1
|
Ahmed G, Hamadani M, Al-Juhaishi T. The potential of antibody-drug conjugates for effective therapy in diffuse large B-cell lymphoma. Expert Opin Biol Ther 2025; 25:161-173. [PMID: 39798075 DOI: 10.1080/14712598.2025.2453524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.a. payload) attached through a linker to a monoclonal antibody specific to a particular cancer antigen. Payloads include microtubule disruptors or DNA damaging chemicals. After attaching to the antigen, the ADCs are internalized, and the payload is dissociated from ADC by lysozymes and delivered to the intended site for exerting cytotoxic effects. This unique molecular design permits a better balance of efficacy and safety. Loncastuximab tesirine and polatuzumab vedotin are two ADCs approved in the U.S.A. for treatment of DLBCL. AREAS COVERED This review covers the efficacy and safety data of these two drugs. We will review new ADC-based combination regimens and novel constructs in development. EXPERT OPINION ADCs have made a significant impact in improving outcomes of DLBCL patients. Both polatuzumab vedotin and loncastuximab tesirine are established as useful therapeutics options, with polatuzumab vedotin currently approved in first line and relapsed/refractory setting, while loncastuximab tesirine is approved in relapsed setting. ADCs are effective with tolerable safety profile and currently many more ADCs are undergoing clinical trials.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/adverse effects
- Benzodiazepines
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
2
|
Vandamme TF. Editorial 15th Anniversary of Pharmaceutics-Improvement of Drug Bioavailability. Pharmaceutics 2024; 16:1568. [PMID: 39771547 PMCID: PMC11676249 DOI: 10.3390/pharmaceutics16121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Improving the health of humans and animals depends on the discovery of new active molecules as well as improving the bioavailability of molecules already marketed [...].
Collapse
Affiliation(s)
- Thierry F Vandamme
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), University of Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
3
|
Adhikary S, Roy S, Budhathoki S, Chowdhury S, Stillwell A, Basnakian AG, Tackett A, Avaritt N, Milad M, Alam MA. Thiazole-fused androstenone and ethisterone derivatives: potent β- and γ-actin cytoskeleton inhibitors to treat melanoma tumors. RSC Med Chem 2024:d4md00719k. [PMID: 39703801 PMCID: PMC11653411 DOI: 10.1039/d4md00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
Melanoma, the most fatal form of skin cancer, often becomes resistant to the current therapeutic approaches in most patients. To explore new treatment options, fused thiazole derivatives were synthesized, and several of these compounds demonstrated potent anti-melanoma activity both in vitro and in vivo. These compounds exhibited significant cytotoxicity against melanoma cell lines at low concentrations. The lead molecules induced apoptosis and caused G2/M phase cell cycle arrest to a lesser extent. These compounds also displayed remarkable antimetastatic activities in several cell-based and molecular assays, significantly inhibiting key processes of metastasis, such as cell migration and adhesion. mRNA sequencing revealed significant downregulation of β-actin (ACTB) and γ-actin (ACTG1) at the transcriptional level, and a similar effect was observed at the protein level by western immunoblotting and proteomics assays. Actin-rich membrane protrusions formation is crucial for facilitating metastasis by promoting cell migration. Fluorescence microscopy demonstrated that compounds E28 and E47 inhibited the formation of these membrane protrusions and impaired actin cytoskeleton dynamics. Docking studies suggested the lead compounds may suppress tumor proliferation and metastasis by targeting the mechanistic target of Rapamycin complex 2 (mTORC2). All these findings unanimously indicated the translational perspective of ethisterone and androstenone fused thiazole derivatives as potent antimetastatic and antimelanoma agents. In a preclinical mouse melanoma model, compounds E2 and E47 significantly reduced tumor growth and greatly improved overall mice survival, while showing a favorable safety profile based on a comprehensive blood plasma metabolite profile. These lead molecules also displayed promising physicochemical properties, making them strong candidates for further drug development studies.
Collapse
Affiliation(s)
- Sanjay Adhikary
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Subrata Roy
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Shailesh Budhathoki
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Siam Chowdhury
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Computer Science, The College of Engineering and Computer Science, Arkansas State University Jonesboro AR 72468 USA
| | - Abbey Stillwell
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences 4301 W. Markham St Little Rock AR 72205 USA
- Central Arkansas Veterans Healthcare System W. 7th St Little Rock AR 72205 USA
| | - Alan Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Mohamed Milad
- The Department of Mathematics and Statistics, Arkansas State University Jonesboro AR 72467 USA
| | - Mohammad Abrar Alam
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Arkansas Biosciences Institute, Arkansas State University Jonesboro AR 72467 USA
| |
Collapse
|
4
|
Lin Z, Gupta JK, Maqbool M, Kumar K, Sharma A, Wahi N. The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom. Pharmaceuticals (Basel) 2024; 17:1507. [PMID: 39598418 PMCID: PMC11597706 DOI: 10.3390/ph17111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Gout is a chronic inflammatory condition characterized by elevated uric acid levels in the blood, which can precipitate acute gout attacks in individuals with genetic susceptibility, existing medical conditions, and dietary influences. Genetic predispositions, comorbid medical conditions, nutritional choices, and environmental factors increasingly recognize the multifactorial etiology of the disease. Methods: Recent research has highlighted the potential of phytochemicals, particularly flavonoids, saponins, and alkaloids, to manage hyperuricemia (HUA) and its associated complications. Results: Plant's natural compounds have garnered attention for their anti-inflammatory, antioxidant, and uric acid-lowering properties, suggesting their role in alternative and complementary medicine. Phytochemicals have demonstrated promise in mitigating gout symptoms and potentially modifying the disease course by addressing different aspects of hyperuricemia and inflammation. Herbal remedies, with their complex phytochemical profiles, offer a unique advantage by potentially complementing conventional pharmacological treatments. The integration of herbal therapies with standard medications could lead to enhanced therapeutic outcomes through synergistic effects, optimizing disease management, and improving patient quality of life. Conclusions: This review examines the current understanding of the multifaceted etiology of gout, explores the role of phytochemicals in managing hyperuricemia, and discusses the potential benefits of combining herbal remedies with conventional treatments to improve patient care and therapeutic efficacy.
Collapse
Affiliation(s)
- Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China;
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuhan 281406, India
| | - Mohsin Maqbool
- Department of Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110029, India
| | - Krishan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ayushi Sharma
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Nitin Wahi
- Pathfinder Research and Training Foundation, Gr. Noida 201308, India;
| |
Collapse
|
5
|
Stelten S, Ten Tusscher MR, Stuiver MM, Hartman YAW, van Lonkhuijzen LRCW, Kenter GG, van der Leeden M, Hoedjes M, Buffart LM. Tailoring of exercise and dietary interventions to adverse effects and existing comorbidities in patients with ovarian cancer receiving chemotherapy: a clinical vignettes study among expert physical therapists and dietitians. Disabil Rehabil 2024; 46:4168-4175. [PMID: 37815167 DOI: 10.1080/09638288.2023.2265820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE This study aims to capture the complex clinical reasoning process during tailoring of exercise and dietary interventions to adverse effects and comorbidities of patients with ovarian cancer receiving chemotherapy. METHODS Clinical vignettes were presented to expert physical therapists (n = 4) and dietitians (n = 3). Using the think aloud method, these experts were asked to verbalize their clinical reasoning on how they would tailor the intervention to adverse effects of ovarian cancer and its treatment and comorbidities. Clinical reasoning steps were categorized in questions raised to obtain additional information; anticipated answers; and actions to be taken. Questions and actions were labeled according to the evidence-based practice model. RESULTS Questions to obtain additional information were frequently related to the patients' capacities, safety or the etiology of health issues. Various hypothetical answers were proposed which led to different actions. Suggested actions by the experts included extensive monitoring of symptoms and parameters, specific adaptations to the exercise protocol and dietary-related patient education. CONCLUSIONS Our study obtained insight into the complex process of clinical reasoning, in which a variety of patient-related variables are used to tailor interventions. This insight can be useful for description and fidelity assessment of interventions and training of healthcare professionals.
