cryoballoon ablation (CBA) and laser balloon ablation (LBA) were developed as alternatives to conventional radiofrequency ablation for paroxysmal atrial fibrillation (PAF). Pathological findings after ablation such as myocardial injury and inflammation are thought to be different between CBA and LBA. However, the different impact of myocardial injury and inflammation after ablation on short- and mid-term outcomes remains unclear. METHODS Consecutive PAF patients who underwent CBA and LBA were enrolled from the Osaka Rosai Atrial Fibrillation ablation (ORAF) registry. The difference of the acute myocardial injury marker (hs-TnI), and changes of inflammation markers (C reactive protein; ΔCRP, and white blood cell; ΔWBC) after catheter ablation and the difference of the short-term (within 3 months after ablation) and mid-term (from 3 months to 6 months after ablation) outcomes were evaluated between the two groups. RESULTS The CBA and LBA groups consisted of 55 and 56 patients, respectively. After propensity score matching, CBA and LBA groups consisted of 37 patients, respectively. Hs-TnI value was significantly higher in CBA than LBA group, while ΔCRP and ΔWBC were significantly higher in LBA than CBA group. In the propensity score-matched pairs, the LBA group had a significantly greater risk of short-term arrhythmia recurrence than the CBA group, whereas no significant difference of mid-term arrhythmia recurrence were found between the two groups. CONCLUSION Myocardial injury and inflammation status differ between CBA and LBA groups. LBA group had stronger inflammation after ablation and had a significantly greater risk of short-term arrhythmia recurrence after PVI than CBA group.
Collapse
Affiliation(s)
- Masamichi Yano
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuyuki Egami
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Kohei Ukita
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Akito Kawamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Hitoshi Nakamura
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yutaka Matsuhiro
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Koji Yasumoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masaki Tsuda
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Naotaka Okamoto
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Yasuharu Matsunaga-Lee
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Ryu Shutta
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| | - Masami Nishino
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan.
| | - Jun Tanouchi
- Division of Cardiology, Osaka Rosai Hospital, 3-1179 Nagasonecho, kita-ku, Sakai, Osaka, 591-8025, Japan
| |
Collapse
|
47
|
Chang SH, Chan YH, Chen WJ, Chang GJ, Lee JL, Yeh YH. Tachypacing-induced CREB/CD44 signaling contributes to the suppression of L-type calcium channel expression and the development of atrial remodeling. Heart Rhythm 2021; 18:1760-1771. [PMID: 34023501 DOI: 10.1016/j.hrthm.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF), a common arrhythmia in clinics, is characterized as downregulation of L-type calcium channel (LTCC) and shortening of atrial action potential duration (APD). Our prior studies have shown the association of CD44 with AF genesis. OBJECTIVE The purpose of this study was to explore the potential role of CD44 and its related signaling in tachypacing-induced downregulation of LTCC. METHODS AND RESULTS In vitro, tachypacing in atrium-derived myocytes (HL-1 cell line) induced activation (phosphorylation) of cyclic adenosine monophosphate response element-binding protein (CREB). Furthermore, tachypacing promoted an association between CREB and CD44 in HL-1 myocytes, which was documented in atrial tissues from patients with AF. Deletion and mutational analysis of the LTCC promoter along with chromatin immunoprecipitation revealed that cyclic adenosine monophosphate response element is essential for tachypacing-inhibited LTCC transcription. Tachypacing also hindered the binding of p-CREB to the promoter of LTCC. Blockade of CREB/CD44 signaling in HL-1 cells attenuated tachypacing-triggered downregulation of LTCC and shortening of APD. Atrial myocytes isolated from CD44-/- mice exhibited higher LTCC current and longer APD than did those from wild-type mice. Ex vivo, tachypacing caused less activation of CREB in CD44-/- mice than in wild-type mice. In vivo, burst atrial pacing stimulated less inducibility of AF in CREB inhibitor-treated mice than in controls. CONCLUSION Tachypacing-induced CREB/CD44 signaling contributes to the suppression of LTCC, which provides valuable information about the pathogenesis of atrial modeling and AF.
