1
|
Daoud S, Taha MO. Advances in the design and discovery of next-generation janus kinase-2 (JAK2) inhibitors for the treatment of myeloproliferative neoplasms. Expert Opin Drug Discov 2024; 19:1403-1415. [PMID: 39410824 DOI: 10.1080/17460441.2024.2417368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are rare hematopoietic disorders driven by mutations in the JAK-STAT signaling pathway genes. While JAK2 inhibitors have transformed MPN treatment, they do not eliminate the malignant clone or prevent disease progression in most patients. This limitation underscores the need for more effective therapies. AREA COVERED This review examines the evolution of JAK2 inhibitors for treating MPNs. Current JAK2 inhibitors primarily function as type I inhibitors, targeting the active kinase conformation, but their effectiveness is limited by ongoing JAK-STAT signaling. To overcome these limitations, next-generation therapies, such as type II JAK2 inhibitors and pseudokinase domain inhibitors, are being developed to target inactive kinase conformations and alternative signaling pathways. Furthermore, combination therapies with PI3K, mTOR, CDK4/6 inhibitors, and epigenetic modulators are being investigated for their potential synergistic effects, aiming for deeper and more durable responses in MPN patients. EXPERT OPINION Next-generation JAK2 inhibitors are needed to enhance current MPNs treatments by overcoming resistance, improving selectivity, targeting specific patient groups, and exploring combination therapies. Addressing challenges in drug design, preclinical testing, and clinical trials is crucial. Developing dual or multiple inhibitors targeting JAK2 and other MPN-related pathways is urgent to address complex signaling networks and improve efficacy.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Sekar JAP, Li YC, Schlessinger A, Pandey G. A web portal for exploring kinase-substrate interactions. NPJ Syst Biol Appl 2024; 10:113. [PMID: 39362876 PMCID: PMC11450209 DOI: 10.1038/s41540-024-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Interactions between protein kinases and their substrates are critical for the modulation of complex signaling pathways. Currently, there is a large amount of information available about kinases and their substrates in disparate public databases. However, these data are difficult to interpret in the context of cellular systems, which can be facilitated by examining interactions among multiple proteins at once, such as the network of interactions that constitute a signaling pathway. We present KiNet, a user-friendly web portal that integrates and shares information about kinase-substrate interactions from multiple databases of post-translational modifications. KiNet enables the visual exploration of these interactions in systems contexts, such as pathways, domain families, and custom protein set inputs, in an interactive fashion. We expect KiNet to be useful as a knowledge discovery tool for kinase-substrate interactions, and the aggregated KiNet dataset to be useful for protein kinase studies and systems-level analyses. The portal is available at https://kinet.kinametrix.com/ .
Collapse
Affiliation(s)
- John A P Sekar
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Brauer NR, Kempen AL, Hernandez D, Sintim HO. Non-kinase off-target inhibitory activities of clinically-relevant kinase inhibitors. Eur J Med Chem 2024; 275:116540. [PMID: 38852338 PMCID: PMC11243610 DOI: 10.1016/j.ejmech.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Protein kinases are responsible for a myriad of cellular functions, such as cell cycle, apoptosis, and proliferation. Because of this, kinases make excellent targets for therapeutics. During the process to identify clinical kinase inhibitor candidates, kinase selectivity profiles of lead inhibitors are typically obtained. Such kinome selectivity screening could identify crucial kinase anti-targets that might contribute to drug toxicity and/or reveal additional kinase targets that potentially contribute to the efficacy of the compound via kinase polypharmacology. In addition to kinome panel screening, practitioners also obtain the inhibition profiles of a few non-kinase targets, such as ion-channels and select GPCR targets to identify compounds that might possess potential liabilities. Often ignored is the possibility that identified kinase inhibitors might also inhibit or bind to the other proteins (greater than 20,000) in the cell that are not kinases, which may be relevant to toxicity or even additional mode of drug action. This review highlights various inhibitors, which have been approved by the FDA or are currently undergoing clinical trials, that also inhibit other non-kinase targets. The binding poses of the drugs in the binding sites of the target kinases and off-targets are analyzed to understand if the same features of the compounds are critical for the polypharmacology.
Collapse
Affiliation(s)
- Nickolas R Brauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Allison L Kempen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Delmis Hernandez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA; Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
5
|
Zhao JF, Shpiro N, Sathe G, Brewer A, Macartney TJ, Wood NT, Negoita F, Sakamoto K, Sapkota GP. Targeted dephosphorylation of TFEB promotes its nuclear translocation. iScience 2024; 27:110432. [PMID: 39081292 PMCID: PMC11284556 DOI: 10.1016/j.isci.2024.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Reversible phosphorylation of the transcription factor EB (TFEB) coordinates cellular responses to metabolic and other stresses. During nutrient replete and stressor-free conditions, phosphorylated TFEB is primarily localized to the cytoplasm. Stressor-mediated reduction of TFEB phosphorylation promotes its nuclear translocation and context-dependent transcriptional activity. In this study, we explored targeted dephosphorylation of TFEB as an approach to activate TFEB in the absence of nutrient deprivation or other cellular stress. Through an induction of proximity between TFEB and several phosphatases using the AdPhosphatase system, we demonstrate targeted dephosphorylation of TFEB in cells. Furthermore, by developing a heterobifunctional molecule BDPIC (bromoTAG-dTAG proximity-inducing chimera), we demonstrate targeted dephosphorylation of TFEB-dTAG through induced proximity to bromoTAG-PPP2CA. Targeted dephosphorylation of TFEB-dTAG by bromoTAG-PPP2CA with BDPIC at the endogenous levels is sufficient to induce nuclear translocation and some transcriptional activity of TFEB.
Collapse
Affiliation(s)
- Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Xerxa E, Bajorath J. Data-oriented protein kinase drug discovery. Eur J Med Chem 2024; 271:116413. [PMID: 38636127 DOI: 10.1016/j.ejmech.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The continued growth of data from biological screening and medicinal chemistry provides opportunities for data-driven experimental design and decision making in early-phase drug discovery. Approaches adopted from data science help to integrate internal and public domain data and extract knowledge from historical in-house data. Protein kinase (PK) drug discovery is an exemplary area where large amounts of data are accumulating, providing a valuable knowledge base for discovery projects. Herein, the evolution of PK drug discovery and development of small molecular PK inhibitors (PKIs) is reviewed, highlighting milestone developments in the field and discussing exemplary studies providing a basis for increasing data orientation of PK discovery efforts.