Collapse
Affiliation(s)
- Stephanie Stelten
- Radboud University Medical Center, Department of Medical BioSciences, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Marieke R Ten Tusscher
- Radboud University Medical Center, Department of Medical BioSciences, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Yvonne A W Hartman
- Radboud University Medical Center, Department of Medical BioSciences, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| | - Luc R C W van Lonkhuijzen
- Department of Obstetrics and Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Univ(ersity) of Amsterdam, Amsterdam, The Netherlands
| | - Gemma G Kenter
- Department of Obstetrics and Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Univ(ersity) of Amsterdam, Amsterdam, The Netherlands
- Department of Gynecology, Center for Gynecologic Oncology Amsterdam (CGOA), The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Cancer Center Amsterdam, Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marike van der Leeden
- Department of Rehabilitation Medicine, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Meeke Hoedjes
- CoRPS - Center of Research on Psychological and Somatic disorders, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Laurien M Buffart
- Radboud University Medical Center, Department of Medical BioSciences, Radboud Institute of Health Sciences, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Zhao S, Meng Y, Cai W, Luo Q, Gao H, Shen Q, Shi D. Docosahexaenoic Acid Coordinating with Sodium Selenite Promotes Paraptosis in Colorectal Cancer Cells by Disrupting the Redox Homeostasis and Activating the MAPK Pathway. Nutrients 2024; 16:1737. [PMID: 38892670 PMCID: PMC11174406 DOI: 10.3390/nu16111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumor cells are characterized by a delicate balance between elevated oxidative stress and enhanced antioxidant capacity. This intricate equilibrium, maintained within a threshold known as redox homeostasis, offers a unique perspective for cancer treatment by modulating reactive oxygen species (ROS) levels beyond cellular tolerability, thereby disrupting this balance. However, currently used chemotherapy drugs require larger doses to increase ROS levels beyond the redox homeostasis threshold, which may cause serious side effects. How to disrupt redox homeostasis in cancer cells more effectively remains a challenge. In this study, we found that sodium selenite and docosahexaenoic acid (DHA), a polyunsaturated fatty acid extracted from marine fish, synergistically induced cytotoxic effects in colorectal cancer (CRC) cells. Physiological doses of DHA simultaneously upregulated oxidation and antioxidant levels within the threshold range without affecting cell viability. However, it rendered the cells more susceptible to reaching the upper limit of the threshold of redox homeostasis, facilitating the elevation of ROS levels beyond the threshold by combining with low doses of sodium selenite, thereby disrupting redox homeostasis and inducing MAPK-mediated paraptosis. This study highlights the synergistic anticancer effects of sodium selenite and DHA, which induce paraptosis by disrupting redox homeostasis in tumor cells. These findings offer a novel strategy for more targeted and less toxic cancer therapies for colorectal cancer treatment.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuzhou Meng
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenxun Cai
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiwen Luo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongyang Gao
- Institute of Electronmicroscopy, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Shen
- Institute of Electronmicroscopy, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongyun Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Cortez N, Villegas C, Burgos V, Ortiz L, Cabrera-Pardo JR, Paz C. Therapeutic Potential of Chlorogenic Acid in Chemoresistance and Chemoprotection in Cancer Treatment. Int J Mol Sci 2024; 25:5189. [PMID: 38791228 PMCID: PMC11121551 DOI: 10.3390/ijms25105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
8
|
Volungholen Sollid MI, Slaaen M, Danielsen S, Eilertsen G, Kirkevold Ø. Patient-Reported Experiences and Associated Factors in a Norwegian Radiotherapy Setting: An Explorative Cross-Sectional Study. SAGE Open Nurs 2024; 10:23779608241233868. [PMID: 38406180 PMCID: PMC10893778 DOI: 10.1177/23779608241233868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Radiotherapy is the main treatment modality in cancer. There is sparse knowledge on how patients with cancer experience their radiotherapy trajectory, and which factors might be associated with patients' experiences. Objectives The aim of the present study was to explore how adults with cancer receiving radiotherapy evaluate the quality of their care, utilizing a patient-reported experience measure, and how patient- and service-related characteristics are associated with their evaluation. Methods An explorative cross-sectional study using a self-completed questionnaire to assess patients' radiotherapy experiences was performed. Participants were recruited consecutively, within their last week of treatment, from two different hospitals in Norway from January 2021 to January 2022. Four hundred and eighty paper questionnaires were distributed to recruited patients, 240 at each hospital. Questionnaires were self-completed at home and returned by mail. The instrument person-centered coordinated care experience questionnaire (P3CEQ) was used. In addition to this, participants completed the European Organization of Research and Treatment of Cancer Quality of Life Questionnaire-C30 (EORTC QLQ-C30) and The Sense of Coherence 13 scale (SOC-13). Data were analyzed using descriptive statistics, parametric tests, and unadjusted/adjusted linear regression models were estimated. Results The study included 373 patients. Patients evaluated quality of care in terms of P3CEQ scores, with a mean score of 19.5 (standard deviation = 5.4). Lowest scores were identified in areas concerning person-centeredness and service coordination. There were no significant differences in P3CEQ scores between the younger and older groups. Having a partner and better SOC-13 scores were independently associated with the overall patient-reported experience score, whereas age was not. Conclusion Patient-reported experience scores indicate that improvements are needed in some areas, such as informing and involving patients in the planning and coordination of their care. Findings suggest paying special attention to patients without a partner to offer patients the best possible care.
Collapse
Affiliation(s)
- May Ingvild Volungholen Sollid
- Research Centre for Age Related Functional Decline and Diseases, Innlandet Hospital Trust, Ottestad, Norway
- Department of Health Sciences, Norwegian University of Science and Technology (NTNU) Gjøvik, Faculty of Medicine and Health Sciences, Gjøvik, Norway
| | - Marit Slaaen
- Research Centre for Age Related Functional Decline and Diseases, Innlandet Hospital Trust, Ottestad, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Signe Danielsen
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Grethe Eilertsen
- USN Research Group of Older Peoples' Health, Department of Nursing and Health Sciences, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen G, Norway
- Department of Nursing and Health Sciences, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen G, Norway
| | - Øyvind Kirkevold
- Research Centre for Age Related Functional Decline and Diseases, Innlandet Hospital Trust, Ottestad, Norway
- Department of Health Sciences, Norwegian University of Science and Technology (NTNU) Gjøvik, Faculty of Medicine and Health Sciences, Gjøvik, Norway
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
9
|
Luo T, Jiang M, Cheng Z, Lin Y, Chen Y, Zhang Z, Zhou J, Zhou W, Yu XF, Li S, Geng S, Yang H. Biodegradable FePS 3 nanoplatform for efficient treatment of osteosarcoma by combination of gene and NIR-II photothermal therapy. J Nanobiotechnology 2023; 21:224. [PMID: 37443019 DOI: 10.1186/s12951-023-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
As a common tumor with high incidence, osteosarcoma possesses extremely poor prognosis and high mortality. Improving the survival of osteosarcoma patients is still a great challenge due to the precipice of advancement in treatment. In this study, a combination strategy of gene therapy and photothermal therapy (PTT) is developed for efficient treatment of osteosarcoma. Two-dimensional (2D) FePS3 nanosheets are synthesized and functionalized by poly-L-lysine-PEG-folic acid (PPF) to fabricate a multifunctional nanoplatform (FePS@PPF) for further loading microRNAs inhibitor, miR-19a inhibitor (anti-miR-19a). The photothermal conversion efficiency of FePS@PPF is up to 47.1% under irradiation by 1064 nm laser. In vitro study shows that anti-miR-19a can be efficiently internalized into osteosarcoma cells through the protection and delivery of FePS@PPF nanaocarrier, which induces up-regulation of PTEN protein and down-regulation p-AKT protein. After intravenous injection, the FePS@PPF nanoplatform specifically accumulates to tumor site of osteosarcoma-bearing mice. The in vitro and in vivo investigations reveal that the combined PTT-gene therapy displays most significant tumor ablation compared with monotherapy. More importantly, the good biodegradability promotes FePS@PPF to be cleared from body avoiding potential toxicity of long-term retention. Our work not only develops a combined strategy of NIR-II PTT and gene therapy mediated by anti-miR-19a/FePS@PPF but also provides insights into the design and applications of other nanotherapeutic platforms.
Collapse
Affiliation(s)
- Tingting Luo
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Mingyang Jiang
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziqiang Cheng
- Department of Applied Physics, School of Science, East China Jiaotong University, Nanchang, 330013, China
| | - Yuntao Lin
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yuling Chen
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhenyu Zhang
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Zhou
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Wenhua Zhou
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xue-Feng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuchun Li
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| | - Shengyong Geng
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongyu Yang
- Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
An BC, Ahn JY, Kwon D, Kwak SH, Heo JY, Kim S, Ryu Y, Chung MJ. Anti-Cancer Roles of Probiotic-Derived P8 Protein in Colorectal Cancer Cell Line DLD-1. Int J Mol Sci 2023; 24:9857. [PMID: 37373005 DOI: 10.3390/ijms24129857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
A novel probiotics-derived protein, P8, suppresses the growth of colorectal cancer (CRC). P8 can penetrate the cell membrane via endocytosis and cause cell cycle arrest in DLD-1 cells through down-regulation of CDK1/Cyclin B1. However, neither the protein involved in the endocytosis of P8 nor the cell cycle arrest targets of P8 are known. We identified two P8-interacting target proteins [importin subunit alpha-4 (KPNA3) and glycogen synthase kinase-3 beta (GSK3β)] using P8 as a bait in pull-down assays of DLD-1 cell lysates. Endocytosed P8 in the cytosol was found to bind specifically to GSK3β, preventing its inactivation by protein kinases AKT/CK1ε/PKA. The subsequent activation of GSK3β led to strong phosphorylation (S33,37/T41) of β-catenin, resulting in its subsequent degradation. P8 in the cytosol was also found to be translocated into the nucleus by KPNA3 and importin. In the nucleus, after its release, P8 binds directly to the intron regions of the GSK3β gene, leading to dysregulation of GSK3β transcription. GSK3β is a key protein kinase in Wnt signaling, which controls cell proliferation during CRC development. P8 can result in a cell cycle arrest morphology in CRC cells, even when they are in the Wnt ON signaling state.
Collapse
Affiliation(s)
- Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Daebeom Kwon
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Sang Hee Kwak
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Jin Young Heo
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Seungwoo Kim
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Wang L, Li P, Feng K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur J Med Chem 2023; 250:115197. [PMID: 36780831 DOI: 10.1016/j.ejmech.2023.115197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Lin Wang
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Feng
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
12
|
Wang R, Lee YG, Dhandapani S, Baek NI, Kim KP, Cho YE, Xu X, Kim YJ. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma. Pharmacol Res 2023; 187:106610. [PMID: 36521573 DOI: 10.1016/j.phrs.2022.106610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) occurs in the gastric mucosa, and its high morbidity and mortality make it an international health crisis. Therefore, novel drugs are needed for its treatment. The use of natural products and their components in cancer treatments has shown promise. Therefore, this study aimed to evaluate the effect of 8-paradol, a phenolic compound isolated from ginger (Zingiber officinale Roscoe), on GC and determine its underlying mechanisms of action. In this study, repeated column chromatography was conducted on ginger EtOH extract to isolate gingerol and its derivatives. The cytotoxicity of the eight ginger compounds underwent a (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) tetrazolium reduction (MTT) assay. 8-paradol showed the most potent cytotoxicity effect among the isolated ginger compounds. The underlying mechanism by which 8-paradol regulated specific proteins in AGS cells was evaluated by proteomic analysis. To validate the predicted mechanisms, AGS cells and thymus-deficient nude mice bearing AGS xenografts were used as in vitro and in vivo models of GC, respectively. The results showed that the 8-paradol promoted PINK1/Parkin-associated mitophagy, mediating cell apoptosis. Additionally, the inhibition of mitophagy by chloroquine (CQ) ameliorated 8-paradol-induced mitochondrial dysfunction and apoptosis, supporting a causative role for mitophagy in the 8-paradol-induced anticancer effect. Molecular docking results revealed the molecular interactions between 8-paradol and mitophagy-/ apoptosis-related proteins at the atomic level. Our study provides strong evidence that 8-paradol could act as a novel potential therapeutic agent to suppress the progression of GC by targeting mitophagy pathway.