Collapse
Affiliation(s)
- Shang-Hung Chang
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Yi-Hsin Chan
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Jia-Lin Lee
- Institute of Molecular and Cellular Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Hsin Yeh
- Division of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
48
|
Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Raya A, Torre E, Lodrini AM, Milanesi R, Rocchetti M, Baruscotti M, DiFrancesco D, Memo M, Barbuti A, Dell'Era P. Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 2021; 116:1147-1160. [PMID: 31504264 PMCID: PMC7177512 DOI: 10.1093/cvr/cvz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of cardiac arrhythmias, whose incidence is likely to increase with the aging of the population. It is considered a progressive condition, frequently observed as a complication of other cardiovascular disorders. However, recent genetic studies revealed the presence of several mutations and variants linked to AF, findings that define AF as a multifactorial disease. Due to the complex genetics and paucity of models, molecular mechanisms underlying the initiation of AF are still poorly understood. Here we investigate the pathophysiological mechanisms of a familial form of AF, with particular attention to the identification of putative triggering cellular mechanisms, using patient's derived cardiomyocytes (CMs) differentiated from induced pluripotent stem cells (iPSCs). METHODS AND RESULTS Here we report the clinical case of three siblings with untreatable persistent AF whose whole-exome sequence analysis revealed several mutated genes. To understand the pathophysiology of this multifactorial form of AF we generated three iPSC clones from two of these patients and differentiated these cells towards the cardiac lineage. Electrophysiological characterization of patient-derived CMs (AF-CMs) revealed that they have higher beating rates compared to control (CTRL)-CMs. The analysis showed an increased contribution of the If and ICaL currents. No differences were observed in the repolarizing current IKr and in the sarcoplasmic reticulum calcium handling. Paced AF-CMs presented significantly prolonged action potentials and, under stressful conditions, generated both delayed after-depolarizations of bigger amplitude and more ectopic beats than CTRL cells. CONCLUSIONS Our results demonstrate that the common genetic background of the patients induces functional alterations of If and ICaL currents leading to a cardiac substrate more prone to develop arrhythmias under demanding conditions. To our knowledge this is the first report that, using patient-derived CMs differentiated from iPSC, suggests a plausible cellular mechanism underlying this complex familial form of AF.
Collapse
Affiliation(s)
- Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Giulia Campostrini
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Valeria Bertini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Maria Iascone
- USSD Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | - Gustav Ahlberg
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Morten Salling Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Elisabetta Crescini
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Cristina Mora
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Gianluigi Bisleri
- Department of Surgery, Division of Cardiac Surgery, Queen's University, 99 University Avenue, Kingston, Ontario K7L 3N6, Canada
| | - Claudio Muneretto
- Clinical Department of Cardiovascular Surgery, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Pier Luigi Poliani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Piovani
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Rosanna Verardi
- Department of Trasfusion Medicine, Laboratory for Stem Cells Manipulation and Cryopreservation, ASST Spedali Civili, viale Europa 11, 25123 Brescia, Italy
| | - Elisa Di Pasquale
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy
| | - Antonella Consiglio
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy.,Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908 Hospitalet de Llobregat, C/Feixa Larga s/n, 08907 Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Carrer Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23 08010 Barcelona, Spain.,Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Raffaella Milanesi
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, iazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, cFRU lab, Università degli Studi di Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
49
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
50
|
Mechanisms underlying pathological Ca 2+ handling in diseases of the heart. Pflugers Arch 2021; 473:331-347. [PMID: 33399957 PMCID: PMC10070045 DOI: 10.1007/s00424-020-02504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Cardiomyocyte contraction relies on precisely regulated intracellular Ca2+ signaling through various Ca2+ channels and transporters. In this article, we will review the physiological regulation of Ca2+ handling and its role in maintaining normal cardiac rhythm and contractility. We discuss how inherited variants or acquired defects in Ca2+ channel subunits contribute to the development or progression of diseases of the heart. Moreover, we highlight recent insights into the role of protein phosphatase subunits and striated muscle preferentially expressed protein kinase (SPEG) in atrial fibrillation, heart failure, and cardiomyopathies. Finally, this review summarizes current drug therapies and new advances in genome editing as therapeutic strategies for the cardiac diseases caused by aberrant intracellular Ca2+ signaling.
Collapse
|