Collapse
Affiliation(s)
- Elena Xerxa
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Lamarr Institute for Machine Learning and Artificial Intelligence, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Lamarr Institute for Machine Learning and Artificial Intelligence, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115, Bonn, Germany.
| |
Collapse
|
7
|
Mishra A, Vasanthan M, Malliappan SP. Drug Repurposing: A Leading Strategy for New Threats and Targets. ACS Pharmacol Transl Sci 2024; 7:915-932. [PMID: 38633585 PMCID: PMC11019736 DOI: 10.1021/acsptsci.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Less than 6% of rare illnesses have an appropriate treatment option. Repurposed medications for new indications are a cost-effective and time-saving strategy that results in excellent success rates, which may significantly lower the risk associated with therapeutic development for rare illnesses. It is becoming a realistic alternative to repurposing "conventional" medications to treat joint and rare diseases considering the significant failure rates, high expenses, and sluggish stride of innovative medication advancement. This is due to delisted compounds, cheaper research fees, and faster development time frames. Repurposed drug competitors have been developed using strategic decisions based on data analysis, interpretation, and investigational approaches, but technical and regulatory restrictions must also be considered. Combining experimental and computational methodologies generates innovative new medicinal applications. It is a one-of-a-kind strategy for repurposing human-safe pharmaceuticals to treat uncommon and difficult-to-treat ailments. It is a very effective method for discovering and creating novel medications. Several pharmaceutical firms have developed novel therapies by repositioning old medications. Repurposing drugs is practical, cost-effective, and speedy and generally involves lower risks when compared to developing a new drug from the beginning.
Collapse
Affiliation(s)
- Ashish
Sriram Mishra
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Manimaran Vasanthan
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Sivakumar Ponnurengam Malliappan
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang Vietnam, Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
8
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
9
|
Mobasher M, Vogt M, Xerxa E, Bajorath J. Comprehensive Data-Driven Assessment of Non-Kinase Targets of Inhibitors of the Human Kinome. Biomolecules 2024; 14:258. [PMID: 38540679 PMCID: PMC10967794 DOI: 10.3390/biom14030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 07/23/2024] Open
Abstract
Protein kinases (PKs) are involved in many intracellular signal transduction pathways through phosphorylation cascades and have become intensely investigated pharmaceutical targets over the past two decades. Inhibition of PKs using small-molecular inhibitors is a premier strategy for the treatment of diseases in different therapeutic areas that are caused by uncontrolled PK-mediated phosphorylation and aberrant signaling. Most PK inhibitors (PKIs) are directed against the ATP cofactor binding site that is largely conserved across the human kinome comprising 518 wild-type PKs (and many mutant forms). Hence, these PKIs often have varying degrees of multi-PK activity (promiscuity) that is also influenced by factors such as single-site mutations in the cofactor binding region, compound binding kinetics, and residence times. The promiscuity of PKIs is often-but not always-critically important for therapeutic efficacy through polypharmacology. Various in vitro and in vivo studies have also indicated that PKIs have the potential of interacting with additional targets other than PKs, and different secondary cellular targets of individual PKIs have been identified on a case-by-case basis. Given the strong interest in PKs as drug targets, a wealth of PKIs from medicinal chemistry and their activity data from many assays and biological screens have become publicly available over the years. On the basis of these data, for the first time, we conducted a systematic search for non-PK targets of PKIs across the human kinome. Starting from a pool of more than 155,000 curated human PKIs, our large-scale analysis confirmed secondary targets from diverse protein classes for 447 PKIs on the basis of high-confidence activity data. These PKIs were active against 390 human PKs, covering all kinase groups of the kinome and 210 non-PK targets, which included other popular pharmaceutical targets as well as currently unclassified proteins. The target distribution and promiscuity of the 447 PKIs were determined, and different interaction profiles with PK and non-PK targets were identified. As a part of our study, the collection of PKIs with activity against non-PK targets and the associated information are made freely available.
Collapse
Affiliation(s)
| | | | | | - Jürgen Bajorath
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics and Data Science, B-IT, Lamarr Institute for Machine Learning and Artificial Intelligence, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany
| |
Collapse
|
10
|
Wang L, Bohmer MJ, Wang J, Nardella F, Calla J, Laureano De Souza M, Schindler KA, Montejo L, Mittal N, Rocamora F, Treat M, Charlton JT, Tumwebaze PK, Rosenthal PJ, Cooper RA, Chakrabarti R, Winzeler EA, Chakrabarti D, Gray NS. Discovery of Potent Antimalarial Type II Kinase Inhibitors with Selectivity over Human Kinases. J Med Chem 2024; 67:1460-1480. [PMID: 38214254 PMCID: PMC10950204 DOI: 10.1021/acs.jmedchem.3c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
While progress has been made in the effort to eradicate malaria, the disease remains a significant threat to global health. Acquired resistance to frontline treatments is emerging in Africa, urging a need for the development of novel antimalarial agents. Repurposing human kinase inhibitors provides a potential expedited route given the availability of a diverse array of kinase-targeting drugs that are approved or in clinical trials. Phenotypic screening of a library of type II human kinase inhibitors identified compound 1 as a lead antimalarial, which was initially developed to target human ephrin type A receptor 2 (EphA2). Here, we report a structure-activity relationship study and lead optimization of compound 1, which led to compound 33, with improved antimalarial activity and selectivity.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Monica J Bohmer
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Flore Nardella
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jaeson Calla
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Mariana Laureano De Souza
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Lukas Montejo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Mayland Treat
- School of Public Health, University of California, Berkeley California 94704, United States
| | - Jordan T Charlton
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, California 94110, United States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Ratna Chakrabarti
- Division of Cancer Research, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Johnson H, Narayan S, Sharma AK. Altering phosphorylation in cancer through PP2A modifiers. Cancer Cell Int 2024; 24:11. [PMID: 38184584 PMCID: PMC10770906 DOI: 10.1186/s12935-023-03193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase integral to the regulation of many cellular processes. Due to the deregulation of PP2A in cancer, many of these processes are turned toward promoting tumor progression. Considerable research has been undertaken to discover molecules capable of modulating PP2A activity in cancer. Because PP2A is capable of immense substrate specificity across many cellular processes, the therapeutic targeting of PP2A in cancer can be completed through either enzyme inhibitors or activators. PP2A modulators likewise tend to be effective in drug-resistant cancers and work synergistically with other known cancer therapeutics. In this review, we will discuss the patterns of PP2A deregulation in cancer, and its known downstream signaling pathways important for cancer regulation, along with many activators and inhibitors of PP2A known to inhibit cancer progression.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
12
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Noberini R, Bonaldi T. Proteomics contributions to epigenetic drug discovery. Proteomics 2023; 23:e2200435. [PMID: 37727062 DOI: 10.1002/pmic.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
15
|
Sterling J, Baker JR, McCluskey A, Munoz L. Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research. Nat Commun 2023; 14:3228. [PMID: 37270653 PMCID: PMC10239480 DOI: 10.1038/s41467-023-38952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Chemical probes have reached a prominent role in biomedical research, but their impact is governed by experimental design. To gain insight into the use of chemical probes, we conducted a systematic review of 662 publications, understood here as primary research articles, employing eight different chemical probes in cell-based research. We summarised (i) concentration(s) at which chemical probes were used in cell-based assays, (ii) inclusion of structurally matched target-inactive control compounds and (iii) orthogonal chemical probes. Here, we show that only 4% of analysed eligible publications used chemical probes within the recommended concentration range and included inactive compounds as well as orthogonal chemical probes. These findings indicate that the best practice with chemical probes is yet to be implemented in biomedical research. To achieve this, we propose 'the rule of two': At least two chemical probes (either orthogonal target-engaging probes, and/or a pair of a chemical probe and matched target-inactive compound) to be employed at recommended concentrations in every study.