Collapse
Affiliation(s)
- Rongbo Wang
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Yeong-Geun Lee
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Sanjeevram Dhandapani
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Kwang-Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Yeong-Eun Cho
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Xingyue Xu
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Lim JY, Kim Y, Yeo SM, Chae BJ, Yu J, Hwang JH. Feasibility and usability of a personalized mHealth app for self-management in the first year following breast cancer surgery. Health Informatics J 2023; 29:14604582231156476. [PMID: 36772832 DOI: 10.1177/14604582231156476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This study investigated the feasibility and usability of a personalized mobile health (mHealth) app for self-management during the year following breast cancer surgery. Twenty-nine participants were instructed to use an app and smart band immediately after discharge. Only 18 completed the study. Their perceived necessity and satisfaction for main domains and app were assessed at 1, 2, 4, 6, 9, and 12 months. A self-reporting questionnaire assessed usability at 12 months. Consequently, retention rate as measures of feasibility showed a mean of 75.8%. Exercise and diet management were the most accessed app domains. Perceived necessity was higher than satisfaction. The mean usability score was 80.2. Most participants found the app useful and effective as a delivery for healthcare. Further, 94% of them were willing to pay for and recommend it. Thus, mHealth app can help breast cancer patients improve their healthy behaviors and healthcare further. This study provides insights for designing long-term randomized controlled trials using mHealth interventions.
Collapse
Affiliation(s)
- Ji Young Lim
- Department of Physical Therapy, Graduate School of Medical Science, 34966Konyang University, Daejeon, Republic of Korea
| | - Yoon Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Republic of Korea
| | - Seung Mi Yeo
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Byung Joo Chae
- Breast Division, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jonghan Yu
- Breast Division, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Hye Hwang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Patient-centered dosing: oncologists' perspectives about treatment-related side effects and individualized dosing for patients with metastatic breast cancer (MBC). Breast Cancer Res Treat 2022; 196:549-563. [PMID: 36198984 DOI: 10.1007/s10549-022-06755-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE Although metastatic breast cancer (MBC) is treatable, it is not curable and most patients remain on treatment indefinitely. While oncologists commonly prescribe the recommended starting dose (RSD) from the FDA-approved label, patient tolerance may differ from that seen in clinical trials. We report on a survey of medical oncologists' perspectives about treatment-related toxicity and willingness to discuss flexible dosing with patients. METHODS We disseminated a confidential survey via social media/email in Spring 2021. Eligible respondents needed to be US-based medical oncologists with experience treating patients with MBC. RESULTS Of 131 responses, 119 were eligible. Physicians estimated that 47% of their patients reported distressing treatment-related side effects; of these, 15% visited the Emergency Room/hospital and 37% missed treatment. 74% (n = 87) of doctors reported improvement of patient symptoms after dose reduction. 87% (n = 104) indicated that they had ever, if appropriate, initiated treatment at lower doses. Most (85%, n = 101) respondents did not believe that the RSD is always more effective than a lower dose and 97% (n = 115) were willing to discuss individualized dosing with patients. CONCLUSION Treatment-related side effects are prevalent among patients with MBC, resulting in missed treatments and acute care visits. To help patients tolerate treatment, oncologists may decrease initial and/or subsequent doses. The majority of oncologists reject the premise that a higher dose is always superior and are willing to discuss individualized dosing with patients. Given potential improvements regarding quality of life and clinical care, dose modifications should be part of routine shared decision-making between patients and oncologists.
Collapse
|
15
|
Du T, Yang T, Xu L, Li X, Yang G, Zhou S. An Implantable Polydopamine Nanoparticle‐in‐Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tianyi Du
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ting Yang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ling Xu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xilin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
16
|
Bayer P, Brown JS, Dubbeldam J, Broom M. A Markovian decision model of adaptive cancer treatment and quality of life. J Theor Biol 2022; 551-552:111237. [DOI: 10.1016/j.jtbi.2022.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
|
17
|
GCIG-Consensus guideline for Long-term survivorship in gynecologic Cancer: A position paper from the gynecologic cancer Intergroup (GCIG) symptom benefit committee. Cancer Treat Rev 2022; 107:102396. [PMID: 35525106 DOI: 10.1016/j.ctrv.2022.102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Long-term survivors of gynecological cancers may be cured but still have ongoing health concerns and long-term side effects following cancer treatment. The aim of this brainstorming meeting was to develop recommendations for long-term follow-up for survivors from gynecologic cancer. METHODS International experts, representing each member group within the Gynecologic Cancer InterGroup (GCIG), met to define long-term survival, propose guidelines for long term follow-up and propose ways to implement long term survivorship follow-up in clinical trials involving gynecological cancers. RESULTS Long-term survival with/from gynecological cancers was defined as survival of at least five years from diagnosis, irrespective of disease recurrences. Review of the literature showed that more than 50% of cancer survivors with gynecological cancer still experienced health concerns/long-term side effects. Main side effects included neurologic symptoms, sleep disturbance, fatigue, sexual dysfunction, bowel and urinary problems and lymphedema. In this article, long-term side effects are discussed in detail and treatment options are proposed. Screening for second primary cancers and lifestyle counselling (nutrition, physical activity, mental health) may improve quality of life and overall health status, as well as prevent cardiovascular events. Clinical trials should address cancer survivorship and report patient reported outcome measures (PROMs) for cancer survivors. CONCLUSION Long-term survivors after gynecological cancer have unique longer term challenges that need to be addressed systematically by care givers. Follow-up after completing treatment for primary gynecological cancer should be offered lifelong. Survivorship care plans may help to summarize cancer history, long-term side effects and to give information on health promotion and prevention.
Collapse
|
18
|
Alessi I, Caroleo AM, de Palma L, Mastronuzzi A, Pro S, Colafati GS, Boni A, Della Vecchia N, Velardi M, Evangelisti M, Carboni A, Carai A, Vinti L, Valeriani M, Reale A, Parisi P, Raucci U. Short and Long-Term Toxicity in Pediatric Cancer Treatment: Central Nervous System Damage. Cancers (Basel) 2022; 14:cancers14061540. [PMID: 35326692 PMCID: PMC8946171 DOI: 10.3390/cancers14061540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The purpose of this review is to describe central nervous system side effects in the treatment of pediatric cancer patients. Unfortunately, we must consider that the scarce data in the literature does not allow us to expand on some issues, especially those related to innovative immunotherapy. We have described the major neurotoxicities arising with the various types of treatment to help specialists who approach these treatments recognize them early, prevent them, and treat them promptly. Abstract Neurotoxicity caused by traditional chemotherapy and radiotherapy is well known and widely described. New therapies, such as biologic therapy and immunotherapy, are associated with better outcomes in pediatric patients but are also associated with central and peripheral nervous system side effects. Nevertheless, central nervous system (CNS) toxicity is a significant source of morbidity in the treatment of cancer patients. Some CNS complications appear during treatment while others present months or even years later. Radiation, traditional cytotoxic chemotherapy, and novel biologic and targeted therapies have all been recognized to cause CNS side effects; additionally, the risks of neurotoxicity can increase with combination therapy. Symptoms and complications can be varied such as edema, seizures, fatigue, psychiatric disorders, and venous thromboembolism, all of which can seriously influence the quality of life. Neurologic complications were seen in 33% of children with non-CNS solid malign tumors. The effects on the CNS are disabling and often permanent with limited treatments, thus it is important that clinicians recognize the effects of cancer therapy on the CNS. Knowledge of these conditions can help the practitioner be more vigilant for signs and symptoms of potential neurological complications during the management of pediatric cancers. As early detection and more effective anticancer therapies extend the survival of cancer patients, treatment-related CNS toxicity becomes increasingly vital. This review highlights major neurotoxicities due to pediatric cancer treatments and new therapeutic strategies; CNS primary tumors, the most frequent solid tumors in childhood, are excluded because of their intrinsic neurological morbidity.
Collapse
Affiliation(s)
- Iside Alessi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Anna Maria Caroleo
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Luca de Palma
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Pro
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | | | - Alessandra Boni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Nicoletta Della Vecchia
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Margherita Velardi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Melania Evangelisti
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessia Carboni
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Luciana Vinti
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Massimiliano Valeriani
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Antonino Reale
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
19
|
Song H, Peng T, Wang X, Li B, Wang Y, Song D, Xu T, Liu X. Glutathione-Sensitive Mesoporous Organosilica-Coated Gold Nanorods as Drug Delivery System for Photothermal Therapy-Enhanced Precise Chemotherapy. Front Chem 2022; 10:842682. [PMID: 35281558 PMCID: PMC8914165 DOI: 10.3389/fchem.2022.842682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of photothermal therapy (PTT) and chemotherapy can remarkably improve the permeability of the cell membrane and reduce the concentration of chemotherapy agents that not only kill the tumor cells effectively but also have adverse effects on normal tissues. It is of great meaning to construct nanomaterials that could be simultaneously applied for tumor eradication with PTT and chemotherapy. In this work, we developed a novel gold nanorod coated with mesoporous organosilica nanoparticles (oMSN-GNR), which presented as an optimal photothermal contrast agent. Moreover, after doxorubicin loading (oMSN-GNR–DOX), the organosilica shell exhibited biodegradable properties under high glutathione in the tumor microenvironment, resulting in massively releasing doxorubicin to kill tumor cells. More importantly, the hyperthermia effect of GNR cores under near-infrared light provided promising opportunities for localized photothermal ablation in vivo. Therefore, the combination of precise chemotherapy and highly effective PTT successfully inhibited tumor growth in liver tumor-bearing mice. This versatile synergistic therapy with local heating and chemotherapeutics precise release opens up the potential clinical application of PTT and chemotherapy therapeutics for malignant tumor eradication.