Collapse
Affiliation(s)
- Jayden Sterling
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jennifer R Baker
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
16
|
Bohmer MJ, Wang J, Istvan ES, Luth MR, Collins JE, Huttlin EL, Wang L, Mittal N, Hao M, Kwiatkowski NP, Gygi SP, Chakrabarti R, Deng X, Goldberg DE, Winzeler EA, Gray NS, Chakrabarti D. Human Polo-like Kinase Inhibitors as Antiplasmodials. ACS Infect Dis 2023; 9:1004-1021. [PMID: 36919909 PMCID: PMC10106425 DOI: 10.1021/acsinfecdis.3c00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Protein kinases have proven to be a very productive class of therapeutic targets, and over 90 inhibitors are currently in clinical use primarily for the treatment of cancer. Repurposing these inhibitors as antimalarials could provide an accelerated path to drug development. In this study, we identified BI-2536, a known potent human polo-like kinase 1 inhibitor, with low nanomolar antiplasmodial activity. Screening of additional PLK1 inhibitors revealed further antiplasmodial candidates despite the lack of an obvious orthologue of PLKs in Plasmodium. A subset of these inhibitors was profiled for their in vitro killing profile, and commonalities between the killing rate and inhibition of nuclear replication were noted. A kinase panel screen identified PfNEK3 as a shared target of these PLK1 inhibitors; however, phosphoproteome analysis confirmed distinct signaling pathways were disrupted by two structurally distinct inhibitors, suggesting PfNEK3 may not be the sole target. Genomic analysis of BI-2536-resistant parasites revealed mutations in genes associated with the starvation-induced stress response, suggesting BI-2536 may also inhibit an aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- Monica J Bohmer
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biolo gy, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Eva S Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Jennifer E Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lushun Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Mingfeng Hao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biolo gy, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Nicholas P Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Cancer Biolo gy, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ratna Chakrabarti
- Division of Cancer Research, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University California, San Diego, La Jolla, California 92093, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
17
|
In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity. Int J Mol Sci 2023; 24:ijms24065120. [PMID: 36982188 PMCID: PMC10049026 DOI: 10.3390/ijms24065120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
The landscape of viral strains and lineages of SARS-CoV-2 keeps changing and is currently dominated by Delta and Omicron variants. Members of the latest Omicron variants, including BA.1, are showing a high level of immune evasion, and Omicron has become a prominent variant circulating globally. In our search for versatile medicinal chemistry scaffolds, we prepared a library of substituted ɑ-aminocyclobutanones from an ɑ-aminocyclobutanone synthon (11). We performed an in silico screen of this actual chemical library as well as other virtual 2-aminocyclobutanone analogs against seven SARS-CoV-2 nonstructural proteins to identify potential drug leads against SARS-CoV-2, and more broadly against coronavirus antiviral targets. Several of these analogs were initially identified as in silico hits against SARS-CoV-2 nonstructural protein 13 (Nsp13) helicase through molecular docking and dynamics simulations. Antiviral activity of the original hits as well as ɑ-aminocyclobutanone analogs that were predicted to bind more tightly to SARS-CoV-2 Nsp13 helicase are reported. We now report cyclobutanone derivatives that exhibit anti-SARS-CoV-2 activity. Furthermore, the Nsp13 helicase enzyme has been the target of relatively few target-based drug discovery efforts, in part due to a very late release of a high-resolution structure accompanied by a limited understanding of its protein biochemistry. In general, antiviral agents initially efficacious against wild-type SARS-CoV-2 strains have lower activities against variants due to heavy viral loads and greater turnover rates, but the inhibitors we are reporting have higher activities against the later variants than the wild-type (10–20X). We speculate this could be due to Nsp13 helicase being a critical bottleneck in faster replication rates of the new variants, so targeting this enzyme affects these variants to an even greater extent. This work calls attention to cyclobutanones as a useful medicinal chemistry scaffold, and the need for additional focus on the discovery of Nsp13 helicase inhibitors to combat the aggressive and immune-evading variants of concern (VOCs).
Collapse
|
18
|
Xu S, Zhu Y, Meng J, Li C, Zhu Z, Wang C, Gu YC, Han L, Wen J, Tong M, Shi X, Hou Y, Liu Y, Zhao Y. 2-Aminopyrimidine derivatives as selective dual inhibitors of JAK2 and FLT3 for the treatment of acute myeloid leukemia. Bioorg Chem 2023; 134:106442. [PMID: 36878064 DOI: 10.1016/j.bioorg.2023.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Dual inhibitors of JAK2 and FLT3 can synergistically control the development of acute myeloid leukemia (AML), and overcome secondary drug resistance of AML that is associated with FLT3 inhibition. We therefore designed and synthesized a series of 4-piperazinyl-2-aminopyrimidines as dual inhibitors of JAK2 and FLT3, and improved their selectivity for JAK2. Screening cascades revealed that compound 11r exhibited inhibitory activity with IC50 values of 2.01, 0.51, and 104.40 nM against JAK2, FLT3, and JAK3, respectively. Compound 11r achieved a high selectivity for JAK2 at a ratio of 51.94, and also showed potent antiproliferative activity in HEL (IC50 = 1.10 μM) and MV4-11 (IC50 = 9.43 nM) cell lines. In an in vitro metabolism assay, 11r exhibited moderate stability in human liver microsomes (HLMs), with a half-life time of 44.4 min, and in rat liver microsomes (RLMs), with a half-life of 143 min. In pharmacokinetic studies, compound 11r showed moderate absorption (Tmax = 5.33 h), with a peak concentration of 38.7 ng/mL and an AUC of 522 ng h/mL in rats, and an oral bioavailability of 25.2%. In addition, 11r induced MV4-11 cell apoptosis in a dose-dependent manner. These results indicate that 11r is a promising selective JAK2/FLT3 dual inhibitor.