Collapse
Affiliation(s)
- Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tingwei Peng
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Pudong New Area, Shanghai, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Beibei Li
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Yufang Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Dianhai Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tianzhao Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| |
Collapse
|
20
|
Park D. Fenbendazole Suppresses Growth and Induces Apoptosis of Actively Growing H4IIE Hepatocellular Carcinoma Cells via p21-Mediated Cell-Cycle Arrest. Biol Pharm Bull 2022; 45:184-193. [PMID: 35110505 DOI: 10.1248/bpb.b21-00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bendimidazole anthelmintics (BAs) have gained interest for their anticancer activity. The anticancer activity is mediated via multiple intracellular changes, which are not consistent under different conditions even in the same cells. We investigated the anticancer activity of fenbendazole (FZ, one of BAs) under two different growth conditions. The growth rate of H4IIE cells was dose-dependently decreased by FZ only in actively growing cells but not in fully confluent quiescent cells. Apoptosis-associated changes were also induced by FZ in actively growing cells. Markers of autophagy were not changed by FZ. The number of cells was markedly increased in sub-G1 phase but decreased in S- and G2/M phases by FZ. FZ up-regulated p21 (an inhibitor of cyclin-CDK) but suppressed the expression of cell cycle-promoting proteins (cyclin D1 and cyclin B1). FZ did not affect integrin αV or n-cadherin expression as well as cell migration. Glycolytic changes (glucose consumption and lactate production) and the generation of reactive oxygen species (ROS) were not affected by FZ. Although the activity of mitogen-activated protein kinases (MAPKs) was altered by FZ, the inhibition of MAPKs did not affect the pro-apoptotic activity of FZ. Taken together, FZ selectively suppressed the growth of cells via p21-mediated cell cycle arrest at G1/S and G2/M, and resulted in apoptosis only in actively growing cells but not in quiescent cells. Glucose metabolism, ROS generation, and MAPKs are unlikely targets of FZ at least in H4IIE rat hepatocellular carcinoma cells used in this study.
Collapse
Affiliation(s)
- Deokbae Park
- Department of Histology, School of Medicine, Institute of Medical Science, Jeju National University
| |
Collapse
|
21
|
Eades W, Liu W, Shen Y, Shi Z, Yan B. Covalent CES2 Inhibitors Protect against Reduced Formation of Intestinal Organoids by the Anticancer Drug Irinotecan. Curr Drug Metab 2022; 23:1000-1010. [PMID: 36515038 PMCID: PMC10258227 DOI: 10.2174/1389200224666221212143904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Irinotecan is widely used to treat various types of solid and metastatic cancer. It is an ester prodrug and its hydrolytic metabolite (SN-38) exerts potent anticancer activity. Irinotecan is hydrolyzed primarily by carboxylesterase-2 (CES2), a hydrolase abundantly present in the intestine such as the duodenum. We have identified several potent and covalent CES2 inhibitors such as remdesivir and sofosbuvir. Remdesivir is the first small molecule drug approved for COVID-19, whereas sofosbuvir is a paradigm-shift medicine for hepatitis C viral infection. Irinotecan is generally well-tolerated but associated with severe/life-threatening diarrhea due to intestinal accumulation of SN-38. OBJECTIVE This study was to test the hypothesis that remdesivir and sofosbuvir protect against irinotecan-induced epithelial injury associated with gastrointestinal toxicity. METHODS To test this hypothesis, formation of organoids derived from mouse duodenal crypts, a robust cellular model for intestinal regeneration, was induced in the presence or absence of irinotecan +/- pretreatment with a CES2 drug inhibitor. RESULTS Irinotecan profoundly inhibited the formation of intestinal organoids and the magnitude of the inhibition was greater with female crypts than their male counterparts. Consistently, crypts from female mice had significantly higher hydrolytic activity toward irinotecan. Critically, remdesivir and sofosbuvir both reduced irinotecan hydrolysis and reversed irinotecan-reduced formation of organoids. Human duodenal samples robustly hydrolyzed irinotecan, stable CES2 transfection induced cytotoxicity and the cytotoxicity was reduced by CES2 drug inhibitor. CONCLUSION These findings establish a therapeutic rationale to reduce irinotecan-gastrointestinal injury and serve as a cellular foundation to develop oral formulations of irinotecan with high safety.
Collapse
Affiliation(s)
- William Eades
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - William Liu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - Yue Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
22
|
Hain BA, Xu H, Waning DL. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J Cachexia Sarcopenia Muscle 2021; 12:1597-1612. [PMID: 34664403 PMCID: PMC8718092 DOI: 10.1002/jcsm.12795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.
Collapse
Affiliation(s)
- Brian A Hain
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - David L Waning
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
23
|
Kaur J, Bhattacharyya S. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Front Oncol 2021; 11:756888. [PMID: 34804950 PMCID: PMC8602811 DOI: 10.3389/fonc.2021.756888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023] Open
Abstract
The subpopulation of cancer stem cells (CSCs) within tumor bulk are known for tumor recurrence and metastasis. CSCs show intrinsic resistance to conventional therapies and phenotypic plasticity within the tumor, which make these a difficult target for conventional therapies. CSCs have different metabolic phenotypes based on their needs as compared to the bulk cancer cells. CSCs show metabolic plasticity and constantly alter their metabolic state between glycolysis and oxidative metabolism (OXPHOS) to adapt to scarcity of nutrients and therapeutic stress. The metabolic characteristics of CSCs are distinct compared to non-CSCs and thus provide an opportunity to devise more effective strategies to target CSCs. Mechanism for metabolic switch in CSCs is still unravelled, however existing evidence suggests that tumor microenvironment affects the metabolic phenotype of cancer cells. Understanding CSCs metabolism may help in discovering new and effective clinical targets to prevent cancer relapse and metastasis. This review summarises the current knowledge of CSCs metabolism and highlights the potential targeted treatment strategies.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
24
|
MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat Commun 2021; 12:6399. [PMID: 34737274 PMCID: PMC8569165 DOI: 10.1038/s41467-021-26655-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo. Targeting damage to mitochondria has become an effective strategy antitumor therapies. Here, the authors report on nanoagents with upconversion nanoparticles as cores and photoacid-loaded MOFs as shells for NIR triggered Fenton reaction, acidification and calcium overload to provide synergistic mitochondrial damage.
Collapse
|
25
|
Hilton KLF, Manwani C, Boles JE, White LJ, Ozturk S, Garrett MD, Hiscock JR. The phospholipid membrane compositions of bacterial cells, cancer cell lines and biological samples from cancer patients. Chem Sci 2021; 12:13273-13282. [PMID: 34777745 PMCID: PMC8529332 DOI: 10.1039/d1sc03597e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.
Collapse
Affiliation(s)
- Kira L F Hilton
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Chandni Manwani
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
| | - Jessica E Boles
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Lisa J White
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - Sena Ozturk
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | | | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| |
Collapse
|
26
|
Wang X, Liu X, Jia Z, Zhang Y, Wang S, Zhang H. Evaluation of the Effects of Different Dietary Patterns on Breast Cancer: Monitoring Circulating Tumor Cells. Foods 2021; 10:foods10092223. [PMID: 34574333 PMCID: PMC8465684 DOI: 10.3390/foods10092223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The occurrence and development of breast cancer are closely related to dietary factors, especially dietary patterns. This study was to investigate the effects of dietary patterns on the process of tumor metastasis by in vivo circulating tumor cell (CTC) capture strategy and monitoring changes of CTC numbers in breast tumor mice model. Meanwhile, the effects of different dietary patterns on the development of lung metastases of breast cancer and the volume and weight of carcinoma in situ were investigated. In this study, the increase in the number of CTCs was significantly promoted by dietary patterns such as high-salt diet, high-sugar diet, and high-fat diet, while it was delayed by ketogenic diet, low-fat diet, low-protein diet, diet restriction, and Mediterranean diet. These results indicated that the in vivo capture and detection of CTCs provides a convenient method for real-time cancer metastasis monitoring, and through in-depth study of the effects of different dietary patterns on tumor growth and metastasis, it can expand a new horizon in future cancer treatments.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.W.); (X.L.); (Z.J.); (Y.Z.)
| | - Xiaoyu Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.W.); (X.L.); (Z.J.); (Y.Z.)
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.W.); (X.L.); (Z.J.); (Y.Z.)
| | - Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.W.); (X.L.); (Z.J.); (Y.Z.)
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300457, China
- Correspondence: (S.W.); (H.Z.); Tel.: +86-0531-86180745 (H.Z.)
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China; (X.W.); (X.L.); (Z.J.); (Y.Z.)
- Correspondence: (S.W.); (H.Z.); Tel.: +86-0531-86180745 (H.Z.)
| |
Collapse
|
27
|
Yee DW, Hetts SW, Greer JR. 3D-Printed Drug Capture Materials Based on Genomic DNA Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41424-41434. [PMID: 34124877 PMCID: PMC11232429 DOI: 10.1021/acsami.1c05209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The toxic side effects of chemotherapy have long limited its efficacy, prompting expensive and long-drawn efforts to develop more targeted cancer therapeutics. An alternative approach to mitigate off-target toxicity is to develop a device that can sequester chemotherapeutic agents from the veins that drain the target organ before they enter systemic circulation. This effectively localizes the chemotherapy to the target organ, minimizing any hazardous side effects. 3D printing is ideal for fabricating these devices, as the geometric control afforded allows us to precisely dictate its hemodynamic performance in vivo. However, the existing materials compatible with 3D printing do not have drug-binding capabilities. Here, we report the stable coating of genomic DNA on a 3D-printed structure for the capture of doxorubicin. Genomic DNA is an effective chemotherapeutic-agent capture material due to the intrinsic DNA-targeting mechanism of action of these drugs. Stable DNA coatings were achieved through a combination of electrostatic interactions and ultraviolet C (UVC, 254 nm) cross-linking. These UVC cross-linked DNA coatings were extremely stable-leaching on average 100 pg of genomic DNA per mm2 of 3D-printed structure over a period of 30 min. In vitro studies of these materials in phosphate buffered saline and human serum demonstrated that they were able to capture, on average, 72 and 60 ng of doxorubicin per mm2 of structure, respectively. The stability and efficacy of these genomic DNA-coated 3D-printed materials represent a significant step forward towards the translation of these devices to clinical applications for the potential improvement of chemotherapy treatment.