Collapse
Affiliation(s)
- Sicong Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Yiran Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jie Meng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Chao Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Zhenzhen Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Chen Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Liang Han
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Jiajie Wen
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Xuan Shi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Yajing Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| |
Collapse
|
19
|
Simpson LM, Fulcher LJ, Sathe G, Brewer A, Zhao JF, Squair DR, Crooks J, Wightman M, Wood NT, Gourlay R, Varghese J, Soares RF, Sapkota GP. An affinity-directed phosphatase, AdPhosphatase, system for targeted protein dephosphorylation. Cell Chem Biol 2023; 30:188-202.e6. [PMID: 36720221 DOI: 10.1016/j.chembiol.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.
Collapse
Affiliation(s)
- Luke M Simpson
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Luke J Fulcher
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daniel R Squair
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Crooks
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T Wood
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P Sapkota
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Zhang H, He F, Gao G, Lu S, Wei Q, Hu H, Wu Z, Fang M, Wang X. Approved Small-Molecule ATP-Competitive Kinases Drugs Containing Indole/Azaindole/Oxindole Scaffolds: R&D and Binding Patterns Profiling. Molecules 2023; 28:molecules28030943. [PMID: 36770611 PMCID: PMC9920796 DOI: 10.3390/molecules28030943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Kinases are among the most important families of biomolecules and play an essential role in the regulation of cell proliferation, apoptosis, metabolism, and other critical physiological processes. The dysregulation and gene mutation of kinases are linked to the occurrence and development of various human diseases, especially cancer. As a result, a growing number of small-molecule drugs based on kinase targets are being successfully developed and approved for the treatment of many diseases. The indole/azaindole/oxindole moieties are important key pharmacophores of many bioactive compounds and are generally used as excellent scaffolds for drug discovery in medicinal chemistry. To date, 30 ATP-competitive kinase inhibitors bearing the indole/azaindole/oxindole scaffold have been approved for the treatment of diseases. Herein, we summarize their research and development (R&D) process and describe their binding models to the ATP-binding sites of the target kinases. Moreover, we discuss the significant role of the indole/azaindole/oxindole skeletons in the interaction of their parent drug and target kinases, providing new medicinal chemistry inspiration and ideas for the subsequent development and optimization of kinase inhibitors.
Collapse
Affiliation(s)
- Haofan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guiping Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Sheng Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qiaochu Wei
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Zhen Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.F.); (X.W.)
| |
Collapse
|
21
|
Kwak C, Park C, Ko M, Im CY, Moon H, Park YH, Kim SY, Lee S, Kang MG, Kwon HJ, Hong E, Seo JK, Rhee HW. Identification of proteomic landscape of drug-binding proteins in live cells by proximity-dependent target ID. Cell Chem Biol 2022; 29:1739-1753.e6. [PMID: 36272407 DOI: 10.1016/j.chembiol.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
Direct identification of the proteins targeted by small molecules can provide clues for disease diagnosis, prevention, and drug development. Despite concentrated attempts, there are still technical limitations associated with the elucidation of direct interactors. Herein, we report a target-ID system called proximity-based compound-binding protein identification (PROCID), which combines our direct analysis workflow of proximity-labeled proteins (Spot-ID) with the HaloTag system to efficiently identify the dynamic proteomic landscape of drug-binding proteins. We successfully identified well-known dasatinib-binding proteins (ABL1, ABL2) and confirmed the unapproved dasatinib-binding kinases (e.g., BTK and CSK) in a live chronic myeloid leukemia cell line. PROCID also identified the DNA helicase protein SMARCA2 as a dasatinib-binding protein, and the ATPase domain was confirmed to be the binding site of dasatinib using a proximity ligation assay (PLA) and in cellulo biotinylation assay. PROCID thus provides a robust method to identify unknown drug-interacting proteins in live cells that expedites the mode of action of the drug.
Collapse
Affiliation(s)
- Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Cheolhun Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Minjeong Ko
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Heegyum Moon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - So Young Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Seungyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea.
| | - Jeong Kon Seo
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
22
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
23
|
Zeng S, Lan B, Ren X, Zhang S, Schreyer D, Eckstein M, Yang H, Britzen-Laurent N, Dahl A, Mukhopadhyay D, Chang D, Kutschick I, Pfeffer S, Bailey P, Biankin A, Grützmann R, Pilarsky C. CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. J Exp Clin Cancer Res 2022; 41:241. [PMID: 35945614 PMCID: PMC9364549 DOI: 10.1186/s13046-022-02443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a dismal prognosis. Although combined treatment with gemcitabine and albumin-bound paclitaxel has improved the prognosis of PDAC, both intrinsic and acquired chemoresistance remain as severe hurtles towards improved prognosis. Thus, new therapeutic targets and innovative strategies are urgently needed. METHODS In this study, we used the KPC mouse model-derived PDAC cell line TB32047 to perform kinome-wide CRISPR-Cas9 loss-of-function screening. Next-generation sequencing and MAGeCK-VISPR analysis were performed to identify candidate genes. We then conducted cell viability, clonogenic, and apoptosis assays and evaluated the synergistic therapeutic effects of cyclin-dependent kinase 7 (CDK7) depletion or inhibition with gemcitabine (GEM) and paclitaxel (PTX) in a murine orthotopic pancreatic cancer model. For mechanistic studies, we performed genome enrichment analysis (GSEA) and Western blotting to identify and verify the pathways that render PDAC sensitive to GEM/PTX therapy. RESULTS We identified several cell cycle checkpoint kinases and DNA damage-related kinases as targets for overcoming chemoresistance. Among them, CDK7 ranked highly in both screenings. We demonstrated that both gene knockout and pharmacological inhibition of CDK7 by THZ1 result in cell cycle arrest, apoptosis induction, and DNA damage at least predominantly through the STAT3-MCL1-CHK1 axis. Furthermore, THZ1 synergized with GEM and PTX in vitro and in vivo, resulting in enhanced antitumor effects. CONCLUSIONS Our findings support the application of CRISPR-Cas9 screening in identifying novel therapeutic targets and suggest new strategies for overcoming chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Daniel Schreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center a DFG NGS Competence Center, TU Dresden, 01307, Dresden, Germany
| | - Debabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland, UK
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Translational Research Center, Schwabachanlage 12, 91054, Erlangen, Germany.