Collapse
Affiliation(s)
- Daryl W Yee
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California 94107, United States
| | - Julia R Greer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Experiences of older patients with cancer from the radiotherapy pathway - A qualitative study. Eur J Oncol Nurs 2021; 53:101999. [PMID: 34294576 DOI: 10.1016/j.ejon.2021.101999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE To explore and describe experiences of older patients with cancer throughout their radiotherapy treatment, from diagnosis until follow-up after treatment. METHODS Individual interviews were conducted to explore different phases of radiotherapy. Interviews were recorded and transcribed verbatim. Inductive content analysis was applied. Each interview was coded separately. Then to the codes were analyzed further, and an overall theme was developed. RESULTS Twelve older patients with cancer, (7 male, 5 female) aged ≥ 65 related their experiences from radiotherapy treatment. A main theme describes the essence of their experiences; Understanding "just enough". The theme comprises five main categories: Understandable, adapted information is crucial for trusting health services; Previous experiences influence patients' perception and understanding; Involvement of next of kin is crucial to patients' comprehension; Professional treatment decisions and well-organized treatment determines satisfaction and Experiences of cooperation and coordination of services affects dependability. CONCLUSIONS Findings from this study describe how understanding "just enough" - not too much nor too little - may assist older patients with cancer in participating in treatment decisions, preventing false beliefs, feeling reassured during treatment and in navigating the complex health care system. Next of kin are important assets for older patients with cancer in understanding "just enough". Cancer nurses may map comprehension of information, as well as reveal patients' previous experiences.
Collapse
|
29
|
A Comparative Study on Anticancer Effects of the Alhagi maurorum and Amygdalus haussknechtii Extracts Alone and in Combination with Docetaxel on 4T1 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5517944. [PMID: 34221071 PMCID: PMC8219415 DOI: 10.1155/2021/5517944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
Medicinal plants have long been studied due to their anticancer effects and use of them is commonly increased as a complementary and alternative medicine (CAM therapies) among patients with cancer. In this study, Alhagi maurorum (A.m) and Amygdalus haussknechtii (A.h) extracts were evaluated for their effects on inhibiting the growth of 4T1 breast cancer cells. Based on MTT assay results, the IC50s of A.m and A.h extracts were 57 µg/ml and 85 µg/ml, respectively. Then the cell migration, gene expression, and degree of apoptosis after 48 hours in each treated group with A.m and A.h extracts alone or in combination with docetaxel (DTX) on 4T1 cells were evaluated. A.m had a synergistic behavior with DTX (CI < 1). A.h reduced DTX IC50 but presented CI > 1. Cell migration assay showed that each extract alone or in combination with DTX prevented the migration of 4T1 cells. The Ao/EB staining and flowcytometry results confirmed that, in combination therapy, A.m + DTX and A.h + DTX induced apoptosis close to the level of DTX. Real-time PCR analysis showed that A.m + DTX (IC50 + IC25) downregulated the mRNA expression of HIF-1α and FZD7. A.m + DTX (IC50 + IC10) group decreased the expression of HIF-1α. Moreover, in A.h + DTX (IC50 + IC25) group, β-Catenin and FZD7 were downregulated and upregulated, respectively. Generally, our findings suggest that the combination of A.m and DTX possesses synergistic antitumor effects on 4T1 cells, which may be a valuable choice for CAM therapies. A.h has an acceptable antitumor activity but not in combination with DTX.
Collapse
|
30
|
Dora NO, Blackburn E, Boles JE, Williams GT, White LJ, Turner SEG, Hothersall JD, Askwith T, Doolan JA, Mulvihill DP, Garrett MD, Hiscock JR. Supramolecular self-associating amphiphiles (SSAs) as nanoscale enhancers of cisplatin anticancer activity. RSC Adv 2021; 11:14213-14217. [PMID: 35423951 PMCID: PMC8697675 DOI: 10.1039/d1ra02281d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Many chemotherapeutic drugs have a narrow therapeutic window due to inefficient tumour cell permeation. Supramolecular self-associating amphiphilic salts (SSAs) are a unique class of small molecules that offer potential as next generation cancer drugs and/or therapeutic enhancement agents. Herein, we demonstrate the cytotoxicity of seven SSAs towards both ovarian and glioblastoma cancer cells. We also utilize the intrinsic fluorescent properties of one of these lead SSAs to provide evidence for this class of compound to both bind to the exterior cancer cell surface and permeate the cell membrane, to become internalized. Furthermore, we demonstrate synergistic effects of two lead SSAs on cisplatin-mediated cytotoxicity of ovarian cancer cells and show that this correlates with increased DNA damage and apoptosis versus either agent alone. This work provides the first evidence that SSAs interact with and permeate cancer cell membranes and enhance the cytotoxic activity of a chemotherapeutic drug in human cancer cells.
Collapse
Affiliation(s)
- Nova O Dora
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
| | - Edith Blackburn
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
| | - Jessica E Boles
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | - George T Williams
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - Lisa J White
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | | | | | - Trevor Askwith
- Domainex, Chesterford Research Park Saffron Walden CB10 1XL UK
| | - Jack A Doolan
- School of Biosciences, University of Kent Canterbury Kent CT2 7NJ UK
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| | | | | | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent Canterbury Kent CT2 7NH UK
| |
Collapse
|
31
|
Siddika A, Das PK, Asha SY, Aktar S, Tareq ARM, Siddika A, Rakib A, Islam F, Khanam JA. Antiproliferative Activity and Apoptotic Efficiency of Syzygium cumini Bark Methanolic Extract against EAC Cells In Vivo. Anticancer Agents Med Chem 2021; 21:782-792. [PMID: 32781964 DOI: 10.2174/1871520620666200811122137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Syzygium cumini is one of the evidence-based traditional medicinal plant used in the treatment of various ailments. OBJECTIVES Herein, the antioxidant property and anticancer property of Syzygium cumini against Ehrlich Ascites Carcinoma (EAC) cells were examined to find effective chemotherapeutics. METHODS In vitro assays, and phytochemical and chromatographic analyses were used to determine antioxidant properties and chemical constituents of Syzygium cummini Bark Methanolic Extract (SCBME). Functional assays were used to measure the anticancer activity of SCBME. Fluorescence microscopy and RT-PCR were used to examine morphological and molecular changes of EAC cells followed by SCBME treatment. RESULTS Phytochemical and GC-MS analyses confirmed the presence of compounds with antioxidant and anticancer activities. Accordingly, we have noted a strong antioxidant activity of SCBME with an IC50 value of ~10μg/ml. Importantly, SCBME exerted a dose-dependent anticancer activity with significant inhibition of EAC cell growth (71.08±3.53%; p<0.001), reduction of tumor burden (69.50%; p<0.01) and increase of life span (73.13%; p<0.001) of EAC-bearing mice at 75mg/kg/day. Besides, SCBME restored the blood toxicity towards normal in EAC-bearing mice (p<0.05). DISCUSSION SCBME treated EAC cells showed apoptotic features under a fluorescence microscope and fragmented DNA in DNA laddering assay. Moreover, up-regulation of the tumor suppressor p53 and pro-apoptotic Bax and down-regulation of NF-κB and anti-apoptotic Bcl-2 genes implied induction of apoptosis followed by SCBME treatment. CONCLUSION The antiproliferative activity of SCBME against EAC cells is likely due to apoptosis, mediated by regulation of p53 and NF-κB signaling. Thus, SCBME can be considered as a useful resource in cancer chemotherapy.
Collapse
Affiliation(s)
- Ayesha Siddika
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Saharia Y Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Abu R M Tareq
- Environmental and Organic Laboratory, Atomic Energy Centre, Dhaka, Bangladesh
| | - Ayesha Siddika
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka-1349, Bangladesh
| | - Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
32
|
Diefenhardt M, Ludmir EB, Hofheinz RD, Ghadimi M, Minsky BD, Rödel C, Fokas E. Association of Treatment Adherence With Oncologic Outcomes for Patients With Rectal Cancer: A Post Hoc Analysis of the CAO/ARO/AIO-04 Phase 3 Randomized Clinical Trial. JAMA Oncol 2021; 6:1416-1421. [PMID: 32644104 DOI: 10.1001/jamaoncol.2020.2394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Despite numerous published phase 3 trials, the association of treatment adherence with outcomes for patients with rectal cancer remains largely unexplored. Objective To analyze the association of treatment adherence with disease-free survival (DFS) among patients with rectal cancer in the CAO/ARO/AIO-04 trial. Design, Setting, and Participants This post hoc analysis of a phase 3 randomized clinical trial was conducted from July 25, 2006, to February 26, 2010, among 1232 patients from 80 centers with T3 to T4 or node-positive rectal adenocarcinoma. Statistical analysis was performed from May 5, 2019, to February 2, 2020. Interventions A total of 625 patients received neoadjuvant fluorouracil-based chemoradiotherapy (nCRT), and a total of 607 patients received fluorouracil-based nCRT with addition of oxaliplatin. Of the 1126 patients who underwent curative surgery, 439 started fluorouracil-based adjuvant chemotherapy and 419 started fluorouracil-based adjuvant chemotherapy with oxaliplatin. Main Outcomes and Measures The association of adherence with nCRT and adjuvant chemotherapy with DFS was assessed in both groups in the as-treated population. Results Among the 625 patients (442 men; mean age, 63.0 years) who received fluorouracil nCRT and the 607 patients (430 men; mean age, 63.0 years) who received fluorouracil-based nCRT with addition of oxaliplatin, after a median follow-up of 50 months (interquartile range, 38-61 months), 3-year DFS in the as-treated population was 71.1% in the fluorouracil group and 75.8% in the fluorouracil-oxaliplatin group (hazard ratio [HR], 0.803; 95% CI, 0.651-0.990; P = .04). Overall, 419 patients in the fluorouracil nCRT group (67.0%) and 434 patients in the fluorouracil-oxaliplatin nCRT group (71.5%) received full doses of preoperative nCRT. Likewise, 253 of 439 patients in the fluorouracil group (57.6%) and 134 of 419 patients in the fluorouracil-oxaliplatin group (32.0%) received full doses of adjuvant chemotherapy. Adherence to nCRT was associated with 3-year DFS in both the fluorouracil group (complete vs near complete: HR, 1.325; 95% CI, 0.959-1.832; P = .09; complete vs reduced: HR, 1.877; 95% CI, 1.147-3.072; P = .01) and the fluorouracil-oxaliplatin group (complete vs near complete: HR, 1.501; 95% CI, 0.980-2.299; P = .06; complete vs reduced: HR, 1.724; 95% CI, 1.144-2.596; P = .009) in multivariable analyses. In contrast, adjuvant chemotherapy was not associated with DFS in both the fluorouracil group (complete vs near complete: HR, 0.900; 95% CI, 0.559-1.448; P = .66; complete vs incomplete: HR, 1.057; 95% CI, 0.807-1.386; P = .69) and the fluorouracil-oxaliplatin group (complete vs near complete: HR, 1.155; 95% CI, 0.716-1.866; P = .56; complete vs incomplete: HR, 1.073; 95% CI, 0.790-1,457; P = .65). Conclusions and Relevance To our knowledge, this is the first analysis of a phase 3 trial to assess the association of treatment adherence with some clinical outcomes for patients with rectal cancer. The findings emphasize the need for appropriate trial design with optimized nCRT dose and schedule and supportive strategies to facilitate good adherence and precision delivery, especially for intensified nCRT. Trial Registration ClinicalTrials.gov Identifier: NCT00349076.
Collapse
Affiliation(s)
- Markus Diefenhardt
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Ethan B Ludmir
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Ralf-Dieter Hofheinz
- Department of Medical Oncology, University Hospital Mannheim, University Heidelberg, Heidelberg, Germany
| | - Michael Ghadimi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Bruce D Minsky
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,German Cancer Research Center, Heidelberg, German Cancer Consortium, Partner Site Frankfurt am Main, Frankfurt, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,German Cancer Research Center, Heidelberg, German Cancer Consortium, Partner Site Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
33
|
Mukha A, Dubrovska A. Metabolic Targeting of Cancer Stem Cells. Front Oncol 2020; 10:537930. [PMID: 33415069 PMCID: PMC7783393 DOI: 10.3389/fonc.2020.537930] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Most human tumors possess a high heterogeneity resulting from both clonal evolution and cell differentiation program. The process of cell differentiation is initiated from a population of cancer stem cells (CSCs), which are enriched in tumor-regenerating and tumor-propagating activities and responsible for tumor maintenance and regrowth after treatment. Intrinsic resistance to conventional therapies, as well as a high degree of phenotypic plasticity, makes CSCs hard-to-target tumor cell population. Reprogramming of CSC metabolic pathways plays an essential role in tumor progression and metastatic spread. Many of these pathways confer cell adaptation to the microenvironmental stresses, including a shortage of nutrients and anti-cancer therapies. A better understanding of CSC metabolic dependences as well as metabolic communication between CSCs and the tumor microenvironment are of utmost importance for efficient cancer treatment. In this mini-review, we discuss the general characteristics of CSC metabolism and potential metabolic targeting of CSC populations as a potent strategy to enhance the efficacy of conventional treatment approaches.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Pas R, Leysen L, De Goeij W, Vossebeld L, Van Wilgen P, De Groef A, De Kooning M. Pain Neuroscience Education in cancer survivors with persistent pain: A pilot study. J Bodyw Mov Ther 2020; 24:239-244. [PMID: 33218517 DOI: 10.1016/j.jbmt.2020.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/18/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To describe the Pilot Study: Pain Neuroscience Education in Cancer Survivors and describe the innovative educational component of Pain Neuroscience Education (PNE). DESIGN Quasi experimental design. METHOD The PNE program, encompassing a one-on-one education session and an information leaflet was given to 30 cancer survivors. At baseline and two weeks after the PNE, participants were asked to fill out following outcome measures; pain intensity, pain catastrophizing, and HRQoL. FINDINGS Following PNE, a significant decrease on pain intensity (p = 0.001), on the SF-36 subscale pain (p = 0.003) and for the following PCS subscales: Helplessness (p < 0.001), Rumination (p = 0.002) and Total score (p < 0.001) was found compared to baseline. CONCLUSIONS Although the current results need to be verified in a larger randomized, controlled trial, preliminary evidence shows a decrease in pain intensity and pain catastrophizing following PNE in cancer survivors with persistent pain.
Collapse
Affiliation(s)
- Roselien Pas
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Laurence Leysen
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Wanda De Goeij
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium; The Berekuyl Academy, Harderwijk, the Netherlands
| | - Leonieke Vossebeld
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium; The Berekuyl Academy, Harderwijk, the Netherlands
| | - Paul Van Wilgen
- Pain in Motion International Research Group, Belgium; Transcare Transdisciplinary Pain Management Centre, Groningen, the Netherlands
| | - An De Groef
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences and University Hospitals Leuven, Department of Physical Medicine and Rehabilitation, Leuven, Belgium
| | - Margot De Kooning
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussel, Belgium
| |
Collapse
|
35
|
Li Y, Qu J, Zhang P, Zhang Z. Reduction-responsive sulfur dioxide polymer prodrug nanoparticles loaded with irinotecan for combination osteosarcoma therapy. NANOTECHNOLOGY 2020; 31:455101. [PMID: 32688350 DOI: 10.1088/1361-6528/aba783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combination therapy can boost the therapeutic effectiveness of monotherapies by achieving synergy between therapeutic agents. Herein, a reduction-responsive sulfur dioxide (SO2) polymer prodrug was synthesized as a nanocarrier to load irinotecan (IRN) to be used in combination osteosarcoma therapy. The SO2 prodrug (denoted as mPEG-PLG (DNs)) was synthesized by coupling a small-molecule SO2 donor, N-(3-azidopropyl)-2,4-dinitrobenzenesulfonamide (AP-DNs), to the side chains of methoxy poly (ethylene glycol)-block-poly (γ-propargyl-L-glutamate) block copolymer. The mPEG-PLG (DNs) had the ability to self-assemble into micelles while simultaneously encapsulating IRN in aqueous media. The formed micelles led to enhanced SO2 and IRN release in reductive conditions. Using nile red as a model drug, the loaded micelles were efficiently internalized by cancer cells, demonstrated by confocal laser scanning microscopy and flow cytometry. The release of SO2 within nanoparticles (NPs) in tumor cells led to enhanced intracellular reactive oxygen species amounts together with induced oxidative destruction to cancer cells. Furthermore, the IRN-loaded SO2 polymer prodrug NPs mediated synergistic therapeutic effects against osteosarcoma cells, leading to improved biodistribution and enhanced tumor growth inhibition over control groups in a murine osteosarcoma model. Taken together, this work highlights the potential of SO2 polymer prodrugs as reduction-responsive nanocarriers to load chemotherapeutics for effective combination osteosarcoma therapy.
Collapse
Affiliation(s)
- Yongshuang Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang 110032, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saltaouras G, Lightowler H, Coe S, Watson EK. Diet and nutrition information and support needs in pelvic radiotherapy: A systematic, mixed-methods review. Eur J Cancer Care (Engl) 2020; 29:e13297. [PMID: 32851712 DOI: 10.1111/ecc.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION This study aimed to review diet and nutrition information and support needs of cancer patients who receive pelvic radiotherapy to inform the development of interventions to improve this area of care. METHODS The systematic review followed the PRISMA guidelines. Six electronic databases were searched for peer-reviewed studies of any design that assessed diet and nutrition needs after a pelvic cancer diagnosis. Narrative synthesis was used to integrate findings. RESULTS Thirty studies (12 quantitative, 15 qualitative, 3 mixed-methods) were included. Four themes, "content of dietary information"; "sources of information"; "sustaining dietary change"; and "views on the role of diet post-treatment," summarised evidence about provision of nutritional guidance following diagnosis, but also contrasting views about the role of diet post-diagnosis. Qualitative studies contributed considerably more to the synthesis, compared to quantitative studies. Included studies were of moderate to good quality; selection bias in quantitative studies and poor evidence of credibility and dependability in qualitative studies were highlighted. CONCLUSION There is some evidence of lack of nutrition support in pelvic cancer survivors, but methodological limitations of included studies may have had an impact on the findings. Future, prospective studies that focus on diet and nutrition needs post-diagnosis are warranted to improve care.