| |
Collapse
|
24
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|
25
|
van Gent ME, van der Reijden TJK, Lennard PR, de Visser AW, Schonkeren-Ravensbergen B, Dolezal N, Cordfunke RA, Drijfhout JW, Nibbering PH. Synergism between the Synthetic Antibacterial and Antibiofilm Peptide (SAAP)-148 and Halicin. Antibiotics (Basel) 2022; 11:antibiotics11050673. [PMID: 35625317 PMCID: PMC9137631 DOI: 10.3390/antibiotics11050673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/07/2022] Open
Abstract
Recently, using a deep learning approach, the novel antibiotic halicin was discovered. We compared the antibacterial activities of two novel bactericidal antimicrobial agents, i.e., the synthetic antibacterial and antibiofilm peptide (SAAP)-148 with this antibiotic halicin. Results revealed that SAAP-148 was more effective than halicin in killing planktonic bacteria of antimicrobial-resistant (AMR) Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, especially in biologically relevant media, such as plasma and urine, and in 3D human infection models. Surprisingly, SAAP-148 and halicin were equally effective against these bacteria residing in immature and mature biofilms. As their modes of action differ, potential favorable interactions between SAAP-148 and halicin were investigated. For some specific strains of AMR E. coli and S. aureus synergism between these agents was observed, whereas for other strains, additive interactions were noted. These favorable interactions were confirmed for AMR E. coli in a 3D human bladder infection model and AMR S. aureus in a 3D human epidermal infection model. Together, combinations of these two novel antimicrobial agents hold promise as an innovative treatment for infections not effectively treatable with current antibiotics.
Collapse
Affiliation(s)
- Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
- Correspondence:
| | - Tanny J. K. van der Reijden
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Patrick R. Lennard
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Center for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adriëtte W. de Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Bep Schonkeren-Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (N.D.); (R.A.C.); (J.W.D.)
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (P.R.L.); (A.W.d.V.); (B.S.-R.); (P.H.N.)
| |
Collapse
|
26
|
Wu S, Liu S, Li Y, Liu C, Pan H. Lestaurtinib Has the Potential to Inhibit the Proliferation of Hepatocellular Carcinoma Uncovered by Bioinformatics Analysis and Pharmacological Experiments. Front Cell Dev Biol 2022; 10:837428. [PMID: 35646925 PMCID: PMC9136166 DOI: 10.3389/fcell.2022.837428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Patients diagnosed with hepatocellular carcinoma (HCC) seek a satisfactory prognosis. However, most HCC patients present a risk of recurrence, thus highlighting the lack of effectiveness of current treatments and the urgent need for improved treatment options. The purpose of this study was to identify new candidate factors in the STAT family, which is involved in hepatocellular carcinogenesis, and new targets for the treatment of HCC. Bioinformatics web resources, including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Human Protein Atlas (HPA), Tumor Immune Estimation Resource (TIMER), and GSCALite, were used to identify candidate genes among the STAT family in HCC. STAT1 was significantly overexpressed in hepatocellular carcinoma. More meaningfully, the high STAT1 expression was significantly associated with poor prognosis. Therefore, STAT1 is expected to be a therapeutic target. The JAK2 inhibitor lestaurtinib was screened by the Genomics of Cancer Drug Sensitivity Project (GDSC) analysis. Pharmacological experiments showed that lestaurtinib has the ability to prevent cell migration and colony formation from single cells. We also found that STAT1 is involved in inflammatory responses and immune cell infiltration. Immune infiltration analysis revealed a strong association between STAT1 levels and immune cell abundance, immune biomarker levels, and immune checkpoints. This study suggests that STAT1 may be a key oncogene in hepatocellular carcinoma and provides evidence that the JAK2 inhibitor lestaurtinib is a potent antiproliferative agent that warrants further investigation as a targeted therapy for HCC.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medicine, Qingdao University, Qingdao, China
| | - Shihai Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Huazheng Pan,
| |
Collapse
|
27
|
Mustonen EK, Pantsar T, Rashidian A, Reiner J, Schwab M, Laufer S, Burk O. Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library. Cells 2022; 11:1299. [PMID: 35455978 PMCID: PMC9030254 DOI: 10.3390/cells11081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| | - Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Azam Rashidian
- Department of Internal Medicine VIII, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Juliander Reiner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tuebingen, 72076 Tuebingen, Germany; (T.P.); (J.R.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, 72074 Tuebingen, Germany; (E.-K.M.); (M.S.)
| |
Collapse
|
28
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
29
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
30
|
Réa D, Hughes TP. Development of Asciminib, a Novel Allosteric Inhibitor of BCR-ABL1. Crit Rev Oncol Hematol 2022; 171:103580. [PMID: 35021069 DOI: 10.1016/j.critrevonc.2022.103580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is driven by a translocation event between chromosomes 9 and 22, leading to the formation of a constitutively active BCR-ABL1 oncoprotein. Approved tyrosine kinase inhibitors (TKIs) for CML inhibit BCR-ABL1 by competitively targeting its adenosine triphosphate (ATP)-binding site, which significantly improves patient outcomes. However, resistance to and intolerance of TKIs remains a clinical challenge. Asciminib is a promising investigational agent in development that allosterically targets BCR-ABL1 in a non-ATP-competitive manner. It binds to the ABL1 myristoyl-binding pocket and is effective against most ABL1 kinase domain mutations that confer resistance to ATP-competitive TKIs, including the T315I mutation. This review discusses unmet needs in the current CML treatment landscape, reports clinical data from asciminib trials that support the use of single-agent asciminib as third-line therapy and beyond, and explores the potential benefit of asciminib in combination with approved TKIs in earlier lines.
Collapse
Affiliation(s)
- Delphine Réa
- Department of Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Timothy P Hughes
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
31
|
Signore M, Manganelli V. Reverse Phase Protein Arrays in cancer stem cells. Methods Cell Biol 2022; 171:33-61. [DOI: 10.1016/bs.mcb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem Biol 2021; 29:1053-1064.e3. [PMID: 34968420 DOI: 10.1016/j.chembiol.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
In phenotypic compound discovery, conclusive identification of cellular targets and mode of action are often impaired by off-target binding. In particular, microtubules are frequently targeted in cellular assays. However, in vitro tubulin binding assays do not correctly reflect the cellular context, and conclusive high-throughput phenotypic assays monitoring tubulin binding are scarce, such that tubulin binding is rarely identified. We report that morphological profiling using the Cell Painting assay (CPA) can efficiently detect tubulin modulators in compound collections with a high throughput, including annotated reference compounds and unannotated compound classes with unrelated chemotypes and scaffolds. Small-molecule tubulin binders share similar CPA fingerprints, which enables prediction and experimental validation of microtubule-binding activity. Our findings suggest that CPA or a related morphological profiling approach will be an invaluable addition to small-molecule discovery programs in chemical biology and medicinal chemistry, enabling early identification of one of the most frequently observed off-target activities.