Collapse
Affiliation(s)
- Georgios Saltaouras
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK.,Oxford School of Nursing and Midwifery, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford, UK
| | - Helen Lightowler
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Shelly Coe
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Eila K Watson
- Oxford School of Nursing and Midwifery, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford, UK
| |
Collapse
|
38
|
Son DS, Lee ES, Adunyah SE. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw 2020; 20:e29. [PMID: 32895616 PMCID: PMC7458798 DOI: 10.4110/in.2020.20.e29] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
39
|
Hersant B, Werkoff G, Sawan D, Sidahmed-Mezi M, Bosc R, La Padula S, Kalsoum S, Ouidir N, Meningaud JP, Belkacemi Y. Carbon dioxide laser treatment for vulvovaginal atrophy in women treated for breast cancer: Preliminary results of the feasibility EPIONE trial. ANN CHIR PLAST ESTH 2020; 65:e23-e31. [PMID: 32513482 DOI: 10.1016/j.anplas.2020.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Quality of life preservation after anti-cancer therapy is a major challenge for breast cancer survivors. Approximately 42-70% of patients who receive systemic therapy for breast cancer, including endocrine therapy, will develop vulvovaginal atrophy (VVA). For these patients, the commonly proposed gel-based treatments for topical applications are restrictive. Recently, innovative, non-hormonal therapeutic approaches, such as laser therapy, have emerged. The purpose of this feasibility study is to investigate the safety and efficacy of CO2 laser therapy in women with a history of breast cancer. MATERIAL AND METHODS This prospective monocentric study included 20 patients with vulvovaginal atrophy who were treated at Henri Mondor University Hospital between 2017 and 2018. We included patients with a vaginal health index (VHI) score<15 and a contraindication for hormone administration due to a history of breast cancer. Two carbon dioxide laser sessions were used. The treatment was delivered using the following settings: vaginal tightening, FinePulse (pulse width 0.9ms), and energy density of 11.5J/cm2 that allows coverage of 70% of the targeted vaginal area to be treated. All patients had their follow-up visit at one (M1), three (M3), and six (M6) months after the first treatment to evaluate efficacy of the treatment on vulvovaginal atrophy. Vaginal health index score and female sexual distress (FSD) score were used to assess treatment efficacy and its impact on sexual quality of life. A score≥11 was associated with sexual dysfunction. The vaginal health index and female sexual distress scores were evaluated at baseline, M1, M3, and M6 of follow-up. RESULTS The mean age of the patients was 56.1±8.8 years (range, 27-69 years). Seventeen of the 20 patients had experienced menopause (mean menopausal age, 51.25±1.5 years). At inclusion, the mean vaginal health index and the female sexual distress scores were 10.58±1.71 and 21.36±15.10, respectively. Fourteen out of 20 patients (70%) had FSD scores≥11 at the baseline. At M1, the mean vaginal health index score increased significantly to 13.42±2.3 (P=0.03), which represented an improvement of 21% from the baseline. A persistent and significant improvement in the vaginal health index score was observed at M6, with the score increasing to 16.75±4.23 post-treatment (P<0.0001), representing a 34% improvement from the mean baseline score. The mean female sexual distress at M1 was 19.83±13.57, representing a 7% decrease compared to the baseline scores (P<0.01). At M3, the female sexual distress significantly decreased to 13.88±15.58, representing an improvement of 35% (P=0.006). It increased to 10.35±14.7 at M6, representing an improvement of 52% (P=0.001). At M3, 35% of the patients had a female sexual distress score>11, and at M6, only 15% had a female sexual distress score>11. No side effects were reported during follow-up. CONCLUSION This pilot feasibility study showed that carbon dioxide laser treatment appears to be an effective and safe method to improve the trophicity and decrease vaginal mucosal dryness in women with vulvovaginal atrophy that developed after systemic breast cancer therapy.
Collapse
Affiliation(s)
- B Hersant
- Henri-Mondor Breast Center, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; University of Paris East Creteil (UPEC), Créteil, France.
| | - G Werkoff
- Henri-Mondor Breast Center, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Gynecological Surgery Department, Bégin Army Teaching Hospital, 69, avenue de Paris, 94160 Saint-Mandé, France
| | - D Sawan
- Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - M Sidahmed-Mezi
- Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - R Bosc
- Henri-Mondor Breast Center, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; University of Paris East Creteil (UPEC), Créteil, France
| | - S La Padula
- Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - S Kalsoum
- Department of Pathology, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - N Ouidir
- Department of Pathology, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - J-P Meningaud
- Henri-Mondor Breast Center, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Department of Maxillofacial Surgery, Plastic and Reconstructive, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; University of Paris East Creteil (UPEC), Créteil, France
| | - Y Belkacemi
- Henri-Mondor Breast Center, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Department of Radiation Oncology, hôpitaux universitaires Henri-Mondor, 51, avenue Marechal de Lattre de Tassigny, 94010 Créteil, France; Inserm Unit 955, Team 21, IMRB, Créteil, France; University of Paris East Creteil (UPEC), Créteil, France
| |
Collapse
|
40
|
Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21041242. [PMID: 32069876 PMCID: PMC7072891 DOI: 10.3390/ijms21041242] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since it is a negative predictor of treatment outcome and associated to increased mortality. However, despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced muscle wasting are urgently needed. The dissection of the molecular pathways responsible for cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we report an update of the most relevant researches on the mechanisms underlying cisplatin-induced muscle wasting and on the most promising potential therapeutic options to preserve muscle mass and function.
Collapse
|
41
|
Zhang Q, Wu J, Wang J, Wang X, Wu C, Chen M, Wu Q, Lesniak MS, Mi Y, Cheng Y, Wang Q. A Neutrophil‐Inspired Supramolecular Nanogel for Magnetocaloric–Enzymatic Tandem Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qi Zhang
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| | - Jiaojiao Wu
- Institute for Regenerative MedicineInstitute for Translational NanomedicineShanghai East HospitalTongji University School of Medicine 1800 Yuntai Road Shanghai China
| | - Jingjing Wang
- Institute for Regenerative MedicineInstitute for Translational NanomedicineShanghai East HospitalTongji University School of Medicine 1800 Yuntai Road Shanghai China
| | - Xia Wang
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| | - Chu Wu
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| | - Mengwei Chen
- Institute for Regenerative MedicineInstitute for Translational NanomedicineShanghai East HospitalTongji University School of Medicine 1800 Yuntai Road Shanghai China
| | - Qing Wu
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| | - Maciej S. Lesniak
- Feinberg School of MedicineNorthwestern University 676 North Saint Clair Street, Suite 2210 Chicago USA
| | - Yongli Mi
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| | - Yu Cheng
- Institute for Regenerative MedicineInstitute for Translational NanomedicineShanghai East HospitalTongji University School of Medicine 1800 Yuntai Road Shanghai China
| | - Qigang Wang
- School of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai China
| |
Collapse
|
42
|
Zhang Q, Wu J, Wang J, Wang X, Wu C, Chen M, Wu Q, Lesniak MS, Mi Y, Cheng Y, Wang Q. A Neutrophil-Inspired Supramolecular Nanogel for Magnetocaloric-Enzymatic Tandem Therapy. Angew Chem Int Ed Engl 2020; 59:3732-3738. [PMID: 31834981 DOI: 10.1002/anie.201915118] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils can responsively release reactive oxygen species (ROS) to actively combat infections by exogenous stimulus and cascade enzyme catalyzed bio-oxidation. A supramolecular nanogel is now used as an artificial neutrophil by enzymatic interfacial self-assembly of peptides (Fmoc-Tyr(H2 PO3 )-OH) with magnetic nanoparticles (MNPs) and electrostatic loading of chloroperoxidase (CPO). The MNPs within the nanogel can elevate H2 O2 levels in cancer cells under programmed alternating magnetic field (AMF) similar to the neutrophil activator, and the loaded CPO within protective peptides nanolayer converts the H2 O2 into singlet oxygen (1 O2 ) in a sustained manner for neutrophil-inspired tumor therapy. As a proof of concept study, both the H2 O2 and 1 O2 in cancer cells increase stepwise under a programmed alternating magnetic field. An active enzyme dynamic therapy by magnetically stimulated oxygen stress and sustained enzyme bio-oxidation is thus shown with studies on both cells and animals.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Jiaojiao Wu
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, China
| | - Jingjing Wang
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, China
| | - Xia Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Mengwei Chen
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, China
| | - Qing Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Maciej S Lesniak
- Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, USA
| | - Yongli Mi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| |
Collapse
|
43
|
Advancing the Role of Gamma-Tocotrienol as Proteasomes Inhibitor: A Quantitative Proteomic Analysis of MDA-MB-231 Human Breast Cancer Cells. Biomolecules 2019; 10:biom10010019. [PMID: 31877708 PMCID: PMC7022772 DOI: 10.3390/biom10010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Tocotrienol, an analogue of vitamin E has been known for its numerous health benefits and anti-cancer effects. Of the four isoforms of tocotrienols, gamma-tocotrienol (γT3) has been frequently reported for their superior anti-tumorigenic activity in both in vitro and in vivo studies, when compared to its counterparts. In this study, the effect of γT3 treatment in the cytoplasmic and nuclear fraction of MDA-MB-231 human breast cancer cells were assessed using the label-free quantitative proteomics analysis. The cytoplasmic proteome results revealed the ability of γT3 to inhibit a group of proteasome proteins such as PSMA, PSMB, PSMD, and PSME. The inhibition of proteasome proteins is known to induce apoptosis in cancer cells. As such, the findings from this study suggest γT3 as a potential proteasome inhibitor that can overcome deficiencies in growth-inhibitory or pro-apoptotic molecules in breast cancer cells. The nuclear proteome results revealed the involvement of important nuclear protein complexes which hardwire the anti-tumorigenesis mechanism in breast cancer following γT3 treatment. In conclusion, this study uncovered the advancing roles of γT3 as potential proteasomes inhibitor that can be used for the treatment of breast cancer.
Collapse
|
44
|
Pettit SD, Silberman P, Hassmiller Lich K, Kirch RA, Lipshultz SE, Teal R, Basch E. Stakeholder perspectives on addressing adverse events from adjuvant cancer therapy: A qualitative study. Cancer 2019; 125:4471-4480. [PMID: 31454424 PMCID: PMC6916390 DOI: 10.1002/cncr.32448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND With increasing survival rates, a growing population of patients with cancer have received or will receive adjuvant therapy to prevent cancer recurrences. Patients and caregivers will confront the complexities of balancing the preventative benefits of adjuvant therapy with possible near-term or long-term adverse events (AEs). Adjuvant treatment-related AEs (from minimal to severe) can impact therapeutic adherence, quality of life, emotional and physical health, and survival. However, to the authors' knowledge, limited information is available regarding how stakeholders use or desire to use adjuvant-related AE information to inform the care of patients with cancer. METHODS A qualitative, purposeful sampling approach was used to elicit stakeholder feedback via semistructured interviews (24 interviews). Drug development, drug regulatory, clinical, payer, and patient/patient advocacy stakeholders were questioned about the generation, dissemination, and use of adjuvant treatment-related AE information to inform the care of patients with cancer. Transcripts were coded independently by 2 senior health care researchers and reconciled to identify key themes. RESULTS All stakeholder groups in the current study identified needed improvements in each of the following 4 areas: 1) improving the accessibility and relevance of AE-related information; 2) better integrating and implementing available information regarding AEs for decisions; 3) connecting contemporary cultural and economic value systems to the generation and use of information regarding adjuvant treatment-related AEs; and 4) addressing a lack of alignment and ownership of stakeholder efforts to improve the use of AE information in the adjuvant setting. CONCLUSIONS Despite commonalities in the overall needs identified by the diverse stakeholders in the current study, broad systemic change has been stymied. The current study identified the lack of alignment and the absence of a central "owner" of these diffuse efforts as a previously unrecognized hurdle to realizing the desired systemic improvements. Future initiatives aimed at improving quality of life and outcomes for patients receiving adjuvant therapy through the improved use of AE information must address this challenge through innovative collectives and novel leadership strategies.
Collapse
Affiliation(s)
- Syril D. Pettit
- Health Policy and ManagementUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth Carolina
- Health and Environmental Sciences InstituteWashingtonDC
| | - Pamela Silberman
- Health Policy and ManagementUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth Carolina
| | - Kristen Hassmiller Lich
- Health Policy and ManagementUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth Carolina
| | | | - Steven E. Lipshultz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew York
| | - Randall Teal
- Connected Health for Applications & Interventions (CHAI) Core, Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Ethan Basch
- Health Policy and ManagementUniversity of North Carolina Gillings School of Global Public HealthChapel HillNorth Carolina
- Cancer Outcomes Research Program, Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| |
Collapse
|
45
|
Hoang JM, Upadhyay N, Dike DN, Lee J, Johnson ML, Cleeland CS, Mendoza T, Chen H, Trivedi MV. Patient-reported outcomes in light of supportive medications in treatment-naïve lung cancer patients. Support Care Cancer 2019; 28:1809-1816. [PMID: 31338641 DOI: 10.1007/s00520-019-05004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/17/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE The impact of supportive medications on patient-reported outcomes (PROs) has not been systematically evaluated. We describe the supportive medications used by treatment-naïve lung cancer patients and assess their association with PROs from MD Anderson Symptom Inventory (MDASI). METHODS Treatment-naïve lung cancer patients who completed PROs from MDASI at the initial visit to MD Anderson Cancer Center were included. Medications from the initial visit were abstracted from the electronic medical records system and categorized into therapeutic classes based on U.S. Pharmacopeia v7.0. A chi-square or Mann-Whitney U test was conducted as appropriate. RESULTS Among 459 patients, ~ 50% took any analgesics and 25% were on opioids. One-third of patients with moderate-severe pain were not on any analgesics. Patients taking opioids had significantly worse median pain scores (6 vs. 0) compared with those not taking any analgesics (p < 0.0001). Higher proportion of patients with moderate-severe pain took opioids compared with those with mild pain (52% vs. 16%, p < 0.0001). Patients on opioids also reported significantly worse scores for five other cancer-specific core symptoms and all six symptoms rating interference with daily life. Only 15% of patients with higher composite score for depression-related symptoms were on antidepressants. However, patients taking antidepressants did not significantly differ in any individual MDASI symptom scores compared with those not on antidepressants (p = 0.4858). CONCLUSIONS Our results suggest a need for better screening for pain and depression and optimization of pain management in treatment-naïve lung cancer patients since their poor functional status may result in suboptimal cancer therapy.
Collapse
Affiliation(s)
- Johnny M Hoang
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Navneet Upadhyay
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Dozie N Dike
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Jaekyu Lee
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Michael L Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Charles S Cleeland
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Tito Mendoza
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Hua Chen
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA
| | - Meghana V Trivedi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Health Building-2, 4849 Calhoun Rd., Houston, TX, 77204, USA.
| |
Collapse
|
46
|
Sreekanth V, Bajaj A. Recent Advances in Engineering of Lipid Drug Conjugates for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:4148-4166. [DOI: 10.1021/acsbiomaterials.9b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal-576104, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
47
|
Chan C, Guo N, Duan X, Han W, Xue L, Bryan D, Wightman SC, Khodarev NN, Weichselbaum RR, Lin W. Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer. Biomaterials 2019; 210:94-104. [PMID: 31060867 PMCID: PMC6579118 DOI: 10.1016/j.biomaterials.2019.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
Abstract
Though early detection and treatment of primary tumors has significantly improved in recent years, metastatic disease remains among the most significant challenges in cancer therapy. Cancer cells can disseminate before the primary tumor is detected to form micro or gross metastases, requiring toxic systemic therapies. To prevent and suppress metastases, we have developed a nontoxic, long-circulating nanoscale coordination polymer (NCP) protecting microRNA (miRNA) in circulation and releasing it in tumors. PtIV(en)2 [en = ethylenediamine] containing NCPs (PtEN) can release a nontoxic, kinetically inert PtII(en)2 compound and carbon dioxide which aids the endosomal escape of its miRNA cargo, miR-655-3p. Without the presence of the PtEN core, the miRNA showed cellular uptake but no effect. When transfected into human colorectal HCT116 cells by NCPs, this oligometastatic miRNA limited proliferation and epithelial-to-mesenchymal transition by preventing β-catenin nuclear translocation and tumor cell invasion. Systemic administrations of PtEN/miR-655-3p sustained effective transfection to reduce liver colonization and tumor burden in a xenogenic hepatic metastatic model of HCT116 without any observable toxicity.
Collapse
Affiliation(s)
- Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbo Han
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Lai Xue
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Darren Bryan
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean C Wightman
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
48
|
Koh J, Itahana Y, Mendenhall IH, Low D, Soh EXY, Guo AK, Chionh YT, Wang LF, Itahana K. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat Commun 2019; 10:2820. [PMID: 31249297 PMCID: PMC6597548 DOI: 10.1038/s41467-019-10495-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 05/14/2019] [Indexed: 01/02/2023] Open
Abstract
Bats are unusual mammals, with the ability to fly, and long lifespans. In addition, bats have a low incidence of cancer, but the mechanisms underlying this phenomenon remain elusive. Here we discovered that bat cells are more resistant than human and mouse cells to DNA damage induced by genotoxic drugs. We found that bat cells accumulate less chemical than human and mouse cells, and efficient drug efflux mediated by the ABC transporter ABCB1 underlies this improved response to genotoxic reagents. Inhibition of ABCB1 triggers an accumulation of doxorubicin, DNA damage, and cell death. ABCB1 is expressed at higher levels in several cell lines and tissues derived from bats compared to humans. Furthermore, increased drug efflux and high expression of ABCB1 are conserved across multiple bat species. Our findings suggest that enhanced efflux protects bat cells from DNA damage induced by genotoxic compounds, which may contribute to their low cancer incidence.
Collapse
Affiliation(s)
- Javier Koh
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yoko Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Dolyce Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eunice Xin Yi Soh
- School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, Singapore, 529757, Singapore
| | - Alvin Kunyao Guo
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yok Teng Chionh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Koji Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
49
|
George GC, Barata PC, Campbell A, Chen A, Cortes JE, Hyman DM, Jones L, Karagiannis T, Klaar S, Le-Rademacher JG, LoRusso P, Mandrekar SJ, Merino DM, Minasian LM, Mitchell SA, Montez S, O'Connor DJ, Pettit S, Silk E, Sloan JA, Stewart M, Takimoto CH, Wong GY, Yap TA, Cleeland CS, Hong DS. Improving attribution of adverse events in oncology clinical trials. Cancer Treat Rev 2019; 76:33-40. [DOI: 10.1016/j.ctrv.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
|
50
|
Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering Magnetosomes for High-Performance Cancer Vaccination. ACS CENTRAL SCIENCE 2019; 5:796-807. [PMID: 31139716 PMCID: PMC6535768 DOI: 10.1021/acscentsci.9b00060] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/18/2023]
Abstract
A novel cancer vaccine is developed by using Fe3O4 magnetic nanoclusters (MNCs) as the core and cancer cell membranes decorated with anti-CD205 as the cloak. Because of the superparamagnetism and magnetization of MNCs, it is first achieved for the magnetic retention of vaccine in the lymph nodes with a magnetic resonance imaging (MRI) guide, which opened the time window for antigen uptake by dendritic cells (DCs). Meanwhile, the camouflaged cancer cell membranes serve as a reservoir of various antigens, enabling subsequent multiantigenic response. Additionally, the decorated anti-CD205 direct more vaccine into CD8+ DCs, facilitating the major histocompatibility complex (MHC) I cross-presentation. These unique advantages together lead to a great proliferation of T cells with superior clonal diversity and cytotoxic activity. As a result, potent prophylactic and therapeutic effects with few abnormalities are observed on five different tumor models. Therefore, such a cancer-derived magnetosome with the integration of various recent nanotechnologies successfully demonstrates its promise for safe and high-performance cancer vaccination.
Collapse
Affiliation(s)
- Feng Li
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weidong Nie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fan Zhang
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guihong Lu
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chengliang Lv
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yanlin Lv
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Lijun Zhang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Shuang Wang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoyong Gao
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Wei
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- E-mail:
| | - Hai-Yan Xie
- School
of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- E-mail:
| |
Collapse
|