Collapse
|
33
|
Optimization of 4-Anilinoquinolines as Dengue Virus Inhibitors. Molecules 2021; 26:molecules26237338. [PMID: 34885921 PMCID: PMC8659069 DOI: 10.3390/molecules26237338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Emerging viral infections, including those caused by dengue virus (DENV) and Venezuelan Equine Encephalitis virus (VEEV), pose a significant global health challenge. Here, we report the preparation and screening of a series of 4-anilinoquinoline libraries targeting DENV and VEEV. This effort generated a series of lead compounds, each occupying a distinct chemical space, including 3-((6-bromoquinolin-4-yl)amino)phenol (12), 6-bromo-N-(5-fluoro-1H-indazol-6-yl)quinolin-4-amine (50) and 6-((6-bromoquinolin-4-yl)amino)isoindolin-1-one (52), with EC50 values of 0.63–0.69 µM for DENV infection. These compound libraries demonstrated very limited toxicity with CC50 values greater than 10 µM in almost all cases. Additionally, the lead compounds were screened for activity against VEEV and demonstrated activity in the low single-digit micromolar range, with 50 and 52 demonstrating EC50s of 2.3 µM and 3.6 µM, respectively. The promising results presented here highlight the potential to further refine this series in order to develop a clinical compound against DENV, VEEV, and potentially other emerging viral threats.
Collapse
|
34
|
Identification and evaluation of 4-anilinoquin(az)olines as potent inhibitors of both dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). Bioorg Med Chem Lett 2021; 52:128407. [PMID: 34624490 DOI: 10.1016/j.bmcl.2021.128407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023]
Abstract
There is an urgent need for novel strategies for the treatment of emerging arthropod-borne viral infections, including those caused by dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). We prepared and screened focused libraries of 4-anilinoquinolines and 4-anilinoquinazolines for antiviral activity and identified three potent compounds. N-(2,5-dimethoxyphenyl)-6-(trifluoromethyl)quinolin-4-amine (10) inhibited DENV infection with an EC50 = 0.25 µM, N-(3,4-dichlorophenyl)-6-(trifluoromethyl)quinolin-4-amine (27) inhibited VEEV with an EC50 = 0.50 µM, while N-(3-ethynyl-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine (54) inhibited VEEV with an EC50 = 0.60 µM. These series of compounds demonstrated nearly no toxicity with CC50 values greater than 10 µM in all cases. These promising results provide a future prospective to develop a clinical compound against these emerging viral threats.
Collapse
|
35
|
Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J. Targeted Therapies in Cancer: To Be or Not to Be, Selective. Biomedicines 2021; 9:1591. [PMID: 34829820 PMCID: PMC8615814 DOI: 10.3390/biomedicines9111591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022] Open
Abstract
Development of targeted therapies in recent years revealed several nonchemotherapeutic options for patients. Chief among targeted therapies is small molecule kinase inhibitors targeting key oncogenic signaling proteins. Through competitive and noncompetitive inhibition of these kinases, and therefore the pathways they activate, cancers can be slowed or completely eradicated, leading to partial or complete remissions for many cancer types. Unfortunately, for many patients, resistance to targeted therapies, such as kinase inhibitors, ultimately develops and can necessitate multiple lines of treatment. Drug resistance can either be de novo or acquired after months or years of drug exposure. Since resistance can be due to several unique mechanisms, there is no one-size-fits-all solution to this problem. However, combinations that target complimentary pathways or potential escape mechanisms appear to be more effective than sequential therapy. Combinations of single kinase inhibitors or alternately multikinase inhibitor drugs could be used to achieve this goal. Understanding how to efficiently target cancer cells and overcome resistance to prior lines of therapy became imperative to the success of cancer treatment. Due to the complexity of cancer, effective treatment options in the future will likely require mixing and matching these approaches in different cancer types and different disease stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA; (S.M.); (D.S.); (N.N.); (M.A.); (S.P.M.)
| |
Collapse
|
36
|
Hameduh T, Mokry M, Miller AD, Adam V, Heger Z, Haddad Y. A rotamer relay information system in the epidermal growth factor receptor-drug complexes reveals clues to new paradigm in protein conformational change. Comput Struct Biotechnol J 2021; 19:5443-5454. [PMID: 34667537 PMCID: PMC8511715 DOI: 10.1016/j.csbj.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/04/2022] Open
Abstract
Cancer cells can escape the effects of chemotherapy through mutations and upregulation of a tyrosine kinase protein called the epidermal growth factor receptor (EGFR). In the past two decades, four generations of tyrosine kinase inhibitors targeting EGFR have been developed. Using comparative structure analysis of 116 EGFR-drug complex crystal structures, cluster analysis produces two clans of 73 and 43 structures, respectively. The first clan of 73 structures is larger and is comprised mostly of the C-helix-IN conformation while the second clan of 43 structures correlates with the C-helix-OUT conformation. A deep rotamer analysis identifies 43 residues (18%) of the total of 237 residues spanning the kinase structures under investigation with significant rotamer variations between the C-helix-IN and C-helix-OUT clans. The locations of these rotamer variations take on the appearance of side chain conformational relays extending out from points of EGFR mutation to different regions of the EGFR kinase. Accordingly, we propose that key EGFR mutations act singly or together to induce drug resistant conformational changes in EGFR that are communicated via these side chain conformational relays. Accordingly, these side chain conformational relays appear to play a significant role in the development of tumour resistance. This phenomenon also suggests a new paradigm in protein conformational change that is mediated by supportive relays of rotamers on the protein surface, rather than through conventional backbone movements.
Collapse
Affiliation(s)
- Tareq Hameduh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Michal Mokry
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Andrew D. Miller
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, Brno CZ-61200, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
37
|
Fleming MR, Xiao L, Jackson KD, Beckman JA, Barac A, Moslehi JJ. Vascular Impact of Cancer Therapies: The Case of BTK (Bruton Tyrosine Kinase) Inhibitors. Circ Res 2021; 128:1973-1987. [PMID: 34110908 PMCID: PMC10185355 DOI: 10.1161/circresaha.121.318259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.
Collapse
Affiliation(s)
- Matthew R Fleming
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (L.X.)
| | - Klarissa D Jackson
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (K.D.J.)
| | - Joshua A Beckman
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Barac
- Georgetown University and MedStar Heart and Vascular Institute, MedStar Washing Hospital Center, DC (A.B.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
38
|
Recasens A, Humphrey SJ, Ellis M, Hoque M, Abbassi RH, Chen B, Longworth M, Needham EJ, James DE, Johns TG, Day BW, Kassiou M, Yang P, Munoz L. Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discov 2021; 7:81. [PMID: 33863878 PMCID: PMC8052442 DOI: 10.1038/s41420-021-00456-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Both tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.
Collapse
Affiliation(s)
- Ariadna Recasens
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Michael Ellis
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Monira Hoque
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ramzi H Abbassi
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brianna Chen
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mitchell Longworth
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.,Charles Perkins Centre and School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lenka Munoz
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
39
|
Korovesis D, Beard HA, Mérillat C, Verhelst SHL. Probes for Photoaffinity Labelling of Kinases. Chembiochem 2021; 22:2206-2218. [PMID: 33544409 DOI: 10.1002/cbic.202000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hester A Beard
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
40
|
Hoque M, Wai Wong S, Recasens A, Abbassi R, Nguyen N, Zhang D, Stashko MA, Wang X, Frye S, Day BW, Baell J, Munoz L. MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochem Pharmacol 2021; 186:114437. [PMID: 33571503 DOI: 10.1016/j.bcp.2021.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.
Collapse
Affiliation(s)
- Monira Hoque
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Siu Wai Wong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ariadna Recasens
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Ramzi Abbassi
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Nghi Nguyen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Dehui Zhang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Michael A Stashko
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaodong Wang
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Stephen Frye
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jonathan Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lenka Munoz
- School of Medical Sciences, Faculty of Medicine and Health and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, Xiao K, Tam WL, Nordlund P, Dai L. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Med Res Rev 2021; 41:2893-2926. [PMID: 33533067 DOI: 10.1002/med.21788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Small-molecule drugs modulate biological processes and disease states through engagement of target proteins in cells. Assessing drug-target engagement on a proteome-wide scale is of utmost importance in better understanding the molecular mechanisms of action of observed beneficial and adverse effects, as well as in developing next generation tool compounds and drugs with better efficacies and specificities. However, systematic assessment of drug-target engagement has been an arduous task. With the continuous development of mass spectrometry-based proteomics instruments and techniques, various chemical proteomics approaches for drug target deconvolution (i.e., the identification of molecular target for drugs) have emerged. Among these, the label-free target deconvolution approaches that do not involve the chemical modification of compounds of interest, have gained increased attention in the community. Here we provide an overview of the basic principles and recent biological applications of the most important label-free methods including the cellular thermal shift assay, pulse proteolysis, chemical denaturant and protein precipitation, stability of proteins from rates of oxidation, drug affinity responsive target stability, limited proteolysis, and solvent-induced protein precipitation. The state-of-the-art technical implications and future outlook for the label-free approaches are also discussed.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Tang
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Kefeng Xiao
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Laufkötter O, Hu H, Miljković F, Bajorath J. Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds. J Med Chem 2021; 65:922-934. [PMID: 33476146 DOI: 10.1021/acs.jmedchem.0c02076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allosteric kinase inhibitors are thought to have high selectivity and are prime candidates for kinase drug discovery. In addition, the exploration of allosteric mechanisms represents an attractive topic for basic research and drug design. Although the identification and characterization of allosteric kinase inhibitors is still far from being routine, X-ray structures of kinase complexes have been determined for a significant number of such inhibitors. On the basis of structural data, allosteric inhibitors can be confirmed. We report a comprehensive survey of allosteric kinase inhibitors and activators from publicly available X-ray structures, map their binding sites, and determine their distribution over binding pockets in kinases. In addition, we discuss structural features of these compounds and identify active structural analogues and high-confidence target annotations, indicating additional activities for a subset of allosteric inhibitors. This contribution aims to provide a detailed structure-based view of allosteric kinase inhibition.
Collapse
Affiliation(s)
- Oliver Laufkötter
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Huabin Hu
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Filip Miljković
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| |
Collapse
|
43
|
Murugesan S, Murugesan J, Palaniappan S, Palaniappan S, Murugan T, Siddiqui SS, Loganathan S. Tyrosine Kinase Inhibitors (TKIs) in Lung Cancer Treatment: A Comprehensive Analysis. Curr Cancer Drug Targets 2021; 21:55-69. [PMID: 33038912 DOI: 10.2174/1568009620666201009130008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading type of cancer worldwide today. Kinases play a crucial role in mediating the signaling pathways, and it directs to control several necessary cellular processes. Conversely, the deregulation of tyrosine kinases leads to oncogenic conversion, uncontrolled cell proliferation and tumorigenesis. Tyrosine kinases are largely deregulated in lung cancer and specifically in non-small cell lung cancer (NSCLC). Therefore, the inhibition of pathogenic kinases is a breakthrough development in cancer research, treatment and care, which clinically improve the quality of life. In the last decades, various single or combination inhibitors are approved by U.S Food and Drug Administration (FDA) and commercially available in clinics, and currently, several preclinical studies are ongoing and examining the kinase inhibitors. However, many gaps remain in understanding the mechanisms of kinase inhibitors and their selectivity. In this analysis, we focus on a class of receptor and non-receptor tyrosine kinase inhibitors and their novel role in lung cancer.
Collapse
Affiliation(s)
- Sivakumar Murugesan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Jayakumar Murugesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar- 608002, Tamilnadu, India
| | - Seedevi Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Sivasankar Palaniappan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| | - Tamilselvi Murugan
- Department of Zoology, Government Arts College (Autonomous), Coimbatore-641018, Tamil Nadu, India
| | - Shahid S Siddiqui
- Department of Medicine, University of Chicago, Chicago, IL-60637, United States
| | - Sivakumar Loganathan
- Department of Environmental Science, Periyar University, Salem-636011, Tamil Nadu, India
| |
Collapse
|
44
|
Hendrychová D, Jorda R, Kryštof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev 2020; 41:1578-1598. [PMID: 33300617 DOI: 10.1002/med.21769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological inhibition of cyclin-dependent kinase 4/6 (CDK4/6) has emerged as an efficient approach for treating breast cancer, and its clinical potential is expanding to other cancers. CDK4/6 inhibitors were originally believed to act by arresting proliferation in the G1 phase, but it is gradually becoming clear that the cellular response to these compounds is far more complex than this. Multiple context-dependent mechanisms of action are emerging, involving modulation of quiescence, senescence, autophagy, cellular metabolism, and enhanced tumor cell immunogenicity. These mechanisms may be driven by interactions with unexpected targets. We review cellular responses to the Food and Drug Administration-approved CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib, and summarize available knowledge of other drugs undergoing clinical trials, including data on their off-target landscapes. We emphasize the importance of comprehensively characterizing drugs' selectivity profiles to maximize their clinical efficacy and safety and to facilitate their repurposing to treat additional diseases based on their target spectrum.
Collapse
Affiliation(s)
- Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
45
|
Dopamine-Dependent QR2 Pathway Activation in CA1 Interneurons Enhances Novel Memory Formation. J Neurosci 2020; 40:8698-8714. [PMID: 33046554 DOI: 10.1523/jneurosci.1243-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases.SIGNIFICANCE STATEMENT One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.
Collapse
|
46
|
Rodrigues-Ferreira S, Moindjie H, Haykal MM, Nahmias C. Predicting and Overcoming Taxane Chemoresistance. Trends Mol Med 2020; 27:138-151. [PMID: 33046406 DOI: 10.1016/j.molmed.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Taxanes are microtubule-targeting drugs used as cytotoxic chemotherapy to treat most solid tumors. The development of resistance to taxanes is a major cause of therapeutic failure and overcoming chemoresistance remains an important challenge to improve patient's outcome. Extensive efforts have been made recently to identify predictive biomarkers to select populations of patients who will benefit from taxane-based chemotherapy and avoid inefficient treatment of patients with innate resistance. This, together with the discovery of new mechanisms of resistance that include metabolic reprogramming and dialogue between tumor and its microenvironment, pave the way to a new era of personalized medicine. In this review, we recapitulate recent insights into taxane resistance and present promising emerging strategies to overcome chemoresistance in the future.
Collapse
Affiliation(s)
- Sylvie Rodrigues-Ferreira
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France; Inovarion, 75005 Paris, France.
| | - Hadia Moindjie
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Maria M Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France
| | - Clara Nahmias
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800, Villejuif, France; LabEx LERMIT, Université Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
47
|
Pinto N, Prokopec SD, Ghasemi F, Meens J, Ruicci KM, Khan IM, Mundi N, Patel K, Han MW, Yoo J, Fung K, MacNeil D, Mymryk JS, Datti A, Barrett JW, Boutros PC, Ailles L, Nichols AC. Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS One 2020; 15:e0239315. [PMID: 32970704 PMCID: PMC7514001 DOI: 10.1371/journal.pone.0239315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare, but nearly uniformly fatal disease that is typically resistant to chemotherapy and radiation. Alternative strategies to target this cancer at a molecular level are necessary in order to improve dismal outcomes for ATC patients. We examined the effects of flavopiridol, a CDK inhibitor, in a panel of ATC cell lines. When cell lines were treated over a ten-point concentration range, CAL62, KMH2 and BHT-101 cell lines had a sub micromolar half-maximal inhibitory concentration, while no effect was seen in the non-cancerous cell line IMR-90. Flavopiridol treatment resulted in decreased levels of the cell cycle proteins CDK9 and MCL1, and induced cell cycle arrest. Flavopiridol also decreased the in vitro ability of ATC cells to form colonies and impeded migration using a transwell migration assay. In vivo, flavopiridol decreased tumor weight and tumor volume over time in a patient-derived xenograft model of ATC. Given the observed in vitro and in vivo activity, flavopiridol warrants further investigation for treatment of ATC.
Collapse
Affiliation(s)
- Nicole Pinto
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | | | - Farhad Ghasemi
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kara M. Ruicci
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Imran M. Khan
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Neil Mundi
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Krupal Patel
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Myung W. Han
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - John Yoo
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Kevin Fung
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Danielle MacNeil
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Joe S. Mymryk
- Department of Oncology, Western University, London, Ontario, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Alessandro Datti
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - John W. Barrett
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Paul C. Boutros
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, University of California, Los Angeles, CA, United States of America
- Department of Urology, University of California, Los Angeles, CA, United States of America
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, United States of America
- Institute for Precision Health, University of California, Los Angeles, CA, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States of America
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C. Nichols
- Department of Otolaryngology–Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
49
|
Cationic Pillar[6]arene Induces Cell Apoptosis by Inhibiting Protein Tyrosine Phosphorylation Via Host-Guest Recognition. Int J Mol Sci 2020; 21:ijms21144979. [PMID: 32679647 PMCID: PMC7404071 DOI: 10.3390/ijms21144979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
We reported for the first time that cationic pillar[6]arene (cPA6) could tightly bind to peptide polymer (MW~20–50 kDa), an artificial substrate for tyrosine (Tyr) phosphorylation, and efficiently inhibit Tyr protein phosphorylation through host–guest recognition. We synthesized a nanocomposite of black phosphorus nanosheets loaded with cPA6 (BPNS@cPA6) to explore the effect of cPA6 on cells. BPNS@cPA6 was able to enter HepG2 cells, induced apoptosis, and inhibited cell proliferation by reducing the level of Tyr phosphorylation. Furthermore, BPNS@cPA6 showed a stronger ability of inhibiting cell proliferation in tumor cells than in normal cells. Our results revealed the supramolecular modulation of enzymatic Tyr phosphorylation by the host–guest recognition of cPA6.
Collapse
|
50
|
Juárez-Saldivar A, Schroeder M, Salentin S, Haupt VJ, Saavedra E, Vázquez C, Reyes-Espinosa F, Herrera-Mayorga V, Villalobos-Rocha JC, García-Pérez CA, Campillo NE, Rivera G. Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. Int J Mol Sci 2020; 21:ijms21124270. [PMID: 32560043 PMCID: PMC7348847 DOI: 10.3390/ijms21124270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects nearly eight million people worldwide. There are currently only limited treatment options, which cause several side effects and have drug resistance. Thus, there is a great need for a novel, improved Chagas treatment. Bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS) has emerged as a promising pharmacological target. Moreover, some human dihydrofolate reductase (HsDHFR) inhibitors such as trimetrexate also inhibit T. cruzi DHFR-TS (TcDHFR-TS). These compounds serve as a starting point and a reference in a screening campaign to search for new TcDHFR-TS inhibitors. In this paper, a novel virtual screening approach was developed that combines classical docking with protein-ligand interaction profiling to identify drug repositioning opportunities against T. cruzi infection. In this approach, some food and drug administration (FDA)-approved drugs that were predicted to bind with high affinity to TcDHFR-TS and whose predicted molecular interactions are conserved among known inhibitors were selected. Overall, ten putative TcDHFR-TS inhibitors were identified. These exhibited a similar interaction profile and a higher computed binding affinity, compared to trimetrexate. Nilotinib, glipizide, glyburide and gliquidone were tested on T. cruzi epimastigotes and showed growth inhibitory activity in the micromolar range. Therefore, these compounds could lead to the development of new treatment options for Chagas disease.
Collapse
Affiliation(s)
- Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - V. Joachim Haupt
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante 89840, Mexico
| | - Juan Carlos Villalobos-Rocha
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Carlos A. García-Pérez
- Scientific Computing Research Unit, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Correspondence: ; Tel.: +52-1-8991-601-356
| |
Collapse
|